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Abstract

Bosonization allows one to describe the low-energy physics of one-dimensional quantum
fluids within a bosonic effective field theory formulated in terms of two fields: the “den-
sity” field ϕ and its conjugate partner, the phase ϑ of the superfluid order parameter. We
discuss the implementation of the nonperturbative functional renormalization group in
this formalism, considering a Luttinger liquid in a periodic potential as an example. We
show that in order for ϑ and ϕ to remain conjugate variables at all energy scales, one
must dynamically redefine the field ϑ along the renormalization-group flow. We derive
explicit flow equations using a derivative expansion of the scale-dependent effective ac-
tion to second order and show that they reproduce the flow equations of the sine-Gordon
model (obtained by integrating out the field ϑ from the outset) derived within the same
approximation. Only with the scale-dependent (flowing) reparametrization of the phase
field ϑ do we obtain the standard phenomenology of the Luttinger liquid (when the peri-
odic potential is sufficiently weak so as to avoid the Mott-insulating phase) characterized
by two low-energy parameters, the velocity of the sound mode and the renormalized Lut-
tinger parameter.
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1 Introduction

Bosonization is one of the most popular methods to describe one-dimensional quantum flu-
ids [1]. It has recently been used in combination with the nonperturbative functional renor-
malization (FRG) group to study the Mott-insulating phase induced by a periodic potential
(in the framework of the sine-Gordon model) [2, 3] and the Bose-glass phase of disordered
bosons [4–8]. These studies are based on an action S[ϕ] expressed solely in terms of the
“density” field ϕ, its conjugate partner, the phase ϑ of the superfluid order parameter (the
field operatorψ for bosons), being integrated out from the outset. In some cases however one
would like to keep the field ϑ in the action in order to study its fluctuations. In other cases,
the action is not quadratic in ϑ and integrating out the latter from the outset in a simple way
is not possible.

The basic idea of bosonization is to introduce a low-momentum field ϕ(x , t) such that the
long-wavelength part of the density reads ρ = ρ0 − ∂xϕ/π where ρ0 is the mean density of
particles [9]. The Lagrangian density then reads

Lk =
1

2πKk

�

1
vk
(∂tϕ)

2 − vk(∂xϕ)
2
�

+Lint,k . (1)

The first two terms on the rhs of (1) can be seen as the leading terms in a derivative expansion
and are essentially dictated by symmetries [10]; they yield a mode with linear dispersion
ω = vk|q|. Beside the velocity vk, the Lagrangian density depends on the so-called Luttinger
parameter Kk which determines the stiffness ∼ vk/Kk with respect to a local density change.
Both vk and Kk depend on the (coarse-graining) momentum scale k at which the Lagrangian
density (1) is defined. The additional contribution Lint,k includes all terms that would be
present if Lk were derived from a microscopic model, e.g. higher-order derivative terms or
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various perturbations due to a periodic lattice potential, disorder, etc. When the ground state
is a Luttinger liquid, Lint,k is irrelevant (in the RG sense) and the low-energy physics is entirely
determined by two parameters, the renormalized velocity vR = limk→0 vk and the renormalized
Luttinger parameter KR = limk→0 Kk.

In addition to the field ϕ, it is possible to consider its conjugate partner1

Π(x , t) = ∂Lk/∂ (∂tϕ(x , t)), which yields the Hamiltonian density Hk = Π∂tϕ −Lk and the
action

Sk[ϕ,ϑ] =

∫

d t

∫

d x
§

1
π
∂xϑ∂tϕ −

vk

2π

�

Kk(∂xϑ)
2 +

1
Kk
(∂xϕ)

2
�

+Lint,k

ª

, (2)

where the field ϑ is defined by Π = ∂xϑ/π. In the quantum theory, the commutation relation
[ϕ̂(x), Π̂(x ′)] = iδ(x − x ′) implies [− 1

π∂x ϕ̂(x), ϑ̂(x ′)] = [ρ̂(x), ϑ̂(x ′)] = iδ(x − x ′), which
identifies ϑ as the phase of the field operator (bosons) or the superconducting order parameter
(fermions) [1]. This qualitative discussion of bosonization clearly shows that the definition of
the field ϑ is scale dependent; this is a necessary condition to ensure that ∂xϕ and ϑ remain
conjugate variables at all scales.2 This implies that in a RG approach, where the family of
actions Sk[ϕ,ϑ] is obtained from the flow equation ∂kSk[ϕ,ϑ], one has to dynamically redefine
the field ϑ along the flow. The aim of this paper is to show how this can be implemented in the
framework of the nonperturbative FRG, considering the case of a Luttinger liquid in a periodic
potential as an example. When the field ϑ is integrated out from the outset, one obtains
the sine-Gordon model for which the nonperturbative FRG approach has been shown to be
very efficient [2]. In particular the FRG predicts the mass of the lowest excitation (solitons,
antisolitons or breathers) with a very good accuracy.

The preservation of the canonical commutation relations between ∂xϕ and ϑ along the RG
flow turns out to be crucial for a proper physical description of the system, in particular for
the identification of the stiffness of the phase ϑ as the superfluid density. This differs from the
study of a Bose fluid in a periodic potential using the canonically conjugated variables defined
by the creation of annihilation boson fields. In that case, the fields ψ and ψ∗ defined at the
microscopic scale yield a simple identification of the superfluid density in the low-energy limit
even though their canonical commutation relations are not preserved along the RG flow (see,
e.g., Refs. [11,12] for an FRG study of the Bose-Hubbard model in two and three dimensions).

The outline of the manuscript is as follows. In Sec. 2 we derive the FRG flow equations
to second order in a derivative expansion satisfied by the scale-dependent effective action
Γk[φ,θ], where φ = 〈ϕ〉 and θ = 〈ϑ〉 with ϕ,ϑ denoting the fields at some initial scale kin.
While this approach reproduces the flow equations of the sine-Gordon model and predicts
many low-energy properties correctly, it meets with two difficulties: i) When the ground state
is a Luttinger liquid, in the limit k → 0 the effective action Γk[φ,θ] is not parametrized by
only two parameters, a renormalized velocity vR and a renormalized Luttinger parameter KR,
as expected; ii) the superfluid stiffness does not renormalize despite the presence of a periodic
potential. We show that the latter result is a consequence of gauge invariance and therefore
independent of the approximation scheme used to solve the FRG flow equations.

In Sec. 3 we show how these issues can be overcome by reparametrizing the field along
the RG flow, i.e. by introducting a new field ϑ̄ ≡ ϑ̄k[ϕ,ϑ] defined as a k-dependent func-
tional of ϕ and ϑ.3 This change of variable can be seen as a local frame transformation on

1This is actually mandatory if one wants to express the field operator ψ in terms of bosonic fields [1].
2When Lint,k corresponds to a periodic potential, it is easy to see using perturbation theory that the action

Sk′[ϕ,ϑ] (with k′ < k) contains a term (∂tϕ)2 in addition to ∂xϑ∂tϕ. Thus if ϑ is conjugate to ϕ at scale k, this is
no longer true at scale k′ < k.

3For previous works using a scale-dependent field reparametrization in the FRG approach, see Refs. [13–22].
The field reparametrization therein is used to eliminate a two-fermion interaction at the expense of an interaction
with a collective bosonic field. Although this scale-dependent Hubbard-Stratonovich transformation is referred to
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configuration space [25], which can be implemented in two different, but equivalent, ways:
as an active frame transformation at the level of the functional integral, or as a passive frame
transformation consisting of a mere change of variables θ → θ̄ ≡ θ̄k[φ,θ] in the effective
action Γk[φ,θ]. We show that to second order of the derivative expansion a linear change of
variables is sufficient to ensure that ϑ̄ remains conjugate to ϕ at all scales. In the presence of
an external gauge field, in addition to the field reparametrization it is convenient to perform
a k-dependent gauge transformation Aµ → A′µ ≡ A′

µ,k[Aν] such that A′µ enters the effective

action in the manifestly gauge invariant form ∂µθ̄ −A′µ. The effective action Γk[φ, θ̄] exhibits

all the physical properties expected when θ̄ is interpreted as the phase of the superfluid order
parameter. In particular, in the Luttinger-liquid phase we now find that Γk=0 is parametrized
only by a renormalized velocity vR and a renormalized Luttinger parameter KR. Furthermore
the superfluid stiffness is reduced by the periodic potential and takes the value ρs = vRKR/π

in the infrared limit whereas the compressibility is given by κ= KR/πvR.

2 FRG and bosonization

We consider a one-dimensional quantum fluid in the presence of a periodic potential. In the
bosonization formalism, the low-energy Hamiltonian is given by [1]

Ĥ =

∫

d x
§

v
2π

�

1
K
(∂x ϕ̂

2) + K(∂x ϑ̂)
2
�

− u cos(2
p

2ϕ̂)
ª

, (3)

where ϕ̂ and ϑ̂ satisfy the commutation relations [ϑ̂(x),∂y ϕ̂(y)] = iπδ(x − y). ϕ̂ is related
to the density operator via

ρ̂(x) = ρ0 −
1
π
∂x ϕ̂ + 2ρ2 cos[2πρ0 x − 2ϕ̂(x)] + · · · , (4)

where ρ0 is the average density and ρ2 a nonuniversal quantity that depends on microscopic
details. The ellipsis in (4) denotes higher-order, subleading, oscillating terms. When u = 0
the Hamiltonian (3) describes a Luttinger liquid; v is the the sound-mode velocity and K the
Luttinger parameter. The last term in (3) originates from a potential which couples to the
density of particles and whose period is commensurate with 1/ρ0 [1].4

In the functional integral formalism, one obtains the Euclidean (imaginary-time) action

S[ϕ,ϑ] =

∫

X

§

v
2π

�

1
K
(∂xϕ

2) + K(∂xϑ)
2
�

−
i
π
∂xϕ∂τϑ− u cos(2

p
2ϕ)

ª

, (5)

where we use the notation X = (x ,τ) and
∫

X =
∫

d x
∫ β

0 dτ. ϕ(X ) and ϑ(X ) are bosonic
fields with τ ∈ [0,β]. The model is regularized by a UV cutoff Λ acting on both momenta and
frequencies. We shall only consider the zero-temperature limit β = 1/T →∞ .

2.1 Scale-dependent effective action Γk[φ,θ]

The strategy of the nonperturbative RG approach is to build a family of models indexed by
a momentum scale k such that fluctuations are smoothly taken into account as k is lowered

as flowing “bosonization”, it has little to do with the flowing bosonization discussed in the present manuscript.
Scale-dependent field reparametrization has also been used in Refs. [23,24] to interpolate between the Cartesian
and phase-amplitude representations of the boson field in superfluid systems.

4In the case of electrons, Eq. (3) describes only the charge degrees of freedom. Because of spin-charge separation
the spin degrees of freedom are insensitive to the periodic potential. The factor 2

p
2 in the cosine term would be 2

for bosons; this only modifies the critical value of the Luttinger parameter at the Mott transition (Kc = 1 for spin- 1
2

fermions, 2 for spin-zero bosons).
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from a UV scale kin� Λ down to 0 [26–29]. This is achieved by adding to the action (5) the
infrared regulator term

∆Sk[ϕ,ϑ] =
1
2

∑

Q

�

ϕ(−Q),ϑ(−Q)
�

Rk(Q)

�

ϕ(Q)
ϑ(Q)

�

, (6)

where Q = (q, iω) with ω≡ωn = 2πn/β (n integer) a Matsubara frequency. The cutoff func-
tion Rk(Q) is a 2×2 matrix and is chosen so that fluctuation modes satisfying |q|, |ω|/vk� k are
suppressed while those with |q| � k or |ω|/vk� k are left unaffected (vk is the renormalized
velocity of the sound mode); its precise form will be given below.

The partition function

Zk[Jϕ, Jϑ] =

∫

D[ϕ,ϑ] e−S[ϕ,ϑ]−∆Sk[ϕ,ϑ]+
∫

X (Jϕϕ+Jϑϑ) (7)

thus becomes k dependent. The expectation values of the fields are given by

φ(X ) =
δ lnZk[Jϕ, Jϑ]

δJϕ(X )
= 〈ϕ(X )〉,

θ (X ) =
δ lnZk[Jϕ, Jϑ]

δJϑ(X )
= 〈ϑ(X )〉 . (8)

The scale-dependent effective action

Γk[φ,θ] = − lnZk[Jϕ, Jϑ] +

∫

X
(Jϕφ + Jϑθ )−∆Sk[φ,θ] (9)

is defined as a modified Legendre transform which includes the subtraction of ∆Sk[φ,θ].
Assuming that for k = kin the fluctuations are completely frozen by the term ∆Skin

(which is
the case when kin/Λ→∞), Γkin

[φ,θ] = S[φ,θ]. On the other hand, the effective action of
the original model (5) is given by Γk=0 provided that Rk=0 vanishes. The nonperturbative FRG
approach aims at determining Γk=0 from Γkin

using Wetterich’s equation [30–32],

∂tΓk[φ,θ] =
1
2

Tr
¦

∂tRk

�

Γ
(2)
k [φ,θ] + Rk

�−1©
, (10)

where Γ (2)k is the second-order functional derivative of Γk and t = ln(k/kin) a RG “time”. The
trace in (10) involves a sum over momenta and frequencies.

2.2 Derivative expansion and flow equations

In the derivation expansion to second order, the scale-dependent effective action is approxi-
mated by

Γk[φ,θ] =

∫

X

§

Uk(φ) +
1
2

Z1x ,k(φ)(∂xφ)
2 +

1
2

Z1τ,k(φ)(∂τφ)
2

+
1
2

Z2,k(φ)(∂xθ )
2 − iZ3,k(φ)∂xφ∂τθ

ª

, (11)

with the initial conditions

Ukin
(φ) = −u cos(2

p
2φ) , Z1x ,kin

(φ) =
v
πK

, Z1τ,kin
(φ) = 0 ,

Z2,kin
(φ) =

vK
π

, Z3,kin
(φ) =

1
π

.
(12)
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Note that the terms ∂xφ∂xθ et ∂τφ∂τθ are not allowed for symmetry reasons5 whereas the
term (∂τθ )2 is forbidden by gauge invariance (Appendix B). The truncation (11) leads to the
following two-point vertex for constant, i.e. static and uniform, fieldsφ(X ) = φ and θ (X ) = θ ,

Γ
(2)
k (Q,φ) =

�

Z1x ,k(φ)q2 + Z1τ,k(φ)ω2 + U ′′k (φ) iZ3,k(φ)qω
iZ3,k(φ)qω Z2,k(φ)q2

�

. (13)

Its determinant is given by

det Γ (2)k (Q,φ) = q2Z1x ,k(φ)Z2,k(φ)

�

ω2

vk(φ)2
+ q2 +

U ′′k (φ)

Z1x ,k(φ)

�

, (14)

with the velocity vk(φ) defined by

vk(φ) =

�

Z1x ,k(φ)Z2,k(φ)

Z1τ,k(φ)Z2,k(φ) + Z3,k(φ)2

�1/2

. (15)

The actual velocity is vk ≡ vk(φ = 0), since the minimum of the effective potential corresponds
to φ = 0.

We construct the regulator function Rk(Q) by adapting the usual procedure [2, 29] to the
two-field formalism used here. We remove U ′′k (φ) from Γ (2)k (Q,φ), take the average over φ
and multiply the resulting 2× 2 matrix by a function r that freezes the low-energy modes in
the functional integral. This gives

Rk(Q) =









Z1,kq2 +
Z1,k

v2
k

Z1τ,kω
2 i

p

Z1,kZ2,k

vk
Z3,kqω

i

p

Z1,kZ2,k

vk
Z3,kqω Z2,kq2









r

�

q2

k2
+
ω2

v2
k k2

�

, (16)

where

Z1,k = 〈Z1x ,k(φ)〉φ , Z1τ,k =
v2

k

Z1,k
〈Z1τ,k(φ)〉φ ,

Z2,k = 〈Z2,k(φ)〉φ , Z3,k =
vk

p

Z1,kZ2,k
〈Z3,k(φ)〉φ .

(17)

In practice we take r(y) = α/(e y − 1). In the case of a precision calculation, e.g. when deter-
mining critical exponents at a second-order phase transition [33, 34], α is fixed by using the
principle of minimal sensitivity. In the sine-Gordon model, the precise value of α is unimpor-
tant [2]. In the present study it is therefore sufficient to take α of order unity. The writing of
Rk(Q) in (16) is motivated by the dimensionless variables defined in Appendix A.

Inserting the truncation (11) into Wetterich’s equation (10) we obtain coupled flow equa-
tions for the functions Uk(φ), Z1x ,k(φ), Z1τ,k(φ), Z2,k(φ) and Z3,k(φ) (see Appendix A). We
find in particular that Z2,k(φ) and Z3,k(φ) do not renormalize, i.e.

Z2,k(φ) =
vK
π

, Z3,k(φ) =
1
π

, (18)

and

vk(φ) = vk = v , Z1τ,k(φ) =
Z1x ,k(φ)

v2
−

1
πvK

. (19)

In Appendix B we show that Eqs. (18) are a consequence of gauge invariance. The absence
of renormalization of the velocity shows that the Lorentz invariance (which is obvious in the
sine-Gordon model), i.e. the SO(2) spacetime invariance of the Euclidean action, is preserved
by the truncation (11).

5φ is odd (even) under parity (time reversal), the reverse being true for θ . Thus the only terms ∂µφ∂νθ being
even under parity and time reversal are ∂xφ∂τθ and ∂τφ∂xθ ; these two terms are equivalent when Z3,k(φ) is
independent of φ (see below, Eq. (18)).
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2.3 Recovering the flow equations of the sine-Gordon model

The sine-Gordon model is obtained by integrating out the field ϑ in the action (5). The corre-
sponding scale-dependent effective action reads [2]

Γ SG
k [φ] =

∫

X

§

Uk(φ) +
1
2

Zk(φ)

�

(∂xφ)
2 +
(∂τφ)2

v2

�

ª

. (20)

The physical properties are determined by the effective potential Uk(φ) and the propagator

Gk(Q,φ) =
1

Zk(φ)(q2 +ω2/v2) + U ′′k (φ)
(21)

in a constant field φ. In Appendix C we show that the functions Uk(φ) and Zk(φ) in the
sine-Gordon model are identical to Uk(φ) and Z1x ,k(φ) appearing in Eq. (11). By solving
numerically the flow equations associated with the effective action (11) we thus obtain two
phases: a Luttinger-liquid phase where the dimensionless potential Ũk(φ) = Uk(φ)/Z1,kk2

vanishes in the limit k→ 0 and a Mott phase where it flows to a fixed-point potential Ũ∗(φ) [2].

2.4 Physical properties

2.4.1 The Luttinger-liquid phase

The effective potential Uk(φ) is irrelevant in the Luttinger-liquid phase and can there-
fore be ignored in the low-energy limit. Furthermore, the functions Z1x ,k(φ) ' Z1,k and
Z1τ,k(φ)' Z1,kZ1τ,k/v

2 become φ independent as can be seen from the numerical solution of
the flow equations (Fig. 1). Defining the renormalized Luttinger parameter Kk by the relation

Z1,k =
v
πKk

, (22)

the effective action can then be written as

Γ LL[φ,θ] =

∫

X

§

v
2πKR

(∂xφ)
2 +

Z1τ

2πvKR
(∂τφ)

2 +
vK
2π
(∂xθ )

2 −
i
π
∂xφ∂τθ

ª

, (23)

in the limit k→ 0, where KR = Kk=0 and

Z1τ

πvKR
≡

Z1τ,k=0

πvKk=0
=

1
πv

�

1
KR
−

1
K

�

. (24)

The expression (23) does not reproduce the phenomenology of the Luttinger liquid since the
latter should be characterized by only two parameters: the velocity vR ≡ v of the low-energy
mode with linear dispersion and a renormalized Luttinger parameter. For Γ LL to describe a
Luttinger liquid, we would need Z1τ to vanish and the coefficient of (∂xθ )2 to depend on KR
instead of K . Before introducing the flowing bosonization, which will resolve this issue, we
consider the physical properties deduced from the effective action (23). We shall see that the
properties that can be obtained from the propagator of the field ϕ (compressibility, density-
density response function and conductivity) are correct but the propagator of the field ϑ and
the superfluid stiffness are not (insofar as they do not agree with the expected results in a
Luttinger liquid).
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Ũk(φ)
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|t| = 4
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2φ/π
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0.2124
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0.2128

0.2130

Z1x,k(φ)

Figure 1: Ũk(φ) = Uk(φ)/Z1,kk2 and Z1x ,k(φ) in the Luttinger-liquid phase for var-
ious values of k ≤ Λ. Z1τ,k(φ) is related to Z1x ,k(φ) by Eq. (19). In Figs. 1 and 2,
t = ln(k/Λ) denotes the (negative) RG time. (Λ= 1, u/Λ2 = 0.01 and K = 1.5.)

Density-density correlation function. By inverting the two-point vertex (13) in the Luttinger-
liquid phase, we obtain the propagator of the field ϕ,

Gϕϕ(Q) = 〈ϕ(Q)ϕ(−Q)〉=
πvKR

ω2 + v2q2
, (25)

which is the standard expression in a Luttinger liquid with parameters v and KR. Using
ρ = ρ0−∂xϕ/π in the long-wavelength limit, we deduce the density-density correlation func-
tion

χρρ(Q) =
q2

π2
Gϕϕ(Q) =

vKR

π

q2

ω2 + v2q2
(|q| � 1/ρ0) (26)

and the compressibility

κ= lim
q→0

χρρ(q, iω= 0) =
KR

πv
. (27)

The conductivity can be obtained from its relation to the density-density correlation function
(which follows from gauge invariance) [35]

σ(ω) = lim
q→0

−iω
q2
χρρ(q,ω+ i0+) =

vKR

π

i
ω+ i0+

, (28)

which leads to a Drude weight (defined as the weight of the Dirac peakδ(ω) inσ(ω)) D = vKR.
Equations (26-28) reproduce the known results in a Luttinger liquid [1].

Current-current correlation function. The conductivity can also be obtained from

σ(ω) = −
i

ω+ i0+
Kx x(0,ω+ i0+) , (29)

where Kx x is the response to an external vector potential Ax ,

Kx x(Q) = 〈 jx(Q) jx(−Q)〉 −
vK
π
=
�

vK
π

�2

q2Gϑϑ(Q)−
vK
π

. (30)
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The last term in this expression corresponds to the diamagnetic contribution while
jx = (vK/π)∂xϑ is the paramagnetic part of the current. Using (23) we obtain

Gϑϑ(Q) =
π

vK
v2q2 + (1− KR/K)ω2

q2(ω2 + v2q2)
, (31)

and

Kx x(Q) = −
vKR

π

ω2

ω2 + v2q2
. (32)

Although the propagator Gϑϑ takes an unusual expression, Eq. (32) is the usual result for a
Luttinger liquid. Equation (29) agrees with (28).

Superfluid stiffness. The superfluid stiffness ρs is defined by

Gϑϑ(q, iω= 0) =
1
ρsq2

(q→ 0) (33)

or, equivalently, by the coefficient of the term (∂xθ )2 in the effective action. We thus find that
ρs = vK/π is not renormalized, an unexpected feature in the presence of a periodic potential,
which is related to the unusual expression of the propagator (31) and is a consequence of
gauge invariance (Appendix B).

2.4.2 The Mott-insulating phase

Since the flow equations reproduce those of the sine-Gordon model, all physical quantities that
can be deduced from the effective potential Uk(φ) or the propagator Gϕϕ,k(Q,φ) are identical
to those in the sine-Gordon model. This means in particular that the mass of the solitons and
antisolitons, as well as the mass of the lowest soliton-antisoliton bound state (breather), are
obtained with a very good accuracy [2].

In the Mott-insulating phase the propagator Gϕϕ,k evaluated at vanishing field φ = 0
(which corresponds to the minimum of the effective potential and therefore to the physical
state) is given by

Gϕϕ,k(Q) =
1

Z1x ,k(0)[q2 + (ω2 +m2
k)/v

2]
, (34)

where

mk = v

√

√

√
U ′′k (0)

Z1x ,k(0)
(35)

is the mass of the lowest excitation in the topological sector Q = 0: a pair soliton-antisoliton
for 1/2 ≤ K ≤ 1 (mk → msol +mantisol = 2msol for k→ 0) or a soliton-antisoliton bound state
for K ≤ 1/2 (mk→ mbreather) [2]. Because of the nonzero mass m= limk→0 mk, the compress-
ibility vanishes and the optical conductivity is gapped, as expected for a Mott insulator.

The propagator of the field ϑ reads

Gϑϑ,k(Q) =
π

vK

v2q2 +m2
k + (1− Kk/K)ω2

q2(ω2 + v2q2 +m2
k)

, (36)

where the renormalized Luttinger parameter Kk is now defined from the vanishing field con-
figuration (which corresponds to the physical state),

Z1x ,k(0) =
v
πKk

. (37)
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Figure 2: Kk = v/πZ1x ,k(0) and K̄k = v/πZ1,k vs k in the Luttinger-liquid phase with
Λ = 1, u/Λ2 = 0.01 and K = 1.5 (left) and the Mott-insulating phase with Λ = 1,
u/Λ2 = 0.001 and K = 0.5 (right).

Note that this definition differs from the one used in Ref. [2] where the Luttinger parameter,
which we denote here by K̄k, was deduced from the field average of Z1x ,k(φ), i.e. Z1,k = v/πK̄k.
Kk and K̄k coincide in the Luttinger-liquid phase when k→ 0 but differ in the Mott-insulating
phase: Whereas K̄k vanishes, Kk remains finite (Fig. 2). Again we see that the superfluid stiff-
ness does not renormalize, in agreement with the conclusion of Appendix B, since Eqs. (33)
and (36) yield ρs = vK/π.

3 Flowing bosonization

As argued in the introduction, a proper definition of the phase field ϑ (and therefore θ) should
be scale dependent. The difficulties encountered in the FRG approach described in Sec. 2, in
particular the absence of renormalization of the superfluid stiffness, are therefore not sur-
prising. In this section, we show how the FRG approach can be implemented with a scale-
dependent field ϑ̄ ≡ ϑ̄k[ϕ,ϑ], defined as a k-dependent functional of ϕ and ϑ, such that ϕ
and ϑ̄ remain conjugate variables at all scales. This can be most simply achieved by consider-
ing the k-dependent change of variable θ → θ̄ ≡ θ̄k[φ,θ] and expressing the effective action
Γk[φ,θk[φ, θ̄]] in terms of the new variables. Here we assume the map θ̄k[φ,θ] to be in-
vertible so that the inverse map θk[φ, θ̄] exists. In the language of Ref. [25], such a change
of variable can be seen as a passive frame transformation. Alternatively, one can consider an
active frame transformation, where the change of variable ϑ→ ϑ̄ ≡ ϑ̄k[ϕ,ϑ] is performed at
the level of the functional integral, and compute the effective action Γ̄k[φ, θ̄], where θ̄ = 〈ϑ̄〉,
from its flow equation. The passive and active points of view lead to the same effective action,
Γk[φ,θk[φ, θ̄]] = Γ̄ [φ, θ̄], a consequence of the linear nature of the transformation between
the fields used here [25].

3.1 Passive frame transformation

3.1.1 Effective action Γk[φ,θk[φ, θ̄]]

The phase field θ̄ is defined by

θ (Q) = αk(Q)φ(Q) + βk(Q)θ̄ (Q) , (38)
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where we assume αk(−Q) = αk(Q) and βk(Q) = βk(−Q). The effective action becomes

Γk[φ,θk[φ, θ̄]] =

∫

X

§

Uk(φ) +
1
2

Z1x ,k(φ)(∂xφ)
2 +

1
2

Z1τ,k(φ)(∂τφ)
2
ª

+
∑

Q

§�

vK
2π

q2αk(Q)
2 +

i
π

qωαk(Q)
�

φ(−Q)φ(Q)

+
�

vK
π

q2αk(Q) +
i
π

qω
�

βk(Q)φ(−Q)θ̄ (Q) +
vK
2π

q2βk(Q)
2θ̄ (−Q)θ̄ (Q)

ª

. (39)

The coefficients αk(Q) and βk(Q) are determined by requiring that the coupling betweenφ and
θ̄ be of the form − i

π∂xφ∂τθ̄ as well as the absence of term (∂τφ)2; these conditions indeed
ensure that the two fields are conjugate variables. The latter condition cannot be satisfied for
all values of φ and we shall therefore impose it only for φ = 0. In the Mott phase, φ = 0
corresponds to the physical state whereas in the Luttinger-liquid phase the vanishing of the
term (∂τφ)2 will be satisfied for all fields since Z1τ,k(φ) becomes φ independent when k→ 0.
We thus obtain the equations

1
2

Z1τ,k(0)ω
2 +

vK
2π

q2αk(Q)
2 +

i
π

qωαk(Q) = 0 ,
�

vK
π

q2αk(Q) +
i
π

qω
�

βk(Q) =
i
π

qω .
(40)

Demanding that αk(Q) = 0 when Kk = K , we find

αk(Q) = −
i
K
ω

vq

�

1−
√

√ K
Kk

�

, βk(Q) =

√

√Kk

K
, (41)

where the scale-dependent Luttinger parameter Kk is defined by (37). The change of vari-
ables (38) can be rewritten in the insightful form

vK
π
∂xθ =

�

1−
√

√ K
Kk

�

i
π
∂τφ +

√

√ K
Kk

vKk

π
∂x θ̄ . (42)

This amounts to rewriting the expectation value of the current 〈 jϑ〉= (vK/π)∂xθ as a weighted
sum of 〈 jϕ〉 = (i/π)∂τφ and 〈 jϑ̄〉 = (vKk/π)∂x θ̄ . jϕ = (i/π)∂τϕ is the expression of the cur-
rent in the sine-Gordon model6 whereas jϑ̄ is the standard expression of the current associated
with the phase field θ̄ and the stiffness vKk/π. Equation (39) confirms that the stiffness asso-
ciated with θ̄ , defined as the coefficient of (∂x θ̄ )2, i.e.

vK
π
βk(Q)

2 =
vKk

π
, (43)

depends on the renormalized Luttinger parameter Kk.
We thus obtain the following expression of the effective action,

Γk[φ,θk[φ, θ̄]] =

∫

X

§

Uk(φ) +
1
2

Z1x ,k(φ)(∂xφ)
2 +

1
2
[Z1τ,k(φ)− Z1τ,k(0)](∂τφ)

2

−
i
π
∂xφ∂τθ̄ +

vKk

2π
(∂x θ̄ )

2
ª

. (44)

6The expression of the current jϕ follows from the continuity equation ∂tρ+∂x jϕ = 0 with ρ = ρ0−
1
π∂xϕ and

t = −iτ.
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In the Luttinger-liquid phase, where Z1x ,k(φ) and Z1τ,k(φ) becomes φ independent in the
limit k→ 0 and Uk(φ) is irrelevant, one has

Γ LL
k=0[φ,θk=0[φ, θ̄]] =

∫

X

§

v
2π

�

1
KR
(∂xφ)

2 + KR(∂x θ̄ )
2
�

−
i
π
∂xφ∂τθ̄

ª

. (45)

This is the usual effective action of a Luttinger liquid characterized by the velocity v of its low-
energy mode and the Luttinger parameter KR = Kk=0. From (45) we recover the expression
of the density-density response function (26). We can compute the response function Kx x(Q)
using

jϑ =

�

1−
√

√ K
Kk

�

i
π
∂τϕ +

√

√ K
Kk

vKk

π
∂x ϑ̄ , (46)

which is the analog of (42) but for the fields ϑ, ϕ and ϑ̄. This gives

Kx x(Q) = −
�

1−
√

√ K
KR

�2
ω2

π2
Gϕϕ(Q)−

2i
π2

vKR

√

√ K
KR

�

1−
√

√ K
KR

�

ωqGϕϑ(Q)

+
�

vKR

π

�2 K
KR

q2Gϑϑ(Q)−
vK
π

(47)

and, using the expression of the propagators deduced from (45), we reproduce (32). Although
Eq. (47) is correct, it takes a somewhat unsatisfying form since it involves both the bare stiff-
ness K and the renormalized one KR. We shall see in the next section how we can express the
electromagnetic response function in a more natural way without any reference to the bare
stiffness.

In the Mott-insulating phase the term (∂τφ)2 does not vanish for all values of the field but
the two-point vertex, defined as the matrix of functional derivatives with respect to φ and θ̄ ,
takes the form

Γ
(2)
k (Q) =





1
πvKk

(v2q2 +m2
k)

i
π

qω

i
π

qω
vKk

π
q2



 (48)

in the physical state (φ = 0). The only frequency-dependent term is the coupling between
φ and θ̄ as expected for two conjugate variables. The propagator of the field ϕ in the phys-
ical state is still given by (34) and yields a vanishing compressibility and a gapped optical
conductivity. The propagator of ϑ̄ differs from (36) and reads

Gϑ̄ϑ̄,k(Q) =
π

vKk

v2q2 +m2
k

q2(ω2 + v2q2 +m2
k)

, (49)

which gives the superfluid stiffness ρs,k = vKk/π using the definition (33) but with the propa-
gator Gϑ̄ϑ̄,k. Since Kk decreases with k but does not vanish in the limit k→ 0 (Fig. 2), we find
that the stiffness remains finite in disagreement with the expected result for a Mott insulator. A
possible explanation comes from the convergence of η1,k = −∂t ln Z1,k towards 2 which makes
the regulator of order Z1,kk2 ∼ k2−ηk for |q|, |ω| of order k. Thus the convergence of η1,k to-
wards 2 must be extremely slow,7 which is not realized in practice, for the regulator function
Rk to vanish in the infrared [3]. While this issue is irrelevant for most physical quantities,
which rapidly converge when k becomes smaller than the mass scale mk/v, the non-vanishing
of Rk may artificially stop the flow of Kk thus preventing the superfluid stiffness to vanish when
k→ 0.

7Note that limk→0η1,k = 2 implies that K̄k vanishes as k2.
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Beyond the second order of the derivative expansion one expects additional terms in the
effective action, such as (∂τφ)4, incompatible with ∂xϕ and ϑ being conjugate fields. The
linear change of variable (38) will not allow us to cancel all these terms while keeping the
coefficient of ∂xφ∂τθ̄ equal to −i/π. Whether this could be achieved with a nonlinear change
of variables is an open issue.

3.1.2 Coupling to an external gauge field

In the presence of an external gauge field Aµ (µ = 0, x), gauge invariance implies that the
effective action Γk[φ,θ , A] is simply deduced from Γk[φ,θ] by replacing ∂µθ by the covariant
derivative ∂µθ − Aµ. The change of variables (38) will not preserve this simple structure. It
is however possible to perform a scale-dependent gauge transformation Aµ → A′µ so that the

vector potential A′µ enters the effective action Γk[φ,θk[φ, θ̄], A′µ] in the covariant expression

∂µθ̄ − A′µ.
The effective action Γk[φ,θ , A] can be written as

Γk[φ,θ , A] = Γk[φ,θ] +

∫

X

�

vK
2π

A2
x −

vK
π

Ax∂xθ +
i
π

A0∂xφ

�

. (50)

Performing the passive frame transformation (38), we obtain

Γk[φ,θk[φ, θ̄], A] = Γk[φ,θk[φ, θ̄]] +

∫

X

§

vK
2π

A2
x − Ax

vK
π
∂xθ +

i
π

A0∂xφ

ª

, (51)

where the current (vK/π)∂xθ can be expressed in terms of φ and θ̄ using (42). We now
consider the gauge transformation

A′µ = Aµ + ∂µξ with ∂xξ=

�√

√ K
Kk
− 1

�

Ax , (52)

which leaves the partition function and therefore the effective action Γk[φ,θ , A] = Γk[φ,θ ′, A′]
unchanged.8 Equation (52) implies

Ax(Q) =

√

√Kk

K
A′x(Q) ,

A0(Q) = A′0(Q) +
ω

q

�

1−

√

√Kk

K

�

A′x(Q) ,

(53)

and therefore

Γk[φ,θk[φ, θ̄], A′µ] = Γk[φ,θk[φ, θ̄]] +

∫

X

§

vKk

2π
A′x

2 − A′x
vKk

π
∂x θ̄ +

i
π

A′0∂xφ

ª

=

∫

X

§

Uk(φ) +
1
2

Z1x ,k(φ)(∂xφ)
2 +

1
2
[Z1τ,k(φ)− Z1τ,k(0)](∂τφ)

2

−
i
π
∂xφ(∂τθ̄ − A′0) +

vKk

2π
(∂x θ̄ − A′x)

2
ª

. (54)

8The invariance of the partition function in the transformation (52) also requires the change of variables
ϑ′ = ϑ + ξ. The effective action Γk[φ,θ ′, A′] = Γk[φ,θ , A] becomes a functional of θ ′ = θ + ξ. We simply de-
note θ ′ by θ in the following.
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In the gauge A′µ, the expectation values of the current densities take the usual form,

〈 j0(X )〉= −
δΓk[φ,θk[φ, θ̄], A′µ]

δA′0(X )
= −

i
π
∂xφ ≡ i[〈ρ(X )〉 −ρ0] ,

〈Jx(X )〉= −
δΓk[φ,θk[φ, θ̄], A′µ]

δA′x(X )
=

vKk

π
∂x θ̄ (X )−

vKk

π
≡ 〈 jx(X )〉 −

vKk

π
,

(55)

where ρ(X ) = ρ0 − ∂xϕ/π denotes here the long-wavelength part of the density and
jx = (vKk/π)∂x ϑ̄ the paramagnetic part of the current. The diamagnetic contribution to 〈Jx〉
depends on the renormalized Luttinger parameter Kk.

3.2 Active frame transformation

In the active frame transformation one considers the new field ϑ̄ ≡ ϑ̄k[ϕ,ϑ] defined by

ϑ(Q) = αk(Q)ϕ(Q) + βk(Q)ϑ̄(Q) (56)

and the partition function

Zk[Jϕ, Jϑ̄] =

∫

D[ϕ,ϑ]exp

�

−S[ϕ,ϑ]−∆Sk[ϕ,ϑ] +

∫

X
(Jϕϕ + Jϑ̄ϑ̄)

�

. (57)

For a linear change of variables, the active frame transformation (56) is the counterpart of
the passive transformation (38) and the coefficients αk(Q) and βk(Q) are therefore given
by (41) [25]. The external source Jϑ̄ couples to the new field ϑ̄ so that lnZk[Jϕ, Jϑ̄] is the
generating functional of the connected correlation functions of the fields ϕ and ϑ̄. Expressing
∆Sk[ϕ,ϑ] =∆S̄k[ϕ, ϑ̄] in terms of the new variables, we obtain

∆S̄k[ϕ, ϑ̄] =
1
2

∑

Q

�

ϕ(−Q), ϑ̄(−Q)
�

R̄k(Q)

�

ϕ(Q)
ϑ̄(Q)

�

, (58)

where

R̄k(Q) =







Z1,kq2 +

�

1
K̄k
−

1
Kk

�

ω2

πv
i
π

qω

i
π

qω
vKk

π
q2






r

�

q2

k2
+
ω2

v2k2

�

(59)

and K̄k is defined in Sec. 2.4.2. The cutoff function R̄k can also be deduced from the effective
action Γk[φ,θk[φ, θ̄]] obtained in Sec. 3.1 in the same way as Rk was deduced from Γk[φ,θ].
Anticipating that Γk[φ,θk[φ, θ̄]] is identical to the effective action Γ̄k[φ, θ̄] defined as the
Legendre transform of lnZk[Jϕ, Jϑ̄], we conclude that ∆S̄k[ϕ, ϑ̄] is the natural regulator for
the fields ϕ and ϑ̄.

3.2.1 Effective action Γ̄k[φ, θ̄]

The scale-dependent effective action is defined by

Γ̄k[φ, θ̄] = − lnZk[Jϕ, Jϑ̄] +

∫

X
(Jϕφ + Jϑ̄θ̄ )−∆S̄k[φ, θ̄] , (60)

where

φ(X ) =
δ lnZk[Jϕ, Jϑ̄]

δJϕ(X )
= 〈ϕ(X )〉 ,

θ̄ (X ) =
δ lnZk[Jϕ, Jϑ̄]

δJϑ̄(X )
= 〈ϑ̄(X )〉 ,

(61)
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and satisfies the flow equation (see Eq. (94) in Appendix D)

∂k Γ̄k[φ, θ̄] =
1
2

Tr
�

∂kR̄k

�

Γ̄
(2)
k [φ, θ̄] + R̄k

�−1�−
∫

X

δΓ̄k[φ, θ̄]

δθ̄ (X )
〈∂kϑ̄k(X )〉

+

∫

X ,Y
[R̄ϑ̄ϕ,k(X , Y )〈∂kϑ̄k(X )ϕ(Y )〉c + R̄ϑ̄ϑ̄,k(X , Y )〈∂kϑ̄k(X )ϑ̄k(Y )〉c] , (62)

where ϑ̄k ≡ ϑ̄k[ϕ,ϑ] and 〈· · ·〉c denotes a connected correlation function. This equation is
a particular case, corresponding to a linear reparametrization of the fields, of the general
equation derived in Refs. [19,21,25,36].

3.2.2 Equivalence between the active and passive points of view

The effective actions Γk[φ,θk[φ, θ̄]] and Γ̄k[φ, θ̄] are obviously equal for k = kin. In Ap-
pendix E we show that they satisfy the same flow equation,

∂k Γ̄k[φ, θ̄]
�

�

�

φ,θ̄
= ∂kΓk[φ,θk[φ, θ̄]]

�

�

�

φ,θ̄
, (63)

so that they are equal for all values of k and given by (44). This equivalence is a consequence
of the change of variables (ϕ,ϑ)→ (ϕ, ϑ̄) being linear [25].

4 Conclusion

The standard FRG study of a Bose fluid in a periodic potential is based on the effective action
Γk[ψ∗,ψ] expressed as a functional of two conjugate variables: the expectation values ψ and
ψ∗ of the boson field and its conjugate partner [11,12]. Yet in that case it is not necessary to
dynamically redefine the fields along the flow. The superfluid density ρs, obtained from the
coefficient of |∇ψ|2 in the effective action, is reduced by quantum fluctuations and is related
to the Drude weight by ρs = D/π in the superfluid phase [37].9 The dynamical term ψ∗∂τψ,
which is due to ψ and ψ∗ being conjugate fields at the microscopic scale, is renormalized and
even vanishes in the limit k→ 0 in the superfluid phase whereas a second-order time-derivative
term |∂τψ|2 is generated [38–41]. On the contrary, in the bosonization framework, to obtain a
meaningful description of the superfluid properties it is necessary to redefine the phase field ϑ
so that ϕ and ϑ remain manifestly conjugate variables. There is no difficulty to implement the
field reparametrization in the derivative expansion to second order, a mere linear change of
variable being sufficient. The flow equations both reproduce those of the sine-Gordon model
and yield a low-energy description of the Luttinger-liquid phase in terms of two parameters,
the renormalized velocity vR of the sound mode and the renormalized Luttinger parameter KR.

A proper treatment of the phase field ϑ is an important step in the FRG analysis of low-
dimensional quantum fluids in the framework of bosonization. For instance, this will allow
a more accurate study of the Bose-glass phase of a one-dimensional disordered Bose fluid.
The previous works using bosonization and FRG are based on an effective model obtained by
integrating out the field ϑ from the outset [4,5]. This is sufficient to determine the properties
related to the density field and its fluctuations but provides us with little information on the
superfluid properties and the correlation function of the phase field ϑ. The work reported
in this manuscript also opens up the possibility to study strongly anisotropic two- or three-
dimensional systems, consisting of weakly coupled one-dimensional chains. In these systems

9The relativistic O(2) model studied in Ref. [37] also describes superfluids because of the emergent Lorentz
invariance at low energies in these systems [38–40].
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the interchain kinetic coupling ψ∗nψm ∼ e−iϑn+iϑm depends nontrivially on ϑ and it is not
possible to integrate out this field from the outset. An RG approach must therefore necessarily
consider the fields ϕ and ϑ on equal footing.
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A Flow equations

A.1 Dimensionless variables

The flow equations are solved by introducing the dimensionless variables q̃ = q/k, ω̃=ω/vkk,
where vk = vk(φ = 0) [Eq. (15)], and the dimensionless functions

Ũk(φ) =
Uk(φ)
Z1,kk2

, Z̃1x ,k(φ) =
Z1x ,k(φ)

Z1,k
, Z̃1τ,k(φ) =

v2
k

Z1,k
Z1τ,k(φ) ,

Z̃2,k(φ) =
Z2,k(φ)

Z2,k
, Z̃3,k(φ) =

vk
p

Z1,kZ2,k
Z3,k(φ) ,

(64)

where

〈Z̃1x ,k(φ)〉φ = 〈Z̃2,k(φ)〉φ = 1 , 〈· · ·〉φ =
p

2
π

∫ π/2
p

2

−π/2
p

2

dφ (· · · ) . (65)

The quantities Z1τ,k and Z3,k introduced in Sec. 2.2 can be expressed as

Z1τ,k = 〈Z̃1τ,k(φ)〉 , Z3,k = 〈Z̃3,k(φ)〉 . (66)

A.2 Flow equations

The flow equations take the form

∂t Ũk(φ) = (η1,k − 2)Ũk(φ) +FU ,

∂t Z̃1x ,k(φ) = η1,k Z̃1x ,k(φ) +FZ1x
,

∂t Z̃1τ,k(φ) = (2zk − 2+η1,k)Z̃1τ,k(φ) +FZ1τ
,

∂t Z̃2,k(φ) = η2,k Z̃2,k(φ) +FZ2
,

∂t Z̃3,k(φ) =
�

zk − 1+
η1,k +η2,k

2

�

Z̃3,k(φ) +FZ3
,

(67)

where η1,k = −∂t ln Z1,k, η2,k = −∂t ln Z2,k and zk = 1 + ∂t ln vk is the dynamical exponent.
The threshold functions F can be expressed as integrals over the dimensionless propagator
G̃k = (Γ̃

(2)
k + R̃k)−1 and depend on the dimensionless functions (64) and cutoff function R̃k.

The explicit form of the flow equations is too complicated to be shown here but it can be easily
shown that they imply (18) and (19).
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B Gauge invariance

In the presence of an external gauge field A= (A0, Ax), the partition function reads

Z[J , A] =

∫

D[ϕ,ϑ] e−S[ϕ,ϑ,A]+
∫

X Jϕ , (68)

where

S[ϕ,ϑ, A] =

∫

X

§

v
2π

�

1
K
(∂xϕ

2) + K(∂xϑ− Ax)
2
�

−
i
π
∂xϕ(∂τϑ− A0)− u cos(2

p
2ϕ)

ª

(69)

and J is an external source that couples to ϕ. The current densities are defined by

J0(X ) = −
δS[ϕ,ϑ, A]
δA0(X )

= −
i
π
∂xϕ(X ) ,

Jx(X ) = −
δS[ϕ,ϑ, A]
δAx(X )

=
vK
π
[∂xϑ(X )− Ax(X )] .

(70)

When the source J(X ) = J is static and uniform, the expectation value 〈Jµ(X )〉 vanishes for
Aµ = 0. The linear response to the gauge field is given by

〈Jµ(X )〉=
∫

X ′
Kµν(X , X ′, J)Aν(X

′) +O(A2) (71)

(with an implicit sum over repeated discrete indices), where

Kµν(X , X ′, J) =
δ2 lnZ[J , A]
δAµ(X )δAν(X ′)

�

�

�

�

A=0
= Πµν(X , X ′, J)−

vK
π
δµ,xδν,x , (72)

and
Πµν(X , X ′, J) = 〈 jµ(X ) jν(X ′)〉 (73)

is the correlation function of the paramagnetic part of the current density: jx = (vK/π)∂xϑ

and j0 = J0 = −(i/π)∂xϕ.
For a pure gauge field, Aµ = ∂µξ (with ξ(X ) an arbitrary function), the expectation value

of the current densities must vanish, i.e.

0=

∫

X ′
Kµν(X , X ′, J)∂X ′ν

ξ(X ′) = −
∫

X ′
[∂X ′ν

Kµν(X , X ′, J)]ξ(X ′) . (74)

Equation (74) implies that the electromagnetic response function is transverse,

∂XµKµν(X , X ′,φ) = ∂X ′ν
Kµν(X , X ′,φ) = 0 , (75)

where we now consider Kµν as a function of the (constant) field φ = 〈ϕ(X )〉 rather then the
source J . In Fourier space, Eq. (75) gives

−ωK0ν(Q,φ) + qKxν(Q,φ) = 0. (76)

Using Eqs. (72,73) and the expression of jµ, we finally obtain

ωGϕϕ(Q,φ)− ivKqGϕϑ(Q,φ) = 0 ,

iωqGϕϑ(Q,φ) + vKq2Gϑϑ(Q,φ)−π= 0 ,
(77)
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or, equivalently,

ωΓ
(2)
θθ
(Q,φ) + ivKqΓ (2)

φθ
(Q,φ) = 0 ,

−iωqΓ (2)
φθ
(Q,φ) + vKq2Γ

(2)
φφ
(Q,φ)−πdet Γ (2)(Q,φ) = 0 .

(78)

Let us now consider the most general expression of the two-point vertex

Γ
(2)
k (Q,φ) =

�

Z1x ,k(φ)q2 + Z1τ,k(φ)ω2 + U ′′k (φ) iZ3,k(φ)qω
iZ3,k(φ)qω Z2,k(φ)q2 + Z2τ,k(φ)ω2

�

(79)

to second order in q andω and compatible with symmetries.5 Equation (79) would be obtained
from the full effective action to second order in the derivative expansion, i.e. including a term
1
2 Z2τ,k(φ)(∂τθ )2. From (78) and (79) we deduce

lim
Q→0

∂

∂ q2
Γ
(2)
θθ
(Q,φ) = Z2,k(φ) =

vK
π

,

lim
Q→0

∂

∂ω2
Γ
(2)
θθ
(Q,φ) = Z2τ,k(φ) = 0 ,

lim
Q→0

∂ 2

∂ q∂ω
Γ
(2)
φθ
(Q,φ) = Z3,k(φ) =

i
π

.

(80)

Gauge invariance implies that Z2,k(φ), Z2τ,k(φ) and Z3,k(φ) are not renormalized and remain
equal to their initial value.

C Flow equations of the sine-Gordon model

All properties related to the density field ϕ can be obtained from the effective potential Uk(φ)
and the propagator

Gϕϕ,k(Q,φ) =
1

Z1x ,k(φ)(q2 +ω2/v2) + U ′′k (φ)
. (81)

The equation for the derivative of the effective potential reads

∂t U
′
k(φ) = −

1
2

∫

Q
G1i,k(Q,φ)∂tRi j,k(Q)G j1,k(Q,φ)Γ (3)111,k(0,Q,−Q) (82)

(∂t = k∂k and an implicit sum over discrete indices i, j = 1, 2 is assumed), where we assign
the index 1 to φ and 2 to θ and use the notation

∫

Q =
∫ dq

2π

∫ dω
2π . G11,k(Q,φ) is given by (81)

and

G12,k(Q,φ) = −
i

vK
ω/q

Z1x ,k(φ)(q2 +ω2/v2) + U ′′k (φ)
. (83)

Equation (82) is obtained by noting that the only nonzero three-point vertex has all external
legs corresponding to φ, its expression is identical to that in the sine-Gordon model. Using

∂tRk(Q) =

�

−η1,kZ1,kQ2r(Q̃2) 0
0 0

�

− 2Q̃2r ′(Q̃2)

�

Z1kQ2 − ω2

πvK
i
πqω

i
πqω vK

π q2

�

, (84)

where η1,k = −∂t ln Z1,k, Q2 = q2 +ω2/v2 and Q̃2 =Q2/k2, we obtain

G1i,k(Q,φ)∂tRi j,k(Q)G j1,k(Q,φ) = −Z1,kQ2[η1,kr(Q̃2) + 2Q̃2r ′(Q̃)]G11,k(Q)
2 (85)
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and therefore

∂t U
′
k(φ) =

1
2

∫

Q
Z1,kQ2[η1,kr(Q̃2) + 2Q̃2r ′(Q̃2)]G11,k(Q)

2Γ
(3)
111,k(0,Q,−Q) . (86)

This equation coincides with the flow equation of the effective potential in the sine-Gordon
model.

By a similar reasoning we can show that the flow equation for Z1x ,k(φ), which is deduced

from ∂tΓ
(2)
11,k(Q), is identical to the equation derived within the sine-Gordon model. This simply

follows from the two following properties: i) the vertices Γ (3)111,k and Γ (4)1111,k (the only three-
and four-point vertices that are nonzero) are the same as in the sine-Gordon model, ii) the
rhs of (85) is equal to the quantity ∂tRk(Q)Gk(Q)2 in the sine-Gordon model. As long as
all external legs correspond to the field φ, the propagator G22,k does not appear in the flow
equation and G12,k enters only via Eq. (85). Using the latter amounts to integrating out the
field ϑ at the level of the flow equations.

D Flow equation ∂kΓ̄k[φ, θ̄]

It is convenient to use the notation ϕ1 = ϕ1,k = ϕ, ϕ2 = ϑ, ϕ2,k = ϑ̄k and introduce the
two-component fields

ϕ̄k ≡ ϕ̄k[ϕ,ϑ] =

�

ϕ

ϑ̄k[ϕ,ϑ]

�

, Φ̄= 〈ϕ̄k〉=
�

φ

θ̄

�

. (87)

The scale-dependent effective action Γ̄k[Φ̄] is defined by (60) and satisfies the equation of
motion

δΓ̄k[Φ̄]
δΦ̄i(X )

= Ji(X )−
∫

Y
R̄i j,k(X , Y )Φ̄ j(Y ) (88)

as well as
Γ̄
(2)
k + R̄k =W(2)

k
−1 , (89)

where J = (J1, J2)T ≡ (Jϕ, Jϑ̄)
T and W(2)

k [J] is the second-order functional derivative of
Wk[J] = lnZk[J].

To derive the flow equation we start from

∂kWk[J] = −
1
2

∫

X ,Y
∂kRi j,k(X , Y )〈ϕ j(Y )ϕi(X )〉+

∫

X
Ji〈∂kϕ̄i,k〉 (90)

and

∂k Γ̄k[Φ̄] =
1
2

∫

X ,Y
∂kRi j,k(X , Y )〈ϕ j(Y )ϕi(X )〉 −

∫

X
Ji〈∂kϕ̄i,k〉 − ∂k∆S̄k[Φ̄] . (91)

The k derivative is taken at fixed source J in (90) and at fixed field Φ̄ in (91) and we have
used Φ̄i(X ) = δWk[J]/δJi(X ) to obtain (91). Since

∂k∆S̄k[Φ̄]
�

�

�

Φ̄
=

1
2

∫

X ,Y
Φ̄i(X )∂kR̄i j,k(X , Y )Φ̄ j(Y ) ,

∫

X
Ji〈∂kϕ̄i,k〉=

∫

X

�

δΓ̄ [Φ̄]
δΦ̄i(X )

+

∫

Y
R̄i j,k(X , Y )Φ̄ j(Y )

�

〈∂kϕ̄i,k(X )〉
(92)
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and

1
2

∫

X ,Y
∂kRi j,k(X , Y )〈ϕ j(Y )ϕi(X )〉=

1
2
∂k

∫

X ,Y
〈ϕ̄i,k(X )R̄i j,k(X , Y )ϕ̄ j,k(Y )〉

=

∫

X ,Y

§

1
2
∂kR̄i j,k(X , Y )〈ϕ̄i,k(X )ϕ̄ j,k(Y )〉

+ R̄i j,k(X , Y )〈∂kϕ̄i,k(X )ϕ̄ j,k(Y )〉
ª

, (93)

we finally deduce

∂k Γ̄k[Φ̄] =
1
2

Tr
�

∂kR̄k

�

Γ̄
(2)
k [Φ̄] + R̄k

�−1�−
∫

X

δΓ̄k[Φ̄]
δΦ̄i(X )

〈∂kϕ̄i,k(X )〉

+

∫

X ,Y
R̄i j,k(X , Y )[〈∂kϕ̄i,k(X )ϕ̄ j,k(Y )〉 − 〈∂kϕ̄i,k(X )〉Φ̄ j(Y )] . (94)

This equation can be rewritten as in (62).

E Γk[φ,θk[φ, θ̄]] vs Γ̄k[φ, θ̄]

Since the effective actions Γk[φ,θk[φ, θ̄]] and Γ̄k[φ, θ̄] satisfy the same initial condition at
k = kin, they are identical if they satisfy the same flow equation, i.e. if

∂kΓk[Φk[Φ̄]]
�

�

Φ̄
=

1
2

Tr
�

∂kRk

�

Γ
(2)
k [Φk[Φ̄]] + Rk

�−1�
+

∫

X

δΓk[Φ]
δΦi(X )

�

�

�

�

Φ=Φk[Φ̄]
∂kΦi(X )

�

�

Φ̄
(95)

coincides with ∂k Γ̄k[Φ̄]. Here Φ= (φ,θ )T ≡ Φk[Φ̄]] is considered as a k-dependent functional
of Φ̄. It is convenient to write the relation between Φ and Φ̄ as

Φ(Q) = Mk(Q)Φ̄(Q) with Mk(Q) =

�

1 0
αk(Q) βk(Q)

�

(96)

so that
R̄k = M T

k RkMk , Gk = MkḠkM T
k , (97)

where Gk = (Γ
(2)
k [Φ] + Rk)−1 and Ḡk = (Γ̄

(2)
k [Φ̄] + R̄k)−1. One then easily finds

1
2

Tr(∂kRkGk) =
1
2

Tr(∂kR̄kḠk − 2R̄kM−1
k ∂kMkḠk)

=
1
2

Tr(∂kR̄kḠk) +

∫

X ,Y
R̄i j,k(X , Y )〈∂kϕ̄i,k(X )ϕ̄ j,k(Y )〉c . (98)

Assuming that Γk[Φk[Φ̄]] = Γ̄k[Φ̄] holds at scale k, one obtains
∫

X

δΓk[Φ]
δΦi(X )

�

�

�

�

Φ=Φk[Φ̄]
∂kΦi(X )

�

�

Φ̄
=
∑

Q

δΓk[Φ]
δΦi(Q)

�

�

�

�

Φ=Φk[Φ̄]
∂kΦi(Q)

�

�

Φ̄

=
∑

Q

δΓ̄k[Φ]
δΦ̄ j(Q)

M−1
ji,k(Q)∂kMil,k(Q)Φ̄l(Q)

= −
∫

X

δΓ̄k[Φ̄]
δΦ̄i(X )

〈∂kϕ̄i,k(X )〉 . (99)

From Eqs. (94) and (95,98,99) we deduce

∂kΓk[Φk[Φ̄]]
�

�

�

Φ̄
= ∂k Γ̄k[Φ̄]

�

�

�

Φ̄
. (100)
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