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Abstract

We consistently couple simple continuum field theories with fracton excitations to curved
spacetime backgrounds. We consider homogeneous and isotropic fracton field theories,
with a conserved U(1) charge and dipole moment. Coupling to background fields allows
us to consistently define a stress-energy tensor for these theories and obtain the respec-
tive Ward identities. Along the way, we find evidence for a mixed gauge-gravitational
anomaly in the symmetric tensor gauge theory which naturally couples to conserved
dipoles. Our results generalise to systems with arbitrarily higher conserved moments,
in particular, a conserved quadrupole moment.
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1 Introduction

We are interested in quantum mechanical models with fractons [1-5]. These models describe
exotic, at this time purely hypothetical, phases of quantum matter displaying features that
challenge our usual notions of quantum field theory in the continuum limit. Perhaps the most
striking of these is the existence of finite-energy excitations with restricted mobility: fractons
are excitations which are “pinned” to a point, lineons are able to move along a one-dimensional
sublattice of a lattice model, etc. In some instances, like the X-cube model [6], they exhibit
an ultraviolet-sensitive but non-extensive ground state degeneracy. A priori, it is unclear how
to describe these phenomena with textbook quantum field theory and, indeed, much recent
attention (see [7,8] and follow-up work) has been devoted to answering the question of how
to carefully coarse-grain these models and what are the rules of the game for their continuum
limits.

Fortunately, the strange behaviour of these phases of matter is intimately tied with their
symmetries, which we are well-positioned to study in field theory. Models of fracton order have
exotic spacetime symmetries, like a conserved dipole moment, or subsystem symmetry as in
e.g. [6,9,10]. It is intuitively simple to understand how a conserved dipole moment leads
to “fracton” excitations. Namely, individual charges can carry finite energy, but an isolated
charge cannot move without changing the dipole moment. The ultraviolet sensitive ground
state degeneracies are also tied to these symmetries. Take the X-cube model of [6], a theory
of Z, spins on a hypercubic lattice. For each plane of the lattice, the Hamiltonian has a Z,
subsystem symmetry that flips all of the spins on that plane. The ground state of that model is
not invariant under this subsystem symmetry, so that there is a large space of vacua generated
by acting with the symmetry. The ground state degeneracy is parametrically the volume of the
symmetry group, which is sensitive to the number of lattice sites in each direction.

The focus of this work is to better understand the spacetime symmetries of simple, contin-
uum models of fractons. It is the first in a series of works whose broad goal is to study the role
of these symmetries, as well as their spontaneous breaking, in interacting models of fractons
and the ensuing implications for transport. Ultimately, we endeavour to find new, interact-
ing, and soluble models of fractons, whose low-energy symmetry breaking pattern and careful
quantisation thereby inform us as to what we might expect in the low-energy physics of these
exotic theories. A simple but useful future application is to construct theories of transport,
both at zero and at finite temperature, i.e. the hydrodynamic description of fracton models,
which is strongly constrained by symmetry. (See [11-14] for earlier work on the hydrody-


https://scipost.org
https://scipost.org/SciPostPhys.12.4.142

Scil SciPost Phys. 12, 142 (2022)

namics of fracton field theories.) We hope that the resulting theory of transport may prove
useful in giving predictions which, perhaps, lead to the experimental discovery of models with
fracton order.

Here we take the very first steps. As in standard Lorentz-invariant field theory, we would
like to couple the symmetry currents of these models to external sources. That is, we would
like to study fractons in curved space. This task is non-trivial on account of exotic spacetime
symmetries, which lead to a somewhat intricate coupling to a background spacetime. We focus
on what could be described as the “most symmetric” fracton models, which are isotropic and
contain a conserved U(1) charge and dipole moment. Our methods naturally extend to field
theories with conserved multipole moments, including those with conserved dipole moment
and quadrupole trace. This particular symmetry pattern is perhaps the most experimentally
relevant one on the market, given the arguments that these symmetries approximately govern
real-world systems including vortices in superfluid helium [15,16], defects in 24+ 1-dimensional
elastic media [17], and the lowest Landau level of a quantum Hall state [18]. See also [19,20]
for other proposals to realize models with conserved dipole moment.

The output of our analysis is a systematic description of the symmetry currents of these
models, the algebra of local symmetries, and their Ward identities, which are stable under
radiative corrections in the absence of anomalies. Indeed, while it seems unlikely to us that
simple fracton models (like the scalar theory of Pretko we review in Section 2) possess anoma-
lies, we do note that the coupling to external fields allows for the future classification and
computation of perturbative anomalies, assuming they can exist.

As a byproduct of our work, we find that the symmetric tensor gauge theory with local
dipole symmetry considered in [21] cannot be consistently coupled to curved space in a co-
variant way, on account of the fact that it does not possess a conserved and gauge-invariant
stress tensor.! This is reminiscent of a gauge-gravitational mixed anomaly, in the sense that
there is an obstruction to simultaneously maintaining gauge invariance and covariance. It
remains to be seen if the tensor gauge theory can be redefined in a way so as to maintain
gauge-invariance while at the expense of covariance, as for mixed gauge-gravitational anoma-
lies in relativistic field theory.

This work is a stepping stone. The next step is to pose, and solve, interacting large N
fracton models. This will be done in [24], mostly using the imaginary time formalism at finite
temperature. At least in those models, one can deduce the low-energy symmetry breaking
pattern and accompanying Goldstone effective theory. This effective description brings us
most of the way to a theory of transport. From there, it is straightforward to generalise the
methods of [25-29] (as well as e.g. [30-34] on constructing theories of transport in the non-
relativistic setting) to obtain the dissipative hydrodynamic description of these models, either
from the point of view of constitutive relations and conservation equations, or from the point
of view of a Keldysh effective field theory.

The remainder of this paper is organized as follows. In Section 2 we briefly review field
theories with conserved dipole moment. The heart of the paper is Section 3, where we couple
the symmetry currents of these models to background fields. This coupling leads to a notion
of general covariance, and an infinite-dimensional algebra of charges generated by diffeomor-
phisms and gauge transformations. We deduce this algebra in Section 4, which, for technical
reasons, is easiest to do when working in an analogue of the first-order formulation of the
background spacetime. We discuss the extension of our results to even more exotic models
with conserved multipole moments in Section 5, and wrap up with a discussion in Section 6.

1The tensor gauge theory was “minimally coupled” to a time-independent spatial metric in [22, 23], and those
authors found that the resulting model was gauge-non-invariant unless the spatial metric is one of constant curva-
ture. Our result goes beyond those, insofar as we find that there is no curved space definition of the tensor gauge
theory which is simultaneously gauge- and diffeomorphism-invariant.
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We relegate a few technical computations to the Appendix.

Note: While this paper was nearing completion, we became aware of [35], whose authors
also study the problem of putting models with conserved dipole moment into curved space-
time.

2 Field theories with a conserved dipole moment

Consider a rotationally and translationally invariant field theory with a conserved U(1) charge
and dipole moment. We denote the Hamiltonian as H, momenta as P,, angular momenta as
Mgp, U(1) charge as Q, and dipole moments as D,. The symmetry algebra of charges is
[Py, Dp] =164,Q,
[Mab’ Dc] = i(aacDb - 5bcDa) >
[Mab’ Pc] = i(aacpb - 5bcpa) ’
[Map, Mea] =1(84cMpg — 6pcMaa — 84aMpe + 65aMac),

2.1)

with all other commutators vanishing. The U(1) charge Q appears as a central extension.

The work of [36] prescribed a systematic procedure to writing down the action for a
charged scalar field @ that is invariant under these symmetries. We review this construction
in this Section. Take, for example, a scalar field theory described by the action

S= J dtddx(i¢*8t<1> +AD;(®*,*)DY(®,®) — V(<I>*<I>)), (2.2)

where D;;(®,®) = ®5;0;®—0;90;®. It is easy to see that this theory is invariant under constant
U(1) rotations of the complex scalar field ® — e'*®. In fact, this theory has another invariance

under spatially linear U(1) rotations & — e¥ix'$_ This latter symmetry leads to the conserved
dipole moment. To wit, we can compute the conserved charge density and flux associated with
the global U(1) symmetry of the theory to be

Ji=e's, J'=g(iADV(e*,8")8? —iA(2")*D(,8)), (2.3)

satisfying 3,J + 3,J' = 0 on the solutions of the equations of motion. It is easy to see that the
total charge defined as

Q=Jddet, (2.4)

is conserved. However, the dipole moment defined as
D' = J d%x x'J*, (2.5)

is also conserved. This is precisely the Noether current associated with the linear U(1) rota-
tions. This conservation implies that the U(1) flux J in eq. (2.3) can be expressed as the
divergence of a dipole flux J¥ as J! = o;J i, The conservation of U(1) charge and dipole
moment are then simultaneously encoded in the Ward identity

9" =28J" + 8,077 =0. (2.6)

Note that only the symmetric part of J/ appears here. For the purposes of better understanding
the symmetries of the problem, we can then regard JU as symmetric.?

2More precisely, since the antisymmetric part of J¥ drops out of the conservation equation, this antisymmetric
part represents an ambiguity in the definition of the dipole current. In the language of high energy physics, we
may consider an “improved” version of the dipole current whereby we redefine it to be symmetric. We can do this
as long as the antisymmetric part of the original dipole current is a gauge-invariant operator.

4
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There are infinitely more terms that can be included into the action (2.2) consistent with
the symmetries, like 3,89,®, (¢*)*f(®*®)D';(®,®) + (c.c.), etc. The crucial point is that
terms with spatial derivatives are strongly constrained by the conserved dipole moment. In
particular, the standard rotationally invariant term 8,®*3'® is forbidden.

The particular set of allowed terms can be understood by coupling to background fields.
One introduces a field A, which couples to the charge density J*, and a field q; j (with a;; = a;;)
which couples to the dipole current JY, with

1 ..
5S:Jdtddx (Jt5At+§JU5aij) . (27)

The action is now a functional of the quantum field ¢ and the background fields A, and a;;.
The peculiar form of current conservation (2.6) then arises if we impose a symmetry under

b - eiA(t’)?)‘I’ , At _)At + 3tA(t, )?), aij g al'j - 2313]A(t, J_C)) . (28)

The absence of a vector gauge field A; implies that while there is a covariant derivative with
respect to time, i.e.
D,® =3, —iA,®, (2.9)

but no covariant derivative in spatial directions. Instead, the simplest covariant object that
acts with spatial derivatives on charged fields includes two fields and two derivatives,

Di;(®, @) = ®8,0,® — 5;83,® + éaijcbz, (2.10)

which one can readily verify transforms covariantly under (2.8), with D;;(®, ®) — eZiAD; i(®,9).
Acting on two fields ®; and ®, with charges q; and g, there is a more general expression

q1+q>

1
Dl](q)laq:'Z) = 5(%¢1313]‘I>2+ Z—2<I>2313J<I>1—31‘I>13]<I>2—5]<I>131<I>2) +1 aijfl>1<I>2, (2.11)
2 1
which transforms as
D;j(®q,92) = el(q1+q2)ADij(<I’1,‘I’2)- (2.12)

For the quantum field theory of ®, it then follows that the simplest terms in the effective
action with spatial derivatives involve at least four powers of ®. For this reason, one expects
the model with spatial kinetic terms to be strongly correlated, and indeed, in [24] we find that
this is the case in soluble large N generalizations of these theories.

There is also a simple free field theory of dynamical fields A, and q;;, a symmetric tensor
gauge theory analogous to pure electromagnetism, first written down in [21]. In this theory
one identifies (A;,a;;) modulo the gauge symmetry. The gauge-invariant analogues of the
electric and (the Hodge dual of) magnetic fields in this theory are

Eij =—3taij—23i3jAt, Fl]k = aiajk_ajaik, (2.13)
and so it is easy to write down gauge-invariant actions, like
d (€0 nij 1 ijk
S = dedx EEUE J— 4_Fiij] . (214)
Ho

As we will see, there is an obstruction to placing this theory in a general curved space.
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3 Coupling to curved space

In the previous Section, we studied how to write down simple continuum field theories of a
charged scalar field ® with a conserved dipole moment. The goal of the present section is
to write such a theory covariantly, which will allow us to place such a model into “curved
spacetime,” coupling it to the analogue of an external metric.

3.1 Aristotelian background sources

We are interested in physical systems that are invariant under spacetime translations and spa-
tial rotations, but with no boost symmetry — Galilean or Lorentz. Such systems naturally couple
to the so-called Aristotelian background® sources [32-34].% The sources consist of a clock-form
n, and a degenerate symmetric spatial metric tensor h,,,. Together, n, and h,,, can be thought
of as the analogue of the spacetime metric g,,,, but when no Lorentz boost symmetry has been
imposed to combine the space and time components into a single object. Physically, n,, couples
to the energy density e’ and energy flux €' of the system, while h,,, couples to the momentum
density 7' and stress tensor TV respectively. Note that one of the components of h,,, is not
independent due to the degeneracy condition. One typically also includes a gauge field A, that
couples to some conserved U(1) particle-number/charge density J¢ and the associated flux J*
in the theory.

We denote the zero eigenvector of h,, by v¥, normalised as v¥n, = 1, such that v/'h ,,, =
This is to be understood as the velocity of the preferred reference frame that is observing the
physical system under consideration. Using this, we can also define an inverse spatial metric
h*” satisfying h*”n, = 0 and h*’h,, = =hl =65 —vhn,,.

An important aspect of Aristotelian spacetimes is that they come equipped with a covariant
derivative. Just like in general relativity, where the covariant derivative is defined so that the
metric tensor g,,, is covariantly constant, we can define an Aristotelian covariant derivative
via the connection

*

=v*gn, + = hlp(ah +3,h,, —3,h,,) . (3.1

wy u'tvp ptuy

The connection satisfies

vlnv = Vlhl“’ =0, vlhuv = _n(,u$vhv))L > hv,u‘vlvM = %$vhvk >

1 (3.2)
I, +Fp v = ﬁav‘/?, Ty = 2T = VAF)
where y = det(n,n, + hy,), Fl’;v = yn, — dyn,, and $y is the Lie derivative along X*.
Round and square brackets indicate symmetrisation and anti-symmetrisation over indices, with
A@p) = Z(Aab +Apg) and Apgp) = Z(Aab Aypq). A curious contrast compared to Riemannian
geometry is that the connection is torsional, with torsion T* s it is not possible to define a
torsionless connection that annihilates n,. Note that this is purely a matter of definition and
has no physical relevance. One could also add a more general form of torsion to this con-

nection or use a different connection that annihilates n, and h*”, but we shall refrain from

31t is amusing to contrast the invocation of Aristotle with the more common naming convention in theoretical
physics, where a result is named for the last author to discover it.

“These are a generalisation of the Newton-Cartan background sources that show up when coupling to Galilean
(non-relativistic) field theories [31,37-39], but when no Galilean or Milne boost symmetry is imposed.
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delving into these possibilities here.> We can define the curvature tensor as

R* =0, , — 8,14, + T4, T, , —T* ;T . 3.4)
Note that n;LRApW =0.

By introducing an Aristotelian background, we can now take a non-relativistic field theory
and render it generally covariant, by coupling it to sources in such a way as to be invariant
under diffeomorphisms and gauge transformations. Parametrising these symmetry transfor-
mations by X = (y*, A), their infinitesimal action on the background fields is given as

oxn, =$,n, :Vu(n,ml)+xlF;M,
5xh“,, =$xhuv = xlvlhw—l—ZhM“Vv)xl, (35)

SxA, =$,A,+3,A=V (A+A,x") + x"Fs,.

Here F,, = 9,A, — 0,A, is the U(1) strength. The action of the symmetry transforma-
tions on the derived fields v and h*” can also be obtained accordingly 5yv* = $,v* and
Oxh"” =$, hH7.

This coupling to background is rather trivial for an “ordinary” non-relativistic theory. All
we have done is make precise what needs to be done in order to write a translationally and
rotationally invariant field theory in a general set of coordinates. However, more structure is
required for theories that have a conserved dipole moment, where there is a richer interplay
between internal and spacetime symmetries.

3.2 The dipole shift symmetry

Before we adapt the Aristotelian backgrounds to account for physical systems with conserved
dipole moment, we need to pay a closer attention to the dipole symmetry. In Section 2, we
reviewed how, when coupling the density J¢ and dipole flux JU to the background fields A, and
a;; respectively, the dipole moment conservation can be understood as the invariance of the
theory under a U(1) transformation of the background fields: A, — A;+0,A, a;; — a;;—25;0;A.
Note that the symmetry acts on a;; with a non-Leibniz differential operator. In order to discuss
the algebra of charges generated by gauge transformations and diffeomorphisms, it is conve-
nient to instead realise this symmetry with linear differential operators. This approach is also
useful when coupling to a background.
To this end, we introduce a vector gauge field A; coupled to the flux J' and impose the
usual invariance under
A=A+ 0, A=A +GA, (3.6)

leading to the regular U(1) conservation law J,J" = 0. We supplement it with an additional
“dipole shift symmetry” given as

A=A+, ajj = a;;+ 0+ 9y, (3.7)

which imposes the constraint J! = 0;J i, Together these relations lead to the desired con-
servation equation J,J° + 6;0;J i/ = 0. Of course, we can entirely “gauge fix” the dipole shift

SFor completeness, we note that the most general form of the Aristotelian connection with the properties
V,n, = V,h"” =0 is given as

1
r,=va,n,+ Eh“’ (8,h,p + Bk, — B,1,,) + 1,02

1
N h* + 5(le—zhp(vTP h*), (3.3)

v)p uwo

where T:v = hﬁ TP, (satisfying n, T:v) is the spatial torsion tensor and Q,,, = 2h,,V,;v* is the background frame

vorticity tensor.
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symmetry by choosing A; = 0, which forces us to set ¢; = —J;A and gives back our original
U(1) symmetry.

We already have a gauge field A, corresponding to a conserved U(1) current in the Aris-
totelian framework. To account for the conserved dipole moment, we also need to introduce
a degenerate symmetric spatial dipole gauge field a,,,, constrained as v*a,,, = 0. In the refer-
ence frame of the background observer, when v* = 5, this reduces to the dipole gauge field
a;; discussed previously. The dipole shift transformations can now be stated as

Ay = A+, ayy,—ay, +hORS (Voo + Vo1, (3.8)

for some dipole shift parameter v, obeying v¥1), = 0. We will study the consistency of this
symmetry as a Lie algebra in the next Subsection.

Note that the dipole source a,,, cannot be used as a connection to define “dipole-covariant
derivatives,” because it is only sensitive to the symmetric spatial derivative of 1) ,. However,
we can define an object that is nearly a dipole connection by combining F,,, and a,,, as

1
Ay =P Fpoh™ 4 (R Fpoh™ +a, ht). (3.9)

Note that n;A* u = 0. It can be checked that this object transforms as
A S A+ VP Vv (3.10)
where y* = h#*”1) . We can also define the “dipole field strength”

FAuy = VA =V A+ FR vPAY 4 200, AP 1V 0, (3.11)

which transforms as

FRuy = PP+ (R + F2LV 0% =200,V 1V, 02 ) P (3.12)

The “dipole field strength” FAW is nothing more than the curved space version of the
dipole electric/magnetic fields discussed in (2.13). Note F AW is not dipole-invariant in a
general background. As a result there is no way to define curved space versions of the dipole
electric and magnetic fields E;; and B, j; while preserving the dipole symmetry. This presents
an obstruction to coupling the symmetric tensor gauge theory in (2.14) to a curved spacetime,
which we discuss briefly at the end of this Section.

These definitions will be useful later when we compute the algebra of charges. There, A* i
and F* uv appear as the dipole versions of A, and F,,, respectively.

In is interesting to note that a priori A* , has d(d +1) independent components on account
of the condition n,A* u = 0, as we would expect for a connection for a d-parameter symmetry
transformation. However, in our case, it only has d(d + 1)/2 independent components in the
form of a,, = Zh;\(uhﬁ )A’1 p- The remaining d(d + 1)/2 components are fixed in terms of the

U(1) field strength F,,,, via the relation A uhoa —A* whua = Fy,,. This may seem like a technical
aside, but there is some potentially interesting physics here. In Section 2 we considered field
theories with a conserved dipole moment. In these models the elementary, bare, excitations are
U(1) charges. Charges can acquire dipole moments through quantum corrections, and perhaps
there might be bound charge-anticharge states with nonzero dipole moment. For such models
the dipole density is not an independent operator from the charge density. However one can
envision effective low-energy field theories with elementary dipoles with an “internal” dipole
density D', so that the total dipole moment is of the form

D' :Jddx(foi+Di). (3.13)

8
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In such a model the dipole Ward identity would be modified to become J' = 3,D' + d;J i,
where the dipole current J need no longer be symmetric. The “internal” dipole density D"
and antisymmetric part of J¥/ have just the right number of independent components to couple
to the remaining d(d +1)/2 components of A* u- Indeed, it is easy to see that this is the correct
interpretation for the remaining components of AAH, i.e. if they were present, they would
couple to precisely such an “internal” dipole density and antisymmetric dipole current.

3.3 Conserved currents and Ward identities

We define the symmetry currents through the variation of the generating functional
W = —iln Z with respect to background fields:®

1
SW = f dd+1x\/?(—e“6nu+ (V(“TCV)+ ET"W) 5hW+J“6AM+J“16AAM), (3.14)

where y = det(n,n,+h,,). Here €" is the energy current, " the momentum current satisfying
ntn, = 0, "7 the spatial stress tensor satisfying t#”n, = 0, J* the U(1) current, and J*;
the dipole current. This expression should be understood as the “covariant definition” of the
conserved currents in curved spacetime. Explicitly picking coordinates x* = (¢, x!), where we
only mandate v' # 0, the various components of the currents read

k t Kl /.2 kj
u_|€ (Vi /v wy _ (et /ng —met ng
e =\l Ty = > = ik ij >
€ T —n7/n, T

Jt e Jn?  —n g n
R my — LT .
g (J) ! (—nkfk/m s ) (3.15)

where indices have been raised and lowered using the spatial metric h,,,, and its “inverse” h*”.
These expressions satisfy the various identities 7, ,v* = 7#"n, = J""n, =0, ] =0, and
Jl =,

We have in mind a dipole-symmetric field theory coupled to a background spacetime in
such a way as to be invariant under diffeomorphisms, U(1) gauge transformations, and dipole
transformations, acting on both the quantum and background fields. More precisely, in the
absence of anomalies, the generating functional W of the theory is required to be invariant
under these transformation, leading to the Ward identities. Let y* denote an infinitesimal dif-
feomorphism, A an infinitesimal gauge transformation, and v, an infinitesimal dipole trans-
formation. Collectively denoting them as X=( 1", A, ,), the action of these transformations
on the background fields is given by

Oy =$yny,
Oxhuy=8,hyy,
6§CAH = $XAH + 5’“A + 1/J“,
5¢At, = $ A +V 0V R

(3.16)

By assumption the generating functional is invariant under these transformations,
i.e. 54W = 0. This variation is given by plugging the symmetry variation in eq. (3.16) into

®We have decided to couple J*” to the full connection A* ., instead of the spatial connection a,,,. This is purely
a matter of definition because J‘“’hMSAlM =J""vPF,,6n, —J“"Avp5hw + %J”Viiaw. This should be thought of as
a convenient definition of other conserved currents in the presence of a dipole symmetry, so that they have “nice”
transformations properties under the dipole shift symmetry.
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OW in eq. (3.14). Imposing that this symmetry variation vanishes and integrating by parts,
we find the following Ward identities

V;e“ =—vif, — (" +74") hMV“vA ,

vy _ A
V;(V“Tc”+r‘“’+’rd )=h"Mf, —m, R0,

(3.17)
I
vt =0,
I TUY B Tl
VB =hrIk,
where VL =V, +F},v"and
fu=—F} € —h AT+ FA o P —n AN TP VoY,
Th = A, JPY. (3.18)

The f,, contributions to the right-hand-side of the energy and momentum conservation Ward
identities correspond to the power-force density due to the background fields sourcing energy
and momentum, analogous to the familiar Joule heating term in F,,J" in the stress tensor
Ward identity of a relativistic field theory. The terms involving V,v”, on the other hand,
can be thought of as pseudo-power and pseudo-force contributions due to the background
observed not being inertial. On the other hand, Tg " is an effective contribution to the stress
tensor due to dipole sources.

The Ward identities are manifestly covariant under diffeomorphisms, with the background
fields and currents transforming as tensors, and are invariant under gauge transformations.
However, the behaviour of various fields under dipole transformations is not so obvious. To
derive the transformation laws of the currents, we use the dipole symmetry to equate the
generating functional W with its value evaluated on a dipole-transformed background

Wlny, hyps Ay A" 1= Wing, ks A+, , A+ V0t + 1,0 Vvt ], (3.19)

and then take a variation of this identity with respect to the various background fields. The
variations of the left-hand-side give the currents, and those of the right-hand-side can be ex-
pressed in terms of the dipole-transformed currents, which follow from the variations of with
respect to the transformed background fields. For infinitesimal 1) ,, this amounts to setting the
second variation 6(6,,W) to vanish. This second variation reads

1
5(8,W) = J Ay /7 — 6, e5n, + (VM(SW + E%TW) Bhyy + By JH A, + 8y, 5A
1
+JHYT Shy,, + (27HP T — JPOpH) 55hpdn, (3.20)
1
—JHOVPET 1S, + Ewawahmj,

where we have used the dipole Ward identity. In deriving this we have used the variation of
the connection

1
8T, =v*V,6n, + Ehlp (v,6h,, +V,5h,,—V,6h,,)

™ " (3.21)
+ ShP (S, )8n, — 1 (VPF,Shop +2VPFL By, )

Reading off the contributions coming from individual background field variations, we infer
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that the currents shift under dipole transformations as

1
e = -4 (20— g2o) 15,1,
- 7t —(J"n, )Y* + JPMFEG’(/)U , (3.22)
THY 5 THY ZJAthHI/) M) 4 V’l(tl)AJ‘”),

while J#* and J*” are invariant. One can explicitly see that this is a symmetry of the Ward
identities.

It is interesting to note that the energy density and flux contained in € are invariant
under dipole shifts in flat space, but the same is not true for the momentum density 7* or the
stress tensor T*”. One physical implication of this fact is that a relativistic field theory cannot
have a conserved dipole moment, because momentum density is equated to energy flux by
Lorentz boost symmetry. The same is true for a Galilean theory, where the Galilean boost
symmetry equates momentum density to charge (particle number) flux. These transformation
properties of conserved currents can also be used to diagnose the consistency of seemingly
dipole-symmetric field theories written out in flat space. We shall illustrate this in the next
subsection for the symmetric tensor gauge theory given in Eq. (2.14).

3.4 Dipole-symmetric field theory in curved space

We can use the Aristotelian background sources to write down the covariant version of the
field theories mentioned in Section 2. Firstly, we note that we can define a gauge covariant
derivative for the scalar field ® with charge q as

D,®=39,%—iqA,®, (3.23)

however, it is not invariant under the dipole shift symmetry: D, — D,®—iqy,,®. The “time-
component” of the covariant derivative v#D,, ® is still dipole-invariant, but for the spatial part
we instead need to define a double derivative operator
iq
D,»(®, %) =h( h, (¢D,D,®—D,®D, &)+ anqﬂ . (3.24)

With this, the original scalar field theory may be written covariantly as
S= J %1y /7(19°vHD,® + ARHPH D, (2", 8D, (2, 2) — V(279)). (3.25)

Now that we have a theory coupled to background sources, we can read off all the conserved
currents by varying with respect to these. We find

e = —v(ANPPRTID,(8%,8%)D,, (2, 8) — V(279)),
+22(DH (2*,8") (8 VD, D,y —v’D,8D, &) + c.c. )
+(igAD**(8*,8*)8? — igA9°D" (8, 8) )V F,,,
™ = —ih""$*D,,
4 7" = hY(i9*V'D, @ + AP hTOD, (8, 84)D, 4 (2, 8) — V(*®)), (3.26)
—4Ah,,DPH(&*,8*)D"7 (8, ®)
. Ul (H* H*\hb2 _ + 2upe v
+(igADHP (&%, )92 — igA9?DH* (&, ) A",
JH = q@* eyt + D, (igAD"" (8%, 8°)8? — igA9°DH" (8, $) ),
JH” = igADH"(®*, ®*)®% — igA®>DH"(®, ®).
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What of the symmetric tensor gauge theory (2.14)? The curved space versions of the
electric field E;; = 2F';, and (the Hodge dual of) magnetic fields F;;, = 2F k. ; are encoded in

the same object F* uv defined in Eq. (3.11). However, as we saw in Eq. (3.12), this object is not
dipole-invariant in a general spacetime. While we cannot conclusively rule out the possibility
that there is another dipole- and gauge-invariant curved space tensor that reduces to E;; and
Fyji in flat space, we have worked rather hard to find such an object without success. As such,
we are inclined to take this non-invariance seriously and arrive at the conclusion that there is
an obstruction to defining a dipole-symmetric version of the electric and magnetic fields in a
general curved space.” Because the dipole symmetry is really a part of the gauge symmetry
of this model, rather than a global symmetry, this renders the symmetric tensor gauge theory
inconsistent in a general background.

This obstruction has a simple explanation in the flat space theory. Consider gauge fixing
the dipole shift symmetry by setting A; = 0, which fuses the dipole transformation to U(1)
gauge transformations as vy; = —d&;A. Then, using the transformation rules in Eq. (3.22),
we infer that the energy current is gauge-invariant, but the momentum density 7' and spatial
stress tensor 7'/ are no longer gauge invariant. In fact, in flat space, they ought to transform
as mt — nl + J''A and TV — tU 4 28 JD3IA — 5, (8%AJV). However, the equations of
motion set J¢ and J¥ to zero. Consequently, the full stress tensor ought to be dipole-invariant
on-shell. Relatedly, the spatial stress tensor 7"/ ought to be symmetric on-shell. Interestingly,
we find that this is not the case for the symmetric tensor gauge theory given by the action in
Eq. (2.14): the momentum current and spatial stress tensor are not gauge-invariant, nor is the
spatial stress tensor symmetric.

Note that the canonical momentum density, the Noether density that generates spatial
translations, is already gauge-non-invariant in ordinary Maxwell theory. But one can still de-
fine an improved gauge-invariant momentum density as the generator of a spatial translation
together with an appropriate gauge transformation. Consider a symmetry transformation in-
volving a spatial translation along a constant translation parameter y' and a gauge transfor-
mation A = —y‘A;, for some quantity A; that depends on the gauge fields. The improved
momentum density of Maxwell theory is

1 .
T (3A;— 34, EV, (3.27)
0

which can be rendered gauge-invariant by setting A; = A;, leading to the standard expression
for momentum density as 7; = MLOFI- jE’. Applying the same procedure to the symmetric tensor
gauge theory in Eq. (2.14), we get the momentum density

;= €p (3iajk+23j8k7ti)Ejk. (328)

This expression cannot be made gauge-invariant for any choice of A;, so we may as well set
A; = 0. We have similarly computed the energy current and spatial stress tensor for the the-
ory (2.14). There is a gauge-invariant improved energy current, but the spatial stress tensor

"There can, of course, be special curved backgrounds to which the symmetric tensor gauge theory can
be coupled. A notable example comes from the work of [22,23]. Consider a background spacetime where
time is absolute and the spatial metric is time-independent, i.e. V,v” = %h”p hZ$‘,hpo = 0, and whose spa-
tial part is an Einstein manifold, i.e. Rlpw = L%(hﬁhpv — hihpu
FAW — F*M + L%(hﬁl/)y - hiz/,vu). Consequently, the curved space electric field F*Vp vP and the “symmetric” mag-
netic field F* vt leF Pl “h”}] are dipole-symmetric, and can be used to define a covariant version of the symmetric
tensor gauge theory in Eq. (2.14). This conclusion is consistent with that of [23].

). For such background spacetimes, we find
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is not gauge-invariant either. We find

.. o 1 .., . 1 .. 1
T = —eoEEI | + —F M I + =651 (eOEklEkl - —Fklkalm)
WUo 2 ZMO
—eoE®0, (/) + 28 1) — 2600 EX (874, — O, M) + —F % (o) +2627), (3.29)
Uo

which is neither gauge-invariant nor symmetric for any choice of A;.

Suppose, now, that we couple the flat space theory to linearised perturbations of the back-
ground spacetime. On account of the non-symmetric spatial stress tensor, in order to maintain
diffeomorphism invariance, this can be done only by coupling to a background in the first-order
formalism, where we decompose the spatial metric into a spatial vielbein as h,,, = 5abeﬁe€,
with a =1,2,...,d. This is done with a perturbation in the action,

58 = J ded?x (—et5nt —€lon; + niéei + Tij5e§) . (3.30)
This linearised coupling is diffeomorphism invariant on account of the conservation equations

g,e"=0, Gn'+9;7t7 =0, (3.31)

however it is not gauge-invariant, rendering the model inconsistent. We therefore conclude
that the symmetric tensor gauge theory cannot be consistently coupled to curved spacetime
while preserving diffeomorphism invariance. This is reminiscent of a mixed gauge-gravitati-
onal anomaly. We however hesitate to use that term just yet. In relativistic field theories
with mixed flavor-gravitational anomalies, one can redefine the theory in such a way as to be
either non-invariant under flavor transformations or under diffeomorphisms. Here, it is not
yet clear if one can redefine the tensor gauge theory in such a way as to be gauge-invariant,
but non-covariant in curved space.

However, if charged matter coupled to the gauge fields condenses so that the tensor gauge
theory is in a Higgs phase, then the massive gauge theory may be placed in curved spacetime.
Consider the following invariant action where we also introduce a charged scalar ® with action

1
S = J A xhy R FA L F (2601/“1/” - M—Oh“f’) . (3.32)
We have defined the dipole-invariant combination of the dipole field strength F* uv and the
charged scalar field ® via

FAy = ®F?,, — écb*Dp¢hp" (R o + F2 Vv = 20,7,V v | (3.33)
Of course, we can also add the usual dipole-invariant ® terms to the action from the theory
in Eq. (3.25). Unlike the theory in Eq. (2.14), however, in the flat space limit the EijEij and
FijiF ijk terms in this theory come coupled to a factor of *®. Assuming that the dynamics
allow & to condense, this model has a Higgs phase whose low-energy description ought to be
a massive version of the symmetric gauge theory (2.14) coupled to the phase of ®.

4 First order formulation and dipole symmetry algebra

In the previous Section, we have worked with the second-order formulation of Aristotelian

geometries, where the curved spacetime background is captured by a clock-form n, and a
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spatial metric h,,,. While this formulation is sufficient to couple to field theories with conserved
dipole moment, to better appreciate the structure of the dipole shift symmetry, it is convenient
to pass to a first-order formulation. Here the spatial metric h,,, is exchanged for a spatial
vielbein e, and a local SO(d) symmetry which rotates the spatial one-forms e, into each other.
The dipole symmetry is then naturally defined as acting in the tangent bundle.

4.1 First order formulation of Aristotelian geometries

The first-order formulation of Aristotelian backgrounds has the clock-form n, and a spatial
vielbein eﬁ, where a =1,...,d is an index enumerating this basis of spatial one-forms. There

must be a zero linear combination v“eﬁ = 0 for some vector field v* normalised as v“nu =1.

We can also define the inverse vielbein e} using the completeness relations v#n,, + eh e, = 5h

and e}, eZ =0 2 . The spatial metric h,, and cometric h*” are related in terms of these as
huy=8apeleh,  h*=38%ele). (4.1)

The raising and lowering of a, b, ... indices is done using §%° and &,,. Note that the spatial

metric h,,, has (d +1)(d +2)/2—1 independent components, while the spatial vielbein eZ has

d(d + 1) independent components. This additional d(d — 1)/2 components in ez arise from
a redundancy under local SO(d) rotations that arises from the decomposition of h,,, into eﬁ.

This local SO(d) symmetry acts as e;, — Rabeﬁ for R a rotation matrix.
We also introduce a spin connection w®,, associated with the SO(d) symmetry,

Wy, = ej{@ueg + ej{I"lwe;’, (4.2)
where T* uy is the connection defined in Eq. (3.1). It can be explicitly checked that
w?b p= —whe ., and the associated covariant derivative, which acts both on spacetime indices

u, v and flat spatial indices a, b, satisfies the properties

— c c
v,u,(sab - _5cbw au_éacw bu — 0,

_ b _
Vieq =0, +T7pef —eyw’y, =0, (4.3)

1
a _ a__p a b,a _ _ -~ ap
Ve, =20,e,—T uvep Tepety, = 2n.ve $,hup -

If we were to introduce torsion into the Aristotelian connection (3.1) (see Footnote 5), it would
correspondingly introduce a torsion into the spin connection. We can define the associated
spatial torsion and curvature tensors as

b

w?
RY =0 wh . — 8.0 + w? c ., .a c (4.4)
buv — M(z) by yW by T W c,uw by — W cyW py -

a _ a a a b a
T W—auev—aveu+w bu€y, — @ pre

These are related to the full Aristotelian torsion and curvature tensors as

T, =e T, —2n;,V v + v*F!

u uv?
(4.5)
2 A b A
RGuy =e€feoR%yy +2n,V, Vv,
For our choice of connection, the Aristotelian torsion is simply T* py = VM ITV and correspond-
ingly 7%, = ealn[uvv]vl.

The U(1) connection A, is borrowed directly from the second order formulation, whereas
the spatial dipole gauge field is instead taken to be a,;. The covariant spatial dipole gauge
field a,,, is defined as

Ayy = aabezez 5 (4.6)
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and automatically satisfies the constraint v*a,,,
and “field strength” (the analogues of Ar yand F 2 uv) in the first-order formulation as

= 0. We can define the dipole “connection”

A% =n,vPF,.e + (hﬁFpU + aabebu) ,

F%,, =08,A%, — 8,A%, + 0y, AY, — AP+ AP 1eP e $ R,

4.7)

Now, when coupling a field theory to this first-order formulation of the background, we
impose invariance under diffeomorphisms, local rotations, U(1) gauge transformations, and
dipole transformations. At the infinitesimal level, these act on the background fields in the
following way. Let y* be an infinitesimal diffeomorphism, 2%, an infinitesimal rotation (with
Qap) = 0), A a U(1) gauge transformation, and 1), an infinitesimal dipole transformation.
Collectively denoting the transformation as X = (£#,Q%;, A,v,.), the corresponding generator
04 of the transformation acts on the background fields as

Sgn, =$,n,,

xe =$,e —Qabeu,

a (4.8)
65A, =8,A,+ A +e Yy,
04aqp = $,aqp +Qqacp + Qpaq +ehV 1y + e‘gvuwa .
So defined, the spin and “dipole” connections transform as
5§Cwabu = $)(wabﬂ + VMQab 5
4.9

1
b b
54AL = $,A%, —QUA° + V p + Enuap e’Pey$,hys,

so that the spin connection is indeed a connection under local rotations, and A?, is nearly a
connection under dipole transformations. It can be checked that these symmetry variations
lead to the second-order symmetry variations given in eq. (3.16). A lengthy computation also
shows that the symmetry generators form an algebra, with

(65,081 =6[5 17 (4.10)
where the commutator transformation is defined as
K =S yh =g 44
X[:i:/’i-] 590% $x X >
(Q[DAC’,DAC])ab = SX/Qab == $X/Qab —$xﬂlab + Qacﬂlcb - Q/acﬂcb ,
A[DAC’,DAC] = 5&,/\ = $Z'A _$XA/’
(w[fcf,ﬁc])a = 5§C/¢a = $x/wa _$x¢; + wa/ba —’t/);,flba .

(4.11)

More details can be found in Appendix (A.1). Applying the identity (4.10) to the generating
functional leads to Wess-Zumino consistency conditions, just as for relativistic field theories.

4.2 Currents and conservation

The coupling of conserved currents to background sources follows analogous to our discussion
in Subsection 3.3. Directly plugging in the definition of second-order sources in terms of the
first-order ones into the generating function variation in Eq. (3.14), we can obtain

5W = J A4l /7 (—eMBn, + T4 5e% +JHSA, +I1EAY, ) (4.12)

15


https://scipost.org
https://scipost.org/SciPostPhys.12.4.142

Scil SciPost Phys. 12, 142 (2022)

where the full momentum current is defined as t', = (v¢n” + 7#¥ + T "eqy, including the
contributions from momentum density 7*, symmetrlc stress tensor T‘“’, and stress contribu-
tions from the multipole currents Tg V= —A‘;)J P”_ The dipole current is defined as J*, = J ‘;Leg.
This coupling structure, of course, looks more natural from a field theoretic perspective.

Invariance of the action under SO(d) rotations leads to the relation TFaeb]H =—J P[LaAb]M
that is identically satisfied. On the other hand, demanding invariance under the remaining
symmetry variations in (4.8) lead to the Ward identities in the first-order form

V;e“ =—vHf, —thelv, v,

Vit =elf, —n,The 265V v’

u
(4.13)
V;J“ =0,

/
VI IE =gt

The power-force density f,, has already been defined in Eq. (3.18).
Finally, the dipole transformation properties of various currents can directly be derived
from Eq. (3.22). We find

1
et et 4 2Ju(p¢0)_Jp0¢u ~$ h, .,
( )2 rPe (4.14)
Th — gt —Jhap + V) (PVTE =T APH) + VHIPFT 4O

a” po

while J# and J*, are invariant.

4.3 Dipole algebra in curved space

We have verified the consistency of the symmetry algebra as a Lie algebra. But one might still
wonder what this algebra has to do with the original dipole symmetry algebra of the flat space
theory in Eq. (2.1). To make this connection, let us follow the analysis of [40] and consider a
symmetry variation 64, given in terms of the parameters X =( 1%, Q%, A, ,), and formally
decompose it in a basis as

55 = iy"n,H—iy"elP, + é(ﬂab + 2P0 Mgy —i(A + 2*A,)Q—i( + xA%,)D, . (4.15)

The Hamiltonian H, momenta P,, angular momenta M, charge Q, and dipole moment D,
should be understood as generators of local time translations, spatial translations, rotations,
U(1) transformations, and dipole transformations in a general curved background. Inserting
this decomposition into the infinite-dimensional symmetry algebra, (4.10), we find that it can
be expressed in terms of a finite set of commutators involving H, P, etc.:

[H,p,]=ivte Cy,, [Py, Py] = —iebe,C,y s

[H,D,] = —Eep " $,hpoDp, [P, D] =i643Q,
[MabJ Dc] = i(aacDb - 5bcDa): (4‘16)
[Mab’Pc] = i(5ach - 5bcpa) ’
[Mab>Mcd] = i(5achd - 5bcMad - 5adec + 5bdMac):

and all other commutators zero. We have defined the “curvature” operator

C

1
v =—F H+2T%, P—zRab Mgy +F%,,D, . (4.17)
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To obtain this we made use of the identities
5§C,(Qab + x“wabu) = $x/(Qab + ;(“wabu) + ZQl[aC(Qb]C + x“wb]cu),
S (A+ xPA) =8, (A+ xMA,) + x“eZtl); ,
55 (W + 1 MAL) = 8, (P + AL — 2 (Y + VAL (4.18)

1
+(Q% + x“wab“)w’b + Ex“nuw’bea"el‘f&hm .

Further details can be found in Appendix A.3. Note that the U(1) field strength F,, does not
appear in the curvature operator on its own as it does not transform homogeneously under
dipole transformations.

Eq. (4.16) is the dipole algebra generalised to curved space. It reduces to the original
dipole algebra given in Eq. (2.1) in the flat space limit. On curved space, the algebra is almost
the same, except that the mutual commutators of H and P, are not zero, but are sourced by
the curvature operator C,,. This should be physically expected because local translations on
curved spacetime do not commute. [H,D,] is also nonzero in curved space. The source of
this commutator is proportional to $,h,,,, which can be understood as the “time derivative”
of the spatial metric in the reference frame of the background observer with velocity v#. In
other words, the dipole moment is no longer conserved when the system is coupled to a time-
dependent spatial metric. This should also be physically expected because a dipole is a non-
local degree of freedom and the associated dipole moment is sensitive to the spatial separation
between the charges making up the dipole.

5 Conserved multipole moments

The techniques that we have developed in this work can easily be adapted to covariantise
field theories with higher conserved multipole moments. A system with 2"-pole symmetry
has a series of conserved multipole charges ng) a,’ for r = 0,...,n, obeying the “multipole
algebra” [41]

[P, as Q(r) ] = r5a(a1Q(r )’
(r) — (r)
[ ab’chr Cr ] - ( a(lecz...cr)b b(lecz . )a) ’ (5.1
[Mab, ] l(6ach 5bcPa)’
[Mgp, Mgl =1(64Mpg — 6 pcMag — 0qaMpe + 6paMac)

and all other commutators zero. The U(1) monopole charge is Q = Q®, while the dipole
moment is D, = le). The r™ moment charge (i.e. 2"-pole moment) commutes with the
Hamiltonian and transforms as an rank-r tensor under rotations. Under translations, on the
other hand, it picks up the (r—1)™ moment charge. For example, [P,,Q] =0, [P,,D;] = i5,;,Q,
and [P, Q(z)] =i(04pD. + 04.Dp). Note that the monopole charge commutes with everything,
while the dlpole moment obeys the same algebra as noted previously.
In a field theory, 2"-pole symmetry charges can be realised by a U(1) charge density J*,
obeying the conservation equation of the form
O J + ;... Jhh =) (5.2)

h+1" (n)

where J(l;l')"l”“ is the totally-symmetric n™ pole current. The conserved multipole moments are

Q?r.)“ir :Jddxjfxil...xir, for r=0,1,...n. (5.3)
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Similar to our analysis of models with conserved dipole moment, it is convenient to exchange
the conservation equation (5.2) for a series of Ward identities

_ Uredr _ piredr _
9,J" =0, aiJ(r3 —J(;_l), for r=1,...,n, (5.4)

where J! = Ji. Each successive r'™ pole current is given in terms of the divergence of the

©
(r + 1) pole current, all the way up to r = n— 1. Expressed in this language, it is straightfor-
ward to couple this theory to background fields.

5.1 Conserved quadrupole moment

To not get overwhelmed by the number of multipole charges, let us consider first the case of a
theory with conserved quadrupole moment. An action for such a model with a single complex
quantum field & is given by

S = f drd?x(i93,8 + Dy (8%, 8%, )D;ju(, 8, 8) — V(3*®) ), (5.5)

with
D;jx(®, ®,®) = 8°5,0;0,® — 383,90, 5y)® + 26,90,89, . (5.6)
Note that the simplest term with spatial derivatives involves six powers of ®.
Coupling to curved space for this theory follows along the same lines as before. We have
the normal Aristotelian background sources: the clock-form n,,, spatial metric h,,,, and U(1)

gauge field A,. In addition, we have a symmetric spatial dipole gauge field am and analo-

gously a totally-symmetric spatial quadrupole gauge field a{fv) ., satisfying v“af}v) = v“al(fg ,=0.
Under an infinitesimal diffeomorphism y*, gauge transformation A, dipole transformation
1,[)‘(}) (obeying V“U’S) = 0), and quadrupole transformation 11)%2 (symmetric, and obeying
v%/)gg = 0), which we collectively denote as 1= )(M,A,IIJS),II)LZB), the background and

quantum fields transform as
53 =$,8+iA®,
53A, =8,A,+3,A+9pD,
53a0) =$,a) + heRS (V9D + VD) + 292,

2) _ 2 A (2) (2) 2
53a? =$,a? +hIhTh?: (vaqipﬁL + v @+ vwg;) )

(5.7)

while n, and h,,, transform as before. The numerical factor of 2 in the transformation of aEv) is
chosen for convenience. The covariantised version of the quadrupole-symmetric theory (5.5)
is then invariant under diffeomorphisms, U(1) gauge transformations, dipole transformations,
and quadrupole transformations.

Moving on, we had already defined a dipole “connection” and “field strength” in Egs. (3.9)
and (3.11), which we reprise here,

1
2 P Ao 4 (Do
Alyu VPFooh®" + 5 (hﬁFPUh 7 +ay,h? ) ’
A _o Ak 2 2 P A
Fl = VAl = VAL o+ R VPAR L 2np, A 1V 0P

— e (5.8)

These objects transform “nicely” under the dipole symmetry, but not under the quadrupole
symmetry, similar to how A, and F,,, transform nicely under the U(1) monopole symmetry
but not under the dipole symmetry. To wit, we have
A A A A A
O5A = S A T Vudiy) + nu‘/’a)vvv + w(zv)huv )

(5.9)
oA A A o 2 ) 1A (2) o A
5DCF(1)W_$%F(1)W+R puvw(1)+h pvuva h pvkup +Zn[ﬁﬂwl’(z)v]vpv ;
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where

A A A A
R puy = S (R gy + FI Vo v* — 2, V1V 0% ) (5.10)

Similarly, we define the quadrupole “connection”

1
A = v FC 0 7 4 2 (200 FP 1307 + a® hP*hoT), (5.11)

which transforms as

2
- A A A o(A
6§CA(2T)M = $xA(2T)u + (nuvp + ghﬁ)R( c,pvh”vm/)a) + VM/J(ZT) + 2nM1/J(2) vy, (5.12)

The quadrupole “field strength,” on the other hand, is defined as

i A A A
F(zguv = V“A(ZT)V - vVA(ZT)H - Fﬁvva(;)P

(5.13)

2 p A ) p(L
+2A((71)[H (nv]v” + ghv])R( O’pth ”+4n[HA(2) 1,]VPVT).

The utility of all this structure is that we can now define symmetry currents as conjugate
to external fields via

1
SW = Jdd“x ﬁ(—e“c?nu + (v“n” + ETW) By +THEA, + T2 8AYu + I, MaAgw) . (5.149)

Invariance under diffeomorphisms, gauge transformations, etc., leads to Ward identities as in
our analysis in Subsection 3.3,
V;e“ =—vhf, — (" + TSW) hoa Vvt
V; (Vr” + ThY + Tg”’) =h"f,— Truh”’lvlv“ ,
v, J*=0, (5.15)
/MY v U
Vi =ha,
/ UV __ VP
Vi) =Jay-

The derivatives on the left-hand-side are as in Subsection 3.3, V; =V,+F l’jvv". The power-
force density gets modified to

A
fu=—F " &0 + 500 (Flyur = RapAlps ) + Fot ol e

vpf(2)u @ur(2
— 1, (A T+ 2800 I 20 ) Vv (5.16)
= (a4 + 208,40 0) I g R poph ™
whereas Tg ¥ now has contributions from the quadrupole current as well
A A AED Y AN APY (5.17)

5.2 Conserved higher moments

This construction can easily be generalised to systems with higher multipole symmetry. For

a system with conserved n™ moments, the background fields comprise of the clock form n,,
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spatial metric h,,,,
r =1,...,n. Their transformation laws are

gauge field A, and a series of spatial multipole gauge fields a(r) o for

53A, =8,A,+3,A+9p{,

() (r) r+ (r) ( +1)

5xaur1 “+1—$xar " 1+(r+1)hp1 hﬁr& (plwpz o +(r+1)1/;r , forr<n,
a™ a™ p P (n)

53( U1 -Mny $7( M1 Mns1 + (n + 1)hui e hunﬁ V(Pl wpz...pnﬂ) 4 (5-18)

while n, and h,,, transform as usual. So defined, the symmetry generators obey an algebra
[5555’ 53”5/] = 5[§C,§C’] 5 (5.19)

with a suitably defined commutator, so that one can speak of Wess-Zumino consistency con-
ditions for the currents of these theories. Using these variations, we can define multipole
“connections” and “field strengths” as

Aoy o (A1 )y p (A1 Ay Ar
A(r) =Ny F(r 1) vh +r+1( huF(r 1) o +a() u)’
ApAr A opn Ari-Ar P1- Ps (TS)A Ay
Ry e = 2VLAGS VP RLAG ZZA(s) Yol ol (5.20)

Here y(”) p " are some (r+s+1)-rank tensors that are entirely given in terms of the curvature

R* oy frame acceleration V,,v”, and their derivatives. See Appendix A.2 for more details. The
“connections” transform as

Ar Aoy (18) Aqee ey Vs A
SxA() L=$,A () wt Vs +Zyrs 1 +hwzp(ﬂ:1), (5.21)

and the variation of the “field strengths” is given in the Appendix. The symmetry currents are
then defined by the variation

SW = J dd+1xf[ — Mo, + (v“rc + ;r“ )6h + jHEA, + ZJ( e ;LréA?rl)'“l’u} . (5.22)
The Ward identities read
Vet =—vtf, — (e" + ) ha Vvt
v, (vir” + o4 + o) = R f, — m RV vk,

(5.23)
v,Jh=o0,
,uvl R VR
Vil = ey
where the power-force density gets modified to
_ A
fM == —Fﬁvev _huAA(l)v‘]v
n—1
Aoy pA
(S = oA ) T, Foy ™ an..a,
r=1
n
_ (rs)Aq...A, Pl Ps (r,$)Aq...Ap pP1-+-Ps v
ZZ (yu Prp: (s) -, pr- psA(s) u)J(r)M.--lr > (5.24)
r=1s=1
while Tg ¥ gets contributions from all the multipole currents
A
= Z rhM’A“ 1A lpJ(r)ll...lrp . (525)
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5.3 Multipole algebras in curved space

As in our discussion of the dipole algebra in curved space, we can understand the commu-
tator of symmetry generators [04,04,] = 5[556’3%,] in terms of commutators for a finite set
of operators, giving the curved space version of the multipole algebra [40]. To do this effi-
ciently, we need to pass to the first-order formulation discussed in Section 4. Without going
into even more detail, we note that the first order versions of multipole “connections,” “ﬁeld

— ,M ar
o= e A

and wal = eAl ...el’i,b (r)'" Ar respectively. A symmetry trans-

strengths,” and symmetry parameters are defined naturally as A7l
a..a, __ a ar

EG = ) Y

formation parametrised by & = (x*,Q%, A, 1/)?rlj"ar) can be decomposed into a basis of gener-

ators according to

i
oy =iytn,H— i)(“eﬁPa + —(Qab + x“wabu)Mab —i(A+ x"AQ

S (02 O

r—l

(5.26)

Plugging this parameterisation into the infinite-dimensional algebra [54,04,] = O 4 We
find that the infinite-dimensional algebra is equivalent to a finite set of commutators, in the
form of the curved space algebra

[H,P,]=ivFe)Cy,, [Py, Py] = —iele,Cy,,
1
[H,Q)  T=—iviyl) [P, QY o 1= irbuq, QU ) +iehVD)
)
[Map, Q) 1= (84, Q" . 1y =88, Q . 1) - (5.27)

[Maanc] = l(5acpb - 5bcpa)>
[Mgp, Mcq] = i(84cMpg — 6pcMgg — 0qaMpe + 6paMgc)

and other commutators zero. The operator Q© should be understood as Q. We have defined
the multipole shift parameter

n
00 =S E ). 20

uai...a,
s=r

while the definition of the curvature operator is also modified to

1 b - 1 a...a, bay...a,
Cu = —Ff H+ 2T, Py = R, My, +>. ~ (B + 2eppuA s 1) QU . (5.29)
r=1""~

Along the way we have used

aj...a, aj...a, aj...a, aj...a, /( as...a )b a,...a,.)b
x/ (1/) L “A(l) M) (1/) L “A(l) M)—r&'l 2! (1/) 2 “A(i) H)
/ay...a.)b
+r (Sl(alb + rolay, )w(‘g “ (5.30)
z : (r,s)a ar /by...bg /a;...a.b
x,uyurs bi b, (S)l X“ebuw(ri_l) .

The curved space algebra (5.27) should be compared with the flat space algebra (5.1).
The two agree in flat space, where the generalised curvatures C,,,, and )’s vanish. As in the
dipole algebra, [H,P,] and [P,, P, ] are nonzero in curved space. Also like before [H, Qg?“ar] is
nonzero, affirming that multipole moments are not time-independent when coupled to generic
time-dependent backgrounds A novel feature is that [P, Q(r) ] gets contributions from

higher moments Q ., and not just the preceding moment Q(r o
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6 Discussion

In this work we have proposed a coupling of simple continuum field theories with fracton order
to curved spacetime backgrounds. The models we considered are, in flat space, invariant under
spacetime translations and rotations, with a conserved U(1) charge and a conserved dipole
moment. A prototypical example of such a system is the theory of charged matter in [36].
The Noether currents associated with these symmetries naturally couple to (i) a spacetime
geometry consisting of a spatial metric h,,, and a clock one-form n,, (i) a U(1) gauge field
A, and (iii) a source q;; for the dipole current. The conservation of U(1) charge and dipole
moment in flat space is encoded in two Ward identities, namely

gt =0, Ji=3JY, (6.1)

which when put together yield 3,J + 6;9,J / = 0. The first is the standard Ward identity pro-
vided that we couple matter fields to a background gauge field A, in such a way that the total
action is invariant under local U(1) transformations. The second is enforced by introducing a
local “dipole symmetry,” which only acts on the background fields as

Ai —>Ai+¢i, aij —>al]+311,bj+8]1,bl (62)

The dipole symmetry could be potentially gauge-fixed by setting A; = 0, which ties the dipole
shift parameter to the gauge parameter as 1); = —J;A. By introducing the background space-
time n,, h,,, one can covariantise the theory of charged matter in [36], and generalise the
dipole transformation above to curved space. One can also use the background coupling to
derive the relevant Ward identities associated with energy and momentum conservation in
these systems.

The procedure of coupling to curved background sources follows as usual. Given a the-
ory with fracton order in flat space, we strive to introduce the background sources in such a
way so as to make the full theory, including background and dynamical fields, invariant under
spacetime diffeomorphisms, local U(1) transformations, and local dipole transformations. At
the infinitesimal level, these symmetry transformations are enacted by first-order linear dif-
ferential operators, 64, where X collectively labels the infinitesimal diffeomorphism, gauge
transformation, and dipole transformation. We showed that 64 obey an infinite-dimensional
Lie algebra,® [64,04]1= 84 47 leading to Wess-Zumino consistency conditions. In the ab-
sence of anomalies, radiative corrections are expected to preserve these symmetries, leading
to Ward identities for correlation functions. We computed these along with the transformation
laws of the various symmetry currents under dipole transformations.

Along the way, we considered the symmetric tensor gauge theory of [21]. This theory
of dynamical gauge fields A, a;; is an analogue of electromagnetism for systems with local
dipole-invariance and naturally couples to the scalar matter theory mentioned above. In flat
space, one can define the analogues of gauge-invariant “electric” and “magnetic” fields built
from A, a;;. However, we found that there is no gauge-invariant notion of an electric or
magnetic field in a general curved background, suggesting that a covariant curved space theory
does not exist.” Indeed, there is an obstruction to placing this theory in curved space while
preserving diffeomorphism invariance, visible already in the flat space theory. Namely, there
is no gauge-invariant definition of the flat space momentum density and spatial stress tensor.
Consequently, the linearized coupling of the flat space theory to metric perturbations breaks
the gauge symmetry, rendering the model inconsistent. Interestingly, we did find that the
Higgs phase of the gauge theory can be coupled to curved space in a gauge-invariant way.

81t turns out that this infinite-dimensional algebra is highly redundant. See Subsection 4.3 for more detail.
°Gauge-invariant combinations do exist on spacetimes with absolute time and a time-independent Einstein
spatial metric. That result matches the previous work of [22,23].

22


https://scipost.org
https://scipost.org/SciPostPhys.12.4.142

Scil SciPost Phys. 12, 142 (2022)

In the Introduction, we mentioned that perhaps the most experimentally relevant space-
time symmetry of a fracton model is where U(1) charge, dipole moment, and the trace of the
quadrupole moment are all conserved. In such a theory isolated charges are immobile, while
dipoles can move in a direction perpendicular to their dipole moment. While we have not dis-
cussed this symmetry pattern in the main text, it is easy to generalise our formalism to these
systems. Namely, one takes the background fields and symmetries we considered in Section 3,
but tunes the couplings of the field theory in question so that the spatial trace of the dipole
source a,,, does not appear in the action, i.e. the spatial trace of the dipole current vanishes,
h,,J*” = 0. It would be interesting to visit these theories in greater detail in the future.

So far, several anomalies involving background tensor gauge fields have been discovered
for field theories of fracton order [42—-44]. In the relativistic setting, we are of course familiar
with gravitational and mixed gravitational-flavor anomalies. One might wonder if there are
gravitational anomalies, pure or mixed, in the landscape of field theories of fractons. In this
work, we found evidence that this is the case for the symmetric tensor gauge theory. We found
an the obstruction to coupling the symmetric tensor gauge theory to curved background in a
covariant way, which strongly suggests the existence of a mixed gauge-gravitational anomaly
signaling the breakdown of gauge symmetry in curved spacetime. It would be interesting
to uncover if this particular non-invariance can be cured by sacrificing covariance, or by the
inflow mechanism, and the role of gravitational anomalies in this landscape more generally.

Existing field theory models with conserved dipole moment have the feature that dipoles
are composite objects. Dipole moments can either be generated by radiative corrections in
the presence of an elementary charge, or through a bound state of a charge-anticharge pair.
Indeed, one can envision a low-energy limit of a model where there is an energy gap to the pro-
duction of charges, and the lowest-energy degrees of freedom are electrically neutral dipoles.
What would such a field theory look like? A plausible hint comes from our construction of the
“dipole connection” Al“, which allows for coupling to field theories where degrees of freedom
can carry an “intrinsic dipole moment,” much like an independent spin connection w“, al-
lows for coupling to field theories with intrinsic spin. It will be interesting to pursue this line
of thought further.

Finally, thanks to this work, we have developed an appropriate notion of curved spacetime
for theories with conserved dipole moment, along with the right curved space symmetries,
Ward identities, and the transformation laws for the symmetry currents. With this informa-
tion at hand, we are nearly ready to construct the hydrodynamic effective description of these
models. The last ingredient we require is the low-energy symmetry breaking pattern of in-
teracting fracton models, which, at least in certain soluble large N models, will be presented
in [24].
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A Calculational details

In this Appendix we compile some of the calculational details that have been used in this work.

A.1 Consistency of symmetry algebra

The main goal of this Appendix is to demonstrate that the generators 64 of an infinitesimal
symmetry transformation furnish a Lie algebra. Doing so requires that we show that the com-
mutator closes, i.e. the commutator of two symmetry variations is itself be a symmetry vari-
ation, [64,04,] = 84 47> for some appropriately defined commutator operation [%,%1, and
that the variations 64 obey the Jacobi identity. Because the symmetry variations 6 4 are repre-
sented by first-order linear differential operators, they automatically satisfy the Jacobi identity,
so we need only show that the commutator closes.

In fact, we will find that not only do the 64 form an algebra, but so do the infinitesimal
transformations X themselves. We begin by reprising the variation of the symmetry parameters
X = (x*,Q%,A,2,) given by Eq. (4.11) as

g 3y = 0 X" =8y 2",
(Q[ﬁcl,ﬁc])ab — 5§C/Qab — $)(’Qab _$xﬂlab + Qacﬂ/cb _ Q/acﬂcb ,

A3 =0 A =8, A—$, N,

(Vg = Btba = Sytha = 8,16, + Y0 u — Y320,

(A1)

Let us compute the action of successive variations on the symmetry parameters themselves

Ssnbsx" =858y x"
54184 =$,18,0% +$, (8,97, —Q.Q",
— Q% (8,97, - Q") + (8,97 +Q",0.)
+ (798,90, + Q98,07 ) — (Q74Q", + Q94Q",) Q.
+$,(—$,Q"% +0°.Q", —Q".Q%)
+$,0(—$,Q7, +Q°.Q°, — .0, (A.2)
O5nOih =88, A+8,8, N
~$,8, N —$,,$,N,
OgnbiPa =8y 8y bat$, ($x’¢:1/ + wgﬂlba)
A ($x/Q//ba - Q/chHCa) + ($x/’l/);,/ + wgﬂlcb) Qba
— (V0o + P ) Q% — (8, 95,07 0 + 8, 97Q%)
8, (8,0 =) + 8, (8,0 + e — 9 Q0) -
The gray terms are symmetric under the exchange of X’ « X and drop out of the commutator.
Inspecting the remaining terms, it is trivial to verify that [54,,54 ]X = 5[9%",3”0]36- It is also
easy to prove the Jacobi identity from here
[§C//, [:)AC/, j\C]] = _5[§C’,§C]§CN = —53@53%9%” + 59%53%,:5(:”
=—54,[X,X"]1— 84X, 1] (A.3)
= —[X,[X, X" 11— [, (X", &7,

This demonstrates that the {’s form an infinite-dimensional Lie algebra.
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We now compute the second variation of background fields, finding

04, 04my, = $8yny,
65:65€, =5,8, €, + ($XQ’ab + Q’acﬂcb)ez
—$X(Q/ab€2)—$X/(Qabefi ,
55,644, =8$,8,A,—03,8,N —el($,4, +9,0°)
+8,0,N +8,0,A+8,(elh) +$,(elrpy),
54:653Aqp = 8,8, A0 — ($,9 0 — Q4 ) A, — (8,927, — Q54 ) Acq (A.4)
—€;Vyu ($11/’;; + Q) — e,V ($x¢f1 +40¢,)
+el (Q°, VP, + V) +eb (6, VL + Q4. V 0),)
+el (Q,V ! + QY ) + e (Q, V! + QY )
+ (90, + Q9,9 ) A + 8, (AL + VAL + NV Y + eV, Y))
+8, (A + QA + XV hy + e V1, )

The gray terms are symmetric under the exchange of X X’ and drop out of the commutator.
With the remaining terms, we can see that [§y/, 5y ] = 6y x] while acting on the background
fields. Thus the 04’s generate a Lie algebra as claimed.

A.2 Multipole connections and transformation properties

In this Appendix, we derive the explicit form of the objects Y"*) that appear in the definition
of multipole “connections” in Section 5. We begin by postulating that there exists an " pole
connection A,y that varies under multipole transformations as follows

Apod, A, Aoy v, VA
A gy = AT gy + Ve +Zy(”)vl T b Ry (A.5)

We can allow r to be zero as well, in which case the connection is just the monopole gauge
field A, = A(g)y, with the U(1) gauge parameter being vy = A. Using these, we can define
the r “field strength” F, as in Eq. (5.20), so that it transforms homogeneously under all the
s-pole transformations for s < r. Explicitly we find

Aoy A, AP (rs—=1)A P1--Ps
Fheds oy = PRt b ROt +Zzy by ) (A.6)
r
PET _o5P vy (r,8) A1 A (A (ts)p O |op v
+21:[(V Fuv 25[u )y vll Vs +Zzyu Pi pf vll s ]Ip(S)
s=

PA. A, pl Ay (rr)Ag... op
Va1 +2V[uhﬂp¢(r+l1) +2)), pi...p, v]o“a[’(r+11)

The important piece is here is the inhomogeneous term in the third line. Using F,y and the
spatial (r + 1) pole “connection” a1y given in Eq. (5.7), we can construct an object that
transforms like a connection under 1), ;1) shifts. This is precisely the definition of A, given
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in Eq. (5.20). We compute its transformation to be

Aeds A , r+1 A A,
AT ey D AT ey vH¢(r+1) " +( 7+ mhg) rR™ povh +1v¢(r)

r+1
r+1 "
+Z(n vo'hll + — " (hz:hﬁll h‘uvlhllo)) y(rs l)ﬁj vr+1¢(vsl) v,
s=2
I r—+ 1h Z (van —25P v )y(r,s)ll...lrhlrﬂv (A.7)
H r+2 ¢ ov o V1) vy .
s=1

[c p1-

(A A ) (E:S) A, V1w Vs
+Zzy 2 YU W}w(;)

pA r r r+1P
+nu¢(r+11) VoY +1+¢( +2)+ hou

The indices A; ... A,,; are understood to be symmetrised. We can compare this expression to
our original expression for A(,) and write down a series of recursion relations for the Y,
The easiest of these are for s = r. We find

y(r ).

e =,V VI o+ (g R (R =y 1)) YU (A)

wvp uvy Va.. v :

The A4,..., A, and v4,..., v, are understood to be symmetrised. This recursion is particularly
simple to solve and one simply gets

y(”)kl r=rn,V, vllhAZ W (A.9)

Vi Vy vy

Plugging this result in, we can obtain a recursion relation for s = r — 1, leading to

YO = (r= 1) (myy? + R RM 2 Rt
+ (mavi + = T (AT —hyy, W9 ) ) Ol (A0)
where R’lp uv was defined in Eq. (5.10). We are unable to solve this recursion explicitly. All

further recursion relations are decisively harder. For 1 <s <r —1, we get

y(rs)ll

V1.V

. —(n v"hll+ (h"hll huvlh/ha))y(r 1s—1) A, 2

B V2. vs

o r o ppn __ P (r=1,5)A1..A 1A
+(n“v +r+1hu)[(v Foy 25[avv])yp o R

P1---Pt

+22y(r 102y 39pn- ﬁ[hm],

Finally for s = 1 we have

V1M

y;([’l)%imlr — (nuva u) [ (vagv _ 25)[00 )y(r L,DA A 1h)L v

(A.12)

P1--Pt

N Zzy(r 1O A Do ]
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A.3 Multipole algebra in curved space

Let us explicitly compute the commutator of variations [84,,04] in terms of the generator-
decomposition of 64 given in Eq. (4.15). We find

[6§C” 5§C] = 5[56’,3%] + X“XW (eze?;[Pa’ Pb] - (n‘uei - nveﬁ)[H’ Pa] + icuv)
1
+3 (@ + x#w® )x" "1, — (0 + y ™ g 'n,) [Mgp, H]
1
-3 ((Qab + quabu)x/vei _ (Q/ab + X/Hwabu)x veiz) ([Mab:Pc] _ 2i5ach)
1 .
+ 7 (Q“b + x“wabu) (Q’Cd + x’“de“) ([Mab,Mcd] —4l5achd)
1
_E(Qab +)C,L,L(J)ab‘}‘)(w/c +XWACV)
— (2 + 1M ) (¢ + 2 "AS) (M3, D] — 206Dy )
— (2", (N + A — M, (A + 2 7A,)) [H,Q] (A.13)
+ (el (N +1"A,) — 2 et (A+ 1 *A,) ) [P, Q]
1
=5 (@ + "™ )N + 1A = (1 + Mo YA+ 1 7A,) My, Q]
+ (T + AW + 1A — (P + ALY A+ 1 °A,)) [D,, Q]
i
- (Xun‘u(w/a + XWAC:/) - X/Mnu(qrba + XVAC:/)) ([H: Da] + Eeapeba$vhpO'Db)
+ (el (y® + 1 "A) — y el (9 + 1 "A)) ([P, Dy ] —1645Q)
+ (W + g MAD " + 5" AD) Dy, Dy .

The curvature C,, is defined in Eq. (4.17). Requiring the RHS of Eq. (A.13) to be just 6 (7.5
we can read out the commutation relations of the curved space dipole algebra given in Eq.
(4.16). This computation can be generalised to higher multipole moments as well.

B Background coupling of scalar charge theory

The covariant Lagrangian is given as

L * * % ok *
L= (€*v#D,® — 8v#D,8*) — A5(h**D,,(8%,8*) + y3** )(hP7 D, (&, @) + y?)
— Arh"PR77D,, (8%, 8°)D,,(®,®) — V(*9). (B.1)

The non-local covariant derivatives were defined before. The variation of the Lagrangian with
respect to the background fields is given as

1 l * v *
ﬁ6(1/7£)= (Ev“—g(tb vMv"D, & — dvHy"D,® )+28pvvph“”)5nu
1 l * Y, Y, * v
+(5£h‘”—5(<1> VMh"PD,® — V'R’ D, ®*) + B, ,h?*h” )5h,”
+qP*PVHEA, — AT, — ASXT (B.2)
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where we have defined

1,
X,,=®D,D,)®—D,®D,® + 5zq<1>2aw,
A = 26(1PO X, + 7@ )Y + ARPRYO X,

Buy=As(RPO X% +7@ )X, + Ag(hPT X,y + 782X, + 224, hP7 X

e (B.3)

All the technicalities from the variation are captured in the variation of &),,; we get

1
AHEX,, = EiqCDz.A*“"éaW —iq®* AV ,6A,
1
— @Dlé(le*“vvuénv + 5 (R AP R ATV Sy, (B4
1
+ EhM’,at*ﬂ”(s,’vhw)(snp — v“hMngA*P%hW), (B.5)

where we have used the variation of the connection given in Eq. (3.21). After ignoring some
total derivative terms, we get

1
AHVEX,, =— (EhwgﬁvhpaA*P%DA@ -V (2 v’lD;gb.A*“”)) &n,
1
A A A
+ (V“h TEG ATPTOD @ + DV ((2hME A= — e ) 4>qu>)) Shy,
1
+ V', (igA""9?) 5A, + EiqA>'<“”<1>25aM,,. (B.6)

Using these, we can read out the conserved currents. The U(1) monopole and dipole currents
are given simply as
JH = qe e v — V! (ig A™M9% —iqd* > AMY)
JHY = —ig AP +iqd P AR (B.7)

On the other hand, the energy current, momentum density, and stress tensor are given as

et =vH (é (#*v’D,® —dv’D,d") — E) —2B,,v’h*”
+V (A1 D, & + &*v D, o* AH”)
— W (AP OD,® + D, d* APY) %$Vhp0 —iq (A9 — 2 A )VPF,,,,

= —% (@*h""D,® — ®h*"D,®*) —h'7F]} (A*PHOD,® + &*D, 0" APH)

THY + T‘SW = Lh*Y +2B,,hP*h7”

-V ((2rMeA*VP — R*P A7) D, @ + &*D; * (20 AP — h*P APY))
—iq (AP e:— @2 AMP)AY (B.8)

The expressions are considerably simpler in flat space when all the background sources
have been switched off. For the U(1) monopole and dipole currents, we revert back to the
expressions we found before

Jt=qd*®,
J'=-0; (ig A" 9 —iqd** AY)
JU = —iq A% +iqd** AV (B.9)
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whereas for the energy density, energy current, momentum density, and stress tensor, we get

et = é(cp*at@—cpat@*)—c,

e =—2Bl+; (A"95,8 + 9*0,8* AV)

nl = —é (¢*0'® —®3'9"),
7l = £5Y + 2BV — 9, (2495 — AUp*e + 2670 o* Ak —*0%0* AV),  (B.10)

where AY, B;;, and B,; are defined as

ij>
Xti =¢ 3i8t<1> - alq) aﬁb 5

Aij = As(ka + '}’q)z)5l] + ATXij 5

B = A(X% i + 792 Xy + Ag (XK +y@2) XS + ArhPo (X7 X8 + x5 x.5),

Bij = As(XN +y®2) X + As (X5 i + v @)X + 220 X5, Ak (B.11)

Note that T(ijj is identically zero in the absence of background fields.
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