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Abstract

The recent emergence of the modern conformal bootstrap method for the study of
conformal field theories (CFTs) has enabled the revisiting of old problems in classical
critical phenomena described by three-dimensional CFTs. The study of such CFTs with
O(m)noSn global symmetry, also known as MN models, is pursued in this work. Systems
of mixed correlators involving scalar operators in two different representations of the
global symmetry group are considered. Isolated allowed regions are found in parameter
space for various values of m and n. These “islands” can be separated into two qualita-
tive groups: those close to the unitarity bound and those further away. As a by-product
of our analysis generic tensor structures required to bootstrap any Gn

o Sn theory with
G arbitrary are worked out.
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1 Introduction

Since its modern revival, the numerical conformal bootstrap [1] has provided a powerful and
efficient tool for the study of conformal field theories (CFTs).1 Its most remarkable successes
have been found in d = 3 spacetime dimensions, where it has been used to determine critical
exponents and other quantities of interest in the O(N) family of models, [4] (N = 1), [5]
(N = 2) and [6] (N = 3), as well as the supersymmetric Ising (N = 1) variant [7,8].

Beyond these widely studied examples, it is desirable to extend applications to less exam-
ined ones. Three-dimensional multi-scalar theories provide ideal candidates, since they are
simultaneously some of the simplest non-trivial theories one may write down, but at the same
time they are also physically relevant due to their applications to classical critical phenomena.
If one wishes to scan over all the low lying scalar operators as externals in the theory (which
would presumably make results more constraining), the number of sum rules one needs to
consider is (much) larger than the O(N) case. This is due to the fact that subgroups of O(N)
always have (the same or) more irreducible representations than O(N) in the relevant opera-
tor product expansions (OPEs).2 Additionally, one of the most important assumptions in the
O(N) case, namely ∆φ′ ¾ 3 with φ′ the next-to-leading operator in the vector representation
of O(N), cannot be used since in a typical multi-scalar theory the next-to-leading operator

1For a review see [2] and for a pedagogic introduction see [3].
2Recently there has been some notable progress regarding techniques for higher dimensional scans in param-

eter space; see e.g. [9]. See also [10] for an example with two externals but many exchanged parameters scanned
over.
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in the defining representation has a strongly relevant dimension. This is because the vector
representation “φ3” operator in a generic multi-scalar theory cannot be neglected due to the
equation of motion as in the O(N) case, which in turn limits the size of the gaps we can impose
in this sector.

There are many three-dimensional multi-scalar models to consider. Perhaps the most well-
known one is the cubic model, which is a theory whose global symmetry group consists of the
cubic subgroup Z 3

2 o S3 of O(3). Conformal field theories with cubic and the more general
hypercubic symmetry have been bootstrapped in [11–14]. Many other examples to be consid-
ered include fixed points already discovered with the ε expansion a long time ago,3 as well
as a wealth of new ε expansion fixed points presented in [16]. With the addition of fermions
there are presumably many fixed points to study with the bootstrap, including supersymmetric
ones [17].

In this work we continue the study of scalar MN models by considering a multi-correlator
study of CFTs with O(m)noSn global symmetry in three dimensions. These models have been
analyzed with the ε expansion [15,18–23] as well as the numerical conformal bootstrap [24],
where a single-correlator study was pursued. Our goal is to find the minimal set of conditions
that allow us to isolate allowed regions in parameter space at the positions of kinks of the
single-correlator bounds obtained in [24]. As was explored in [24] and also in [25], bounds
of m= 2 theories contain two kinks with potential applications to critical phenomena for low
n and of theoretical interest at larger n. There is no proof that a kink of the type we find in
a numerical bootstrap bound must be due to the presence of an actual CFT. However, we will
consider such kinks to be strong indicators for the presence of actual CFTs. For an in-depth
discussion of experimental realizations of the CFTs we will study and their significance within
field theory we refer the reader to [24].

By considering systems of correlators involving operators in multiple irreducible represen-
tations (irreps) of the global symmetry group, we manage to find isolated allowed regions
(islands) at the positions of kinks of single-correlator bounds. To get these islands we make
assumptions on the operator spectrum, but we try to keep the number of such assumptions
to a minimum. We find that we typically have to require the presence of a conserved current
and stress-energy tensor and gaps to the next-to-leading spin-1 and spin-2 operators in the
corresponding irreps. Also, if we wish to obtain an island in the ∆φ-∆S plane,4 we need to
require that the leading operator in a specific irrep (called X below) saturates the bound ob-
tained from the single-correlator bootstrap. However, to obtain an island in the∆φ-∆X plane,
no such assumption is required. We note that the ∆X bound is of interest since it displays
pronounced features/kinks in parameter space.

One particularly interesting island is found for the second kink of the MN20,2 theory (see
Fig. 11 below). This island is obtained in the ∆φ-∆S plane, where φ is the defining and S
the singlet irrep of MN20,2. A notable feature of this island is that the dimensions ∆φ and
∆S that define it are low, while the assumptions we make to obtain it force the dimensions of
next-to-leading operators in a variety of irreps to be high.

For the experimentally relevant MN2,2 and MN2,3 theories we find islands at the first kinks
of the corresponding single-correlator bootstrap bounds. One would expect the values of ∆φ
and ∆S in these islands to match the results obtained in the ε expansion. This is not the case,
however, and the potential resolutions are either that the ε expansion results in the ε → 1
limit are not trustworthy or that the bootstrap kink is due to a theory distinct from that of the
ε expansion. We note that at large m and large n the bootstrap results we obtain for MNm,n
theories agree very well with the ε expansion.

3See for example [15] for a relatively recent review of known fixed points in the ε expansion below four
dimensions.

4Where φ is the order parameter field and S the scalar singlet.

3

https://scipost.org
https://scipost.org/SciPostPhys.12.6.206


SciPost Phys. 12, 206 (2022)

For various values of m and n we initiate a preliminary study of symmetric tensors Zab
i j of

MNm,n, similar in spirit to [26]. We find a family of kinks that in the large n limit converge
to the point ∆Z =

1
2 and ∆Y = 2, which hints towards a standard Hubbard–Stratonovich

description in this limit. Conversely, in the large m limit, the field Y does not converge to
∆Y = 2. We delegate a careful study of these bounds to future work.

We also work out the required tensor structures (under global symmetry) for generic
groups Gn o Sn with G arbitrary. There are at least two motivations for doing so. First,
there exist experimentally relevant cases among such models. For example, beyond the cubic
(Z 3

2 o S3), MN2,2 (O(2)2 o S2) and MN2,3 (O(2)3 o S3) models mentioned earlier, there are
also the so called tetragonal theories (D4

noSn, with D4 the dihedral group of 8 elements). An
incomplete list of references where the reader may find a number of physically motivated ex-
amples is [27–31]. A second, broader, motivation stems from our pursuit to better understand
the space of three-dimensional CFTs. We hope that our results will enable a variety of future
bootstrap studies.

This paper is organized as follows. In the next section we present a quick review of M
N models as understood from a Lagrangian point of view and describe our results for global
symmetries of the type Gn o Sn. In section 3 we present our numerical bootstrap results. We
conclude in section 4. Four technical appendices include calculations of crossing equations in
a variety of cases relevant for this work.

2 MN and Gn
o Sn symmetries

2.1 Definition and Lagrangian description in d = 4− ε

The global symmetry group MNm,n = O(m)n o Sn consists of n copies of the O(m) model that
can be permuted with each other. Consider a scalar field multiplet φa

i , where the upper index
labels the copy and the lower index is an O(m) index. With this field we may write the multi-
scalar MNm,n-invariant Lagrangian

L = ∂µφa
i ∂

µφa
i +m2φa

i φ
a
i + u(φa

i φ
a
i )

2 + vδabcdφ
a
i φ

b
i φ

c
jφ

d
j , (1)

where summation over repeated indices is implicit and we keep up to quartic terms in φ. The
field φa

i transforms in the “defining” representation of MNm,n. In other words, the index a has
its values permuted by Sn, and O(m) acts asφa

i → Ri jφ
a
j with R including proper and improper

rotations. If one were to set u = 0 in (1), then (1) would be the Lagrangian of n decoupled
O(m) models. Thus, when both u and v are non-zero we obtain a theory describing n coupled
O(m) models. Single-coupling deformations of the O(N) theory lead to a total of four fixed
points [15,23,32], which correspond to the free theory, n coupled O(m) models (i.e. the MN
theory), n decoupled O(m) models, and the O(mn) theory.

The generalization of (1) to the GnoSn-symmetric case for G arbitrary is straightforward:

L = ∂µφa
i ∂

µφa
i +m2φa

i φ
a
i + u(φa

i φ
a
i )

2 +
∑

r

vr δabcd T r
i jklφ

a
i φ

b
j φ

c
kφ

d
l , (2)

where r labels the four-index fully symmetric invariant tensors T r
i jkl of G, to each of which we

associate a coupling vr . Only fields from the same copy of G interact when u= 0. In tetragonal
theories (see e.g. [15]), where G = D4 with D4 the dihedral group of eight elements, we have
r = 1,2.

A minor comment is that instead of viewing (1) and (2) as n decoupled G-symmetric
theories which are consequently coupled via the addition of the u term, we may also view them
as deformations of an O(mn) symmetric theory with a term that breaks the symmetry down
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to Gn o Sn. Both approaches are fruitful. For example, the authors of [33] study hypercubic
theories, where G = Z2, by performing conformal perturbation theory around the CFT of n
decoupled Ising models, whereas the authors of [6] discuss the cubic theory, where G = Z2 and
n = 3, by writing it as a deformation of O(3) and then using conformal perturbation theory.
Both approaches led to different and interesting results.

2.2 The φa
i ×φ

b
j OPE

The product of two fields transforming in the defining representation of GnoSn is schematically
expressed as

φa
i ×φ

b
j ∼ δ

abδi jS +δi jX
ab + I1

ab
i j + · · ·+ IN

ab
i j + Zab

i j + Bab
i j . (3)

Here the lower indices take on values i, j = 1, . . . , m with m the dimension of the defin-
ing irrep of G and the upper indices take on values a, b = 1, . . . , n.5 The representations
on the right-hand side of (3) are to be understood as follows. The last two representa-
tions do not exist if a = b, whereas all other representations exist only if a = b. The first
representation, S, is the singlet. The representation X is a singlet of Gn and traceless in
Sn, or to rephrase, it is the fundamental representation of Sn. The representations Z and
B satisfy Zab

i j = Z ba
ji and Bab

i j = −Bba
ji . The remaining irreps Ii , i = 1, . . . ,N , correspond

to non-singlet representations of G. The dimensions of the irreps (S, X , I1, . . . , IN , Z , B) are
(1, n−1, n dim R1, . . . , n dim RN , m2 n(n−1)

2 , m2 n(n−1)
2 ), where R1, . . . , RN are the non-singlet ir-

reps of G that appear in the φi × φ j OPE of G. An easy mnemonic rule for obtaining the
decomposition in (3) is to decompose onto irreps of G when a = b and to simply symmetrize
and antisymmetrize the indices when a 6= b.

We may decompose a four point function 〈φa
i φ

b
j φ

c
kφ

d
l 〉 into the irreps that appear in (3).

Doing this, we find tensor structures of the global symmetry which in turn determine the sum
rules to be eventually studied numerically. Notably, these tensor structures are projectors.6

The explicit expressions are

(PS)abcd
i jkl =

1
mn
δabδcdδi jδkl ,

(PX )abcd
i jkl =

1
m
δi jδkl

�

δabcd −
1
n
δabδcd
�

,

(P I1)abcd
i jkl = δ

abcd PR1
i jkl ,

. . .

(P IN )abcd
i jkl = δ

abcd PRN
i jkl ,

(PZ)abcd
i jkl =

1
2((δ

acδbd −δabcd)δikδ jl + (δ
adδbc −δabcd)δilδ jk) ,

(PB)abcd
i jkl =

1
2((δ

acδbd −δabcd)δikδ jl − (δadδbc −δabcd)δilδ jk) , (4)

where the tensors PR1
i jkl , . . . , PRN

i jkl correspond to the projectors of the irreps R1, . . . , RN of
G. Note that all invariant tensors are expressed in terms of (generalized) Kronecker deltas, up
to the form of the PR1

i jkl , . . . , PRN
i jkl invariant tensors.

We now give a set of explicit examples to clear up any confusion.

2.2.1 Example 1: hypercubic theories

We start with hypercubic theories, which have been bootstrapped in [11–14]. In this exam-
ple, G = Z2 and so the lower indices (i, j, k, l) may be dropped. Also, in the OPE between

5For every value a∗ of the upper index a, φa∗
i furnishes the defining irrep of the corresponding G in Gn.

6Assuming they are normalized properly, which we won’t always do. Nevertheless, by slight abuse of termi-
nology we will still call them projectors.
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two operators charged under Z2 only the singlet representation appears, thus we have no “I”
representations. Hence, the projectors are

(PS)abcd =
1
n
δabδcd ,

(PX )abcd = δabcd −
1
n
δabδcd ,

(PZ)abcd = 1
2((δ

acδbd −δabcd) + (δadδbc −δabcd)) ,

(PB)abcd = 1
2((δ

acδbd −δabcd)− (δadδbc −δabcd)) ,

(5)

where the irreps (S, X , Z , B) have dimensions (1, n− 1, n(n−1)
2 , n(n−1)

2 ), in agreement with the
dimensions stated above when m= 1.

2.2.2 Example 2: MN theories

Next, we consider the MN theories studied in [24] and [25]. In this example we have G = O(m).
Since the OPE between two vectors of O(m) exchanges, beyond the singlet, the two-index
traceless symmetric T and antisymmetric A irreps, we have R1 = T and R2 = A. For these
irreps we know that PR1

i jkl =
1
2(δikδ jl + δilδ jk −

2
mδi jδkl) and PR2

i jkl =
1
2(δikδ jl − δilδ jk).

We thus obtain

(PS)abcd
i jkl =

1
mn
δabδcdδi jδkl ,

(PX )abcd
i jkl =

1
m
δi jδkl

�

δabcd −
1
n
δabδcd
�

,

(P I1)abcd
i jkl = δ

abcd PR1
i jkl ,

(P I2)abcd
i jkl = δ

abcd PR2
i jkl ,

(PZ)abcd
i jkl =

1
2((δ

acδbd −δabcd)δikδ jl + (δ
adδbc −δabcd)δilδ jk) ,

(PB)abcd
i jkl =

1
2((δ

acδbd −δabcd)δikδ jl − (δadδbc −δabcd)δilδ jk) ,

(6)

where the representations (S, X , I1, I2, Z , B) have dimensions
�

1 , n− 1 , n
(m− 1)(m+ 2)

2
, n

m(m− 1)
2

, m2 n(n− 1)
2

, m2 n(n− 1)
2

�

, (7)

in agreement with the general formulas given earlier and the computations of [24]. In what
follows we will rename I1 and I2 as Y and A to keep the same names as [24].

2.2.3 Example 3: Tetragonal theories and their generalizations

We may also study a generalization of the tetragonal theories bootstrapped in [24]. In this
example we have G = Z m

2 o Sm. Thus, similarly,

(PS)abcd
i jkl =

1
mn
δabδcdδi jδkl ,

(PX )abcd
i jkl =

1
m
δi jδkl

�

δabcd −
1
n
δabδcd
�

,

(P I1)abcd
i jkl = δ

abcd
�

δi jkl −
1
m
δi jδkl

�

,

(P I2)abcd
i jkl = δ

abcd 1
2(δikδ jl +δilδ jk − 2δi jkl) ,

(P I3)abcd
i jkl = δ

abcd 1
2(δikδ jl −δilδ jk) ,

(PZ)abcd
i jkl =

1
2((δ

acδbd −δabcd)δikδ jl + (δ
adδbc −δabcd)δilδ jk) ,

(PB)abcd
i jkl =

1
2((δ

acδbd −δabcd)δikδ jl − (δadδbc −δabcd)δilδ jk) ,

(8)
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where now the irreps (S, X , I1, I2, I3, Z , B) have dimensions
�

1 , n− 1 , n(m− 1) , n
m(m− 1)

2
, n

m(m− 1)
2

, m2 n(n− 1)
2

, m2 n(n− 1)
2

�

. (9)

These indeed agree with and generalize to arbitrary m the results of [24].

2.3 The φa
i × X bc OPE

In our mixed correlator system we will need to consider the OPE of φ with X . A first observa-
tion is that the decomposition of this OPE does not depend on G because X is a singlet of G.
We also know that φ×X should exchange φ, as dictated by self-consistency of the three-point
function, i.e. calculating the three point function with different OPEs should give the same
result. Lastly, the existence of the defining representation (φ) on the right hand side of the
OPE implies the existence also of an antisymmetric representation (Ā) on the right-hand side,
see e.g. [34, Chapter 4.3]. If one now counts the dimensions of these two irreps (φ and Ā),
their sum turns out equal to the product of the dimensions on the left-hand side of the OPE.
Thus, the OPE is fully decomposed. Schematically, the decomposition looks like

φa
i X bc ∼ (Pφ)abcde fφd

i X e f + (P Ā)abcde fφd
i X e f , (10)

where

(Pφ)abcde f = δabcde f −
1
n
(δbcδade f +δe f δabcd) +

1
n2
δadδbcδe f (11)

and

(P Ā)abcde f = −δabcde f +
n− 1

n
δadδbce f +

1
n
(δbcδade f +δe f δabcd)−

1
n
δadδbcδe f . (12)

It is a straightforward exercise to contract the tensors quoted above in (10) and obtain the
expected representation dimensions. Note that (11) and (12) are the projectors we need
in order to obtain the sum rules from the corresponding crossing equations. An additional
check one can perform is test the above decomposition for some discrete group G in which the
decompositions are known, and then remembering that the formula is G-independent one has
proved the result.

2.4 The X ab × X cd OPE

It is useful to remember at this point that the X representation is simply the fundamental
representation of Sn, and so its OPE decomposition is already known from e.g. [35]; see also
the later works [11] and [12]. Hence, both projectors and crossing equation sum rules are
known. Note that the fundamental of Sn is usually written with one index. For the explicit
map between the one- and two- index notations see [34].

2.5 The n¾ 4 Z ab
i j × Z cd

kl OPE

In this work we will also consider the 〈Z Z Z Z〉 single correlator bootstrap for values of n ¾ 4
(and m ¾ 2). This is because we can then probe various large parameter limits, such as the
m→∞ and n→∞ limits.7 Probing such limits may give hints about the existence or not of
possible perturbative expansions of theories satisfying these single correlator constraints. One
such example could be a theory where the order parameter field transforms in the Z irrep. A
similar study was performed for traceless tensors of O(n) in [26] and adjoints of SU(n) in [36],

7For m ¾ 2 and n ¾ 4 the sum rules take their most general form, valid for any such m and n. In Appendix B
we additionally work out the n= 2 case, which is special.

7

https://scipost.org
https://scipost.org/SciPostPhys.12.6.206


SciPost Phys. 12, 206 (2022)

where theories with order parameter fields in these representations were analysed. The reader
may skip this subsection on a first reading since it is rather technical, and return on a second
read-through.

For n ¾ 4 one finds 21 irreducible representations on the right-hand side of the n ¾ 4
Zab

i j × Z cd
kl OPE.8 We present the projectors of the 21 irreps in Appendix C, where we also

explain the generalization to arbitrary group G. When all indices a, b, c and d are different,
we have three exchanged irreps. It is convenient to define T ab,cd

i j,kl = Zab
i j Z cd

kl + Z cd
kl Zab

i j and

T̄ ab,cd
i j,kl = Zab

i j Z cd
kl −Z cd

kl Zab
i j , which obviously satisfy T ab,cd

i j,kl = T cd,ab
kl,i j and T̄ ab,cd

i j,kl = −T̄ cd,ab
kl,i j . With

this in mind, we have
Zab

i j × Z cd
kl ∼ T ab,cd

i j,kl + T̄ ab,cd
i j,kl . (13)

The right-hand side may now be further decomposed by symmetrizing and antisymmetrizing
indices,

Zab
i j × Z cd

kl ∼ (T
ab,cd
i j,kl + T ac,bd

ik, jl + T ad,bc
il, jk ) + (T

ab,cd
i j,kl − T ac,bd

ik, jl ) + (T
ab,cd
i j,kl − T ad,bc

il, jk ) (14)

+ (T̄ ab,cd
i j,kl + T̄ ac,bd

ik, jl ) + (T̄
ab,cd
i j,kl + T̄ ad,bc

il, jk ) + (T̄
ab,cd
i j,kl − T̄ ac,bd

ik, jl ) + (T̄
ab,cd
i j,kl − T̄ ad,bc

il, jk ) ,

which may also be rewritten as

Zab
i j × Z cd

kl ∼ TotSabcd
i jkl + BBad,bc

il, jk + BBac,bd
ik, jl

+ BZad,bc
il, jk + BZac,bd

ik, jl + ZBad,bc
il, jk + ZBac,bd

ik, jl ,
(15)

where TotS is totally symmetric in all pairs of indices,9 whereas for BB and BZ we have the
relations BBac,bd

ik, jl = −BBca,bd
ki, jl = −BBac,d b

ik,l j = BBbd,ac
jl,ik and BZac,bd

ik, jl = −BZ ca,bd
ki, jl = +BZac,d b

ik,l j =

−BZ bd,ac
jl,ik . Lastly, notice that BZ and ZB are the same representation since BZab,cd

i j,kl = ZBcd,ab
kl,i j .

Next we must consider the representations where one or more of the copy (i.e. upper)
indices are equal in Zab

i j × Z cd
kl . These are rather simple: if a pair of copy indices are equal we

decompose onto irreps of that copy of G, whereas if two copy indices are different we simply
symmetrize and antisymmetrize. Let us give some examples. Consider a = c and b 6= d. We
have

Zab
i j × Z cd

kl ∼ (Z
ab
i j Z cd

kl + Zad
il Z cb

k j ) + (Z
ab
i j Z cd

kl − Zad
il Z cb

k j )∼ RZac,bd
ik, jl + RBac,bd

ik, jl , (16)

where the part R simply signifies that a = c but is not an irrep. To decompose R onto irreps we
must decompose the indices i and k onto G irreps and then subtract the trace of copies from
the singlet of G:

RZac,bd
ik, jl ∼
�

RZac,bd
ik, jl + RZac,bd

ki, jl −
2
m
δikRZac,bd

mm, jl

�

+ (RZac,bd
ik, jl − RZac,bd

ki, jl ) +
2
m
δikRZac,bd

mm, jl , (17)

and

δikRZac,bd
mm, jl ∼ δik

�

RZac,bd
mm, jl −

1
n− 2

δacRZ ee,bd
mm, jl

�

+
1

n− 2
δikδacRZ ee,bd

mm, jl ∼ X Zac,bd
ik, jl + SZac,bd

ik, jl ,

(18)

where we have absorbed factors of Kronecker deltas in the representations in order to simplify
the notation. Combining all this information together we find

RZac,bd
ik, jl ∼ Y Zac,bd

ik, jl + AZac,bd
ik, jl + X Zac,bd

ik, jl + SZac,bd
ik, jl , (19)

8Note that for n = 3 there are fewer irreps. Also, the invariant tensor δabcde f gh becomes expressible in terms
of tensors with fewer indices, see e.g. [13]. We omit an analysis of the n= 3 case in the present work since we are
interested in the large parameter limits.

9Remember that permuting a with b means we must permute i with j, hence we do not permute indices, but
pairs of them.
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which we remind the reader is for a = c and b 6= d. For the full expression one needs to
consider all possible combinations.

The last case we must consider is when we have pairs of copy indices equal, e.g. a = c and
b = d. We must again decompose onto irreps of G. Let us start by first decomposing j and l
onto G irreps:

Zab
i j ×Z cd

kl ∼ RRac,bd
ik, jl ∼
�

RRac,bd
ik, jl +RRac,bd

ik,l j −
2
m
δ jlRRac,bd

ik,mm

�

+(RRac,bd
ik, jl −RRac,bd

ik,l j )+
2
m
δ jlRRac,bd

ik,mm .

(20)
This is rewritten as

Zab
i j × Z cd

kl ∼ RY ac,bd
ik, jl + RAac,bd

ik, jl +
2
m
δ jlRRac,bd

ik,mm , (21)

where we use RRac,bd
ik, jl to denote an object that is not an irrep but has a = c and b = d. We will

now focus on the last term, which is the most complicated. We decompose the i and k indices
onto G irreps,

RRac,bd
ik,mm ∼
�

RRac,bd
ik,mm + RRac,bd

ki,mm −
2
m
δikRRac,bd

nn,mm

�

+ (RRac,bd
ik,mm − RRac,bd

ki,mm) +
2
m
δikRRac,bd

nn,mm , (22)

which is equivalent to

RRac,bd
ik,mm ∼ Y Rac,bd

ik,mm + ARac,bd
ik,mm +

2
m
δikRRac,bd

nn,mm . (23)

The last term is again the most complicated.10 Defining T ac,bd = RRac,bd
nn,mm, we subtract all

possible traces to construct irreducible objects:

T ac,bd ∼ T ac,bd −
1

n− 2
(δbd T ac,ee +δac T ee,bd) +

δacδbd

(n− 1)(n− 2)
T ee, f f

+
δbd

n− 2

�

T ac,ee −
δac

n
T ee, f f
�

+
δac

n− 2

�

T ee,bd −
δbd

n
T ee, f f
�

−δacδbd

� 1
(n− 1)(n− 2)

−
2

n(n− 2)

�

T ee, f f

∼ X̄ ac,bd + XSac,bd + SX ac,bd +δacδbdS ,

(24)

where again we have absorbed various factors in the definitions of the irreps. The other
irreps follow rather straightforwardly, hence we omit a detailed analysis. In conclu-
sion we find the 21 irreps (S, XS, X̄ , X Y , XA, SY , SA, Y Y , AA, YA, BB, TotS, X B,
X Z , SB, SZ , Y B, Y Z , AB, AZ , BZ) with respective dimensions (S : 1, XS : n − 1,
X̄ : n(n − 3)/2, X Y : n(n − 2)(m − 1)(m + 2)/2, XA : n(n − 2)(m − 1)m/2,
SY : n(m − 1)(m + 2)/2, SA : n(m − 1)m/2, Y Y : n(n − 1)(m + 2)2(m − 1)2/8,
AA : n(n−1)(m−1)2m2/8, YA : n(n−1)(m−1)2m(m+2)/4, BB : 2m4n(n−1)(n−2)(n−3)/(4!),
TotS : m4n(n− 1)(n− 2)(n− 3)/(4!), X B : (n− 3)m2n(n− 1)/2, X Z : (n− 3)m2n(n− 1)/2,
SB : m2n(n − 1)/2, SZ : m2n(n − 1)/2, Y B : (m + 2)(m − 1)m2n2(n − 1)/4,
Y Z : (m+ 2)(m− 1)m2n2(n− 1)/4, AB : (m− 1)m3n2(n− 1)/4, AZ : (m− 1)m3n2(n− 1)/4,
BZ : 3m4n(n− 1)(n− 2)(n− 3)/(4!)).

10Since, for example, we know Y Rac,bd
ik,mm ∼ Y Rac,bd

ik,mm−δ
bd Y Rac,ee

ik,mm/(n−1)+δbd Y Rac,ee
ik,mm/(n−1) or stated in terms

of the irreps Y Rac,bd
ik,mm ∼ Y X ac,bd

ik, jl +Y Sac,bd
ik, jl where again we have absorbed Kronecker deltas and numerical factors in

the definitions of the irreps for simplicity.
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3 Numerical results

With the group theory outlined above and the sum rules given in the appendices we are ready
to start obtaining numerical results. We start by probing the system of four point correlators
obtained by considering all combinations of external operators φa

i and X bc . We then conclude
the chapter by presenting bounds pertaining to four point functions of symmetric tensors Zab

i j .

3.1 Islands close to the unitarity bound

In this section we study the portion of parameter space “close” to the unitarity bound. By this
we refer to values of the order parameter scaling dimensions roughly around 0.5-0.53; these
correspond to typical values found in fixed points of multi-scalar theories. However, this does
not necessarily mean that the theories we find are due to the fixed point of some multi-scalar
Lagrangian description. For n sufficiently large we find kinks, and corresponding islands, that
converge to the expected values, that is ∆φ = ∆

O(m)
φ

and ∆X = ∆
O(m)
S .11 Here ∆O(m)

φ
is the

scaling dimension of the order parameter field and∆O(m)
S is the scaling dimension of the lowest

lying scalar singlet, both in the theory of n decoupled O(m) models. For smaller values of n,
which also correspond to the phenomenologically interesting values, it is not clear whether
the kinks (and their islands) correspond to the ordinary d = 4 − ε fixed points or are some
new hitherto unknown CFTs.

We separate our results into two groups depending on how we obtain the islands. In the
case where the islands are found in the ∆φ-∆X plane of parameter space, we impose gaps
on certain sectors mainly guided by the extremal functional method [37, 38].12 Since these
gaps are motivated by the extremal functional, their choice is not rigorous. Nevertheless, we
believe that even in absence of rigor our islands are sufficient to motivate that something
particularly interesting takes place in the corresponding region of parameter space. We also
present islands in the ∆φ-∆S plane, specifically in the phenomenologically interesting cases
O(2)2 o S2 and O(2)3 o S3. For these cases, in addition to assumptions described above, we
demand the saturation of certain exclusion bounds. More specifically, we demand that the
exclusion bounds in the X sector13 are saturated.

Obtaining islands by demanding saturation of exclusion bounds (in our case the X bound)
is somewhat morally similar to the extremal functional method where one may again demand
saturation of a bound to then find an approximate spectrum that corresponds to it. However,
we believe that our method minimizes the probability that a zero of the extremal function
is spurious. This is because in our approach we do not try to find approximate zeroes of
the functional, but instead show that the positions of these zeroes cannot be excluded by
the bootstrap algorithm (whereas the parameter space surrounding them can be). Also, in
conjunction with additional assumptions we can provide a minimum and maximum value for
∆φ . Lastly, we note that we have found these islands to depend smoothly on the precise
position of the X bound. In other words, if ∆X were to change a little there would be no
major changes in the corresponding ∆φ-∆S plane island. We confirmed this behavior while
working on [14], albeit for a slightly different symmetry, namely Z n

2 o Sn. Another way to

11Whereas for the scalar singlet one has and ∆S = d −∆O(m)
S , although we do not present results for this in the

present work.
12One can also try to justify the gaps from the large n point of view. For example, we know that the lead-

ing X ab operator has scaling dimension ∆X = ∆
O(m)
S + O(1/n), so we expect the subleading operator to have

dimension either ∆X ′ = ∆
O(m)
S′ + O(1/n) or ∆X ′ = 2∆O(m)

S + O(1/n) or ∆X ′ = ∆
O(m)
S + 2 + O(1/n) (remember

X ab ∼ (δabcd − 1
nδ

abδcd)φc
iφ

d
i in the weakly coupled limit). All these satisfy ∆X ′ > 3 at n→∞. The main issue

with this line of reasoning though is that we do not have the explicit corrections to subleading order in 1/n.
13These are the exclusion plots that display kinks/changes of slope.
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0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535
1

1.1

1.2

1.3

1.4

1.5

∆ϕ

∆X

Figure 1: Single correlator MN2,100 exclusion bound. The cross is the
O(2) model [5]. The line corresponds to the maximum allowed scaling
dimension of the first scalar X operator as a function of the scaling di-
mension of the order parameter operator. In qboot we used Λ = 45,
` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 20.

think of our method for obtaining islands in the ∆φ-∆S plane, is that we apply the usual
bootstrap algorithm, but to a specific slice of parameter space. This slice is precisely the one
that maximizes the scaling dimension ∆X .

We note that for our numerical calculations in the present work we use qboot [39]14 and
SDPB [41,42]. Some of the spectrum calculations were performed with PyCFTBoot [43].

3.1.1 Islands in the ∆φ-∆X plane of parameter space

In Figs. 2 and 4 we plot the islands corresponding respectively to the kinks in Figs. 1 and
3. Note that we do not present an island in the ∆φ-∆X plane for n = 2, even though it is
phenomenologically interesting. This is because up to Λ = 60 in qboot the allowed region
obtained is very large. For Fig. 2 and Fig. 1 we see good agreement with the perturbative
expectation.15 That is, as n → ∞ we expect ∆X → ∆S

O(m), hence for Fig. 2 in particular
we have ∆X ∼ ∆S

O(2) = 1.50946(22) and ∆φ ∼ ∆φO(2) = 0.519050(40) [5]. The interested
reader is referred to [44] for the large n limit in the case G = Z2 or to [45] for a more recent
reference. For Figs. 4 and 3 the situation is more complicated. We cannot make any conclusive
statements with regards to the theory captured by this island.

3.1.2 Islands in the ∆φ-∆S plane of parameter space

The motivation behind studying the islands in the∆φ-∆S plane of parameter space is twofold.
On the one hand, the∆φ-∆S plane of parameter space is the most immediately relevant one in
terms of critical exponents since ν= 1/(3−∆S) and β =∆φ/(3−∆S). On the other, this way
(i.e. by demanding saturation of the X sector exclusion bound) we can study specifically the
theory that creates the kink by excluding the rest of parameter space. We do again emphasize
that this approach is not rigorous in the usual sense of the term as used in the bootstrap.

With these considerations in mind, in Figs. 5 and 9 we obtain islands pertaining to the
theories saturating the corresponding MN2,3 and MN2,2 X sector bounds. Note that in Fig. 6

14We also encourage the reader to see [40], which automates the derivation of sum rules, although we did not
use it for the present paper since our groups of interest were not supported.

15SRK thanks Bernardo Zan for pointing out aspects of the large n description.
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0.516 0.518 0.52 0.522 0.524 0.526 0.528

1.46

1.48

1.5

1.52

∆ϕ

∆X

Figure 2: MN2,100 island corresponding to the kink in Fig. 1 obtained using the
mixed φ-X system of correlators. The cross is the O(2) model [5]. The is-
land assumes that the second scalar X and spin-1 A operators have scaling di-
mensions that satisfy ∆ ¾ 3.0, and the first spin-2 singlet after the stress ten-
sor has a dimension that satisfies ∆ ¾ 4.0. The first spin-1 A operator satisfies
∆A = 2.0 since it is the conserved vector of O(2), and the first spin-2 S oper-
ator satisfies ∆Tµν = 3.0. We also fixed the ratio of the OPE coefficients with
which the stress tensor appears, λφφTµν/λX X Tµν = ∆φ/∆X . Lastly, we imposed
∆φ′ ¾ 1.0 for the second operator in the defining representation. In qboot we used
Λ = 27, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

0.51 0.512 0.514 0.516 0.518 0.52 0.522 0.524 0.526
1.3

1.4

1.5

1.6

∆ϕ

∆X

Figure 3: Single-correlator MN2,3 exclusion bound. The line corresponds to the
maximum allowed scaling dimension of the first scalar X operator as a function
of the scaling dimension of the order parameter operator. In qboot we used
Λ = 45, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 20.

we present again the MN2,3 island but with much larger gaps in order to demonstrate that as
our gaps approach the values predicted by the extremal functional method the islands become
more smooth. Lastly, in Fig. 7 we explicitly show the overlap of these two figures.

Additionally, note that the rightmost tip of the left blue island in Fig. 9 extends to the
∆φ of the kink of Fig. 8. Thus, the putative theory that lives at that kink is allowed under
the assumptions mentioned in the caption of Fig. 9. Given that this is a marginal case, how-
ever, further numerical work with stronger numerics and more refined methods is required to
provide further clarity.
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0.514 0.516 0.518 0.52 0.522 0.524 0.526 0.528 0.53

1.3

1.4

1.5

1.6

∆ϕ

∆X

Figure 4: MN2,3 island corresponding to the kink in Fig. 3 obtained using the
mixed φ-X system of correlators. The island assumes that the second scalar X
and spin-1 A operators have scaling dimensions that satisfy ∆ ¾ 3.0 and the
first spin-2 singlet after the stress tensor has a dimension that satisfies ∆ ¾ 4.0.
The first spin-1 A operator satisfies ∆A = 2.0 since it is the conserved vec-
tor of O(2), and the first spin-2 S operator satisfies ∆Tµν = 3.0. We also
fixed the ratio of the OPE coefficients with which the stress tensor appears,
λφφTµν/λX X Tµν =∆φ/∆X . Lastly, we imposed ∆φ′ ¾ 1.0 for the next-to-leading op-
erator in the defining representation. To obtain this figure with qboot [39] we used
Λ = 27, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

0.517 0.518 0.518 0.519 0.519 0.52 0.52 0.521 0.521 0.522
1.24

1.26

1.28

1.3

1.32

∆ϕ

∆S

Figure 5: MN2,3 island corresponding to the theory saturating Fig. 3 obtained
using the mixed φ-X system of correlators. To obtain the island we imposed
∆S′ ¾ 3.0, ∆A = 2.0 (O(2) conserved vector), ∆A′ ¾ 3.0, ∆X ′ ¾ 3.0
and ∆φ′ ¾ 1.0. Lastly, we assumed that the first scalar X operator sat-
urates the bound of Fig. 3. To obtain this figure with qboot we used
Λ = 27, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

3.2 Islands further away from the unitarity bound

In [24]more kinks further away from the unitarity bound were observed, such as the one in Fig.
10. These were subsequently studied in [25]. In this work we probe them using two different
strategies. The first strategy is to bootstrap them directly, i.e. to demand that the exclusion
plot with the kink is saturated and impose assumptions inspired by the extremal functional
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0.5175 0.518 0.5185 0.519 0.5195 0.52 0.5205 0.521

1.24

1.26

1.28

1.3

1.32

∆ϕ

∆S

Figure 6: MN2,3 island corresponding to the theory saturating Fig. 3 ob-
tained using the mixed φ-X system of correlators. To obtain the island
we imposed ∆S′ ¾ 3.5, ∆A = 2.0 (O(2) conserved vector), ∆A′ ¾ 3.9,
∆X ′ ¾ 3.0 and ∆φ′ ¾ 1.5. Lastly, we assumed that the first X opera-
tor saturates the bound of Fig. 3. To obtain this figure with qboot we used
Λ = 20, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

0.517 0.517 0.518 0.518 0.519 0.519 0.52 0.52 0.521 0.521 0.522

1.24

1.26

1.28

1.3

1.32

∆ϕ

∆S

Figure 7: MN2,3 islands of the last two figures, namely Fig. 5 and Fig. 6, in a combined
plot. We emphasize that the blue island is computed at a lower Λ, and that is why it
appears larger on the left despite the stronger spectrum assumptions used to obtain
it compared to the green island. The stronger spectrum assumptions have an effect
on the right part of the island.

method to obtain an isolated allowed region. The second strategy is to try and study the kinks
indirectly, based on the observation made in [25] that the spectrum at these kinks contained
operators in other representations very close to the unitarity bound, namely fields in the Y
and Z irreps. Hence, since the numerical bootstrap tends to be stronger closer to the unitarity
bound, we can bootstrap these fields instead of the initial φ field we were studying. We only
give a brief example of this strategy in this work, and leave a more complete treatment to
future work.

An interesting observation about the second kinks is that, to our knowledge, they have
appeared in all works studying scalars involving the group Sn. More specifically they have
appeared in [11] (Sn × Z2), [34] (Z n

2 o Sn) and [25] (O(m)n o Sn). Notably, they always
appear in what we call the X sector in this work. Second kinks have also appeared in other
theories [26,36,46–49].
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0.51 0.512 0.514 0.516 0.518 0.52 0.522 0.524 0.526

1.4

1.5

1.6

1.7

∆ϕ

∆X

Figure 8: Mixed correlator (φ-X ) MN2,2 exclusion bound. The line corre-
sponds to the maximum allowed scaling dimension of the first scalar X op-
erator as a function of the scaling dimension of the order parameter op-
erator. Here we used the mixed- instead of the single-correlator system,
since in this particular case the sum rules are simpler and hence numerically
cheaper, than the n ¾ 3 cases. To obtain this figure with qboot we used
Λ = 45, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 20.

0.5165 0.517 0.5175 0.518 0.5185 0.519 0.5195 0.52 0.5205
1.22

1.23

1.24

1.25

∆ϕ

∆S

Figure 9: MN2,2 island corresponding to the theory saturating Fig. 8 obtained using
the mixed φ-X system of correlators. To obtain the island we imposed ∆S′ ¾ 3.0,
∆A = 2.0 (O(2) conserved vector),∆A′ ¾ 3.0,∆X ′ ¾ 3.0 and∆φ′ ¾ 1.0. Lastly, we as-
sumed that the first scalar X operator saturates the bound of Fig. 8. In qbootwe used
Λ = 35, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25. We also display (in blue) two narrow islands that correspond to the al-
lowed region that remains if we choose to saturate the ∆X bound at Λ = 35 instead
of Λ= 45 (Fig. 8 is obtained at Λ= 45).

Note that in Fig. 11 we were still able to obtain an island even if we imposed ∆S′ ¾ 5.0.
This is not allowed, though, for unitary CFTs in 3D, as can be seen from [50, Fig. 3].16 In
other words, the bootstrap seems to be completely insensitive to that operator. This is not the
first time we observe this phenomenon. For example when working on [51], where we had
concrete large n predictions to compare to, the bootstrap seemed to be completely insensitive
to the second scalar singlet at the antichiral fixed point for m= 2 and n= 10, even though all

16We thank Alessandro Vichi for bringing this to our attention
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4.8
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5.8

∆ϕ

∆X

Figure 10: Single-correlator MN20,2 exclusion bound. The line corresponds to the
maximum allowed scaling dimension of the first scalar X operator as a function of
the scaling dimension of the order parameter operator. In qboot we used Λ = 45,
` = {0, . . . , 60,63, 64,66,67, 73,74, 77,78, 81,82, 85,86, 89,90, 93,94, 97,98} and
νmax = 26.

0.725 0.73 0.735 0.74 0.745 0.75
1

1.1

1.2

1.3

1.4

∆ϕ

∆S

Figure 11: MN20,2 island in the φ-S plane of parameter space. To obtain this fig-
ure we assumed that the first spin-two singlet is the stress-energy tensor and that
X saturates the bound of Fig. 10. We further imposed ∆S′ ¾ 3.0, ∆T ′µν

¾ 6.0
(next-to-leading spin-two singlet), ∆X ′ ¾ 10.0, ∆φ′ ¾ 1.0. In qboot we used
Λ = 35, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

other CFT data agreed exceptionally well with the perturbative predictions. We believe that
sensitivity to the second scalar singlet should be restored once S is included as an external
operator.

3.3 The n= 2 Z ab
i j × Z cd

kl single correlator bootstrap

In Fig. 12 we display the bound for the maximum allowed scaling dimension for the first
operator in the SY representation as a function of ∆Z . For this plot we use the sum rules
from Appendix B. There seems to be a kink roughly around the position of the second SY
operator and first Z operator of the corresponding MN100,2 theory studied in [25]. Beyond
this similarity at the level of certain scaling dimensions we do not know if this kink is due to
the same theory or some other theory. This is in part due to the fact that [25, Fig. 4] converges
very slowly with Λ.
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Figure 12: Single correlator MN100,2 exclusion bound using the 〈Z Z Z Z〉 cross-
ing equation. The line corresponds to the maximum allowed scaling dimension
of the first SY (remember SY = Y ) operator as a function of the scaling dimen-
sion of the order parameter operator. To obtain this figure with qboot we used
Λ = 20, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

3.4 The n¾ 4 Z ab
i j × Z cd

kl single correlator bootstrap

With the expressions for the sum rules of a four-point function of Zab
i j operators worked out

for generic m ¾ 2 and n ¾ 4, it is interesting to study the behavior of the bounds in various
parameter limits. To this end, in Fig. 13 we probe the large m limit, whereas in Fig. 14 we
probe the large n limit. We find that the most interesting exclusion bound is the one in the SY
sector, which displays a sharp kink for all values of m and n tested. In the large n limit the kink
converges to the point (∆SY = 2, ∆φ = 1) which hints at a “standard”17 large n Hubbard–
Stratonovich description. On the other hand, it is not clear what the theory converges to in
the large m limit.

Another interesting thing to look at is the exclusion bound for the first operator transform-
ing in the BB representation. Representations that are antisymmetric in two pairs of indices
tend to require higher powers of the field or derivatives in order to be written down and not
vanish identically;18 see related discussions in [49] and [36]. We note that this is true for the-
ories where the fields may be written as polynomials of other fields, i.e. which have a weakly
coupled description. However, we do expect intuitively that some qualitative features may
carry over to the strong coupling limit. This is indeed what we observe in Fig. 15 where we
find a kink that has (very roughly) ∆BB ∼ 2∆Z + 2∼ 4∆Z .

Let us note that we have checked that our bounds do not change if we assume that the
external Z operator appears in its OPE with itself. We checked this by looking at the∆SZ ∼∆Z
exclusion bound, for e.g. m = 5 and n = 5 and did not see any difference in our bounds (up
to a vertical precision of 10−6 that we checked). More explicitly, we checked that if Z is
exchanged in the Z × Z OPE, then the exclusion bound on the second exchanged operator in
this representation is identical to the exclusion bound of the first exchanged operator in the
Z irrep if one assumes that the external operator is not exchanged. Additionally, we checked
that for e.g. m = 1000 and n = 4 the corresponding ∆SY exclusion bound in Fig. 13 remains
unchanged even after adding the assumption ∆SZ ¾ 1.0. The question of whether or not
Z should appear in its OPE with itself is important, since if it does not, that would exclude

17For the “non-standard” large n description see the discussion in section 3.1.1
18We thank Alessandro Vichi for pointing us in this direction.
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Figure 13: Single correlator MN exclusion bound using the n ¾ 4 〈Z Z Z Z〉
crossing equation. We display the behavior for n = 4 fixed and for in-
creasing m (m = 10 green, m = 100 red and m = 1000 blue). The
line corresponds to the maximum allowed scaling dimension of the first SY
(remember SY = Y ) operator as a function of the scaling dimension of
the order parameter operator. To obtain this figure with qboot we used
Λ = 15, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.
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Figure 14: Single correlator MN exclusion bound using the n ¾ 4 〈Z Z Z Z〉 cross-
ing equation. We display the behavior for m = 10 fixed and for n = 4 (red) and
n = 10 (blue). The line corresponds to the maximum allowed scaling dimension
of the first SY (remember SY = Y ) operator as a function of the scaling dimen-
sion of the order parameter operator. To obtain this figure with qboot we used
Λ = 15, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

a cubic (in powers of the order parameter field) term in a possible Hamiltonian/Lagrangian
description of the theory. This is because in this case the Z field would transform under an
additional Z2 symmetry.
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Figure 15: Single correlator MN exclusion bound using the n= 10 and m= 2 〈Z Z Z Z〉
crossing equation. The line corresponds to the maximum allowed scaling dimension
of the first BB operator in the Z × Z OPE. To obtain this figure with qboot we used
Λ = 15, ` = {0, . . . , 50, 55,56, 59,60, 64,65, 69,70, 74,75, 79,80, 84,85, 89,90} and
νmax = 25.

4 Summary and conclusion

We have studied kinks and islands that arise when three-dimensional CFTs with O(m)n o Sn
global symmetry are analyzed with the numerical bootstrap both “close” and “far” from the
unitarity bound. With regards to the analysis close to the unitarity bound, we found that in
the large number of copies limit the kinks converge to the expected position from perturbative
calculations. However, when we examine theories with a small number of copies we do not
agree with the ε expansion predictions. This has two interpretations. The first interpretation
is that the theories we find are those of the ε expansion, but for some reason the actual pertur-
bative predictions are very inaccurate. The second is that the kinks are due to another theory
that converges to the same point when the number of copies is taken to be large. Note that
this is precisely the same qualitative behavior observed in the case of hypercubic theories.

In addition to the above, we have worked out the tensor structures for problems including
groups of the form GnoSn with G and n arbitrary. To this end, as an application of these results
we bootstrapped the four-point function of symmetric tensors Zab

i j of O(m)noSn. Although we
found various interesting features, we left a more detailed analysis of these theories for future
work.

There are various future directions that stem from the present work. One is to bootstrap
a mixed system of correlators involving φa

i and Z bc
jk , this would give us a better handle on

theories like the ones in Figs. 11 and 12. Also, having worked out the tensor structures for
Gn o Sn it would be interesting to bootstrap the theories consisting of n copies of the m state
Potts models and see if we can find any interesting features; see e.g. [52].

Acknowledgements

We thank Mocho Go for assistance regarding the implementation of OPE coefficient relations
and definitions in qboot. We are grateful to Alessandro Vichi for useful discussions and sug-
gestions and to Johan Henriksson for reading through the manuscript and providing useful
comments. Additionally, we thank two anonymous referees for their careful reading and con-
structive comments that helped improve this manuscript. Numerical computations in this

19

https://scipost.org
https://scipost.org/SciPostPhys.12.6.206


SciPost Phys. 12, 206 (2022)

paper were run on the Crete Center for Quantum Complexity and Nanotechnology. This re-
search used resources provided by the Los Alamos National Laboratory Institutional Computing
Program, which is supported by the U.S. Department of Energy National Nuclear Security Ad-
ministration under Contract No. 89233218CNA000001. This research used resources of the
National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

The research work of SRK was supported by the Hellenic Foundation for Research and
Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 1026). The
research work of SRK also received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
no. 758903).

Research presented in this article was supported by the Laboratory Directed Research
and Development program of Los Alamos National Laboratory under project number
20180709PRD1. AS is funded by the Royal Society under the grant “Advancing the Conformal
Bootstrap Program in Three and Four Dimensions”.

A φ-X system sum rules

In this appendix we collect the sum rules that result from each crossing equation in the system
of φ-X mixed correlator equations. We define F i j,kl

±,∆,l as in [53] and we also use F± and F±
interchangeably.

A.1 〈φφφφ〉 crossing equation

The single correlator sum rules have already appeared in [24] and [25]. We quote them below
for completeness:

∑

S+
c2
O

















0
F−
∆,`
0
0

F+
∆,`
0

















+
∑

X+
c2
O

















0
−F−
∆,`

n F−
∆,`
0

−F+
∆,`

n F+
∆,`

















+
∑

Y+
c2
O

















0
0

m−2
2 F−

∆,`
m F−

∆,`
0

m−2
2 F+

∆,`

















+
∑

Z+
c2
O



















F−
∆,`

1
2 F−
∆,`

−1
2 F−
∆,`

−F−
∆,`

−1
2 F+
∆,`

+1
2 F+
∆,`



















+
∑

A−
c2
O

















0
0

−1
2 F−
∆,`

F−
∆,`
0

1
2 F+
∆,`

















+
∑

B−
c2
O



















F−
∆,`

−1
2 F−
∆,`

1
2 F−
∆,`

−F−
∆,`

1
2 F+
∆,`

−1
2 F+
∆,`



















=















0
0
0
0
0
0















.

(25)
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A.2 〈φXφX 〉 crossing equation

Using the projectors (11) and (12) we find the sum rules
∑

O

λ2
φXOĀ

FφX ,φX
∓,∆,l = 0 , (26)

and
∑

O

λ2
φXOφ

FφX ,φX
∓,∆,l = 0 . (27)

A.3 〈φφX X 〉 crossing equation

For the crossing equation from the four-point function 〈φφX X 〉 we also need the projectors
corresponding to the decomposition of 〈φa

i φ
b
j X cd X e f 〉 onto irreps. To find these we need to

know the irreps the φ ×φ and X × X OPEs have in common. These are the X and S irreps.
The corresponding projectors turn out to be [13,34]

PS
abcde f = δab

�

δcde f −
1
n
δcdδe f

�

(28)

and

PX
abcde f = δabcde f −

1
n

�

δabδcde f +δcdδabe f +δe f δabcd

�

+
2
n2
δabδcdδe f . (29)

We thus obtain the sum rules
∑

O

(λφφOS+
λX XOS+

Fφφ,X X
∓,∆,l ± (−1)l

1
n
λ2
φXOy

F Xφ,φX
∓,∆,l ± (−1)l

1
n
λ2
φXOĀ

F Xφ,φX
∓,∆,l ) = 0 (30)

and
∑

O

(λφφOX+
λX XOX+

Fφφ,X X
∓,∆,l ± (−1)lλ2

φXOy
F Xφ,φX
∓,∆,l ∓ (−1)lλ2

φXOĀ
F Xφ,φX
∓,∆,l ) = 0 . (31)

A.4 〈X X X X 〉 crossing equation

For the 〈X X X X 〉 crossing equation the sum rules have been already computed in the literature,
albeit in a slightly different context, see e.g. [11] and [12]. We quote

∑

S+
c2
O









0
F−
∆,`

F+
∆,`
0









+
∑

X+
c2
O









0
0

− 4
n+1 F+

∆,`
F−
∆,`









+
∑

E+
c2
O











F−
∆,`

2(n−1)
n F−

∆,`

− (n+1)(n−2)
n(n−1) F+

∆,`
− n+1

2(n−1) F−
∆,`











+
∑

S̄−

c2
O









F−
∆,`
0

F+
∆,`
0









=







0
0
0
0






.

(32)

A.4.1 The n= 3 case

For n= 3 the sum rules become

∑

S+
c2
O





0
F−
∆,`

F+
∆,`



+
∑

X+
c2
O





F−
∆,`
0

−2 F+
∆,`



+
∑

S̄−

c2
O





F−
∆,`
−F−
∆,`

F+
∆,`



=





0
0
0



 ,

which are equivalent to those of O(2).

A.5 n= 2 sum rules

With the exception of the single correlator sum rules, all the above sum rules are drastically
simplified when n = 2, this is because the irrep X becomes one dimensional then.19 We thus

19Hence, all OPEs involving X only exchange one irrep.
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have
∑

S+
λ2

X XOS
F−X X ,X X
∆,l = 0 , (33)

∑

φ±

λ2
OXOφ

F−OX ,OX
∆,l = 0 , (34)

∑

S+
λOOOS

λX XOS
F∓OO,X X
∆,l ±
∑

φ±

(−1)lλ2
OXOφ

F∓XO,OX
∆,l = 0 , (35)

in addition to the single correlator sum rules which remain as defined earlier.

B Z × Z single correlator sum rules

The n= 2 Z × Z bootstrap the sum rules are simplified drastically by the observation that Zab
i j

and Z cd
kl necessarily have (a = c and b = d) or (a = d and b = c). Thus if we assume that the

field Zab
i j has, lets say, a = 1 then by definition b = 2. Hence, the projectors are

PS
i jklmnop = PS

ikmoPS
jlnp ,

PSY
i jklmnop = PS

ikmoPY
jlnp + PY

ikmoPS
jlnp ,

PSA
i jklmnop = PS

ikmoPA
jlnp + PA

ikmoPS
jlnp ,

PYA
i jklmnop = PY

ikmoPA
jlnp + PA

ikmoPY
jlnp ,

PY Y
i jklmnop = PY

ikmoPY
jlnp ,

PAA
i jklmnop = PA

ikmoPA
jlnp ,

(36)

i.e. the products of projectors of O(m). By S we denote the scalar singlet, by A the antisym-
metric and by Y the rank-two traceless symmetric irreps of O(m). We obtain the following
sum rules

∑

S+
c2
O

















0
F−
∆,`
0
0
0

F+
∆,`

















+
∑

SY+
c2
O

















0
−2 F−

∆,`
F−
∆,`

2 F−
∆,`

−2 F+
∆,`

m−4
2 F+

∆,`

















+
∑

Y Y+
c2
O



















F−
∆,`

F−
∆,`

−F−
∆,`

(m− 2)F−
∆,`

(m+ 2)F+
∆,`

2−m−m2

2 F+
∆,`



















+
∑

AA+
c2
O

















F−
∆,`
0
0
0

−m F+
∆,`

0

















+
∑

SA−
c2
O

















0
0

−F−
∆,`

0
−2 F+

∆,`
m
2 F+
∆,`

















+
∑

YA−
c2
O



















2 F−
∆,`

−m2 F−
∆,`

F−
∆,`

m F−
∆,`

2 F+
∆,`

m2−m
2 F+

∆,`



















=















0
0
0
0
0
0















.

(37)
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C 〈ZZZZ〉 projectors for n ¾ 4 and G arbitrary

The projectors that correspond to the 〈Zab
i j Z cd

kl Z e f
mnZ gh

op 〉 correlator are rather extended 16 index
objects. In order to simplify their presentation we will introduce “Blocks”, not to be confused
with conformal blocks. With the use of Blocks the projectors can be presented in somewhat
compact form. Also, we will make no distinction between upper and lower indices. It will be
implicitly assumed that indices a-h label the copy of G, and the indices i-p are G indices. This
setup is not the most general possible with respect to G indices, but we use it for simplicity of
demonstration. We hope that the generalization to arbitrary indices of G will become obvious
from our presentation. There are three groups of representations that appear in the Zab

i j × Z cd
kl

OPE. These are:

Group I: Representations with a = c or d OR b = c or d.

Group II: Representations with a = c or d AND b = d or c.

Group III: Representations with a, b, c and d all different.

To reiterate, we have Group I: two pairs of indices equal, Group II: one pair of indices equal,
Group III: no pairs of indices equal. We also remind the reader that the operators Zab

i j have
a 6= b.

C.1 Group I representations

Let us start by recalling the projectors of the G irreps (we take G = O(m) in order to be explicit,
but the generalization to any G is trivial). We have P i jkl

g1
= 1

mδ
i jδkl , P i jkl

g2
= 1

2(δ
ikδ jl −δilδ jk)

and P i jkl
g3
= 1

2(δ
ikδ jl +δilδ jk − 2

mδ
i jδkl). Next we define the following useful tensors:

R1abcde f gh = (δacδbd −δacbd)(δegδ f h −δeg f h) ,

R2abcde f gh = δacegδbdδ f h −δabcdegδ f h −δa f chegδbd +δabcde f gh ,

R3abcde f gh = δacegδbd f h −δabcde f gh .

(38)

With these tensors in hand we can now define the Blocks. We denote these with “B” for short.
They are

BS
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g1
R1abcde f gh ,

BXS
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g1

�

R2abcde f gh −
1
n

R1abcde f gh

�

,

BX Y
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g3

�

R3abcde f gh −
1

n− 1
R2 badc f ehg

�

,

BXA
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g2

�

R3abcde f gh −
1

n− 1
R2 badc f ehg

�

,

BSY
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g3
R2 badc f ehg ,

BSA
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g2
R2 badc f ehg , (39)

BY Y
abcde f gh
i jklmnop = P ikmo

g3
P jlnp

g3
R3 badc f ehg ,

BAA
abcde f gh
i jklmnop = P ikmo

g2
P jlnp

g2
R3 badc f ehg ,

BYA
abcde f gh
i jklmnop = P ikmo

g3
P jlnp

g2
R3 badc f ehg ,
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BX̄
abcde f gh
i jklmnop = P ikmo

g1
P jlnp

g1

�

R3 badc f ehg −
1

n− 2
(R2abcde f gh + R2 badc f ehg)

+
1

(n− 1)(n− 2)
R1abcde f gh

�

.

To finally obtain the projectors from the Blocks we must perform symmetrizations, which are
the same for all Blocks, hence we write Bg , where g is one of the irreps considered above.
These symmetrizations are

Bg
′ abcde f gh
i jklmnop = Bg

abcde f gh
i jklmnop + Bg

abcde f hg
i jklmnpo ,

Bg
′′ abcde f gh

i jklmnop = Bg
′ abcde f gh
i jklmnop + Bg

′ abcd f egh
i jklnmop ,

Bg
′′′ abcde f gh

i jklmnop = Bg
′′ abcde f gh

i jklmnop + Bg
′′ abdce f ,gh

i jlkmnop ,

Pg
abcde f gh
i jklmnop = Bg

′′′ abcde f gh
i jklmnop + Bg

′′′ bacde f gh
jiklmnop ,

(40)

where the last line in (40) corresponds to the final expression for the projector in irrep g.
Note that the above symmetrizations are necessary in order to take into account the symmetry
Zab

i j = Z ba
ji . To apply these equations to a different group G one simply needs to replace the

expressions Pg1
, Pg2

and Pg3
with those of their group of choice.

C.2 Group II representations

For Group II representations the steps are very similar with the ones described for Group I. We
must simply define some new tensors. These are

RR1abcde f gh = δaceg(δb f δdh −δb f dh)− (δaceg b f δdh −δaceg b f dh)− (δacegdhδb f −δaceg b f dh)

RR2abcde f gh = δacδeg(δb f δdh −δb f dh)−δeg(δacb f δdh +δacdhδb f − 2δacb f dh) ,

−δac(δeg b f δdh +δegdhδb f − 2δeg b f dh) + (δacb f egδdh +δacdhegδb f − 2δaceg b f dh)

+ (δacb f δegdh +δacdhδb f eg − 2δaceg b f dh) ,
(41)

whereas the Blocks for Group II representations are

BX B
abcde f gh
i jklmnop = (RR1abcde f gh −

1
n− 2

RR2abcde f gh)P
ikmo
g1

δ jnδl p ,

− (RR1abcdehg f −
1

n− 2
RR2abcdehg f )P

ikmo
g1

δ jpδln ,

BX Z
abcde f gh
i jklmnop = (RR1abcde f gh −

1
n− 2

RR2abcde f gh)P
ikmo
g1

δ jnδl p ,

+ (RR1abcdehg f −
1

n− 2
RR2abcdehg f )P

ikmo
g1

δ jpδln ,

BSB
abcde f gh
i jklmnop = RR2abcde f ghP ikmo

g1
δ jnδl p − RR2abcdehg f P ikmo

g1
δ jpδln ,

BSZ
abcde f gh
i jklmnop = RR2abcde f ghP ikmo

g1
δ jnδl p + RR2abcdehg f P ikmo

g1
δ jpδln ,

BY B
abcde f gh
i jklmnop = RR1abcde f ghP ikmo

g3
δ jnδl p − RR1abcdehg f P ikmo

g3
δ jpδln ,

BY Z
abcde f gh
i jklmnop = RR1abcde f ghP ikmo

g3
δ jnδl p + RR1abcdehg f P ikmo

g3
δ jpδln ,

BAB
abcde f gh
i jklmnop = RR1abcde f ghP ikmo

g2
δ jnδl p − RR1abcdehg f P ikmo

g2
δ jpδln ,

BAZ
abcde f gh
i jklmnop = RR1abcde f ghP ikmo

g2
δ jnδl p + RR1abcdehg f P ikmo

g2
δ jpδln .

(42)

We may now apply (40) and obtain the final expression for the projectors.
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C.3 Group III representations

For the last group of representations we need to define one more tensor structure:

R4
abcde f gh
i jklmnop = (δaeδb f δcgδdh −δcgδdhδabe f −δb f δdhδaceg −δb f δcgδadeh −δaeδdhδbc f g

−δaeδcgδbd f h −δaeδb f δcd gh +δaedhδbc f g +δaecgδbd f h +δaeb f δcd gh

+ 2(δdhδabce f g +δcgδabde f h +δb f δadcehg +δaeδd bch f g)− 6δaecg b f dh)

×δimδkoδ jnδl p ,
(43)

leading to the Blocks

BBB
abcde f gh
i jklmnop = R4

abcde f gh
i jklmnop − R4

abcd g f eh
i jklonmp − R4

abcdehg f
i jklmpon + R4

abcd ghe f
i jklopmn ,

BBZ
abcde f gh
i jklmnop = R4

abcde f gh
i jklmnop − R4

abcd g f eh
i jklonmp + R4

abcdehg f
i jklmpon − R4

abcd ghe f
i jklopmn ,

BTotS
abcde f gh
i jklmnop = R4

abcde f gh
i jklmnop + R4

abcde f hg
i jklmnpo .

(44)

For the representations BB and BZ we may simply use (40) to obtain the projectors. On the
other hand, TotS needs a slightly more elaborate formula, which is due to our explicit choice
of Block. We have

BTotS
′ abcde f gh
i jklmnop = BTotS

abcde f gh
i jklmnop + BTotS

abcdeg f h
i jklmonp + BTotS

abcdehg f
i jklmpon ,

PTotS
abcde f gh
i jklmnop = BTotS

′ abcde f gh
i jklmnop + BTotS

′ abcd f egh
i jklnmop + BTotS

′ abcd g f eh
i jklonmp + BTotS

′ abcdh f ge
i jklpnom .

(45)

C.4 Comments

The above tensors can be derived if we know the symmetry properties of each irrep (symmet-
ric, antisymmetric, traceless, trace, . . . ), by writing down a tensor with the same symmetry
and then contracting with a tensor that enforces the constraints a 6= b, c 6= d, e 6= f and g 6= h.
Such a tensor can be found in a straightforward way. First, define a reduced Kronecker delta
δr

ab = δab − δabr , which is the same as the usual Kronecker delta, but equal to zero if the
indices are equal to a value r. Now we can define Pabcd

a′b′c′d ′ = δ
b
aa′δbb′δ

d
cc′δdd ′ which is sim-

plified as Pabcd
a′b′c′d ′ = (δaa′δbb′ − δaa′bb′)(δcc′δdd ′ − δcc′dd ′) by plugging in the definition of the

reduced Kronecker delta. Now suppose that we had found a tensor T a′b′c′d ′e′ f ′g ′h′ with all the
required symmetry properties to describe some irrep. We could turn it into a projector using
the following equation:

T abcde f gh = Pabcd
a′b′c′d ′P

e f gh
e′ f ′g ′h′T

a′b′c′d ′e′ f ′g ′h′ , (46)

where the left-hand side is our projector. One can also define generalized reduced Kronecker
deltas in order to impose more complicated constraints. For example, let us consider a ten-
sor with four indices which must take different values and is totally symmetric (this is rele-
vant for the TotS irrep). We may start with a tensor T a′b′c′d ′ that is simply totally symmet-
ric but with arbitrary index values. The constraint can then be imposed by contracting with
Pabcd

a′b′c′d ′ = δ
bcd
aa′ δ

cd
bb′δ

d
cc′δdd ′ . Note that δcd

bb′ = δbb′ − δbb′c − δbb′d + δbb′dc . But the utility
of this formalism is now clear: if one wishes to evaluate a relation such as δcd

bb′δ
d
cc′δdd ′ , the

last term in δcd
bb′ , namely δbb′dc , can be dropped since it gives zero when contracted with

δd
cc′δdd ′ = (δcc′δdd ′ − δcc′dd ′). Thus, in conclusion, as long as we calculate expressions like
δbcd

aa′ δ
cd
bb′δ

d
cc′δdd ′ from right to left, it is sufficient to take δa1a2...an

bb′ = δbb′ −
∑n

i=0δbb′ai
. This

allows us to algorithmically impose constraints on tensors.
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D 〈ZZZZ〉 sum rules for n ¾ 4

Due to the rather extended size of the sum rules derived from the crossing equation corre-
sponding to 〈Z Z Z Z〉 for n¾ 4 we attach them in an auxiliary file.
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