
SciPost Phys. 13, 025 (2022)

Time-dependent variational Monte Carlo study
of the dynamic response of bosons in an optical lattice

Mathias Gartner1?, Ferran Mazzanti2 and Robert E. Zillich1

1 Institute for Theoretical Physics, Johannes Kepler University Linz,
Altenberger Straße 69, 4040 Linz, Austria

2 Departament de Física i Enginyeria Nuclear, Campus Nord B4-B5,
Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain

? mathias.gartner@jku.at

Abstract

We study the dynamics of a one-dimensional Bose gas at unit filling in both shallow and
deep optical lattices and obtain the dynamic structure factor S(k,ω) by monitoring the
linear response to a weak probe pulse. We introduce a new procedure, based on the time-
dependent variational Monte Carlo method (tVMC), which allows to evolve the system in
real time, using as a variational model a Jastrow-Feenberg wave function that includes
pair correlations. Comparison with exact diagonalization results of S(k,ω) obtained on
a lattice in the Bose-Hubbard limit shows good agreement of the dispersion relation for
sufficiently deep optical lattices, while for shallow lattices we observe the influence of
higher Bloch bands. We also investigate non-linear response to strong pulses. From the
power spectrum of the density fluctuations we obtain the excitation spectrum, albeit
broadened, by higher harmonic generation after a strong pulse with a single low wave
number. As a remarkable feature of our simulations we furthermore demonstrate that
the full excitation spectrum can be retrieved from the power spectrum of the density
fluctuations due to the stochastic noise inherent in any Monte Carlo method, without
applying an actual perturbation.
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1 Introduction

The dynamic structure factor S(k,ω) is a fundamental quantity as it contains the maximal in-
formation about the dynamics of many-body quantum systems that one can obtain by inelastic
scattering [1], such as the excitation energiesω(k) and the lifetime of collective excitations. In
quantum gases S(k,ω) can be measured by Bragg spectroscopy [2], with relative momentum
and energy resolution similar to inelastic neutron scattering in condensed matter [3]. The
calculation of S(k,ω) is a demanding task beyond very simple Hamiltonians or approxima-
tions, such as the Bijl-Feynman model [4, 5], or the Bogoliubov-de Gennes technique in the
mean field limit [6, 7]. Advanced variational methods based on action minimization, such as
the correlated basis function approach [8] or the multi-configuration time-dependent Hartree
algorithm [9], can achieve much more accurate results. All these methods are reliable in many
cases but are not expected to work well in all situations. Monte Carlo methods, on the other
hand, are known to be able to produce statistically exact predictions for bosons, although this
only applies to the ground state at zero temperature [10], or to static ensemble averages at
finite temperature [11]. Access to the excitation spectrum is restricted to the evaluation of the
dynamic response in imaginary time and its reconstruction in frequency space by inverting the
Laplace transform. This is a rather difficult procedure as Laplace inversion is a well known
ill-posed mathematical problem, worsened in practice by the fact that the stochastic noise of
the simulation is exponentially amplified in the result. The way to tackle these problems is to
build many reconstructions of the response and to use stochastic methods based on simulated
annealing [12] or genetic algorithms [13, 14] to produce an approximate dynamic structure
factor. While this method can yield good results, it is computationally very expensive and
usually gets only the broad features, not resolving well the fine details of the response. Other
methods available for dynamic simulations are either restricted to lattice systems, like time-
evolving block decimation [15], nonequilibrium dynamical mean-field theory [16], and the
time-dependent density matrix renormalization group method [17–19], or they work best in
one dimension, like methods based on continuous matrix product states [20]. Consequently,
accurate methods that allow for time dependent simulations of strongly correlated many-body
systems which can describe the linear, but also nonlinear response to perturbations, are in
demand.

The time-dependent variational Monte Carlo (tVMC) method [21–24] is particularly suit-
able for the study of quantum many-body dynamics, allowing for perturbations of any strength.
It can be applied to analyze many different situations, such as ramping up the lattice depth [25]
or interaction quenches [22], as well as many-body dynamics far from equilibrium [26]. It has
also been extended to wave functions based on artificial neural networks [27, 28]. In this
work we use tVMC to analyze the dynamic response of a Bose gas to a probe pulse in an opti-
cal lattice in one dimension, where we use a continuous space representation rather than the
Bose-Hubbard limit. We present a new way to calculate the dynamic structure factor S(k,ω) of
strongly interacting bosons in continuous space, based on tVMC simulations of the time evolu-
tion after weak pulses. For strong pulses, we enter the nonlinear regime. A strong perturbation
with only a single wave number creates excitations with multiplies of this wave number due to
higher harmonic generation. We exploit this to obtain an approximation of the full excitation
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spectrum by analysing the power spectrum of the density fluctuations after such a strong pulse
with a single low wave number. Finally, we introduce a third way to calculate the excitations
with tVMC: surprisingly, we can obtain the excitation spectrum from the power spectrum of
the density fluctuations with no perturbation at all, i.e. from the tVMC time evolution of the
variational ground state, thanks to the stochastic noise inherent in Monte Carlo simulations.

2 Method

We use tVMC to study the response of the Bose gas, initially in the ground state at time t = 0, to
an external perturbation δVp(x , t), and monitor the time evolution of the density fluctuations
δρ(x , t) = ρ(x , t) − ρ(x , 0). In the linear response regime, the ratio of their Fourier trans-
forms is the density response function, with its imaginary part being the dynamic structure
factor [29]. We perform a series of simulations for a system of N identical bosons of mass m,
moving in a one dimensional optical lattice V (x) and interacting via a contact potential. The
Hamiltonian reads

H =
N
∑

i=1

�

−
ħh2

2m
∂ 2

∂ x2
i

+ V (x i) +δVp(x i , t)

�

+ g
N
∑

i< j

δ(x i − x j) , (1)

with the coupling constant g parametrizing the strength of the two-body interaction. As usual
for cold atomic systems, where the optical lattice potential is generated by counter propa-
gating laser beams with wave number kL , we will use the form V (x) = V0 sin2(kL x) for the
potential [30], which corresponds to a lattice constant of π/kL . Throughout this work we will
report V0 and g in units of the recoil energy Er = ħh2k2

L/2m and Er/kL , respectively, and we
use x0 = π/kL and t0 = ħh/Er as length and time unit.

In the deep lattice limit where the amplitude V0 is large, H can be approximated by the
lattice Hamiltonian of the single-band Bose-Hubbard model (BHM) [31,32]

HBHM = −J
N
∑

i< j

b†
i b j + U/2

N
∑

i

ni(ni − 1) , (2)

where b†
i , bi and ni are the creation, annihilation and number operator for bosons at lattice

site i. For given V0 and g in Eq. (1), the on-site interaction U and the hopping parameter J of
the BHM can be evaluated numerically performing band-structure calculations [33]. Within
our continuous space tVMC simulations, we can access both the BHM regime and the region
of shallow optical lattices, where the single-band BHM is no longer valid.

2.1 Model wavefunction

The tVMC method relies on a model wave function with variational parameters that are prop-
agated in time. For modeling the time-dependent wavefunction Φ(x , t) of the many-body sys-
tem, with x = (x1, . . . , xN ), we use a Jastrow-Feenberg ansatz [34] with one- and two-particle
correlation functions

Φ(x , t) = e
∑N

i u1(x i ,t) e
∑N

i, j u2(x i−x j ,t) . (3)

In tVMC simulations, we parametrize the wavefunction by a set of time-dependent complex
variational parameters α(t) = {α1(t),α2(t), . . . ,αP(t)} and it is convenient to write the wave-
function in the form

Φ(x ,α(t)) = exp

�

∑

K

OK(x )αK(t)

�

, (4)
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where every variational parameter αK(t) is coupled to a local operator OK(x ) [21]. For
these local operators we use third order B-splines [35], which are piecewise polynomial func-
tions, restricted locally to intervals Ymp centered at the points of a uniform grid. We use
two sets of intervals, the first (m = 1) on a uniform grid in [0, L] for the one-body func-
tion u1, and the second set (m = 2) on a grid in [0, L/2] for the two-body correlations u2,
where L is the size of the simulation box. For each interval Ymp we denote the corresponding

spline by Bmp(x) and define the corresponding sets of operators O1p(x ) =
∑N

i B1p(x i) and

O2p(x ) =
∑N

i< j B2p(|x i − x j|). Using this form of the local operators in equation (4), together
with the index mapping K ≡ (m, p) we get

Φ(x ,α(t)) = exp

� P1
∑

p

N
∑

i

B1p(x i)α1p(t)

�

exp

 

P2
∑

p

N
∑

i< j

B2p(|x i − x j|)α2p(t)

!

. (5)

By exchanging the summation in the exponentials we can identify the one- and two-particle
correlation functions of the Jastrow-Feenberg ansatz (3) as u1(x i , t) =

∑P1
p B1p(x i)α1p(t) and

u2(x i − x j , t) =
∑P2

p B2p(|x i − x j|)α2p(t), respectively.
The effect of the contact interaction in the Hamiltonian (1) has been directly incorporated

in the wavefunction by using an appropriate boundary condition on u2 for x i = x j , accord-
ing to [36]. In particular, we impose a condition on the variational parameters such that the
logarithmic derivative of the wavefunction satisfies 1

Φ
∂
∂ x i
Φ= 1

4 kL g for any x i = x j , which orig-
inates from the solution of the two-body problem with contact interaction in one dimension.

As shown in [21], the equations governing the time evolution of the variational parameters
are

i
∑

K ′
SKK ′α̇K ′ = 〈EOK〉 − 〈E〉 〈OK〉 , (6)

with the correlation matrix SKK ′ = 〈OKOK ′〉 − 〈OK〉 〈OK ′〉 and the local energy E = H|Φ〉
|Φ〉 . These

coupled nonlinear ordinary differential equations can be solved numerically, where in every
time step the expectation values forming the coefficient matrix SKK ′ and the right hand side of
the equation system are calculated by Monte Carlo integration. In all the simulations presented
in this work we use 400 (P1 = P2 = 200) complex variational parameters αK , which we have
checked to be enough to produce converged results.

2.2 Monte Carlo sampling and time propagation

In order to accomplish a stable time propagation we need to reduce the numerical errors that
are built up during the time evolution of the system. To achieve this, we pre-condition and
regularize the matrix SKK ′ before solving the Eqs. (6). As a first step we scale the matrix
by S′KK ′ = SKK ′/

p

SKKSK ′K ′ and as a second step we add a small regularizing factor ε to the
diagonal entries (S′KK ′ → S′KK ′ + εδKK ′) in order to prevent instabilities due to eigenvalues that
are close to zero in S′KK ′ [37]. The same value ε = 10−4 was used in all simulations. To
solve the resulting system of equations we use a QR decomposition and a fourth order Runge-
Kutta scheme to propagate the differential equations (6) in time. We found that a stable
time propagation requires a reasonably small time step of at least δt = 10−4 t0, which we
used throughout this work. The Monte Carlo estimates for SKK ′ , 〈EOK〉 , 〈E〉 and 〈OK〉 are
obtained using the Metropolis-Hastings algorithm, and a total of NMC = 12500 uncorrelated
samples are used in every time step of the numerical propagation of Eq. (6). The density
observable 〈ρ(r, t)〉, which is the main quantity of interest in our simulations, is calculated at
every hundredth simulation time step, i.e. at multiples of a time step δtρ = 0.01 t0. In order
to get the density estimate with high accuracy we use NMC,ρ = 2.5 · 106 uncorrelated samples.

4

https://scipost.org
https://scipost.org/SciPostPhys.13.2.025


SciPost Phys. 13, 025 (2022)

0

1

2

3

4

5

6

7
t/

t 0

0 5 10 15 20

0

1

2

3

4

5

6

7

0 5 10 15 20

x/x0

-0.10

-0.05

0

0.05

0.10

0.15

δρ(x,t)

V (x)

δVp(x,t) x 20

Figure 1: Spatial density fluctuation δρ(x , t) = ρ(x , t)− ρ(x , 0) evolving in time,
from which we obtain S(k,ω). Initially the system is in the ground state (obtained
via i-tVMC) of the optical potential V (x) (green line). At time t = 0, a weak pertur-
bation pulse δVp(x , t) with a Gaussian time profile (blue line along vertical axis) and
a superposition of various momentum modes (blue line along horizontal axis), given
by equation (8), is turned on. The main color map shows the propagation in time
(vertical) and space (horizontal axis) of the density fluctuation δρ induced by the
perturbation. The amplitude of the pulse δVp is magnified by a factor of 20. The sys-
tem parameters V0 = 7 Er , g = 0.41 Er/kL (corresponding to U/J = 6) and the pulse
parameters Ve = 0.0125 Er , te = 0.1 t0 and τ= 0.04 t0 are used in this simulation.

3 Results

For the calculations we proceed as follows: we first perform tVMC simulations in imaginary
time (i-tVMC) with δVp = 0 to obtain the variational ground state of the Hamiltonian in
Eq. (1). The result is then used as the initial wavefunction for the real time simulation, where
we turn on the perturbing potential δVp at t = 0 and monitor the density fluctuations δρ(x , t)
(see Fig. 1). If the perturbation is weak, we use linear response theory [29] to estimate the
dynamic structure factor

S(k,ω) = −
1
π

Im

�

δρ̃(k,ω)
δṼp(k,ω)

�

, (7)

where δρ̃(k,ω) and δṼp(k,ω) are the space and time Fourier transforms of the density fluc-
tation and the perturbing potential, respectively.

For comparison with exact ground state results, we also performed i-tVMC calculations in
the absence of the optical lattice (V0 = 0), leading to the Lieb Liniger model [36]. The result-
ing ground state energy compares well to the energy obtained in Bethe ansatz calculations
(see Ref. [38, Eq. (10)]), with a relative error of less than 0.4% for the range of interaction
strengths g used in this work.

3.1 Linear response

We calculate the dynamic structure factor S(k,ω) from Eq. (7) for several values of the cou-
pling strength g and the optical lattice amplitude V0. We use N = 20 particles with a density
n= 1/x0 in a simulation box of size L = x0N with periodic boundary conditions, correspond-
ing to unit filling. To excite the system we apply a multi-mode pulse with a Gaussian time
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Figure 2: Dynamic structure factor S(k,ω) from tVMC simulations for bosons in an
optical lattice of amplitude V0 = 7 Er and equivalent BHM parameter U/J = 0;2; 6
(panels (a)–(c)), and V0 = 1.5 Er with U/J = 6 (panel (d)). The dashed white lines
show the dispersion of non-interacting particles (U = 0) for the given value of V0,
obtained from band structure calculations. The red bar indicates the spread of the
multipeak feature in S(k,ω) of Ref. [39].

profile

δVp(x , t) = Ve e−(t−te)
2/τ2

jmax
∑

j

sin2
�

k j x
�

, (8)

where the spatial part is a superposition of up to jmax = 40 modes with wave numbers given by
k j = 2π j/L. In particular, we choose Ve = 0.0125 Er , te = 0.1 t0 and τ= 0.04 t0. This pulse
imparts an energy less than 0.25% of the ground state energy to the system, which shows
that the perturbation is weak enough for linear response theory to apply. To check this further
we doubled Ve and indeed got the same S(k,ω). In the linear regime we can get the full
excitation spectrum in a single tVMC simulation since modes are excited simultaneously, but
independently of each other. The short pulse length τ also ensures that it excites a broad
range 2π/τ of energies. In any case, the pulse in Eq. (8) can be easily tailored, to excite only
selected modes if required.

We present in Fig. 2 the dynamic structure factor S(k,ω), in units of kL and J/ħh for k andω,
respectively. Panels (a)–(c) show S(k,ω) for a deep optical potential V0 = 7 Er and interac-
tion strengths g = 0;0.14; 0.41 Er/kL , corresponding to the ratios U/J = 0;2; 6 of the BHM,
respectively. Panel (d) shows S(k,ω) for a shallow lattice with V0 = 1.5 Er and g = 2.8 Er/kL ,
corresponding to the equivalent BHM ratio U/J = 6. White dashed lines denote the Bloch dis-
persion of non-interacting particles. The tVMC result for U/J = 0 in panel (a) demonstrates
that the peaks in S(k,ω) reproduce the exact non-interacting Bloch dispersion perfectly. The
broadening of the tVMC dispersion, as well as the ringing oscillations, are artifacts resulting
from the Fourier transform over a finite simulation time of length T = 10 t0. When we in-
creased T and thus the computational cost, the artificial oscillation frequency increased and
the amplitude decreased. As U/J is increased, the excitation energies increase also, and the
dispersion becomes linear for small k. The positions of the peaks in S(k,ω) as function of ω
are in good agreement with results of [39] obtained by exact diagonalization of the BHM. The
details of our S(k,ω), however, differs from the results in [39], where multiple close peaks
were obtained for N = 16. In panels (b) to (d), the spread of these peaks is indicated by a
red bar, with the central main peak of [39] indicated by a cross. The main difference of our
system compared to [39] is that we use continuous coordinates instead of using the Hubbard
approximation leading to the discrete lattice of the single-band BHM. Furthermore we simulate
a slightly higher number of particles and use a variational description of the wavefunction.
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Figure 3: Square root of the power spectrum |δρ̃(k,ω)| of the density fluctuations
obtained with three different tVMC simulation variants. Panel (a) shows the response
to a weak multi-mode pulse of the form given in Eq. (8). In panel (b), the system
is excited with a single mode at k = 0.1 kL with an amplitude as large as the lattice
potential (Ve = V0). In panel (c), no perturbation is applied and the density fluc-
tuations in the time propagation are solely due to the stochastic noise in the Monte
Carlo simulation. In all three simulations the lattice amplitude is V0 = 3 Er and the
BHM parameter is U/J = 6.

For the shallow optical lattice case shown in panel (d), corresponding to V0 = 1.5 Er , the
band gap is comparable with the band width. In such a case the single-band BHM does not
apply. The dispersion is linear over a wider range of k values than in the deep lattice, while
the maximum of the first band hardly changes. In such a shallow lattice, we also observe
an energy increase of the second band with respect to the Bloch dispersion. Notice that the
seemingly smaller broadening of the curve in panel (d) is due to the fact that all energies are
expressed in units of J , which is J = 0.04 Er for V0 = 7 Er and J = 0.16 Er for V0 = 1.5 Er .

3.2 Nonlinear response

The tVMC method is not restricted to weak perturbations, and thus one can use it to explore
the response of the system outside the linear regime. In order to demonstrate this, we again
perturb the same Bose system at unit filling in the optical lattice with V0 = 3 Er and U/J = 6,
but this time with a strong pulse. Instead of exciting all wave numbers simultaneously with
the weak pulse in Eq. (8), we excite only the lowest mode compatible with the periodic bound-
ary condition, with wave number k1 = 2π/L = 0.1 kL , but with a pulse strength equal to the
amplitude of the lattice potential, Ve = V0. We use a pulse length τ five time longer than in the
linear response simulations previously described, and also set te = 0.5 t0 to move the peak of
the pulse to larger times for a smooth switch-on of the perturbation. Overall, the integrated
pulse strength is 30 times stronger than that of the weak multi-mode pulse to compare with.
Outside the linear regime, S(k,ω) no longer describes the full response of the system to the
perturbation, and furthermore, for k 6= k1 we have δṼp(k,ω) = 0, and thus S(k,ω) cannot
even be calculated. Therefore we show the square root of the power spectrum, |δρ̃(k,ω)|.

The panel (b) of Fig. 3 shows |δρ̃(k,ω)| after the strong pulse with wave number k1.
As it could be expected, a very pronounced peak in the non-linear response appears at k1.
However, the strong pulse excites a wide range of multiples of k1 via higher harmonic gen-
eration. For comparison, in panel (a) of Fig. 3 we show |δρ̃(k,ω)| for the weak multi-mode
pulse δVp(x , t) of Eq. (8). Note that in the linear response regime |δρ̃(k,ω)| conveys the
same information as S(k,ω), see the previous Fig. 2. Compared to the linear response to the
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weak multi-mode pulse, the non-linear response exhibits a much broader excitation band, but
it essentially follows the dispersion relation obtained from linear response; the broadening is
expected for higher harmonic generation in a system with a non-linear dispersion. Panel (b)
of Fig. 3 demonstrates that a sufficiently strong long wavelength perturbation yields the full
excitation spectrum, albeit with significant broadening.

3.3 Excitations from noise

An even more remarkable feature of the tVMC method is that the full excitation spectrum
can also be obtained in the opposite limit, i.e. applying no perturbation at all. We can simply
propagate the variational ground state in real time. The stochastic noise in SKK ′ and the right
hand side of Eq. (6) produces fluctuations around the exact time evolution which we can use
to calculate the excitation spectrum of all modes. Similarly to the nonlinear case, S(k,ω) is not
accessible because δṼp(k,ω) = 0, this time for all k. We show |δρ̃(k,ω)|, generated entirely
by the stochastic noise, in panel (c) of Fig. 3. The peak locations giving the excitation energies
are essentially identical to the linear response results shown in panel (a). In this way, the
Monte Carlo noise can be effectively used to explore the excitation spectrum of the system,
although as seen from the color scales in Fig. 3, the noise generated power spectrum is much
weaker.

As expected, the noise is reduced when we increase the sample size per time step, but
the signal-to-noise ratio of the density fluctuation power spectrum remains unchanged. If, on
the other hand, we improve the variational ansatz Φ, the parameter optimization with i-tVMC
leads to a variational ground state closer to the exact ground state. When we increased the
number of parameters αK , the signal-to-noise ratio in |δρ̃(k,ω)| dropped, because improving
the variational wave function reduces the variance of the local energy E . The sampling noise
in the quantities on the right hand side of Eq. (6) falls, while the sampling noise in SKK ′ on
the left hand side is barely affected. In this way, there are less noise-induced perturbations
to the ground state evolution of the parameters αK when we solve Eq. (6). In the limit that
the optimized ansatz Φ is the exact ground state, E is the exact ground state energy, with
zero variance, while the correlation matrix SKK ′ is still non-zero and invertible, which leads
to α̇K = 0, thus there is no noise-induced time evolution. The only noise left in the power
spectrum of the density fluctuation is the sampling noise which carries no information on
the dynamics because it is uncorrelated between time steps. But apart from a few selected
problems, the exact many-body wave function is not known, and in general there will always
be some noise-induced time evolution of αK about their optimized values.

Our result in panel (c) of Fig. 3 suggests a new simulation strategy where the unperturbed
ground state is propagated in time, rather than exciting specific modes with suitable temporally
and spatially shaped weak or strong external pulses. With this new type of simulation we can
for example determine the excitation spectrum in a large range of ω- and k-values, which is
useful when analyzing a new system with little knowledge about the relevant range of energies
and momenta to explore. It has the added benefit of not having to choose any specific form for
the perturbation potential. We stress, however, that |δρ̃(k,ω)| is not proportional to S(k,ω).
We can obtain the excitation energies from the peaks of either of them, but the stochastic
noise is not white and thus has different strength for different energies and momenta. For
example, in the present case, the peaks in panel (c) of Fig. 3 are clearly smaller for k > kL
than for k < kL , while the linear response result in panel (a) looks more symmetric about kL .
In order to obtain the spectral weights of the dynamic structure function, we have to use linear
response theory as demonstrated in section 3.1.
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4 Conclusion

In summary, we have explored the possibility of using time-dependent variational Monte Carlo
(tVMC) to obtain the dynamic structure factor S(k,ω), or more generally the excitation spec-
trum, of many-body quantum systems under the action of a pulsed perturbation. Specifically,
we have analyzed the linear and nonlinear dynamics of a one-dimensional system of bosons
in an optical lattice described by a continuous Hamiltonian. In both deep and shallow lattices,
we explore several interaction strengths corresponding to the same ratio U/J of the Hubbard
interaction and hopping parameters, to assess the universality of the dependence of the exci-
tation spectrum on it. For shallow lattices and as expected, we observe a deviation from the
single-band Bose-Hubbard result, with the dispersion being linear over a wider range of mo-
menta. However, for the lowest band, the excitation energy at the edge of the Brillouin zone
is remarkably universal.

Besides the weak perturbation regime where linear response theory applies, we have also
explored the dynamics after a very strong perturbation, and the dynamics with no perturbation
at all. In the latter case we simply propagate the optimized ground state in real time to obtain
the excitation spectrum from the fluctuations due to the stochastic noise intrinsic to every
Monte Carlo method. This can be useful when studying complex systems where the nature
of the excitations is not known, and the right choice of the perturbation operators is not so
obvious. In order to explore the non-linear regime, we apply pulses coupling to a single mode,
but with peak strengths of the order of the optical lattice depth itself. These strong pulses
excite the full range of wave numbers via higher harmonic generation. This could be relevant
for Bragg spectroscopy of the excitation spectrum, since only one or few momentum transfers
need to be chosen to obtain an approximate S(k,ω) for a wide range of momenta.
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