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Abstract

We study the dynamical decay of the van Hove function of Brownian hard spheres using
event-driven Brownian dynamics simulations and dynamic test particle theory. Relev-
ant decays mechanisms include deconfinement of the self particle, decay of correlation
shells, and shell drift. Comparison to results for the Lennard-Jones system indicates the
generality of these mechanisms for dense overdamped liquids. We use dynamical density
functional theory on the basis of the Rosenfeld functional with self interaction correction.
Superadiabatic forces are analysed using a recent power functional approximation. The
power functional yields a modified Einstein long-time self diffusion coefficient in good
agreement with simulation data.
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1 Introduction

Even a homogeneous liquid at equilibrium has microscopic motion. Although the average one-
body density profile is constant in space and in time, the underlying particle motion is vigorous
at the particle scale. The van Hove function is the fundamental two-body correlation function
to characterise the dynamics of bulk liquids [1–3]. Given a particle at the origin at time t = 0,
the van Hove function G(r, t) gives the probability density of finding a particle at a distance r
away from the origin at time t. The van Hove function can be measured experimentally via
confocal microscopy [2, 4] or by measuring its Fourier transform, the intermediate scattering
function, and then inverse Fourier transforming to real space [3, 5]. Studying the van Hove
function yields significant insight into the dynamics of simple and complex systems. Notable
examples thereof include cage formation in nematic and smectic liquid crystals [6], de Gennes
narrowing of liquid iron [7], self-motion of water [5] and the dynamics of colloid-polymer
mixtures [8]. Likewise, much effort has been made to gain a theoretical understanding of the
dynamics of the van Hove function itself. Medina-Noyola and coworkers presented a series of
insightful studies based on generalised Langevin equations [9–18]. Weysser et al. used mode-
coupling theory in comparison to Langevin dynamics simulations [19]. The closely related
problem of complex memory in molecular dynamics has recently received much attention [20–
24].

For t = 0, the van Hove function is proportional to the bulk fluid radial distribution function
g(r) ∝ G(r, 0). The asymptotic decay of g(r) at large distances r has been the subject of
intensive study for a broad range of model liquids. Fisher and Widom, when studying in a
one-dimensional model the decay of correlations at walls, found that a line in the temperature-
density plane separates the phase diagram into a region of monotonic decay and a region of
oscillatory decay [25]. The Fisher-Widom line separates the two classes of universal decay, in
the sense that the type of decay applies not only to the behaviour of liquids at interfaces, but
also to the large distance behaviour of the bulk liquid radial distribution function [26,27], see
e.g. [28–32] for studies in a variety of systems.

Classical density functional theory (DFT) [33, 34] has proven to be a powerful tool in
the study of soft condensed matter [35]. A particular success was the development of fun-
damental measure theory (FMT) for the description of the hard sphere liquid [35–38]. DFT
provides two pathways to calculating the radial distribution function. The Ornstein-Zernike
equation relates the radial distribution function to the direct correlation function [3], which
can be calculated from functionally differentiating the free energy functional [3]. This path
was recently shown to be accessible even in inhomogeneous situations [39, 40]. (A nonequi-
librium Ornstein-Zernike equation for time-dependent systems was derived by Brader and
Schmidt [41, 42].) Alternatively to the Ornstein-Zernike route, the radial distribution func-
tion can be calculated via Percus’ static test particle limit [43]. Here, a system is put under
the influence of an external potential that corresponds to the pair potential of one particle
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fixed at the origin. The equilibrium density distribution of the system is then proportional to
g(r) [3,43]. For applications of the static test part limit, see e.g. [28,29,44,45].

A similar mapping of two-body correlations to one-body distributions is possible for the
van Hove function. This dynamic test particle limit was first presented using DDFT [46, 47].
DDFT [34, 48, 49] is an extension of DFT, which is based upon approximating the effects of
interparticle interactions as those calculated from a free energy functional via the adiabatic
construction [50], in order to obtain the time evolution of a non-equilibrium system. The
dynamic test particle limit, just as its static counterpart, splits all particles in a system into a
single tagged (‘self’) particle and the remaining (‘distinct’) particles. Starting from an equi-
librium configuration with the self particle fixed at the origin, the self particle is released and
the system evolves in time. Its one-body density profile is then equal to the van Hove func-
tion. The dynamic test particle approach was implemented for the Lennard-Jones liquid within
Brownian dynamics simulations by Schindler and Schmidt [51]. Brader and Schmidt presented
a formally exact formulation of the dynamic test particle limit using power functional theory
(PFT) [52,53]. The power functional framework provides a systematic way to improve upon
the well-known defects of DDFT, such as the overestimation of relaxation rates [48,54]. At the
core of PFT is the formally exact splitting of the time-dependent one-body internal force field
into adiabatic and superadiabatic contributions. The former can be obtained from the equilib-
rium free energy functional, and the latter constitute genuine nonequilibrium, flow-dependent
forces that are generated by the superadiabatic power functional.

There is much recent and renewed interest in the dynamics of the van Hove function. Stop-
per et al. studied the van Hove function of a hard sphere liquid at densities up to 0.76σ−3, using
dynamic density functional theory (DDFT) with a partially linearised White Bear Mk. 2 excess
free energy functional [55]. The authors also carried out kinetic Monte Carlo simulations.
They subsequently improved upon their approach by introducing a ‘quenched’ excess free en-
ergy functional to address the problem of self interactions within the self density component.
Furthermore, they introduced an inhomogeneous particle mobility correction to the DDFT
equation of motion [56]. More recently, they extended their approach to two-dimensional
hard discs and found good agreement of their results with experimental data obtained by video
microscopy of a two-dimensional colloidal suspension of melamine formaldehyde particles [4].

Despite these successes, studies of the van Hove function with DDFT systematically neglect
superadiabatic effects by construction [46,47]. Recently, we have combined viscoelastic, drag-
like and structural forces to obtain an approximation for superadiabatic forces in the dynamics
of the hard sphere van Hove function [57]. This work builds upon an approximation developed
for viscoelastic forces in a sheared system of hard spheres [58] and approximations developed
for drag-like and structural forces in a binary system of counter-driven hard spheres [59].
In [57], we have shown that superadiabatic forces contribute significantly to the internal force
field at all times. Our approximation describes the internal force field accurately starting at
short times t > 0.3τ up to at least t = 1.5τ, where τ ≡ σ2/D is the intrinsic Brownian
timescale of the system, with particle diameter σ and diffusion constant D.

Here, we expand on our previous study [57]. We investigate the van Hove function of a
bulk hard sphere liquid at bulk density ρB ≈ 0.73σ−3 (packing fraction η ≈ 0.38). Although
the hard sphere model liquid is simple, both its static and dynamic properties are often con-
sidered to be universal and taken to represent a much wider range of systems [3, 60]. Using
event-driven Brownian dynamics simulations (BD) [61], we obtain the van Hove function it-
self as well as the internal force field acting in this system. We compare the dynamic structural
decay of the van Hove function for hard spheres with results for the Lennard Jones liquid [51].
The adiabatic contributions to the internal force field are calculated using Monte Carlo simu-
lations [62, 63] and DDFT [48, 49] in the dynamic test particle limit. For the latter method,
we evaluate the accuracy of two modifications of the free energy functional, which correct for
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unphysical self interactions of the test particle within the dynamic test particle limit [55,56].
Since adiabatic forces vanish in the long-time behaviour of the van Hove function, the DDFT
approximation asymptotically approaches ideal diffusion, and hence fails to model collective
slowing down. Therefore, we examine the superadiabatic contributions to the internal force
field that governs the time evolution of the van Hove function. The construction of our previ-
ously presented PFT approximation [57] for the superadiabatic force field is shown in detail.
Finally, we use the PFT approximation to calculate the long-time diffusion constant of the self
part of the van Hove function and compare it to simulation results to evaluate the accuracy of
the approximation.

This paper is structured as follows: Section 2 describes in detail the models, theory and
algorithms used in our work. Section 3 presents results. Starting with the radial distribution
function, we examine the dynamic structural decay of the hard sphere van Hove function in BD
and DDFT and also compare with the van Hove function of the Lennard-Jones liquid. Lastly,
we identify adiabatic and superadiabatic contributions to the internal force field using MC
simulation and present our PFT approximation for superadiabatic forces. We summarise and
give an outlook in section 4.

2 Model and Theory

2.1 Brownian Dynamics

We consider a system of N monodisperse hard spheres with diameter σ. The particle positions
r1, . . . , rN ≡ rN evolve in time according to the Langevin equation of motion

γṙi(t) = fint,i(r
N ) + fext(ri , t) +

Æ

2γkBTRi(t) , (1)

where γ ≡ kBT/D is the friction constant of the particles against the implicit solvent, kB is
Boltzmann’s constant, T is the temperature, and fint,i(rN ) = −∇iu(rN ) is the internal force
that all other particles exert on particle i = 1, . . . , N due to the interparticle interaction poten-
tial u(rN ). Furthermore, fext(r, t) is an external one-body force field that in general drives the
system out of equilibrium and Ri(t) is a delta-correlated Gaussian white noise with 〈Ri(t)〉= 0
and




Ri(t)R j(t ′)
�

= δ(t − t ′)δi j1, where δ(·) is the Dirac distribution, δi j indicates the Kro-
necker delta, and 1 is the 3× 3 unit matrix. The intrinsic (Brownian) timescale of the system
is τ.

Since for hard spheres the interparticle interaction potential is discontinuous at contact,
integration of the equation of motion (1) requires specifically adapted algorithms. One state-
of-the-art algorithm is event-driven Brownian dynamics [61], which we apply to the bulk dy-
namics where fext(r, t) = 0. We choose a fixed timestep ∆t. (See [64] for adaptive Brownian
dynamics for soft potentials.) At the beginning of a simulation step, the particle velocities are
randomised according to the Maxwell distribution. The particles are then moved according to
the laws of ballistic motion with elastic collisions. Potential particle collisions are detected in
advance and handled in the order at which they occur. Once the time ∆t has passed in the
simulation timeframe, the particle velocities are again randomised and the process is repeated.

2.2 One- and Two-Body Correlation Functions

In a general nonequilibrium situation, the behaviour of the liquid can be characterised by the
time-dependent one-body density and current distributions. The density distribution is defined
as

ρ(r, t) =

® N
∑

i=1

δ(r− ri(t))

¸

, (2)
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where 〈·〉 indicates an instantaneous average over the noise and over initial microstates. The
one-body current distribution is defined as

J(r, t) =

® N
∑

i=1

δ(r− ri(t))vi(t)

¸

, (3)

where, in a numerical simulation, the velocity vi(t) of particle i must be calculated with a
finite difference of the particle position, centred at time t [65]. We calculate the current
distribution in our BD simulations in this manner. The density distribution is connected to the
current distribution via the continuity equation

∂

∂ t
ρ(r, t) = −∇ · J(r, t) , (4)

where∇ denotes the derivative with respect to r. Given a current J(r, t) and an initial condition
ρ(r, 0), the time evolution of the density distribution follows from the continuity equation. In
this work, we study a liquid in equilibrium without external fields, so the total density field
is always constant and the total current distribution vanishes at all times. However, using the
dynamic test particle limit [53] enables us to express time-dependent two-body quantities via
one-body quantities in a suitably constructed setup, which then acquires an inhomogeneous
density distribution and nonzero current (see Sec. 2.3).

The van Hove function [1, 3] is a dynamical two-body correlation function, defined for a
bulk fluid as

G(r, t) =
1
N

*

N
∑

i=1

N
∑

j=1

δ
�

r+ r j(0)− ri(t)
�

+

. (5)

The van Hove function measures the probability of finding a particle at r at time t, given that
there was a particle at the origin at time zero. In equilibrium without external forces, G(r, t)
is radially symmetric and thus depends only on the modulus r = |r|, i.e. G(r, t). The double
sum in (5) can be split according to

G(r, t) =
1
N

® N
∑

i=1

δ (r+ ri(0)− ri(t))

¸

+
1
N

*

N
∑

i=1

N
∑

j 6=i

δ
�

r+ r j(0)− ri(t)
�

+

(6)

≡ Gs(r, t) + Gd(r, t) , (7)

where Gs(r, t) is the self part of the van Hove function and Gd(r, t) is its distinct part.

2.3 Dynamic Test Particle Limit

While the van Hove function is a dynamical two-body correlation function, it can be equival-
ently expressed in terms of time-dependent one-body quantities of a system with a specifically
constructed initial condition [46]. In a system of N identical particles in volume V , one par-
ticular particle is selected as the test (or self) particle. The system is prepared such that the
test particle is at the origin, with the N − 1 remaining particles (the distinct particles) be-
ing in equilibrium around the test particle. For N , V → ∞ with the bulk number density
ρB = N/V = const, the self particle is distributed according to the self density distribution

ρs(r, 0) = δ(r) , (8)

and the distinct particles are distributed according to the distinct density distribution

ρd(r, 0) = ρB g(r) , (9)
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where the normalisation is such that
∫

V
drρs(r, t) = 1 , (10)

∫

V
drρd(r, t) = N − 1 . (11)

By starting from this special initial condition, we obtain for the self density distribution the
correspondence

ρs(r, t) = Gs(r, t) , (12)

whereas the distinct particles have the density distribution

ρd(r, t) = Gd(r, t) . (13)

The test particle correspondence can be used to calculate the van Hove function with an ap-
proach that delivers microscopic dynamics on the one-body level, such as DDFT or PFT (see
Secs. 2.4, 2.5). The time evolution can be expressed in terms of self and distinct currents
Jα(r, t), where α = s, d is a label for the self or distinct part. The continuity equation relates
van Hove current and density according to

∂

∂ t
Gα(r, t) = −∇ · Jα(r, t) . (14)

The current arises from a force balance relationship [53,66]

γJα(r, t) = −kBT∇Gα(r, t) + Gα(r, t)fint,α(r, t) , (15)

where −kBT∇Gα(r, t) is the ideal force density and fint,α(r, t) is the internal force acting on
Gα(r, t). The (species-labelled) internal force density is the product

Fint,α(r, t) = Gα(r, t)fint,α(r, t) . (16)

In BD simulation, we can sample the species-labelled current using (3) by considering either
only the distinct particles or only the self particle. Results for Fint,α(r, t) can then be calculated
using (15).

The force density Fint,α(r, t) consists of an adiabatic and a superadiabatic contribution,

Fint,α(r, t) = Fad,α(r, t) + Fsup,α(r, t) , (17)

where the adiabatic force density Fad,α(r, t) is defined via the adiabatic construction [50]: At
each fixed point in time t, one chooses a pair of external potentials Vad,s(r, t) and Vad,d(r, t)
that act on the test particle and on the distinct particles respectively, such that the equilib-
rium densities ρs(r, t) and ρd(r, t) under the influence of these potentials match the van Hove
function at that point in time. Hence the matching condition is

ρα(r, t) = Gα(r, t) . (18)

The adiabatic force field fad,α(r, t) ≡ Fad,α(r, t)/ρα(r, t) is then defined as the internal force
acting in this equilibrium system [50]. This force can be identified from a known adiabatic
external potential Vad,α(r, t) via

fad,α(r, t) =∇Vad,α(r, t) + kBT∇ ln (ρα(r, t)) . (19)

For a known internal force density Fint,α(r, t), the superadiabatic force density can then be
easily calculated by subtracting Fad,α(r, t) from Fint,α(r, t) (see Eq. (17)).
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The adiabatic construction can be performed either with DFT or with particle-based com-
puter simulation. In DFT, the adiabatic force field is directly available from the excess free
energy functional via

fad,α(r, t) = −∇
δFexc[ρs,ρd]
δρα(r, t)

. (20)

In simulation, iterative methods can be applied to find the adiabatic potentials Vad,s(r, t) and
Vad,d(r, t) [65,67]. Using simulations has the advantage of being exact up to stochastic fluctu-
ations and finite size effects. We choose this procedure to analyse adiabatic force profiles for
a few representative points in the time evolution of the van Hove function, using Metropolis
Monte Carlo simulation to obtain the adiabatic density profiles.

2.4 Dynamic Density Functional Theory

DDFT [34, 48, 49] is a method of calculating the time evolution of a one-body density distri-
bution. In the case of an M -component mixture, we have M density components ρα(r, t) and
M current components Jα(r, t) with α = 1, . . . , M . Each current component is approximated
by the adiabatic current

γJad
α (r, t) = ρα(r, t)

�

fext,α(r, t)−∇
δF[{ρα(r, t)}]
δρα(r, t)

�

, (21)

where fext,α(r, t) is an external force on component α and F[{ρα}] is the free energy functional

F [{ρα}] = Fexc [{ρα}] +
M
∑

α=1

kBT

∫

drρα(r, t)
�

lnΛ3ρα(r, t)− 1
�

, (22)

with thermal de Broglie wavelength Λ and excess free energy functional Fexc[{ρα}]. By insert-
ing (21) and (22) into (4), we obtain the DDFT equation of motion [34,48,49]

γ
∂

∂ t
ρα(r, t) = kBT∇2ρα(r, t) +∇ ·ρα(r, t)

�

∇
δFexc[{ρα}]
δρα(r, t)

− fext,α(r, t)
�

. (23)

Here, the implicit assumption is made that the adiabatic current is a fair representation of
the total current in the system. However, in many cases, this assumption does not hold (see
e.g. [50,58,68]) and we will investigate this point for the present problem below.

The test particle limit can be treated in DDFT as a special case of a binary mixture. The
density is then a mixture of a self component ρs(r, t), representing the test particle, and a dis-
tinct component ρd(r, t), representing the rest of the system. The accuracy of results obtained
using DDFT hinges upon having a reliable approximation of the excess free energy functional,
which is not known exactly for any kind of interacting particles, save for e.g. the case of hard
rods in one dimension [3, 38, 69, 70]. Since the interactions of the constituent particles of
both of the density components in the test particle limit are identical, one could think that the
excess free energy functional is simply Fexc[ρs,ρd] = Fexc[ρs + ρd]. One would then apply
the appropriate one-component excess free energy functional. However, equilibrium DFT is
constructed in the grand canonical ensemble, which means that a density profile normalised
to unity represents an average of one particle, instead of exactly one particle [71]. This leads
to unphysical self-interactions within the self density component [47].

Stopper et al. proposed in Ref. [55] a partially linearised approach, where, for the calcula-
tion of the forces on the self density component, the contribution of ρs(r, t) to the excess free
energy functional is expanded around ρs(r, t) = 0, while the force field acting on the distinct
component is calculated using the full, i.e. unlinearised, functional. In a follow-up paper [56],
they furthermore proposed a ‘quenched’ free energy functional

Fexc,q[ρs,ρd] = Fexc[ρs +ρd]− Fexc[ρs] , (24)
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and found that the accuracy of their results for G(r, t) were greatly increased over the prior
method. To further evaluate the accuracy of both the partially linearised and the quenched
free energy functional, we calculate reference data for the adiabatic force field using Monte
Carlo simulation. This allows us to compare these quasi-exact results to approximate forces
obtained using the free energy functional. As a base one-component functional, we choose
the White Bear Mk. 2 free energy functional [72] with tensorial modification [73], which is
known to perform very well, even up to high densities, see e.g. [74].

2.5 Power Functional Theory

The phenomenological equation of motion (23) of DDFT does not capture the full non-equilib-
rium dynamics of many-particle systems. Important physical effects such as drag [59,83,84],
viscosity [58, 75] and structural non-equilibrium forces [59, 76–82] are absent. PFT provides
a formally exact method for including such effects and for calculating the full current in a
non-equilibrium system [52]; see Ref. [66] for a pedagogical introduction to the framework.
Both adiabatic forces, which give rise to the adiabatic current Jad(r, t) via equation (21), but
also superadiabatic forces, which characteristically depend functionally on both the density
profile and on the current distribution, are included. It has been shown that superadiabatic
forces can be of very significant magnitude and that they are in general not trivially related to
the adiabatic forces [68,76].

The full current of an overdamped M -component liquid can be calculated in PFT in prin-
ciple from a functional derivative of the total free power functional Rt [{ρα,Jα}] via

δRt[{ρα,Jα}]
δJα(r, t)

= 0 , (min) (25)

where Rt[{ρα,Jα}] is minimal at the solution Jα(r, t) to this implicit equation [52,53,66]. The
functional consists of physically distinct contributions according to

Rt[{ρα, Jα}] = Ḟ[{ρα}] +
∑

α

P id
t [ρα,Jα] + Pexc

t [{ρα,Jα}]−
∑

α

X t[ρα, Jα] . (26)

These contributions comprise the time derivative of the free energy functional (22)

Ḟ[{ρα}] =
∑

α

∫

dr Jα(r, t) · ∇
δF [{ρα}]
δρα(r, t)

, (27)

the ideal dissipation functional

P id
t [ρα, Jα] =

γα
2

∫

dr
J2
α(r, t)

ρα(r, t)
, (28)

and the external power X t due to the external potential Vext,α(r, t) and external forces
fext,α(r, t) = −∇Vext,α(r, t) + fnc,α(r, t), with non-conservative external forces fnc,α(r, t), given
by

X t[ρα,Jα] =

∫

dr
�

Jα(r, t) · fext,α(r, t)−ρα(r, t)V̇ext,α(r, t)
�

. (29)

The genuine nonequilibrium contributions in (26) are contained in the superadiabatic excess
free power functional Pexc

t [{ρα, Jα}]. Thus, from inserting (26) into (25), we obtain the Euler-
Lagrange equation [53]

γ
Jα(r, t)
ρα(r, t)

= γvα(r, t) = −∇
δF [{ρα}]
δρα(r, t)

−
δPexc

t [{ρα, Jα}]
δJα(r, t)

+ fext(r, t) . (30)
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The superadiabatic free power functional generates the superadiabatic interparticle force field
via

fsup,α(r, t) = −
δPexc

t [{ρα, Jα}]
δJα(r, t)

. (31)

Setting Pexc
t = 0, the PFT equation of motion (30) reduces to the DDFT (21).

Just like Fexc in DFT, Pexc
t is not known exactly and must be approximated in practice. We

recently presented an approximation for superadiabatic forces in the dynamics of the van Hove
function [57]. Here, the superadiabatic free power functional consists of three contributing
functionals

Pexc
t [ρs,ρd,Js, Jd] = Pvisc

t [ρ,J] + Pstruc
t [ρ,J] + Pdrag

t [ρs,ρd,v∆] , (32)

where Pvisc
t [ρ,J], Pstruc

t [ρ,J] and Pdrag
t [ρs,ρd,v∆] are the contributions due to viscoelasti-

city, structural forces, and drag, respectively. The latter functional depends on the species-
labelled density profiles ρα(r, t) and on the difference of the species-labelled velocity fields
v∆(r, t) = vs(r, t) − vd(r, t). The former two functionals depend only on the total current
J(r, t) = Js(r, t) + Jd(r, t) and on the total density profile ρ(r, t) = ρs(r, t) + ρd(r, t). Each
of these contributions is based on functionals developed previously for repulsive spheres in
nonequilibrium situations [58, 59, 75, 76]. We describe the mathematical structure of each
functional in the following.

The viscoelastic contribution is based on the velocity gradient functional presented by de
las Heras and Schmidt [75]. Treffenstädt and Schmidt extended this functional with a concrete
approximate form for the memory kernel [58] in a study of the hard sphere liquid under
inhomogeneous shear. They showed that this functional describes very accurately viscoelastic
effects in the sheared hard sphere system. The general viscoelastic functional form is given by

Pvisc
t [ρ,J] =

∫

dr

∫

dr′
t
∫

−∞

dt ′ρ(r, t)
�

η(∇× v) · (∇′ × v′) + ζ(∇ · v)(∇′ · v′)
�

×ρ(r′, t ′)K(r− r′, t − t ′) , (33)

where v≡ v(r, t), v′ ≡ v(r′, t ′) is a shorthand notation and η and ζ are constants. Here, K(r, t)
is a memory kernel, which describes the interaction of the system with its own past, given by

K(r, t) =
e−r2/(4DM t)−t/τM

(4πDM t)3/2τM
Θ(t) , (34)

with memory time τM and memory diffusion constant DM. (For simplicity, we assume that
K(r, t) is identical for the rotational and divergence contributions in (33).) In the case of the
bulk van Hove function, Pvisc

t [ρ,J] simplifies, since ∇× v = 0 due to symmetry. In addition,
we replace the local density ρ(r, t) by the weighted density n3(r, t) of FMT, to better capture
packing effects. The weighted density n3(r, t) is calculated by a convolution of the local density
ρ(r, t) with a weight function

ω3(r) = Θ(σ/2− |r|) , (35)

where Θ(·) is the Heaviside step function. From (33), we hence obtain the explicit functional
form

Pvisc
t [ρ,J] =

Cvisc

2

∫

dr

∫

dr′
t
∫

0

dt ′n3(r, t)(∇ · v)(∇′ · v′)n3(r
′, t ′)K(r− r′, t − t ′) , (36)

where Cvisc is a constant that determines the overall strength.
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The drag contribution in (32) was originally proposed by Krinninger et al. [83, 84] and
subsequently used by Geigenfeind et al. [59], who studied a binary mixture of monodisperse
hard spheres that are driven against each other and hence display nonequilibrium lane forma-
tion [85]. They identified a drag force between the two species of the liquid. Here, we use their
functional to approximate the drag force between the test particle and the distinct particles

Pdrag
t [ρs,ρd,v∆] =

Cdrag

2

∫

drρs(r, t)ρd(r, t)v2
∆(r, t) , (37)

with prefactor Cdrag. The drag functional (37) models the friction between the different
particle species, when they move in opposite directions.

Geigenfeind et al. [59] also proposed two structural functionals. The respective resulting
structural forces create inhomogeneity in the density profile of a nonequilibrium system [59,
76,79]. We apply a structural force term similar to Eq. (51) in [59]:

Pstruc
t [ρ,J] = −Cstruc

∫

dr

∫

dr′
t
∫

0

dt ′ [∇ · J(r, t)]K(r− r′, t − t ′)n2
3(r
′, t ′)v2(r′, t ′) , (38)

where Cstruc is a prefactor, and K(r, t) is a memory kernel of the form (34), but with different
parameters DM and τM as used in the viscoelastic functional (36). In contrast to ref. [59] here
we use the total instead of the differential velocity profile.

The functionals (36) - (38) and the corresponding superadiabatic forces that result from
functional differentiation according to (31) fall into two different categories, as characterised
by the symmetry between the force fields acting on the self and distinct density components,
respectively. In the category of total forces, the force fields fs(r, t) and fd(r, t) acting on the
self and distinct density components, respectively, are identical: fs(r, t) = fd(r, t). This means
that the force field from these functionals does not depend on species-labelled information,
but rather depends only on the total density and current in the test particle system.

On the other hand, in the category of differential forces, the force densities Fs(r, t) and
Fd(r, t) acting on the two density components are equal in magnitude, but opposite in dir-
ection: Fs(r, t) = −Fd(r, t). The two categories were developed by Geigenfeind et al. for a
binary colloidal system [59], but they are general and hence apply in the context of the van
Hove function as well.

For Pdrag
t [ρ,J], the force density components satisfy the relation

Fdrag
s (r, t)≡−

δPdrag
t [ρs,ρd,v∆]
δvs(r, t)

=− Cdragρs(r, t)ρd(r, t)v∆(r, t) (39)

=− Fdrag
d (r, t) .

Thus, the drag functional falls into the differential category, and the total drag force density
vanishes,

Fdrag
sup (r, t) = Fdrag

s (r, t) + Fdrag
d (r, t) = 0 . (40)

This implies that there is no total drag force due to this functional. (See Refs. [82,86] for exact
force sum rules that stem from Noether’s Theorem.)

Geigenfeind et al. [59] defined the differential force density G(r, t) as a linear combination
of species-resolved force densities

G(r, t)≡
ρd(r, t)
ρ(r, t)

Fs(r, t)−
ρs(r, t)
ρ(r, t)

Fd(r, t) . (41)
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(Note that G(r, t) is not to be confused with the van Hove function Gα(r, t), α = s, d.) In the
case of the drag functional (37) we obtain (41) explicitly as

Gdrag(r, t) = Cdrag
ρs(r, t)ρd(r, t)

ρ(r, t)
v∆(r, t)ρ∆(r, t) , (42)

with differential density ρ∆(r, t) = ρs(r, t)−ρd(r, t).
In contrast, the force fields generated by the functionals Pvisc

t [ρ,J] and Pstruc
t [ρ,J] fall

into the category of total forces. Therefore, the viscoelastic force density Fvisc
α (r, t) for the

component α= s, d is

Fvisc
α (r, t) = −ρα(r, t)

δPvisc
t [ρ, J]

δJ(r, t)
≡ ρα(r, t)fvisc(r, t) , (43)

where fvisc(r, t) is species-independent. The differential force density due to the viscoelastic
functional (36) vanishes,

Gvisc(r, t) =
ρd(r, t)
ρ(r, t)

Fvisc
s (r, t)−

ρs(r, t)
ρ(r, t)

Fvisc
d (r, t)

=
ρs(r, t)ρd(r, t)

ρ(r, t)

�

fvisc(r, t)− fvisc(r, t)
�

= 0 , (44)

and the same holds true for the structural superadiabatic force density that is generated from
the functional (38). Thus, splitting of superadiabatic forces into total force fsup(r, t) and dif-
ferential force density Gsup(r, t), instead of using the species-resolved force density Fs(r, t) and
Fd(r, t), is helpful to identify the underlying physics of the different force terms. Summarising,
we obtain within our approximation the total force

fsup(r, t) =−
δPvisc

t [ρ,J]

δJ(r, t)
−
δPstruc

t [ρ,J]

δJ(r, t)
(45)

=
Cvisc

2ρ(r, t)

∫

dr′
t
∫

0

dt ′n′3
�

∇′ · v′
�

∇ (n3K)− Cstruc

∫

dr′
t
∫

0

dt ′n′3v′2∇K , (46)

where n′3 ≡ n3(r′, t ′), n3 ≡ n3(r, t) and K ≡ K(r− r′, t − t ′) is a shorthand notation, and the
differential force density

Gsup(r, t) = −
δPdrag

t [ρs,ρd,v∆]
δv∆(r, t)

= Gdrag(r, t) , (47)

with Gdrag(r, t) as defined in (42).

2.6 Long-Time Self Diffusion

At long times t � τ, much of the structure of the van Hove function disappears. To obtain
a simplified approximation for the long-time decay of the van Hove function, we make the
following assumptions, which shall be supported below by observations made in BD simulation
(see Sec. 3.2 and 3.3). We take the self density profile to be a Gaussian that diffuses in time
with the long-time diffusion constant DL,

ρs(r, t) = (4πDL t)−3/2 exp

�

−
r2

4DL t

�

, (48)
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where the value of DL is yet to be determined. The density profile that represents the total van
Hove function is assumed to be uniform and constant,

ρ(r, t)≡ ρs(r, t) +ρd(r, t) = ρB , (49)

hence any deviations from this infinite time behaviour are neglected. Under the assump-
tion (49), the adiabatic force field vanishes everywhere. By inverting the spatial derivative
in the continuity equation (14), we can identify the self velocity field that corresponds to (48)
as

vs(r, t) =
r

2t
êr , (50)

where êr is the radial unit vector. From (49) it follows further that the self and distinct current
fields are equal in magnitude and opposite in direction, Js(r, t) = −Jd(r, t) and thus the total
current vanishes,

J(r, t) = 0 . (51)

Hence, the viscoelastic (36) and structural superadiabatic forces (38), which depend only on
the total density and total current, vanish as well. The only remaining forces are the ideal
force, which drives the long-time diffusion, and the superadiabatic drag force, which slows
this process down.

The PFT Euler-Lagrange equation (30) hence simplifies under the above assumptions to

δP id
t [Js]

δJs(r, t)
+∇

δFid[ρs]
δρs(r, t)

+
δPdrag

t [ρs,ρd,v∆]
δJs(r, t)

= 0 . (52)

We show in the following that (52) can be solved analytically. After plugging in the above
forms of the density field (48), the self velocity (50) and the current field (51), we obtain for
the ideal dissipation functional given by (28)

δP id
t [Js]

δJs(r, t)
≡ γvs(r, t) = γ

r
2t

êr , (53)

then for the ideal diffusion functional

∇
δFid[ρs]
δρs(r, t)

≡ kBT∇ ln
�

Λ3ρs(r, t)
�

= −kBT
r

2DL t
êr , (54)

and finally for the superadiabatic drag force

δPdrag
t [ρs,ρd,v∆]
δJs(r, t)

= Cdragρd(r, t) (vs(r, t)− vd(r, t))

= Cdrag (vs(r, t)ρd(r, t)− Jd(r, t))

= Cdrag (vs(r, t)ρd(r, t) + Js(r, t))

= Cdrag (vs(r, t)ρd(r, t) + vs(r, t)ρs(r, t))

= Cdragvs(r, t) (ρd(r, t) +ρs(r, t))

= CdragρBvs(r, t)

= CdragρB
r

2t
êr . (55)

A comparison of coefficients in (52) leads to the relation

γ−
kBT
DL
+ CdragρB = 0 , (56)
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which results in a modified Einstein relation for the long-time self diffusion in an interacting
system given by

DL =
kBT

γ+ CdragρB
. (57)

Below we test the approximation (57) by comparing the resulting behaviour of the diffusion
coefficient DL with simulation results.

The decrease of DL that results from a finite value Cdrag > 0 according to equation (57)
is an entirely superadiabatic effect. Going through the above derivation on the basis of the
DDFT alone leads to the trivial result DL = kBT/γ, analogous to formally setting Cdrag = 0 in

equation (57). Hence the power functional ansatz for Pdrag
t , see equations (37) and (55), links

drag (due to interflow of the self and distinct components) with the long time self diffusion
coefficient.

2.7 Simulation Parameters

We simulate N = 1090 hard spheres in a box of size 10× 10× 15 σ3 with periodic boundary
conditions, resulting in a bulk density ρB ≈ 0.73σ−3 and a packing fraction η ≈ 0.38. The
same parameters were used in [57]. We take 106 simulation snapshots over a simulation time
of 103τ to calculate observables.

Simulations of the Lennard-Jones liquid were carried out with N = 500 particles at mean
number density ρ = 0.84σ−3 and absolute temperature kBT = 0.8ε in a box with periodic
boundary conditions, where ε sets the energy scale of the Lennard-Jones interparticle interac-
tion potential

ΦLJ(r) = 4ε
�

�σ

r

�12
−
�σ

r

�6�

, (58)

with particle distance r. The potential is truncated at rc = 4σ.
The DDFT calculations are carried out in a spherical box with radius 32σ and a radial

discretisation step of∆r = 2−7σ = 7.8125·10−3σ, beyond which both density components are
continued as a constant. The integration time step is 10−6τ. The code is available online [87].

3 Results

3.1 Radial Distribution Function

As a consistency check, we first calculate the equilibrium radial distribution function g(r) from
BD simulation data and compare the results with those obtained using DFT. The latter are used
as an initial condition for our DDFT calculations. As described above, at t = 0 the distinct part
of the van Hove function is equal to the radial distribution function g(r) = Gd(r, 0)/ρB. For
hard spheres, g(r) is zero for r < σ, which corresponds to the excluded volume around the
test particle, see figure 1. Starting at r = σ and going away from the origin, each subsequent
local maximum of g(r) corresponds to a correlation shell of particles around the test particle.
The height of these maxima decays rapidly, with an exponential envelope, as the distance to
the test particle increases. The asymptotic decay at large distances r follows an exponentially
damped oscillating law

r
σ
(g(r)− 1) = Ãe−α̃0r cos (α̃1r − θ ) (59)

with amplitude Ã, inverse decay length α̃0, wave number α̃1 and phase shift θ [88]. When
plotting ln (r |g(r)− 1|/σ) against r (see figure 1 (b)), the exponential envelope is clearly
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Figure 1: The radial distribution function g(r) of a hard sphere liquid as a function of
the distance r/σ at packing fraction η≈ 0.38. Results from FMT (dash-dotted purple
line) are compared to BD simulation (full green line). Panel (a) shows the radial dis-
tribution function on a linear scale. Panel (b) shows the deviation ln (r |g(r)− 1|/σ)
from the bulk value on a logarithmic scale. Here, many correlation shells can be seen.
The envelope (thin blue line) of the maxima of the shells follows an exponential law.

identifiable in the diagram as a straight line along which a sequence of local maxima vis-
ibly aligns. We obtain values of α̃0 ≈ 1.0σ−1 and α̃1 ≈ 6.4σ−1. The correlation shells are
spaced apart by a distance 2π/α̃1 ≈ 1.0σ. These values coincide closely with literature values
α̃0 ≈ 0.97σ−1 and α̃1 ≈ 6.45σ−1 [88], obtained at a density of ρ = 0.75σ−3, similar to our
bulk density ρ = 0.73σ−3.

The agreement between g(r) obtained with BD simulation and obtained with FMT in the
present test particle setup is excellent, as expected for the White Bear Mk. 2 excess free energy
functional [38].

3.2 Dynamic Structural Decay

3.2.1 Self Correlations

The self part Gs(r, t) of the van Hove function at t = 0 is equal to a Dirac delta distribution
localised at the origin of the coordinate system, cf. Eq. (8). Over time, the distribution widens
and it attains the shape of a bell curve (see figure 2). In a freely diffusing system without
interparticle interactions, the density distribution is given by a Gaussian,

fG(r, t) = (2πσ2(t))−
3
2 exp

�

−
r2

2σ2(t)

�

, (60)
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Figure 2: Self (yellow dashed lines) and distinct (solid blue lines) part of the van
Hove correlation function G(r, t) at different times t, with radial distribution function
g(r) (dotted grey lines) and Gaussian fG(r,σ(t)) (dash-dotted red lines) with mean
square displacement




r2
�

= 3σ2 fitted to match that of the self correlation. Results
from BD (left column, panels (a) – (e)) are compared to DDFT with full and quenched
excess free energy functional (middle column, panels (f) – (j)) and to DDFT with
partially linearised excess free energy functional (right column, panels (k) – (o)).
The maxima of the solid line correspond to the local extrema of the distinct van Hove
function. The first maximum of r |Gd(r, t)/ρB − 1| always corresponds to a minimum
of Gd(r, t).
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Figure 3: Mean square displacement



r2
�

τ/6D as a function of time t/τ of the self
component of the van Hove function. Data is shown from BD simulation (green
long dashes) and from DDFT with the full (yellow long dot-dashes), quenched (red
medium dot-dashes) and partially linearised (purple short dot-dashes) excess free
energy functional. Additionally, we show the long-time self diffusion (black short
dashes) as calculated from our PFT approximation (57). As a reference, the linear
law of ideal diffusion (blue solid line) is also plotted.

with time-dependent variance σ2(t), for which the relation

σ2(t) = 2Dt , (61)

holds [3]. To relate the shape of Gs(r, t) in the interacting system to (60), we calculate the
mean square displacement at time t via




r2(t)
�

=

∫

dr r2Gs(r, t) , (62)

and compare to an equivalent Gaussian of the form (60) with variance chosen such that

σ2(t) =
1
3




r2(t)
�

. (63)

We perform this analysis with data both from BD simulation and from DDFT calculations. For
BD, the difference between Gs(r, t) and the equivalent Gaussian is minimal, see figure 2 (a) –
(e). In DDFT using either the full or the quenched functionals, although the shape of Gs(r, t) is
also Gaussian, see figure 2 (f) – (j), the resulting variance is significantly different from the BD
results at the same time t. The full and the quenched functionals give very similar results, with
no major improvement occurring upon using the quenched approach. When plotting the mean
square displacement against time, we see that Gs(r, t) as approximated by these functionals
behaves much closer to ideal diffusion than to the BD simulation, see figure 3. We recall that
this behaviour is consistent with the absence of superadiabatic effects in the DDFT.

The shape of the self van Hove function in DDFT using the partially linearised functional
shows major deviations from a Gaussian, see figure 2 (k) – (o). The distribution is both more
strongly localised at the origin and it has a significantly longer tail at large distances, com-
pared to a Gaussian with identical mean square displacement. For t ≤ τ, the mean square
displacement is much closer to BD simulation than with either the full or quenched functional,
but it deviates strongly for t > τ with a slope approaching that of ideal diffusion, see figure 3.
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While the mean square displacement as a metric might suggest otherwise, the deviations in the
shape of Gs(r, t) make the linearised modification unfit as an improvement over an approach
that does not correct at all for self interactions.

3.2.2 Distinct Correlations

Figure 2 shows also a comparison of BD and DDFT results for the dynamic decay of the distinct
part of the van Hove function. The temporal decay consists of two stages, namely of an initial
deconfinement and of a subsequent outward drift of correlation shells: First, particles diffuse
out of the high density regions into the neighbouring minima. Thus, both maxima and minima
become less pronounced. However, this process is not equally rapid everywhere. Inner shells,
i.e. those that are close to the test particle, decay at earlier times than do outer shells. As the
test particle, whose confinement at the origin caused the appearance of the shell structure in
the first place, diffuses away from the origin, the particles of the first correlation shell start to
drift closer to the origin, which in turn allows the second shell to expand inwards, and so on for
further shells. Thus, inner shells decay in an expanding region around the origin, while outer
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a

Figure 4: Zeros of r
�

Gd(r,t)
ρB
− 1

�

as a function of time. Data from BD simulation
(green, suppressed for t > 0.65τ due to noise), DDFT with the quenched functional
(purple), and results for the Lennard-Jones liquid (yellow). Panel (a) shows the
data unmodified, whereas in panel (b), time t and distance r have been rescaled to
allow for a comparison of the qualitative behaviour. Here the rescaled quantities are
marked by an asterisk and the rescaling is such that t = t∗, r = r∗ for hard sphere BD
simulation, 2t = t∗ and r = r∗ for hard sphere DDFT, and t/2.55= t∗ and 1.03r = r∗

for the Lennard-Jones liquid.
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shells remain stable for a longer time. This mechanism results in an additional lengthscale for
the spatial decay of the inner shells, while the decay length of the outer shells remains equal
to the static decay length of g(r). This dynamic scenario has also been found by Schindler
and Schmidt [51], who reported that for the Lennard-Jones liquid the new, dynamic decay
length increased, starting from the static decay length, up until t = 0.7τ, where it reached a
plateau value. Here we find an increase of the dynamic decay length up until at least t = 0.3τ,
but cannot identify a plateau value, due to numerical noise and possibly a somewhat smaller
system size.

The second stage of decay is caused by the test particle diffusing out of its initial position,
thus creating space for distinct particles to come closer to the origin. The particles essentially
flow into the initial cavity, which swallows correlation shells from the inside out. In this second
regime, the distinct correlations decrease monotonically and faster than exponential with dis-
tance. This second stage of dynamic decay has not been explicitly mentioned in Ref. [51],
but can be seen in figure 3 of that paper, where the first maximum of Gd(r, t) decreases in
amplitude and then melts into the minimum at the origin.

Additionally to the above effects, we observe an outward drift of the correlation shells,
which seems to be hitherto unreported. We analyse the locations of the zeros of r

�

Gd(r,t)
ρB
− 1

�

as a function of time; results are shown in figure 4. We observe a slow, close to linear in
time, drift of the inner zeros with a drift speed of (0.24±0.01)σ/τ, up to the point where the
corresponding shell is swallowed by the central cavity and the corresponding zeros disappear.
By analysing Gd(r, t) for the Lennard-Jones liquid at temperature T = 0.8ε/kB and density
ρ = 0.84/σ3

LJ, we observe a similar, but much slower drift of (0.037±0.001)σ/τ (see figure 4).
A rescaling of time and distance, shown in panel (b) of figure 4, shows that the behaviour of the
zeros of the van Hove function of the Lennard-Jones liquid is qualitatively very similar to the
behaviour of the hard sphere liquid. These findings suggest that the mechanism of dynamic
decay presented here and by Schindler and Schmidt is, at least qualitatively, universal for
particles with repulsive interactions and overdamped dynamics.

The behaviour described above is qualitatively reproduced by DDFT, based on either the
full or the quenched approach. Both functionals yield results that well represent the shape of
Gd(r, t), but overestimate the rate of temporal decay by roughly a factor of two (compare e.g.
figure 2(d) and 2(h) and recall the time rescaling in figure 4(b)). The differences of results
from the full and quenched approach are minor, though. In contrast, the shell deconfinement
as predicted with the linearised functional is slower than in BD. This is despite the fact that
the diffusion of the self correlation is faster than in BD. However, this may be due to the stable
inner peak of the self correlation, which in turn could stabilise the shell structure. Additionally,
the shape of Gd(r, t) shows intermittent behaviour which is not observed at all in the time
evolution in BD, see e.g. figure 2(o). These results substantiate the finding that the partial
linearisation approach is not well suited to fix the self interaction problem.

It should be noted that all of the three excess free energy functionals studied produce
identical adiabatic forces on the distinct density component, given the same input density.
Yet, the time evolution of the distinct density component is significantly different between the
three cases, which must therefore be caused by the difference in the time evolution of the self
density component. Thus, the correct handling of self-interactions of the self density is not a
minor detail, but rather a central requirement for test particle DFT.

Lastly, we observe that at time t ≈ 0.4τ, all but one zero of r
�

Gd(r,t)
ρB
− 1

�

disappear in
our DDFT results (see figure 4). This disappearance constitutes the crossover to the long time
regime discussed in section 2.6. The negative deflection in ρd at small r is the hole occupied
by the self particle. The positive value of r(Gd(r, t)/ρB − 1) at distances larger than the zero
is caused by adhesion of distinct particles around the self particle in the initial condition. It
depends on the static structure factor of the fluid in sign and magnitude. Diffusion of this
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excess part has been studied in a time-dependent setup [89, 90]. We neglect this effect in
section 2.6 as it is smaller than the hole of the self particle by a factor of ∼ 40.

3.2.3 Vineyard Approximation
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Figure 5: Comparison of the distinct van Hove function Gd(r, t), obtained directly
using BD simulation (solid yellow lines) and obtained from simulation data using
the Vineyard approximation (dashed blue lines).

One early attempt at a theoretical approximation for the van Hove function was presented
by Vineyard [3,91]. He proposed the relation

Gd(r, t)≈ (g(r̃) ∗ Gs(r̃, t)) (r) , (64)

where the operator ∗ indicates a convolution, between the self component and the distinct
component of the van Hove function. Hopkins et al. found the Vineyard approximation to be
a ‘fairly good approximation’ of the van Hove function [47]. As a self-consistency check, we
use our simulation data to calculate the convolution in equation (64) and compare the result
to the simulation result for Gd(r, t) (see figure 5). We find that the Vineyard approximation
significantly overestimates the rate of decay of the shell structure of the distinct van Hove
function, in accordance with previous findings [47]. Only the minimum at small distances r is
well reproduced. This indicates that, even if we had a perfect approximation of the behaviour
of the self component of the van Hove function, we could not use the Vineyard approximation
to obtain an equally accurate approximation of the distinct van Hove function.

3.3 Adiabatic Forces

We next analyse the forces that govern the time evolution of the van Hove function. The
full internal force field for both the self and the distinct component can be calculated from
BD simulation data from the species-resolved current profiles Jα(r, t) via (15). To split the
internal force field into adiabatic and superadiabatic forces, we need to first calculate the
adiabatic forces. In section 3.2, we have compared results from three different free energy
functional approximations which produce adiabatic forces in the framework of DDFT. To test
whether these functionals are accurate, we calculate the adiabatic potential

Vad,α(r, t) = µ−
δF[ρs,ρd]
δρα(r, t)

, (65)
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Figure 6: Self and distinct parts of the van Hove function Gs(r, t) (black discs),
Gd(r, t) (black diamonds) as a function of distance r, from BD simulation, at times t
as indicated. Density profiles ρα(r) from test particle equilibrium BD simulation (self
part: dashed lines, distinct part: solid lines) with adiabatic forces from DFT with full
(orange), quenched (magenta) and partially linearised (teal) excess free energy.

using each of the three free energy functionals, with the density profiles sampled in BD simula-
tion at times t = 0.1τ, 0.3τ, 0.6τ and 1.0τ. Then, we run equilibrium BD simulations with an
external force field fext,α(r, t) = −∇Vad,α(r, t) designed to cancel out the predicted adiabatic
internal force field [65, 67]. We sample equilibrium density profiles from these simulations
and compare them to the initial Gα(r, t) profiles. If the given functional produces accurate
adiabatic forces, then the resulting density profiles should be identical to the original input.

The results, shown in figure 6, indicate that both the full and the partially linearised excess
free energy functional yield density profiles that significantly deviate from the target Gα(r, t).
For the quenched functional, the agreement is markedly improved, but relevant deviations
remain near the origin. As we will see below, the forces calculated in this region, via the
quenched functional, are still not reliable enough to facilitate an accurate splitting of the in-
ternal forces into adiabatic and superadiabatic contributions (see figure 7, panel b). In order
to circumvent this problem, we iteratively calculate the species-resolved adiabatic external po-
tential for the chosen times, using equilibrium Monte Carlo simulations. To ensure consistency,
we choose the same number of particles and system dimensions as the BD simulations. The
gradient of the calculated external potentials gives us the adiabatic force fields via (19), and
by extension the superadiabatic forces via (17).

We examine the ideal, adiabatic and superadiabatic force fields as a function of time (see
figure 7). The largest force contribution arises from the ideal diffusion, which always acts to
smooth out any density inhomogeneity. Both the adiabatic and superadiabatic force mainly
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(red diamonds) and differential force density Gsup (yellow triangles) as a function
of distance r at different times t. We also show the different force components of
our approximation, consisting of drag (dashed yellow line), viscosity (long-dashed
purple line) and a structural force (dotted purple line). The drag component acts
purely differentially, whereas viscosity and the structural component act purely as a
total force.
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oppose this relaxation process. Notably, at t ≥ τ the adiabatic force field is small compared to
both the ideal and the superadiabatic force field. Thus, DDFT, which by construction neglects
superadiabatic contributions, must fail to describe the long-time behaviour of the van Hove
function, even if adiabatic forces were included with perfect accuracy. This explains why the
long-time diffusion of the self component tends to ideal diffusion for all studied DDFT approx-
imations (see figure 3). Additionally, we can see in panel b of figure 7 that even the quenched
approximation for the adiabatic force density shows some deviations in the distinct compon-
ent near the origin. These deviations are of similar magnitude as the force itself and may thus
not be neglected when trying to split the internal force field into adiabatic and superadiabatic
contributions. However, we see that the distinct force density component for r > σ, as well
as the self component, are accurately reproduced.

3.4 Superadiabatic Forces

In Sec. 2.5 we have described a kinematic approximation for the superadiabatic forces, that
include three distinct physical effects: a viscoelastic force, a structural force and a drag force.
With the density and current profiles from BD simulation as input, we can use this theory to
calculate both the total force field and the differential force density field via (46) and (47).
Crucially, the drag force (42) is the sole contribution to the differential superadiabatic force
density Gsup(r, t), see (47). Recall that the drag force arises from the opposing motion of the
two species.

In practice, we perform a least squares fit of the differential force density calculated us-
ing (47) against the corresponding measured BD simulation data. Thereby we identify the
free parameter in Eq. (37) as Cdrag ≈ 2.2kBTτσ. The quantitative agreement with Gsup(r, t)
is excellent for t ≥ 0.6τ, but minor deviations are apparent at earlier times. The fact that
both the shape of Gsup(r, t) as well as the scaling with time are well represented by the drag
functional constitutes strong evidence that drag is the relevant physical effect which governs
the differential superadiabatic force density. The differential drag force density is quite simple
in shape, making it almost a trivial contribution to the dynamics of the van Hove function, see
figure 7. One could argue that the real complexity of the system therefore lies in the behaviour
of the total van Hove function, and hence in the total force field.

We model the total force component based on the viscoelastic (36) and structural (38)
functionals (see Eq. (46)). The parameters of the memory kernel in (36) were determined
via an examination of a sheared system of hard spheres in [58], at identical bulk density, as
τvisc

M ≈ 0.02τ and Dvisc
M ≈ 5.6σ2/τ. We apply those same parameters here, see figure 7, and

find that the viscoelastic functional produces a spatially oscillating force field, which represents
the total force profile well for r > 1.5σ. This oscillation decays rather quickly in time compared
to the other force components and it is lost in the statistical noise at t > τ. We determine the
prefactor of the viscoelastic functional via a least squares fit to BD simulation data and obtain
Cvisc ≈ 5.8kBT/(τσ3). In addition to the oscillations of the viscoelastic force, the total force
profile shows a larger peak at r ≈ σ, which is produced in our approximation by the structural
force. Since we have no prior information about this force, we determine its memory time
τstruc

M ≈ 0.3τ and the memory diffusion constant Dstruc
M ≈ 0.35σ2/τ, as well as the prefactor

Cstruc ≈ 0.42kBTτ2/σ, via a least squares fit to BD results. The obtained memory time is
larger than that for the viscoelastic force by more than an order of magnitude. Therefore, the
structural force is much more long-lived than the viscoelastic force and persists, though with
decreased amplitude, even at t = τ.

Together, the sum of the structural and the viscoelastic force is in very good agreement
with the total force profile from simulation for times t > 0.3τ. For earlier times t < 0.3τ,
quantitative deviations occur, but the spatial shape is still qualitatively reproduced. The de-
viation between our power functional approximation and the forces in simulation for early
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times are most likely a result of both the extreme inhomogeneity of the density profile at early
times, as well as of the large local velocities that occur in this regime.

We noted above that the adiabatic force field for t > τ is small compared to both the
superadiabatic and the ideal force field, see also figure 7. The superadiabatic force field is
dominated by the drag force at t > τ. This situation allows us to predict the long-time diffusion
constant of the self peak of the van Hove function via the modified Einstein relation (57),
since the assumptions made in Sec. 2.6 hold to a large degree. For our system, we obtain
DL =

kBT
γ+CdragρB

≈ 0.38σ2/τ, using the value given above for Cdrag = 2.2kBTτσ. We determine
the long-time diffusion coefficient from the asymptotic slope of the mean square displacement
of the self density profile in BD simulation and obtain DL ≈ 0.32σ2/τ, which corresponds to
a value of Cdrag ≈ 2.9kBTτσ. These results are in reasonable agreement (see also figure 3),
but indicate that our value for Cdrag ≈ 2.2kBTτσ obtained above might be an underestimate.
Fitting the drag amplitude only to the largest times results in Cdrag ≈ 2.4kBTτσ, from which we
obtain DL ≈ 0.36σ2/τ, improving the match with the simulation result. This finding indicates
that the differential force field contains contributions for early times t < τ which are not
captured well by our approximation for the drag force.

Hence the results shown in figure 7 demonstrate explicitly the perhaps expected shortcom-
ing of the DDFT that it does not capture the full dynamics of the system. Here the van Hove
function plays a dual role in that it is both an equilibrium dynamical correlation function as
well as a specific nonequilibrium temporal process. The latter is specified by the dynamical
test particle limit and we recall our description of how this approach allows one to identify
two- with one-body correlation functions in section 2.3. As the DDFT does not provide the full
nonequilibrium dynamics on the one-body level, by extension it also fails to describe all forces
that govern the time evolution of the van Hove function. These findings are consistent with
the nonequilibrium Ornstein-Zernike framework [41, 42], where both adiabatic and supera-
diabatic direct correlation functions occur, and only the former are generated from the free
energy density functional. The superadiabatic time direct correlation functions are genuine
dynamical objects. The present study sheds light on this issue in the test particle picture.

4 Conclusion and outlook

We have studied the van Hove correlation function of the Brownian hard sphere liquid us-
ing BD simulations. We have also calculated the van Hove function using test particle DDFT
and analysed the interparticle force field using PFT. Our analysis of the dynamic decay of the
distinct van Hove function shows a two-stage process. The initial deconfinement of correla-
tion shells leads to an intermediate dynamic decay length, which is followed by a monotonic
spatially super-exponential decay as the self component mixes with the distinct component.
Additionally, correlation shells drift slowly outward from the origin. A comparison with res-
ults for the overdamped Lennard-Jones liquid shows that, qualitatively, the same effects occur
in both systems. This, together with the fact that the behaviour of the hard sphere liquid is
prototypical for a wide range of liquids, indicates that these results reflect fundamental effects
in the dynamics of the liquid state.

We have discussed the accuracy of the Vineyard approximation on the basis of our simu-
lation data. Whether the Vineyard approximation can form a useful ingredient in the study of
superadiabatic effects in the van Hove function remains to be seen.

We have analysed adiabatic forces in the dynamic decay of the van Hove correlation func-
tion using Monte Carlo simulation and the adiabatic construction. This analysis showed that
the quenched excess free energy functional presented by Stopper et al. [56] is the best cur-
rently available approximation for adiabatic forces in the test particle picture. The remaining
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deviations are however severe enough to warrant further development of the theory. One
possible path for investigation is canonical decomposition as presented by de las Heras and
Schmidt [92]. On the conceptual level, investigating the relationship of the theory of ref. [56]
to the DFT for quenched-annealed mixtures [93–96] would be interesting.

We have isolated superadiabatic forces, which showed that, even assuming very accurate
approximation of adiabatic forces, DDFT is inadequate to quantitatively describe the dynamic
decay of the van Hove function, since superadiabatic forces play a major role in the time
evolution of both the self and the distinct density components. The long-time behaviour of
the DDFT approximation for Gs(r, t) approaches ideal diffusion, since adiabatic forces vanish
at long times.

Using PFT, we have demonstrated the splitting of the superadiabatic force into a viscoelastic
force, a drag force between the two different components of the van Hove function, and a
structural force. These three force contributions dominate the superadiabatic force field for
t > 0.3τ. Approximations for these forces were previously developed for nonequilibrium
dynamics. Their occurrence in the dynamics of the van Hove function shows a deep connec-
tion between nonequilibrium forces and equilibrium dynamics. The differential force density
acting between the two components of the van Hove function is much simpler and easier to
approximate than are the forces governing the evolution of the total van Hove function. In the
long-time tail of the van Hove function, adiabatic contributions to the interparticle force field
vanish, as do the viscoelastic and structural superadiabatic force contributions. Thus, the drag
force determines the slowing-down of the long-time self diffusion of the hard sphere liquid.
The long-time self diffusion constant calculated using our approximation is consistent with our
direct BD simulation results.

Overall, our approximation has seven free parameters. Out of these, two, namely the
memory time and memory diffusion constant of the viscoelastic force, have been determined
previously for a system of hard spheres under a shear force [58]. The remaining five para-
meters have been determined via a least-squares fit to simulation data. Conceptually, these
parameters take the role of transport coefficients. A goal of future investigations would be
to derive the values of these coefficients from first principles. Furthermore, investigating the
effects of external driving such as shear, see [97] for a mode-coupling study of glassy states,
would be worthwhile, as would be to relate to the stress correlation function [98].

Describing the short-time behaviour of the van Hove function remains a significant chal-
lenge. Improvement of our approximation could potentially be achieved by augmenting the
dependence on the weighted density n3(r, t) by incorporating further fundamental measure
weighted densities. Additionally, the functionals that we apply here can be viewed as a low-
order series expansion in powers of the velocity field. Since the velocity field is very large at
early times compared to later times, functionals with higher orders of v might be needed to
achieve better agreement in this regime.
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A DDFT integration scheme in spherical coordinates

We derive a discrete integration scheme in spherical coordinates as used in our implementation
starting from the DDFT equation of motion (23). We set fext,α = 0 and divide by γ to obtain

ρ̇α(r, t) = D∇2ρα(r, t) +∇ · γ−1ρα(r, t)∇
δFexc [{ρα}]
δρα(r, t)

. (66)

For compactness of notation, we define the excess current profile

Jexc,α(r, t) = −γ−1ρα(r, t)∇
δFexc [{ρα}]
δρα(r, t)

, (67)

which is a functional of ρα. Using this, we can write equation (66) as

ρ̇α(r, t) = D∇2ρα(r, t)−∇ · Jexc,α(r, t) . (68)

In our system, where ρα is radially symmetric, the excess current profile can be written as

Jexc,α(r, t) = Jexc,α(r, t)êr . (69)

Equation (68) then simplifies to

ρ̇α(r, t) = D
1
r2

∂

∂ r

�

r2 ∂

∂ r
ρα(r, t)

�

−
1
r2

∂

∂ r

�

r2Jexc,α(r, t)
�

. (70)

In a numerical calculation, ρα(r, t) and Jexc,α can be represented as arrays of numbers corres-
ponding to equally spaced sampling points of the respective continuous function. We choose
some discretisation step ∆r � σ in space and some discretisation time ∆t � τ. We can then
approximate the density profile as

ρα(r, tk)≈ ρ̃α(r, tk)≡
∞
∑

i=0

ραi,k b (r − i∆r) , (71)

where i is a spatial index, k is a temporal index, and b(r) is a triangle function defined as

b(r) =











1+ r/∆r for −∆r ≤ r ≤ 0

1− r/∆r for 0≤ r ≤∆r

0 elsewhere .

(72)

The same discretisation procedure can be done for the current profile. The spatial and temporal
derivatives in (70) can be evaluated using the well-known finite difference formulae to obtain
an approximate solution to the partial differential equation (70) for a given initial value for
ρα(r, t):

ραi,k+1 = ρ
α
i,k −∆t

�

2
i∆r

Jexc,α
i,k +

Jexc,α
i+1,k − Jexc,α

i−1,k

2∆r
+ D

�

ραi+1,k − 2ραi,k +ρ
α
i−1,k

∆r2
+
ραi+1,k −ρ

α
i−1,k

i∆r2

��

.

(73)

However, using this straightforward approach results in a subtle problem: particle conserva-
tion is violated. This can be seen by integrating the difference ρ̃α(r, tk+1) − ρ̃α(r, tk) from
r = 0 to some cutoff rmax and reordering the resulting sum by the spatial index i. The result
is nonzero and, more importantly, it is not equal to the total particle flux through the surface
at r = rmax.
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This defect can be addressed by re-writing equation (70) with respect to the functions

Rα(r, t)≡ 4πr2ρα(r, t) and (74)

JR
α(r, t)≡ 4πr2Jexc,α(r, t) , (75)

which represent the radial density in and current through the whole spherical shell around the
origin at r. Thereby, we obtain a new partial differential equation

Ṙα(r, t) = D
∂ 2

∂ r2
Rα(r, t)− D

∂

∂ r

�

2Rα(r, t)
r

�

−
∂

∂ r
JR
α(r, t) , (76)

which can be discretised using standard finite differences to obtain the iteration scheme

Rαi,k+1 = Rαi,k +
D∆t
∆r





Rαi+1,k − 2Rαi,k + Rαi−1,k

∆r
−

Rαi+1,k

(i + 1)∆r
+

Rαi−1,k

(i − 1)∆r
−

JR,α
i+1,k − JR,α

i−1,k

2D



 , (77)

where Rαi,k and JR,α
i,k are defined as

Rαi,k ≡ 4π(i∆r)2ραi,k and (78)

JR,α
i,k ≡ 4π(i∆r)2Jexc,α

i,k . (79)

Using this scheme significantly reduces the deviations in the normalisation of the density pro-
file which we observed in our numerical calculations.

At each time step, the transformation from ραi,k to Rαi,k needs to be inverted in order to
calculate Jexc,α. The same is necessary if the density profile should be saved to disk in a sim-
ulation run. This results in a division by zero for ρα0,k. To circumvent this issue, we define
ρα(0, t) as the continuous continuation of Rα(r, t)/r2 to r = 0. In practice, we extrapolate
from ρα1,k and ρα2,k logarithmically:

ρα0,k ≈ exp
��

4 lnρα1,k − lnρα2,k

�

/3
�

. (80)

We note that after the inverted transformation, the density normalisation of ρα0,k is not strictly
conserved either. However, the shell normalisation of Rα0,k is conserved which prevents the
drift of the density normalisation, that occurs in the integration scheme equation (73). The
full implementation of this integration scheme is available as open source software [99]. We
encourage the interested readers to examine and extend it for their own research.
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