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Abstract

Two-dimensional periodically driven systems can host an unconventional topological
phase unattainable for equilibrium systems, termed the Anomalous Floquet-Anderson
insulator (AFAI). The AFAI features a quasi-energy spectrum with chiral edge modes and
a fully localized bulk, leading to non-adiabatic but quantized charge pumping. Here, we
show how such a Floquet phase can be realized in a driven, disordered Quantum Anoma-
lous Hall insulator, which is assumed to have two critical energies where the localization
length diverges, carrying states with opposite Chern numbers. Driving the system at a
frequency close to resonance between these two energies localizes the critical states and
annihilates the Chern bands, giving rise to an AFAI phase. We exemplify this principle by
studying a model for a driven, magnetically doped topological insulator film, where the
annihilation of the Chern bands and the formation of the AFAI phase is demonstrated
using the rotating wave approximation. This is complemented by a scaling analysis of
the localization length for two copies of a quantum Hall network model with a tunable
coupling between them. We find that by tuning the frequency of the driving close to res-
onance, the driving strength required to stabilize the AFAI phase can be made arbitrarily
small.
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1 Introduction

Periodic driving of quantum systems has opened exciting new avenues for realizing topological
phases [1-7]. Notably, Floquet driving has been utilized to obtain dynamical analogues of
stationary topological phases [8-27]. In such driven systems, the time evolution over a driving
period T, implemented by the Floquet unitary operator Uz(T), can be accurately described by
the evolution of a stationary, spatially local effective Hamiltonian H,g such that Uy = e HerT |
These Floquet phases have been observed in a variety of experiments [1,28-36].

However, Floquet driving can also produce genuinely new phases that do not occur in
stationary settings [9,37-58]. One example of such a phase was presented in Ref. [40], where
a clean, non-interacting two-dimensional (2D) model was shown to host chiral edge states,
despite the fact that all the bulk bands carry zero Chern numbers. In a stationary setup, this
would be impossible because the topology of the bulk bands, given by their Chern numbers,
completely determines the edge properties.

The role of disorder in such 2D “anomalous” topological Floquet phases, with vanishing
Chern numbers, was first studied in Ref. [50]. There, it was shown that spatial disorder localizes
all bulk Floquet states, while the chiral edge states remain robust. The driven phase that
emerges in such a system, coined the Anomalous Floquet Anderson Insulator (AFAI), displays
chiral edge states at all quasi-energies [50,58,59]; the net number of chiral edge states is given
by the value of a single winding number, W. In contrast, in stationary systems the existence
of a chiral edge state necessitates delocalization of bulk states at certain energies [60]. For
example, in quantum anomalous Hall (QAH) systems, there must be a single energy near the
middle of each Chern band where the localization length diverges [61,62]. The AFAI therefore
exhibits properties that cannot be realized without periodic driving.

In this work we propose a method to realize an AFAI phase in a solid state system. The idea
is to start from a disordered QAH material, and apply a periodic driving field that resonantly
couples the delocalized states in two Chern bands with opposite Chern numbers. We argue
that such driving localizes the states, and generally leads to the formation of an AFAI phase,
independent of many of the microscopic details of the system and the properties of the driving
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Figure 1: (a) The stationary QAH phase demonstrates a chiral edge state. Therefore,
the slope of the I —V curve, i. e. the conductivity is quantized to ~ e?/h for small
voltage, with only minor corrections at higher voltage. (b) In the AFAI the current
behaves in the same way at small bias, but it saturates to e/ T at higher voltage, leading
to a quantized current [50, 58].

field. The resulting AFAI phase displays quantized transport properties that are different from
those of the initial QAH phase (see Fig. 1).

This paper is organized as follows. In Sec. 2, we summarize the physical picture that
underlies this work. We also summarize our main results obtained from two approaches: a
concrete Hamiltonian model and a disordered network model. In Sec. 3, we elaborate on the
Hamiltonian model, which describes a magnetically doped topological insulator film realizing a
QAH phase. We obtain the energies of the delocalized states in the stationary system using the
self-consistent Born approximation and make physical arguments for the qualitative features
of the phase diagram in the presence of driving field. Next, in Sec. 4 we introduce a bilayer
network model representing two Chern bands coupled by a nearly-resonant drive. Using this
network model, we obtain a similar phase diagram to that of the Hamiltonian model, and also
determine the critical exponents associated with the phase transitions. Additional technical
details are presented in the appendices.

2 Physical Picture

A QAH insulator is marked by a quantized Hall conductivity in the absence of a magnetic field,
typically due to magnetic polarization and spin-orbit coupling [63, 64]. Starting from a model
of a simple QAH system with two Chern bands, adding disorder generically localizes all bulk
states except for those at critical energies €; and e€_; in the C =1 and C = —1 Chern bands,
respectively [62] (see Fig. 2a). Tuning the Fermi energy through €., results in :l:% quantized
jumps in the Hall conductivity. The QAH effect occurs when the Fermi energy lies between €
and e_;.

Suppose we apply a harmonic driving field at w = e_; — €;. This field resonantly couples
states that carry opposite Chern numbers. The Floquet spectrum can then be obtained from the
extended Hamiltonian Hy, given by the infinite block-tridiagonal matrix:

H+w HEY

Hp = HY  H |

€8]

where H is the QAH Hamiltonian in the absence of the driving. Each block on the diagonal
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Figure 2: (a) Schematic density of states as a function of energy for a disordered QAH
insulator. Anticipating a periodic driving with frequency w, we show two consecutive
Floquet zones. The spectrum consists mostly of localized states, but has delocalized
states at energies e.; within the Chern bands with C = £1. (b) Density of states of
the Floquet spectrum obtained when the system is driven at the resonant frequency
w = €_1 —€,1. The driving couples the delocalized states from the two Chern bands
and causes them to localize, so that all bulk states become localized. The winding
number W(e) at every quasi-energy € is equal to 1. (c) Schematic of the thin film
ferromagnetic TI, forming a QAH state (Section 3). The blue arrows represent the
spin polarization and the red arrow around the edge of the film represents the chiral
edge state. To this stationary system we add a driving field at frequency w. (d) The
spectrum of surface states is hybridized between the top and bottom of the film. In
the absence of disorder, the surface states are described by two massive Dirac fields

Yy and .

of the extended Hamiltonian Hy acts on a different Fourier harmonic component |¢;) of the
Floquet state |y (t)):
[p(e) = et et gy). 2

l

The matrices HV and HCV = HM7 proportional to the driving amplitude A, describe transi-
tions accompanied by the absorption and emission of a single photon from the driving field.
Hp produces physically equivalent eigenstates at quasienergies € + nw where € € (—%, 5] and
n € Z indicates the Floquet zone.

We can approximate the Floquet eigenstates by truncating Hy to a finite number of har-
monics. For small %, it is sufficient to only include [ = 0, 1, since this captures all the states
that are resonantly coupled to first order in driving field.

If the driving frequency exactly satisfies v = e_; —eq, then the delocalized states at energies
€1, are resonantly coupled. Since these states carry opposite Chern numbers, the drive-induced
resonant coupling causes them to “annihilate”, and become localized. For perfectly resonant
coupling, one may expect that an arbitrarily small driving amplitude is sufficient to localize
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all the bulk Floquet eigenstates (Fig. 2b). If the frequency is detuned from the resonance, a
non-zero minimum driving amplitude is required to achieve complete localization.

We argue that, if the bulk states are all localized, the resulting phase is an AFAI To see
this, consider a system with open boundary conditions. The chiral edge states of the QAH
system at energies €; < € < e_; cannot become localized as long as the driving amplitude is
sufficiently small compared to w. Since all the bulk states are now localized, the edge states
cannot terminate at any quasienergy, and must persist over the entire Floquet zone. In other
words, the winding number W(e) =1 for all €. This is the defining characteristic of the AFAI
phase [50].

Note that while we study Chern band annihilation by tuning the drive frequency and
amplitude with time-independent disorder, a similar phenomenon was studied in Ref. [65]
by tuning periodically-modulated disorder. It was shown there that for a stationary model
with two Chern bands with energy separation e_; — €, introducing random on-site potential
disorder with frequency w causes the Chern bands to annihilate, driving the system into either
an Anderson insulator phase or an AFAI phase. The deciding factor is the ratio between the
gap around € = 0, which is e_; —e;, and the gap around € = 5, which is w —(e_; —e€;): if the
gap around € = 0 is smaller, then disorder leads to an Anderson insulating phase, while if the
gap around € = % is smaller, then disorder leads to an AFAL The critical disorder amplitude
for the AFAI transition depends on the size of the gap around € = % and becomes infinitesimal
as this gap closes. We focus in this work on the limit w = €_; — €;, where the gap around
€ = 7 closes, and our results are complementary to those of Ref. [65]. We find that the critical
amplitude for the spatially uniform Floquet drive depends on the size of this gap, which we
call the detuning from resonance, and becomes infinitesimal as this gap closes, which is the
condition for driving on resonance.

To confirm the idea of Chern band annihilation outlined above, we use two approaches that
give complementary results.

2.1 Hamiltonian Model

First, we study a minimal Hamiltonian model of the QAH insulator for which we can reliably
compute the delocalization energies €.;. The model describes a QAH system formed in a mag-
netically doped thin topological insulator film [63], subjected to a time-periodic perpendicular
electric field.

In order to determine the phase diagram of the driven system, we first find the delocalization
energies €. in the limit of zero driving. According to the renormalization group (RG) treatment
of the QH plateau transition [61,66-68], the delocalization energies can be found in the weak
disorder limit by computing the conductivity tensor perturbatively in the disorder strength,
within the self-consistent Born approximation (SCBA). The values of longitudinal and Hall
conductivities, oy, and o, computed perturbatively, then serve as the initial conditions for
the RG flow. The flow diagram [66,67], shown schematically in Fig. 3, contains stable fixed
points that correspond to QH insulators (where o, =0 and 0, is quantized in units of e?/h),
and unstable fixed points that describe the plateau transitions. While Pruisken’s RG analysis
was originally developed to describe the integer QH plateau transition, the transitions between
different QAH phases belong to the same universality class [62]. Within this treatment, the

plateau transitions occur when o, = (n + %)% with n € Z. Within our model, we locate the
energies where delocalized states carrying non-zero Chern numbers occur by computing o, as
a function of the Fermi energy within the SCBA, and finding the energies where o, = e?/(2h).
We henceforth measure the conductivity in units of e?/h.

The SCBA computation of the semiclassical conductivity requires some care [69-71]. For
our simple model, we were able to compute the Hall conductivity and obtain €., as a function
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Figure 3: Schematic RG flow diagram for the integer QH effect in terms of the
longitudinal and Hall conductivities. The effect of disorder increases with decreasing
O ., ultimately driving the system into a state with quantized Hall conductivity. The
critical line at o, = % separates states that flow to o, =0 and o, = 1. Reproduced
from Refs. [66,67].

of Hamiltonian parameters in the intrinsic metallic regime [71], where the disorder potential is
assumed to be weak and has a Gaussian distribution.

We then turn to study the phase diagram of the driven system. We set «» = e_; —€; and infer
the phase diagram starting from the limit of zero driving amplitude, where we find regions of
different WV separated by critical lines. Our analysis strongly suggests that the driving stabilizes
the AFAI phase, even if the drive frequency is not exactly resonant with e_; — €.

2.2 Network Model

In order to explore the universal aspects of Chern band annihilation due to the driving-induced
coupling of states with opposite Chern numbers, we construct a disordered Chalker-Coddington
type network model [72]. The Chalker-Coddington network model describes transport in a
lattice with fixed (non-random) scattering matrices at nodes and random phase matrices on
links. In the past, different kinds of network models have been used successfully to study
QH localization-delocalization transitions and their variants [72-83]. Network models are
particularly useful because they can be used to efficiently compute the localization length on a
quasi-1D geometry, i.e., a long cylinder [79,84-86].

The network model that we construct consists of two 2D “layers" with opposite chirality, to
represent the QAH critical states with Chern numbers +1 that occur at the same quasienergy.
We emphasize that the two layers do not correspond to two different spatial locations, but
rather to the states near the two delocalization energies €, (Fig. 2), brought close to resonance
by the driving. The scattering between the two layers then corresponds to the nearly resonant
driving-induced coupling, which will be parametrized by a strength J,,.

Numerically, we find a phase diagram which gives the winding number W as a function of
the energy in each of the two layers (identified as a parameter that tunes each layer through its
critical point), and as a function of J,. We explain how to define the winding number in the
network model in Sec. 4.3. From finite size scaling, we find that at resonance the localization
length scales as & ~ Jp_ i , with v, ~ 4.2, Comparing to the known value for the correlation
length exponent of the QH transition within a single layer, v ~ 2.6 [72,87-89], this implies that
the inter-layer coupling operator from the Floquet driving is relevant, albeit less relevant than
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the operator that tunes the QH transition. When the frequency is at resonance, an arbitrarily
weak drive brings the system into a localized AFAI phase. Away from resonance, we find that
the driving strength needs to exceed a critical value that depends on the detuning in order to
localize all the states. These findings are in qualitative agreement with those of the Hamiltonian
model described above.

3 Driven QAH System

In this section, we study a Hamiltonian model of the experimental setup depicted in Fig. 2. Our
model describes a QAH system constructed from a thin film of a ferromagnetically doped TI, as
introduced in Ref. [63] and experimentally realized in Refs. [90-93]. The QAH insulator can
also be realized in other systems, such as in twisted bilayer graphene [94].

The model includes two Dirac modes that reside on the opposite surfaces of the film. The
ferromagnetic moment, pointing in the direction perpendicular to the film (which we denote
by 2), results in a mass term for the two Dirac modes, of magnitude A. There is also tunneling
between the two surfaces of strength m(k) = my+Bk? = m*(k), where k = |k| is the magnitude
of the momentum parallel to the film. The stationary (undriven) Hamiltonian takes the simple
form:

Hoan

_ (vF (kyax — kxay) + Ao, m(k) ) 3)
N m(k) vp (keoy, —k,0,)+ A0, )’

where o , . act in spin space. Here ﬁQAH is written in the ordered basis {|t 1), |t l),Jb 7,16 1)},
where t and b label the top and bottom surfaces respectively. We can bring Hyay into a
block diagonal form by performing a unitary transformation into the bonding/anti-bonding
basis {|+ 1),|— 1), |+ |),|— 1)}, where + and — correspond to the bonding and anti-bonding
combinations of states on the two surfaces, respectively ':

h(k) + Ao, 0 ) , @

Hoan = ( 0 h(k)-Ag,

where h(k) = m(k)o, + vp(k, o, —k,0,). In this basis, the system consists of two decoupled
Dirac fields 1 and 1, with mass terms m(k) = m(k)— A and m,(k) = m(k) + A, respectively.
We further denote m,(0) = m; and m,(0) = m,.

We now compute the Hall conductivity for this system in the presence of Gaussian-distributed,
6-correlated potential disorder. Our goal is to find the critical energy where o, = %, as a
function of the system’s parameters. We then consider the effects of driving at the resonance
frequency w = e_; — €, within the rotating wave approximation, using the effective time

independent Hamiltonian obtained from truncating Eq. (1).

3.1 Calculation of Hall conductivity

We now determine the critical lines of the stationary Hamiltonian given by Eq. (4). Because
Dirac modes 1; and 1), are approximately decoupled, the total Hall conductivity is simply the
sum of the Hall conductivities due to ¢; and 5:

Oy =0 +0. (5)

IThe transformation reads explicitly (|t T) £ |b T)V2,(Jt 1) £|b |))V2
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Without loss of generality, we choose my > 0, A > 0 and A close to m so that |m; (k)| < |my(k)|
for the small values of k consistent with the low energy limit (k < m,/vg).

The energy dispersion of the conduction band of mode 1); is given by
ex = v/ (vgk)2 + (my — A + Bk2)2. We consider an electron doped system with Fermi energy
€p = €i, and Fermi momentum k.

In the following, we calculate the critical lines in the plane spanned by A and energy € for
a given value of my. We could proceed in the same way for the critical line in the my — € plane
for a given A. When the energy € is between m; and m,, it lies within the gap of the field
5. For these values of €, a%} is quantized and given solely by the intrinsic (Berry curvature)
(2)

XY,

contribution o 7/, with
@2 Sgn(mo + A)

xy,0 2

(6)
Taking my > 0, A > 0, this gives a constant value of ai?o = % In order for the total
semiclassical Hall conductivity to be a half integer, which is the condition for the entire system
to be critical (as discussed in Sec. 2.1), it is therefore required that the contribution of the field
) be ogly) = 0. Note that the Fermi energy is inside the band of 1)1, so that the semiclassical

value of 05(1}3 includes non-quantized contributions. The transverse dc-conductivity for a clean
system is given by the Kubo formula,

27 de d*k
~(1) _ iy 2T de d'k . .
Gyy = lim » rfzn (277:)2ij0(6 +w,k)j,Gole, k), (7)

where Gy (€, k) is the causal (time-ordered) Green’s function of the effective two-band Hamil-
tonian H; = vp(k,o, + k,0,)+ m;(k)o, describing the field ;. The current operator is
j; = 0H,/dk;. Taking the limit w — 0 leads to the Kubo-Streda formula of conductivity [95],
which contains both a contribution from all filled states below the Fermi energy and a piece
from the Fermi energy itself. To find the disorder average of ogcly) within the ladder approxima-
tion [70], we (1) replace Gy(e€, k) by the disorder-averaged Green’s function G(e, k) calculated
within the SCBA, and (2) replace j, by the renormalized vertex T, :

27 ded?k
M — )im Z=Tr | —= j
Ty })ILI‘%) Tr 2y Ty (€,k)G(e + w,k)j,G(e, k), (8)

where G(e,k) = (G, l(e,k)— =)' is the SCBA Green’s function including the self-energy &
due to impurity scattering.

Details of the evaluation of Eq. (8) can be found in the Appendix A. We find that, at low
energies, (73((132 vanishes when the Fermi energy satisfies

2

21B€F
5 -

16vF

This result is easily generalized for |m,| < |m;| by interchanging 1y, and v,. In this case it
follows analogously that 0&1}2 = O'S;,O = —% and the critical line is found for o%} = 0, which in
turn evaluates to the condition A = —my—21B 612,/ 16v§. A representative phase diagram in
the A — e plane is shown in Fig. 4.

Depending on the relative signs of m, and B, the critical lines curve either away from the
origin, A = 0, or toward A = 0 as € moves away from 0. For concreteness, we assume that
myB > 0, such that the critical lines curve away from the origin. In a given system myB can
be of either sign, depending on the microscopics of the material. Note that for B = 0, the

critical curves are vertical lines positioned at A = £m. In other words, when the mass term is

8
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Figure 4: Phase diagram for the stationary system described by Eq. (3) in the presence
of weak disorder. The dashed, gray lines denote the energy where the semiclassical
value of o, equals :l:% for m(k) = my and the bold red lines denote the critical
energies for a disordered system, [Eq. (9)]. The Hall conductivity indicated in each
region refers to the Hall conductivity at the RG fixed point. B = O.5v§/ mg was used
in the figure.

not k-dependent, states at A = £m_, where the magnetization and tunnel coupling between
the two surfaces are of equal strength, are delocalized at all energies, and all other states are
localized.

For B # 0 and A > m,, there are always two distinct solutions for € in Eq. (9). These two
solutions correspond to €, and €_;, the two delocalization energies. This gives the frequency
w = €_; — €41 at which we drive the QAH system to realize the AFAI phase via Chern band
annihilation.

3.2 Driving the QAH Insulator

We now consider driving the system with a time-dependent electric field perpendicular to the
film, corresponding to the following perturbation to the Hamiltonian:

0 Ayo, +24A; cos(cot)ax) (10)

Ha, +Ha, = (Aoox + 24, cos(wt)o, 0

Here, A, specifies a fixed potential difference between the two surfaces of the film, while A, is a
periodically modulated potential difference with frequency w. We note that Eq. (10) is written
in the same bonding/anti-bonding basis as Eq. (4), which leads to the off-diagonal structure of
the inter-layer potential. To leading order in A; /w, we can truncate the extended Hamiltonian
Hpg in Eq. (1) to include just two harmonics, as discussed in Sec. 2. In this way, we obtain

. H+w I_IA1
Heff - ( HA1 H ) > (11)

where H = Hgay + Hy,- The corresponding action for such a system can be written as

Sdriven = S0+ S, + SO,co 5 (12)
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where S, describes the fields v, v, in the zeroth Floquet zone, S, describes the fields v, ,,,
Y3 ., in the first Floquet zone, and S, ,, describes the coupling between them. The action S, is
given by

dZ

0= | Gn )2[w (e =velkeoy +ky0,)=my (K)o, )4y

+ EZ(G - VF(_kxO-y + kyax) - mz(k)az)wz
_ElAOO-xl/)Z_E?AOO-xwl]: (13)

while S, follows from S, by the replacement € — e—w and 1,5 = 1 4,2 .- The coupling
term is given by

2
SO,a)_ A (; 1;2[‘/)103(1/)2@"‘1/)20%/)1(0"“/)160 x¢2+¢2w xq*/)lil (14)
Note that in both Egs. (13) and (14), Hy + Ha, couples v, to ¢, and ¢, , (but not to ¢ ),
and 1, ,, to Y, and ¢, ,,. This is due to ¢; being even under mirror symmetry through the
middle of the film, while 1)), is odd; hence a perpendicular electric field can only couple fields
1 and 2.
Because v, and v, ., have large masses compared to v, and ¢, ,,, we can integrate them
out to obtain an action for the light fields only. This yields

Sariven = S0+ S0 + S0, (15)
where
, d?k —
0= | Gl ¥ale = velkeoy +ky o) =M
—Elax(A%Gz(e,k)+A%G2’w(e—co,k))ax1p1], (16)
and S/ again follows by the replacement € — € — w and v; — vy ,. Finally,
S0 =200 [ 5 [10. (Goe, )+ Gale — k) 7t
+ 11,0 (Goe — @, k) + Gaoy (€, k) o1 | (17)

By construction, this description amounts to a low energy theory, with a UV cutoff K for the
k-integration of size K ~ m,/vy. We assume that BK < vg, so at large energies near the limits
of integration, the dispersion remains approximately linear. Crucially, in Eq. (17), a coupling
between v, and v ,, has been generated. To evaluate this coupling, we employ the retarded
Green’s function

€ +1i0" +vp(—k,0, +k,0,) +my(k)o,

G k)= 18
A6 k) (e+i0 2 —v2kP—my(k)2 (18)

and G, ,(e,k) = Gy(e —

2
Eq. (16) are renormalized according to m; — m + AOrIZA and the coupling between 1,[)1 and

Y1, in Eq. (17) is given by 2‘; L

In summary, the Ay and A; terms affect ¢, and v, ,, in two ways: (1) they shift m, by a
constant, thereby shifting the critical lines and (2) they add a o, coupling between ¢; and

10
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1, To maximize the coupling while minimizing the shift in m,, we choose Ay =A; =A. In
this case, the effective Hamiltonian for ¢, and v, ,, in the driven system is given by

2
0o M(k)crzz+ hy + w Zn‘%az
o Lo, M(k)o, +hy )’

my

(19)

where M (k) = m; (k) — 2A%/m, and hy, = vp(keo, +ky o).

We first discuss the phase diagram of Eq. (19) without the off-diagonal blocks. In this case,
the positions of the new critical lines in the (A, €¢) plane in the presence of weak potential
disorder follow from Eq. (9) with the replacement my — mg + 2%2 The critical line that
corresponds to the lower right block of Eq. (19) is given by

2A2 21Be?
A=my+ +—, (20)
mo + A 16VF

where we substituted m, = mg + A. The critical line corresponding to the upper left block of
Eq. (19) is given by Eq. (20) where € is replaced by € — w.
Solving Eq. (20) for € gives

2r__ _ _
o) va[ 242 — (g — A)(my + A)] on

(21B/16)(mg + A) ’

where €.(A) is the critical energy in the lower block. Eq. (21) determines the resonant driving
frequency w = 2¢.(A). The delocalization lines for v, and v, ,, without the off-diagonal
coupling terms are shown by the red line in Fig. 5. The figure also shows the value of the
winding number W in the different regions separated by the critical lines.

Away from the resonance point at € = %, the off-diagonal term in Eq. (19) should not
change the delocalization lines significantly: away from this energy the delocalized states
are not strongly hybridized. Near resonance, however, this can no longer be assumed. The
hybridization invalidates Eq. (20) near these energies because Eq. (20) only holds for the
simple two-band Hamiltonian M (k) + hy.. In order to determine the delocalization lines in the
presence of the coupling, it becomes necessary to compute the SCBA Hall conductivity for the
four-band model in Eq. (19) with added Gaussian 6-correlated potential disorder in v; and
wl,a)'

We do not perform this calculation here. Instead we infer qualitatively how the hybridization
may change the delocalization lines, using the values of WV in the different regions separated
by the red lines in Fig. 5. One possibility is that the driving localizes the states at the crossing
point of the two critical lines, leaving all the states for that value of A completely localized.
The new critical lines are shown schematically by the dashed blue lines in Fig. 5. In that case,
the system is in the AFAI phase, since W =1 for all quasi-energies. Another possibility is that
the crossing of the critical lines may shift as a result of the off-diagonal coupling. (Note that
if the delocalization lines were reconnected above and below € = %, then the )/ = 0 region
would be connected to the W = 2 region, which cannot happen because regions with different
W must be separated by critical lines.) To determine which of these possibilities is realized, we
must perform a more detailed calculation. This is done in the next Section, where we show
that an AFAI phase is indeed realized generically for nearly-resonant driving.

4 Localization of critical states by resonant driving: Network model

We now consider the fate of the states in the vicinity of the crossing point of the critical energies
in Fig. 5. These critical states carry opposite Chern numbers, as can be seen from the jumps in W
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Figure 5: Phase diagram for the driven system as a function of A and the quasienergy
€ at a fixed driving frequency w, in the presence of random potential disorder. The
red lines show the delocalized energies obtained by setting the off-diagonal blocks in
Eq. (19) to zero. The blue dashed lines schematically indicate the expected locations
of the delocalized quasienergies for H é ¢ [EQ. (19)] including the off-diagonal blocks.
In this case, the blue shaded region is in the AFAI phase, as can be seen from the
fact that in this region, YW = 1 for all quasi-energies. For a material with a fixed
value of A and m,, the resonant driving frequency can be obtained via Eq. (21). The
following parameters were used in the figure: A; =A; = 0.1mg, w = 0.24m,, and
B =0.5v%/my.

across the two critical energies. The critical energies correspond to QH plateau transitions [96].
The statistical properties of the wavefunctions near these transitions are universal [61,97],
and can be captured within a Chalker-Coddington type network model [72]. In the limit
of a weak driving that couples the delocalized states, we expect the phase diagram not to
depend on microscopic details. We therefore use an effective model consisting of two coupled
Chalker-Coddington networks to extract the universal features of the phase diagram.

Before discussing the details of our model, it is instructive to consider the system of two
coupled Chalker-Coddington networks from an RG perspective. The crossing point of the
critical energies in Fig. 5 is a multicritical point that contains two kinds of relevant operators:
(1) the operators that correspond to moving in energy away from criticality, related to the QH
localization/delocalization transition within each individual network, and (2) the inter-layer
coupling operator arising from the driving [the off-diagonal coupling in Eq. (19)].

We begin by reviewing the critical behavior of a single QH critical system/Chalker Cod-
dington model, and then discuss the possible forms of the inter-layer coupling operator and its
scaling dimension. To date, the theory for the critical point in a single QH layer has not been
solved analytically. In particular, there is no exact calculation of the scaling dimension of the
operator driving the QH transition. Numerically, it has been shown that the localization length,
&, scales as a function of energy as

1

~—— 22
le —ecl” (2

3

where v ~ 2.6 is the localization length critical exponent obtained from previous studies [72,
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79,87-89,97], and € is the critical energy (€., in the previous discussion). Assuming that the
QH transition is described by a scale-invariant critical theory, this critical exponent is expected
to correspond to a relevant operator with scaling eigenvalue y, = % and scaling dimension
x.=2—y. [98].

Now consider two QH systems with Gaussian random potential disorder that is uncorrelated
between the two systems. The simplest coupling term between the corresponding fields f; and
fo is of the form

Sp= szr B[ F1(0f0) + Fa(AM)]. (23)

To get the scaling dimension of this operator, one can compute the four-point correlation
function

(0.0} (1) e = (F1(Nfo(1)f 2V 1)) e
= (71(”)f1(’”’))e (fz(r)fz(r’))e- (24)

Here we have defined the “tunneling operator” O,(r) = fl(r) f5(r), while (-), denotes Grass-
mann integration (e is the energy), and the overline denotes disorder averaging. The expectation
values are evaluated with respect to the unperturbed action with fp = 0. The second line fol-
lows from the fact that 1) f; and f, are decoupled, and therefore the Grassman integrations
over f; 5 are independent, and 2) the disorder potentials are uncorrelated. The individual

correlation functions (]Tl’z(r) f1,2(r )). decay exponentially with distance [97], making the
operator O,(r) irrelevant. This is because the phases of (fl’z(r) f1,2(r")) are different for each
disorder realization (and independent for the two systems 1 and 2).

Importantly, under RG, disorder can generate additional, more relevant terms. For example,
to second order in fp, a density-density coupling term of the form O4,4(r) = p;(r)p,(r) (where

Pi=12= f.f:) can be generated. Its correlation function in the decoupled action is

(04d(r)04a(r"))e = (P1(r)p2(r)p2(r)p1(r")),
=(p1(r)p1(r"))e (P2(r)p2(r")). . (25)

In this case, the correlation functions of the individual systems do not decay exponentially,
since they do not have random phases. The correlation function (25) is expected to decay as a
power law when the two QH systems are at their plateau transitions [97].

Although as of yet it is not possible to analytically compute scaling dimensions of operators
in the QH plateau transition, we can determine them numerically. To this end, we now employ
a network model to determine the phase diagram of the two coupled QH systems that we use
to describe the emergence of the AFAI phase. We find evidence that the operator O, is relevant
at the multicritical point, and drives the combined system to a localized phase even if its initial
amplitude (proportional to prlz) is small.

4.1 Network Model Description of the QH Transition

We briefly review the Chalker-Coddington network model for the QH plateau transition. The
model consists of two kinds of building blocks: (1) fixed (i.e., non-random) scattering matrices
parametrized by a transmission amplitude ¢ € [0, 1] at network nodes and (2) random phase
matrices with a uniform distribution over U(1) along network links.

To be precise, the network model has two types of nodes, which are related by a 5 rotation
(see Fig. 6a). The explicit forms of the scattering matrices are:

S, = (_tr ;) . Sp= (_rt :) . (26)
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) 3 Network 1

1./*\,{

/{\fﬁ/%

Figure 6: a) A schematic of the network model. Blue nodes host scattering matrices
S, and red nodes host scattering matrices Sy that are rotated by 7. The links carry
random U(1) phases. States with € 2 0 tend to circle around the +/— plaquettes. The
state with € = 0 is delocalized. b). In the coupled network model, we add a second
layer with switched colors and opposite arrows. We also add inter-layer nodes that
scatter between the two networks, indicated by the dotted loops.

These matrices relate the incoming amplitudes (1 and 2 in Fig. 6) to the outgoing amplitudes
(1" and 2/), and r = v/ 1 — t2 is the reflection amplitude. To calculate the localization length, it
is convenient to use the geometry of a long cylinder. We denote the number of nodes around
the circumference by L, and the number of nodes along the length by L, and we take L, > L,,.
The transport from one end of the cylinder to the other end can then be computed using transfer
matrices. These relate the amplitudes to the left of a node (1 and 1’) to the amplitudes to the
right (2’ and 2). The transfer matrices for the two types of nodes A and B are given by

1(1 r 1(1 ¢
nel(1 ) el ), -

Denoting the transfer matrices for a column in the y direction by Ty , (of size 2L, x 2L )
and the diagonal random phase matrices describing disorder on the links by &,z ,, the total
transfer matrix describing transport from one end of the cylinder to the other is

Tou = ]_[an (T5®, TS (28)

To see the physical meaning of the transmission amplitude ¢t in the context of the QH system,
one can relate it to €, a quantity proportional to the energy deviation from the delocalization
energy [791]:

1 e—ne/4
R S (29)
2V 1+ e—me/2 Vv1+eTE

Notice thatase » oo, t > 1 andase - —00,t = 0. At e =0, t and r are equal: t=r=-L.

The network model is illustrated in Fig. 6a, with the scattering matrices S, describing the blue
nodes and Sy describing the red nodes. The network can be thought of as a grid of valleys (—
plaquettes) and summits (+ plaquettes). States with € < O tend to encircle the valleys, while
states with € > 0 tend to encircle the summits. All these states are localized. At € = 0, the
states are delocalized, and correspond to the QH critical states.
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4.2 System of Two Coupled Network Models

We now consider two QH systems, labeled 1 and 2. The intra-layer transmission amplitudes
are parametrized by € and 6 as follows:

tl = ! s t2 = ! . (30)

vV 1+ em(etd/2) V1 + e m(e=5/2)
In the driven system, the e axis corresponds to the quasienergy (see Fig. 2), while 6 corresponds
to the detuning of the driving frequency from resonance. As we explain below, to capture
the opposite chirality of the critical states of the two systems, we reverse the direction of
propagation on the links of system 2 relative to system 1, which also switches the A and B
transfer matrices in system 2 (Fig. 6b).
On each link of the doubled system, we replace the random diagonal matrix &,/p , by

®a/Bx = PasBx2P PasB s (31)

where P¢ is a transfer matrix describing scattering between the two systems (originating from
the driving in the original problem), as illustrated in Fig. 6b. The transfer matrix P¢ acts on
an entire column, and is constructed from 2 x 2 blocks that act on the amplitudes of the two
systems in a pair of links connected by the dotted ellipses in Fig. 6b. Each block is occupied by
a matrix P parametrized by t, € [0,1]:

1 1 t
r-—=(0 1) .
p

The total transfer matrix for the system of two coupled network models of dimension L, x L,

is given by
L

Th, = l_[ P52 2P Pp 21 Tg®Pax 2P Pan Ty - (33)
x=0
At t, =0, we have P = 1 and the model describes two uncoupled QH systems. At the special
point t, = %, we have r, = ,/1— t}% =t,. For t, > %, we expect that all states become
localized because electrons tend to scatter back and forth between the two networks in closed
loops.
We rewrite the parameters €, 0, and t,, in terms of J.,J5, and J,, [99], defined as:

2
€T Trome L (34)
J -z 1 35
5_1+€_”5/2_ ) ( )
Jp =4t (36)

These new scaling parameters obey J, € [—1,1],J5 € [—1,1],J, €[0,4]. Because J, o< € near
criticality, the scaling dimension of J, should be the same as the scaling dimension of €. J5 and
6 are similarly related. On the other hand, J, is always positive and J, o< tlzj, consistent with
the discussion in the beginning of Sec. 4.1 where we argued that the relevant inter-layer term
should be a density-density term, generated at order fg.

4.3 Qualitative Features of the Phase Diagram

We now consider the phase diagram of the coupled two-network system as a function of J,, Js,
and J,,. To begin, in order to interpret the different phases, we first comment on the meaning
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Figure 7: (a,b): Two different edge terminations for a Chalker-Coddington network
model at a given energy, € > 0. In the termination in panel (a), the horizontal strip
has a chiral edge state, whereas the termination in panel (b) does not. (c,d): The
same network model with two edge terminations, at an energy € < O (across the
transition). In the edge termination of (a,c), the winding number goes from 0 to 1 as
€ increases through zero, whereas in the termination of (b,d), the winding number
changes from —1 to 0.

of the winding number W in the context of a single Chalker-Coddington network model.
Previous work relating the Chalker-Coddington network model to Floquet sytems defines W as
the number of edge states when the network has open boundary conditions [83]. However,
this depends crucially on the termination of the system (see Fig. 7). Depending on the edge
termination, tuning the energy € from —oo to 0o might result in a change in the winding
number from 0 to 1 or from —1 to O.

We strategically choose different terminations for the two networks so that tuning J5 through
zero for J, = 0,J. = 0 results in a change in the number of edge states from 0 to 2, and thus
W changes from O to 2, as in Fig. 5 (red solid lines). To see why this is the case, recall that
states with energy € £ % — 00 tend to encircle the + plaquettes and states with € £ % — —00
tend to encircle the — plaquettes. In addition, the A and B nodes are switched in network 2,
so that the direction along each link is reversed. For Js = —1, network 1 states, with energy
€+ % — —00, encircle the — plaquettes. On the other hand, network 2 states, with energy
€ —% — 00, encircle the + plaquettes (see Fig. 8a). In the limit J5 = 1, network 1 states
encircle the — plaquettes and network 2 states encircle the + plaquettes (see Fig. 8b). It is clear
from Fig. 8 that in going from J5 < 0 to J5 > 0, the number of edge states increases by two.
Next, in the limit J, = 4, electrons scatter between the two networks with probability 1. The
scenarios with Js = —1 and +1 are illustrated in Fig. 8c and 8d, respectively, and both have a
single edge state so W = 1.

We now turn our attention to the transitions between these different phases. First consider
the J, = 0 plane, which describes two decoupled networks. There are critical lines at € = i%
or equivalently J, = £J5. On these lines, one of the two transmission amplitudes t; or t, from
Eq. (30) is equal to Lz’ and hence the corresponding network is critical.

We expect that, going out of the J, = 0 plane, there would be critical surfaces that extend
from the J. = +J; critical lines, separating the regions containing the |J5| > |J.|,J, = 0 points
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Figure 8: Phases of the coupled network model. States in network 1 are illustrated
in blue and states in network 2 are illustrated in red. The edge states are easy to
determine in the limit J, =0, J5 = £1 and Jp,=0 (no inter-layer coupling, see (a)
and (b)), as well as J, =0, Js = £1 and J, =4 (maximum inter-layer coupling, (c)
and (d)). Going from (a) to (c) or (b) to (d) corresponds to turning on the inter-layer
coupling J,, at the midpoints of the links, which connects the red and blue trajectories.
The purple lines indicate trajectories where states hop between the two networks in
tight loops. The winding numbers corresponding to the different phases are indicated
in the figure.

from the regions containing the |J5| < |J.|,J, = 0 points (Fig. 9). In addition, as mentioned
in Sec. 4.2, in the region of ¢, > L which corresponds to J, > 2, all bulk states should be
localized. So all critical surfaces must lie below the plane J, = 2. The numerically computed
phase diagram matches well with these qualitative arguments, and is shown in Fig. 9.

4.4 Finite Size Scaling

In this section, we briefly review the methods used for the calculation of the localization length
through finite size analysis. Identifying where the localization length diverges allows us to
locate the phase transitions and thus to map out the phase diagram.

The localization length can be obtained from the product of transfer matrices. Consider
TrL, the transfer matrix describing a system of two coupled network models (33). We define
the matrix I' by )

I=lim, o0 Ty, fo,Ly)zL" ' (37)
From Oseledet’s theorem [86], one can show that I' always has positive eigenvalues, of the
form exp(=y;), where the physical meaning of y; is the exponential change in the wavefunction
over a single lengthwise slice. The smallest y; corresponds to the inverse of the localization

length in this quasi-1D setup:
1
&= . (38)

Y min

The localization length is a self-averaging quantity, and is independent of the disorder realization.

We denote the reduced localization length by A = g(LLyy ) with J = {J5,J¢,J,}. Then,

according to one-parameter scaling, near the critical value J = J,, A should not separately
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Figure 9: The phase diagram of the two coupled network system as a function of J5, J,
and J,. The regions under the critical surfaces have VW = 0,2 and the region above
the critical surfaces has WW = 1. The insets show cross sections indicated by the blue
and red lines in the 3D plot. The black dashed lines are interpolations; in particular,
in the left inset, we interpolate according to J,, o< |J5|%¢/42 (see the discussion in
Sec. 4.5), whereas in the right inset the interpolation is parabolic.

depend on L, and J but vary as A = F (ELTyo) =F (IJ —JCIL;/VJ) where we used &, ~ m,
and F, F are universal scaling functions. Therefore, near the critical point, A(r) plotted against
|J —JCIL;/ " should coincide for all values of L y- We therefore obtain v; by choosing its values
such that the data for A vs. J collapse for different values of L. An exemplary plot showing
the finite size scaling analysis and the data collapse is given in Fig. 10 for the tuning parameter
J=1J,.

We point out that A is a good choice for a scaling variable because it has a singularity in
the limit of infinite system size in a localization-delocalization transition: A — 0 as L, — ©0 in

an insulator because &, is finite, and A — 00 as L, — oo in a metal. At the critical point,
A— A forall L.

4.5 Results

We use the above methods to make several cross sections through the phase diagram in the
(Je>J5,J,) space. The first cut is along the line J5 = J, = 0. The resulting reduced localization
length A as a function of J, is shown in Fig. 10. The data are consistent with a critical point at
Jp, = 0. For an optimal value of the localization critical exponent v, ~ 4.2, A collapses with
high precision onto a universal function. When J, =0, the two networks are decoupled, and
deviating from lines J5 = £J, corresponds to a usual quantum Hall transition, with critical
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Figure 10: (a) A plotted against JpL}l,/v" with optimal Vp from (a). Inset: the unscaled
data with the same coloring as in the main figure. (b) As discussed in the text, near
the critical point, A plotted against JpL)l,/vp should be the same for all L,. Here

we measure how well data from different L, match by performing a linear fit on

A(JPL;,/V” ) for L, = 80, then calculating the average root mean square error (RMSE)
of plots from different L, to the values given by the linear fit. The minimum RMSE is
given by v, =4.2.

exponent v & 2.6 [72,87-89]. This implies that in the J, = 0 plane, the critical lines should then
follow the curve J, o< Jga/y" = J;P/vs = J§'6/4'2
of the corresponding operators.

The three-dimensional phase diagram (Fig. 9), is constructed using cross sections in the
Jp =0 plane, J. = 0 plane, and Js = £0.37 planes. We point out that the lines near Js =J, =0
and close to J. = 0 are interpolated because the localization length around these points is very
large. The points in the plane J. = 0 are obtained as follows: for each value of J,,, a sweep
through Js determines where A peaks and collapses for all L, . Because the phase diagram is
symmetric with respect to & — —& and € — —e, the data points only need to be obtained for
one side of each cross section.

, where y;s and y, are the scaling eigenvalues
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Fig. 9 implies that if the two opposite chirality states were put exactly on resonance so that
Js = 0, then any amount of coupling J, would lead to localization for all energies J.. In other
words, if the Floquet driving were exactly resonant with the energy e_; — €, then any finite
coupling amplitude would cause all bulk states at all energies to localize. If the two opposite
chirality states were slightly off-resonant, so that 0 < |J5| < 1, there needs to be sufficient
coupling J, to localize the bulk states at all energies. Specifically, J, must satisfy J, > an‘é/ 42
with the constant a ~ 2.4 from the numerical fit in Fig. 9a. In conclusion, we find that for any
value of Js, one can choose J, such that the line (R, J5,J,) does not have any critical points.
Physically, this means that as long as the rotating wave approximation holds, for any amount
of detuning, a sufficiently strong driving amplitude localizes all the bulk states and the system
realizes an AFAI phase. Note that the network model describes the physical setup of the driven
QAH system for J,, < 1. This is the weak driving limit, where the rotating wave approximation
holds.

5 Discussion

We have shown that it is possible to obtain an AFAI by driving a QAH system at a frequency
equal to the energy difference between its two delocalized states. To this end, we investigated
an effective Hamiltonian for a driven QAH system, treating the effects of the Floquet drive
within the rotating wave approximation. We showed that for the QAH state that is typically
found in magnetically doped TIs, we can compute the resonant drive frequency using the SCBA.
We argued that there should be a finite frequency window around this resonant frequency
where the AFAI is stable (Fig. 5).

We then backed these arguments using a numerical study of a system of two coupled and
disordered network models, which captures the universal properties of the transition. We
calculated the localization length in this system and showed that the coupling operator between
two delocalized states of opposite chirality is relevant, with a scaling dimension ~ 1.8.

Our findings demonstrate that an AFAI can be obtained out of a realistic low-energy model.
Importantly, the proposed mechanism of Chern band annihilation to generate an AFAI does not
depend in an essential way on the strength of disorder or on the type of driving.

We end by outlining open questions and directions for further work. As pointed out in Sec. 3,
when calculating the Hall conductivity for very weak disorder, it is necessary to include the
skew scattering contribution. While this has been done for a constant mass [69, 70], the case
of a momentum dependent mass has not been considered so far. Generically, we expect there
to be some contribution because the magnetic dopants, combined with spin-orbit coupling,
would be conducive to skew scattering. In the calculation, this can be accounted for by using
non-Gaussian disorder. Even though this contribution may shift the critical lines slightly, we do
not expect it to change the qualitative features of the phase diagram.

A natural direction for future work is to investigate how the robustness of the AFAI in
the single-particle picture carries over to the interacting system. Isolated driven many-body
systems are generically expected to heat up to infinite temperature. However, there is evidence
that sufficient disorder can allow distinct phases to persist for long times due to many-body
localization [46,100-103]. It has recently been argued that the AFAI is stable to interactions in
many-body localized systems [56]. It would therefore be interesting to study the stability to
interactions of the particular protocol we presented in Section 3 for realizing the AFAIL

In a solid state setup, coupling to phonons will inevitably destroy the localization at suffi-
ciently long times [104]. However, the presence of an AFAI state may still manifest itself in
interesting transient phenomena, which we leave for future study. In particular, the effect of
coupling to phonons and leads on the transport signatures of a solid state AFAI (see Fig. 1)
remains an important open question.
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A Calculation of Hall conductivity

In this Appendix we derive Eq. (9) for the critical line in the A, ey plane. At this line, the
semiclassical Hall conductivity (79} of species 1 (assuming that m; < m,) vanishes. To simplify

the notation, the superscript (1) in crgcly) is left implicit in the remainder of this section.
We begin by discussing the different disorder contributions to the Hall conductivity. The
total Hall conductivity is given by [71]

Oxy =0xy,0 + O xy,si + O xy,skew > (39)

where 0, is the intrinsic contribution from the Berry curvature, o, is the side-jump
contribution, and 0y, gew is the skew-scattering contribution. Both 0,4 and o, give
contributions that are independent of the transport scattering lifetime, 7, while o, g\ gives
a contribution proportional to 7. Depending on the disorder type, 0, qew may be zero, but if
it is finite, 0, gew dominates the Hall conductivity in the clean limit where 7 — co. In the
following we consider systems in what was termed the intrinsic metallic regime, where o,
and o, are dominant [71]. In this regime, the Hall conductivity o, = 0,y 0+ Oy is
independent of the disorder strength for a fixed form of the impurity potential [105]. Specificially,
in our model, the skew scattering contribution vanishes because of the symmetric (Gaussian)
distribution of the disorder potential [105].

A.1 Intrinsic Contribution

Consider the Hamiltonian describing the mode 1;, of the form

H(k) =vp(k,o, +k,o,)+M(k)o,, (40)
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where M (k) = (mo —A+ zn%z) + Bk? (where we set the off diagonal coupling terms in Eq. (19)

2 .
to zero). Below we use m = my— A + er% for convenience, so M(k) = m + Bk?. To evaluate
Oxy,0, We integrate over the Berry curvature

o — EZMZIm[<H_|V |u+><u+|v |ll_>] (41)
OT QL (e —er TR TR

where fki = O(ep — ef) are the occupation numbers in the conduction and valence bands

for the Fermi energy €p, Q2 is the area of the system, and ef = £+/(vpk)2 + (m + Bk2)2. The
periodic Bloch states Iu:) are the k-dependent eigenstates of the Hamiltonian Eq. (40) defined

as
[ cos(6y/2) L sin(6y./2)
'“Z)"'(sin(ek/z)ei¢k) Y “(-cos(ek/Z)ei¢k) ’ (42)

m+Bk?
l€x!

k . .
where cos 6, = and tan ¢; = £=. The velocity operators v,, and v, are given by
Y

dH
Ve = E =vpo, +2Bk,0,,
dH
Vy:@:VFO'X‘FZBkyO'z. (43)

Evaluating Im[ (u, v, |u) (uy |v,|u; )] yields
Imf (uy vy Jugd ) (g vy lug ) ] = v cos 0 — 2Bvpksin 0y . (44)
Then, after performing the ¢, integral in (41), the Hall conductivity for € in the conduction

band becomes < N . vg Klm—Bi®) "
T0 = Tk + (m+ BR2PP

Due to the presence of the second Dirac field, the integration is only defined up to the second
mass m,, which sets the upper energy cutoff € = m, and the momentum cutoff K ~ m,/vg.
Assuming that vyK > |B|K?2, the result of the integration is

(m+Bk%)
24/(m+Bk2)2 + (vgky)2

ny,O N

1
=~ cos Ok, - (46)

Importantly, this quantity is zero when cos 6, = 0, which is true for M(kyz) = 0. For a
constant (k-independent) mass term, o, is identically zero for m = 0 for all energies. If m
is replaced by m + Bk?, the energy for which Oxy0 = 0 has a non-trivial dependence on m.
Notice that in order for such an energy to exist, the product mB must be negative.

A.2 Side-Jump Contribution

To account for the effects of disorder on the Hall conductivity, we must add the contributions of
the diagrams in Fig. 11. We consider 6-correlated random potential disorder characterized by
(V(r)v(r)) = nV025 (r —r’), with no higher moments, where n is the impurity concentration.
The first step is to solve for the on-shell self-energy (e = €5) = Z}g, shown in Fig. 12. For
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intrinsic side-jump

Figure 11: Diagrams contributing to the Hall conductivity in the intrinsic metallic
region. The grouping into the intrinsic and side-jump parts corresponds to the usual
labels given for these processes.

the potential disorder considered here, Zg contains two pieces, proportional to 1 and o,. It
evaluates to

. d?k
8 =—innVy J ng(eF, k)o(ep —€;)
.
_ _an0 €F

4 \/4B26% + 4Bmv§ + v;f

(1 +cos 6y, 0;)

i
=—E(Il+cos GkFch), 47)

where we introduced the inverse quantum lifetime (7,)™" = nVey/ \/ 4B2e2 + 4Bmv2 + vy.
In the limit B — 0, the inverse lifetime reduces to its form in the constant mass case, i.e.,
(Tq)_l = nVoze 7l vﬁ. Using this self energy, the SCBA Green’s function becomes

1
1/GX—3R
ep +il +v(k o, +keo,)+(m +Bk?—il})o,
- (ep —€f +il+)(ep — € +ilL)

GR(E =E€r, k) =

, (48)

withT'= (4Tq)_1, I} =Tcost,,and T, =T(1+ cos? Ok, )-
The recursion relation for the velocity vertex in the ladder approximation is defined by
0H , [ d?K

T (e =ep, k)= E +nV; WGRTXGA

42k’
2n) GRr,.G*. (49)

Here, the Green’s functions and the vertex functions are taken at € = €. To solve this equation
for Y, we decompose T, = cy0y + ¢,0 + ¢, 0y +¢,0, + 2Bk, 0, multiply by Pauli matrices

=vpo, +2Bk,0, + nVOZJ

Figure 12: The diagram is constituting the lowest order contribution to the quasipar-
ticle self-energy.
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from the left, and take the trace. This gives

2¢; = 2vpd; , +Ajjc; + Bz, (50)
Zk/
Ay =nV} o )ZTr[UiGRO'jGA], (51)
2 dzk R / A
B;, =nV; or )ZTr[a .GR(2Bk.0,)G*] . (52)

We express the above equation in matrix form

Co By,

Cx — (2 _A)—l sz (53)
Cy 2vp+By, |’

CZ BZZ

where the matrix A has the elements A;; defined above. Notice that 2 — A is block diagonal, so
we can diagonalize each block separately

C.X — — BXZ
(¢)-on (o)
( )—(2 Ap)! (BOZ). (55)

In order to evaluate A, we assume that the poles of the advanced and retarded Green’s functions
are well separated, so that one can take the residue in either without affecting the other (see,
e.g., Ref. [70]), with the result up to O(T'/€;) being

A A sin? O, il sin? O, 56

ok Yy (1+c0329kF)_ e (56)
4T cos 6y,

Apy=—A, = : (57)

(14 cos? O, Jep

We point out that there is an extra term in A, , = A, , of order — which was neglected in
Ref. [70]. This term does drop out in the final result for the Hall conduct1v1ty upon taking
' = 0. We also find

T sin® 6 BT
=——— B, = __ > 7k Bl (58)

€p cos(Oy,) 1+cos? 6y, Vi’
BOz - Bzz =0. (59)

Because By, = B,, = 0, Eq. (55) immediately gives ¢y = c, = 0. Solving Eq. (54) for ¢, and
¢, gives

8(1 + cos® 6y, ) cos O, vy sin® Oy (1+7cos® 6, ) BT

o = Vel 2 60
x (1+3cos26;,)>  €x (1+3cos26;, )  vp (60)
2vp(1+cos®6,)  sin® 6y, cos by, e, B 61
c, = ,
Y 1+ 3cos? 0y, 1+3cos2 0y, Vg

where the term of order T'/ey in ¢, was already dropped as the contraction with the Green’s
functions in the evaluation of the Hall conductivity means that such a term would give order
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'/ ey contributions to the Hall conductivity. In all other components, this step has to be deferred
until the end.

We are now in the position to compute the Hall conductivity from Eq. (8) of the main
text. As shown in Appendix B of Ref. [70], this breaks into an intrinsic contribution (o)
from below the Fermi level and two terms o,

y and O'ley from near the Fermi level. These two

terms correspond to the Fermi-surface pieces from the integrals involving GRG* and G*G*,
respectively. Since 0., o was already evaluated in Eq. (46), we only need to study the remaining
. . a b
contribution from o y 05,
The resulting expression can be simplified slightly by observing that 02 y does not receive
any important renormalizations from the full vertex T,, so that it can be replaced by the bare

velocity operator [70]. Therefore, the equation for 0§ y(w) + 02 y(w) reads

a _ d?k aof
oiy(a)) + oxy(co) =iTr W (_a_ek) X

e+ w+vplkyoy, +k,o,)+M(k)o,

[—(vFay + 2Bk, 0,)

2wey
ex +vp(lk,o, +k,0,)+M(k)o
X (vpox + 2Bk, 0,) Ry 2€y - z
k
ex t w+vp(kyoy +k,o,)+M(k)o, +il' —ilyo,
x 2(w + 2iT} ey

X (vpox + 2Bk, 0,)
ex tvp(kyoy +kyo,)+M(k)o,—il +il 0,
X .
26k

(62)

Substituting 1, = ¢, 0, + ¢, 0, + 2Bk, 0, and dropping terms that are either odd in momenta
or traceless results in

X d2k df \[ vi(m—Bk?) cyvp(2m + Bk?)
oL, to) = (— ) 5 -— 5
y y 2n)2\ de, 4e2 4e(1+ (m+Bk2)?/e€7)
cva(ei —m? + B%k%) Bv%k)zc r 63)
86%1—'(1 +(m +Bk2)2/ei) ei r, |
Plugging in c, and c, from Eq. 60, this finally yields
4cos 0, (14 cos? 0, )
Oxyo+0%, +0b =— ke k4 oB (64)

xy (1+3cos? 6y, )? xy

The first term in Eq. 64 depends only on B implicitly through the definition of 6; . The second
term contains B explicitly and is given by

oF —_ Bep sin® Ok, 8Bep cos® Ok, sin? O, +(5+34 cos? Ok, +41 cos* Ok, W2 65)
Xy 4v2(1 + cos? 6;,) (1 +3cos? 6, )?(2Beg cos 6y, +Vv?2) '

Eq. (64) matches with the B = 0 result from Ref. [70]. For M (k) = 0, which is the condition

for the critical line in the clean system, this simplifies to o2 = —3Bep Physically, this means

xy T 4vi
that a finite B enters in Eq. (64) not only through the changes to the dispersion but also in
the form of aﬁy due to the changes of the velocity operator. This latter dependence is what

renormalizes the phase transition line non-perturbatively in disorder strength.
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A.3 Disorder Effects on the Delocalization Line

We now discuss the effects of ogy on the delocalization line, where o, = 0. To do this, we
expand Eq. (64) in powers of cos ., yielding

SBeg

2
4vg

Oyy =—4cos ), — +0 (cos2 QkF) . (66)

This expansion is justified if the contribution from af y does not shift the delocalization lines
far from the B = 0 lines, which occur at cos 6, = 0. This is true when 1% < 1. Substituting
F
2
the generic mass variable m by the definition used in the main text, m — my— A + %, and

. . . . B .
dropping terms higher than first order in %, one obtains
F

24> 21Be?
A xmg+—+=——"

. 67
my 16 y? (67)

Interestingly, the curvature of this critical line A (e ) is somewhat larger than the value it would

. I . . . 2 | Be2
take if the contribution from of |, were ignored (which would be given by A, =mg + Zn‘% + %
F

at small €z).

In summary, we computed the Hall conductivity with intrinsic and side jump contributions
for a 2D Dirac-like system with a small quadratic perturbation in k. The condition satisfied by
the critical line, where US}}} = 0 (the Hall conductivity for the field v; in Eq. (3)), is given by
Eq. (67).
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