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Abstract

As a function of the driving strength, a degenerate parametric oscillator exhibits an
instability at which spontaneous oscillations occur. Close to threshold, both the nonlin-
earity as well as fluctuations are vital to the accurate description of the dynamics. We
study the statistics of the radiation that is emitted by the degenerate parametric oscilla-
tor at threshold. For a weak nonlinearity, we can employ a quasiclassical description. We
identify a universal Liouvillian that captures the relevant long-time dynamics for large
photon-numbers. We find that the cumulants obey a universal power-law scaling as a
function of the nonlinearity. The Fano factor shows a maximum close, but not coincid-
ing, with the threshold. Moreover, we predict a certain ratio of the first three cumulants
to be independent of the microscopic details of the system and connect the results to
experimental platforms.
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1 Introduction

An oscillator that is parametrically driven at twice its natural frequency Q exhibits an instability
as a function of the driving strength [1-3]. Above the threshold, spontaneous oscillations
set in. The amplitude of oscillation increases with a fractional power 1/m of the distance
from the instability threshold. Generically, the amplitude grows as a square-root (pitchfork
bifurcation with m = 2). However, for a symmetrical confinement potential in the rotating
frame as it arises, e.g., in the case of a Duffing oscillator, it is known that m = 4 [4]. What is
hidden in the analysis of the stationary state discussed so far, is the critical slowing down close
to threshold, i.e., the timescale T, over which the stationary state is reached becomes much
larger than the damping time of the system. In fact, the linearized theory predicts a divergence
of T, which gets cured by the (weak) nonlinearity of strength a. This behavior is a prime
example of a bifurcation that exhibits universal behavior and generically appears in driven-
dissipative systems [5-8]. Different types of bifurcations lead to a variety of critical exponents
and correlation behaviors that have been the focus of many studies in recent years [9-21].

The long timescale becomes particularly important when fluctuations (both quantum or
thermal) are included in the description of the parametrically driven system. While these
fluctuations have a rather small effect on the behavior well-above threshold where the classical
coherent oscillation sets in, it is known that they produce excitations that lead to radiation
emitted by the system even below threshold [22-28]. In fact, it has recently been pointed
out that the statistics of the resulting radiation collected over a measurement time T > T,
is universal [29]. However, all these theories rely on linearizing the problem and, due to
T, — 00, predict diverging cumulants of the photon counting at threshold.! It is well-known
that this divergence gets cured by the inclusion of the (weak) nonlinearity. However, obtaining
insights into the corresponding statistics at threshold—or more generally in the critical regime
around the threshold defined below—is complicated by the fact that both fluctuations and the
nonlinearity have to be taken into account. First results were reported in Refs. [23,30] where
the stationary state of the system at threshold was obtained. However, the dynamics and the
resulting photon statistics of the system for long measuring times has not been discussed up
to now.

In this paper, we derive a universal Liouvillian that accounts for the slow time-evolution
(on the scale t,) of the system, which is valid in the critical regime for a weak nonlinearity.
At threshold, observables show a universal power-law behavior as a function of the nonlin-
earity a. In particular, we show that 7, oc a~2/(™?2) and N, oc a=#/(™+2) where N, is the
number of correlated photons at threshold. The central insight of our work is the fact that,
for weak nonlinearities, we can employ a quasiclassical approximation [31-33] as both the
relevant timescale as well as the photon number diverge. We test the results by comparing
them to numerics solving the Lindblad master equation in the rotating-frame. Our results
are valid for a broad range of experimental realizations of parametrically driven oscillators
with weak nonlinearities. Some examples are the optical parametric oscillator [23], the Dicke
transition [34] of cold-atomic gases in a cavity [8], the optomechanical parametric instability
(‘mechanical lasing’) [35], or the Josephson parametric down-conversion in superconducting
circuits [22,24].

The article is organized as follows. We derive the effective Liouvillian which allows us
to identify the characteristic time 7, and amplitude at threshold. We provide results for the
photon-current and the second-order coherence at T = 0 which give insights into the stationary
state. We proceed by analyzing the dynamical properties. In particular, we calculate the first

1Refs. [22,28] have finite cumulants without the need of nonlinearities, however they treat a finite measurement
time 7 < 7, which cures the divergence.
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Figure 1: Sketch of the amplitude A of an oscillator undergoing bifurcation at € =y
where the driving exactly cancels the damping. The dashed line indicates the clas-
sical solution. Including fluctuations, there is a response even below threshold. In
particular, the linearized theory (dash-dotted line) predicts a divergence at threshold.
This divergence is cured by the nonlinearity, parameterized by the dimensionless pa-
rameter a. The present manuscript analyzes the critical regime (gray region) where
both fluctuations and the nonlinearity are relevant.

four cumulants of the photon statistics and the second-order coherence at threshold. We finish
by comparing the Fano factor of our effective model to numerical results of realistic systems.

2 Model

The dynamics of the parametric oscillator is described by the position X = Re(Ae™*¥) of the
oscillator. For a degenerate oscillator, the slow amplitude A(t) € C obeys the Z,-symmetry +A.
Below threshold, the steady state is characterized by the value A; = 0 while above threshold
of bifurcation the amplitude develops a finite classical value A = £A; that corresponds to the
spontaneous emergence of a symmetry-breaking oscillation. As we show below, the physics
close to threshold is dominated by a long timescale 7, (critical slowing-down) and a large
amplitude A,, corresponding to many quanta of energy. As a result, it is possible to describe
the dynamics of A using a quasiclassical description with

A:—gA+F(A,A*)+n, (1)

here, vy is the damping rate (due to the coupling to a detector), the force F incorporates
the driving, and 7 is a classical, complex noise with zero mean and variance of the Callen-
Welton form [31] (n(t)*n(t")) = AZy(a + %)E(t — t’), with the Bose-Einstein occupation
i = (e™/%sT —1)~1 and A, > 0 the strength of the zero-point fluctuations.? Note that with-

out driving, the noise makes sure that the system on average approaches the stationary value
(JAP?) =A2(7 + %) as required by statistical mechanics.

3 Universal Liouvillian

For degenerate parametric driving, only one of the two quadratures of the oscillator undergoes
a pitchfork bifurcation and, thus, demonstrates a large amplitude. To fix ideas, we assume that

2For an oscillator of mass m, we have A, = 1/2k/mQ.
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the bifurcation is on the real part of A and write A= Ay(x +iy)/v2 ~Ayx/v/2, x,y € R. The
real part of (1) follows the Langevin equation

f=—Lx+ ) +y/r(i+ DL, @

where £ is a white noise source with (§(t)£(t")) = 6(t — t’). Due to the symmetry, the force
f(x) = vV2Re(F)/A, obeys f(—x) = —f(x). As the nonlinearity is assumed to be weak, we
can Taylor expand the force f(x) ~ %(ex — yax™*1);3 generically, we have m = 2, as this
is the first term consistent with the Z,-symmetry. However, we will keep m undetermined as
for the important case of a driven Duffing-oscillator, we have m = 4 due to the additional
rotational symmetry of the confinement potential in the rotating frame, see below. The pa-
rameter € > 0 describes the driving strength and a > 0 is a dimensionless measure of the
nonlinearity, i.e., the nonlinearity at the photon scale. For the following, we need a weak
nonlinearity with a < 1 to ensure that the amplitude x is indeed large at threshold. This
allows the quasiclassical description of the driven-dissipative system [31]. Without noise, the
system undergoes a classical bifurcation at € = y with the solution A; = 0 valid for € < y and
A~ Agxs [ V2 = Ao[(e—y)/ay]/™/+/2 for € > y. In particular, the amplitude above threshold
generically increases as A; o< (e —y)'/2 (with m = 2 [2]) while A, o< (e —y)/* for the case of
a Duffing-oscillator (with m =4 [4]).

As shown in Appendix A, the Langevin equation (2) is equivalent to the Fokker-Planck
equation P = L P with the universal Liouvillian *

L= _i (p_z +i s m+1)
0= ifpq—ipq , 3)
T, \ 2

that is valid close to threshold, where p, q are canonically-conjugate variables obeying [q, p] = i
[37,38]. In this form, the microscopic parameters of the system only enter via the character-
istic amplitude x, = [(2a + 1)/ a]V/m+2) with x = x,q [23], the characteristic timescale
T, = xf / (n+ %)Y > y~!, and the dimensionless distance from the threshold 8 = %(e —Y)T,.
Note that £, is an effective model that only describes the slow-dynamics of the system accu-
rately. Because of this, only the eigenvalues with small (negative) real parts are relevant. The
description in terms of the universal Liouvillian is only valid for a weak nonlinearity a < 1
and small temperatures. The temperature is bound by the need for a separation of timescales,
i.e., yT,> 1, which implies kg T/hQ < fi + 5 < g H/[(m+3)m+1)],

The characteristic scales 7, x, of the system at threshold (with € = y) can be understood in
the following way: at threshold, we have the typical force f, = f(x,) ~ yax;"“. Fluctuations
due to the last term in (2) fix the typical amplitude x, such that diffusion due to the random
force equals the drift due to f,. For this we need, x,.f, ~ y(i+ %) which yields (up to numerical
factors) the characteristic amplitude x, given above. The characteristic time 7, follows from
(2) as the force f, sets the velocity x, /7, ~ f, ~y(7+ %)/x*.

4 Results

Let us first concentrate on the stationary state of the system without accounting for dynamics.
The Liouvillian leads to the stationary distribution P,(q) o< exp[—2q™"2/(m + 2) + f¢?] that
is an eigenstate of L, with eigenvalue 0. As a result, the relevant q at threshold are of order 1.
This allows to estimate the error due to the next term yax™"3 in the Taylor expansion of

3We introduce the factor y in the nonlinear term for convenience in order to render a dimensionless.
“Note that the universal Liouvillian enjoys a PT-symmetry which guarantees that the spectrum is either real or
that the eigenvalues come in complex conjugate pairs, see [36].
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B=3(c—n

Figure 2: Dimensionless photon current, which is proportional to Af, as a func-
tion of the driving strength 3, providing a zoom into the critical region of Fig. 1.
The solid line is the result (4). It interpolates between the result 1/2|3| (dash-
dotted) for B — —oo of Refs. [24,29] and the classical expression %™ (dashed
line) for 3 — oo.

f(x). The relative error scales like dxf Ja o< @/amtD/(m+2) Typically, systems that show a
parametric instability are weakly-coupled with & < a(™*4/0m*+2) such that higher-order terms
are less relevant and can be neglected. Note that the stationary state at threshold has been
discussed in Ref. [23] in the context of optical radiation in a pumped, nonlinear crystal.’

We envision that the damping is (partially) due to the coupling of the system to a detector.
To characterize the detector, we introduce the photon current I = fy|A/Ay|* ~ % frx? with
0 < f <1 the counting efficiency. Averaging over the stationary distribution, we obtain the

2
average photon current (I) = fyzi(qz)s which evaluates to (see Fig. 2)

(1)

2 (2'3M(B/2*)/M(B/2*), m=4, @

_frx? {D_s/z(—/s)/w_l/z(—/s), m=2,

here, D,(z) is the parabolic cylinder function and M(z) = 4/Ai(z)? + Bi(z)? the modulus of the
Airy functions [39]. This result describes the behavior in the critical regime connecting the
known behavior above and below threshold, see Fig. 1. The second order coherence g®(1)
at vanishing time delay 7 measures the fluctuations in the stationary state. It is given by
g@0) = (q4)s/(q2)32 and evaluates at threshold to 32I'(5/4)*/n? ~ 2.19 for m = 2 and 2 for
m=4.

4.1 Counting statistics

More generally, during the detection time 7, the detector measures the statistics of the photon
number N = f OT dtI. We can access the counting statistics by adding the source term %s frx?
to the Liouvillian [28,29]. The eigenvalue A(f3,sNy)/7, of

2
SN, T.X
L=Ly+—2¢%, Nozf—yz* i (5)
*

The optical system realizes the generic case m = 2 with the nonlinearity given by a =~ 1/ n, where n, denotes
the number of pump photons at threshold without accounting for depletion.
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Table 1: Numerical coefficients of the photon counting at threshold in (8).

C1 Cy C3 C4
2 21/T(3)? ~0.478 0.166 0.0886  0.0364
4 2m/48Y°T(3)?~0.459 0.112 0.0290 —0.00526

that is adiabatically connected to the stationary state, i.e., with A — 0 (for s — 0), is the

cumulant generating function ©
Y. TN] 3
N =——2 N, = —A t . 6
() = S5 MB M| _ =~ S5A8,0)] ©

The form (5) of the effective Liouvillian directly implies what is known as data-collapse: if the
time is measured in units of 7, and the photon number in units of N, the results close to the
bifurcation only depend on f, see Eq. (6) and also Fig. 3 as examples.

The problem below threshold for @ = 0 has been analyzed before [24, 29]. It has been
found that .
_(@j-3)n Nz
2 e

In particular, the j-th cumulant has an apparent divergence like o< 1/| when approach-
ing the threshold from below. This result remains valid as long as |e — y|t, > 1. Sufficiently
above threshold, on the other hand, the statistics is dominated by the Poissonian statistics of
the coherent state with a (classical) photon current y|A, /A,|2.

{(N7)

(7)

|2j—1

4.2 (Critical regime

Close to threshold with 7,|e —y| S 1, we enter the critical regime where the nonlinearity
becomes important, even though a < 1. We find that, at threshold, the counting statistics
is universal with the emerging timescale 7, o< a~2/(™*2) and the critical photon number
N, o< a~#/(m+2) being the only parameters that depend on the microscopic details of the
system. The cumulants are given by

. NIt (97 4+ 1)[m—im=2)]/(m+2)
(N e = ;0" o ZHLY
I T q(4i—2)/(m+2)

8

*

The universal numbers c; are listed in Table 1. Note that at threshold, the cumulants exhibit a

universal scaling 1/a“7=2)/(m+2) 55 a function of the nonlinearity a. Moreover, we predict the
universal ratio

- <N>thr «N3>>thr _ Gt {1-54> m=2, ©)

(n2p2 2 |1.05, m=4.

of the first three cumulants at threshold, independent of the microscopic details of the system.

Of particular interest is the Fano factor F = ((N2))/(N) = (c5/c1)N, that allows to identify
the parameter Ny > 1 with the number of photons that are correlated at threshold. Note
that for the generic case with m = 2, we have N, = f/a such that N is independent of the
thermal occupation and only depends on the nonlinearity. The reduced Fano factor F /N, has

5More accurately, this is the factorial cumulant generating function. However, as we have N, > 1 the difference,
being of order 1/N,, is small. Similarly, normal ordering is irrelevant in the limit of large photon numbers [29].

6
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Figure 3: Comparison of the Fano factor of the effective model (5) (solid-line) with
the full Lindblad evolution in the rotating frame (with 7 = 0) (11) for the Josephson
oscillator (m = 2) and the Duffing oscillator (m = 4) in the critical regime. The
strengths «, y of the nonlinearities have been chosen such that @ = 10~ (dash-
dotted line) and a = 10~ (dashed line). It can be seen that the full models approach
the results given by the universal Liouvillian in the limit « — 0*. Note that almost
all of the deviation can be attributed to a renormalization of the parameters in the
effective model, lowering the threshold and decreasing Nj.

a universal form as a function of f§ = %(e —7v)T,, see the solid lines in Fig. 3. We can see that
the Fano factor becomes of order Ny close to threshold. Interestingly, the maximal value does
not occur at the threshold but rather at stronger driving. For m = 2, the maximal value is
F =0.55f /a (independent of temperature). It occurs at # ~ 1.4. For m = 4, the dependence
of F on f3 is rather week and we obtain a relatively broad peak (with a maximum of F = 0.28N,
at 8 ~0.8).

The timescale of the slow dynamics close to threshold is given by the correlation time
T, that is connected to the width of the second-order coherence at threshold. In terms of the
cumulants, it describes the ratio F /T = (¢y/ cf)r*. The behavior of gt(}?r) for large 7 is dominated
by the eigenvalue A, of —£, (at B = 0) with the second smallest real part.” Using this fact,
we find the following approximate form

Ay F
gt(lfr)(f) ~1+ ?ZYe_MT' (10)

of the second-order coherence, valid for |t| 2 T,; here, A, = 3.13/7, for m = 2 and
Ay = 3.53/71, for m = 4. When comparing to numerics, we find that the expression (10)
is an excellent approximation with an error of less than a percent.

4.3 Comparison to numerics

In order to assess the validity of our results and connect them to possible experimental re-
alizations, we simulate the time evolution of a parametrically driven, damped oscillator that
exhibits a bifurcation. In the rotating-wave approximation, the system is described by the
Lindblad master equation

Lea(p) = —ilH,p]l+ 1A+ 1T (p) + yiiTe(p) +s frapa’, (11)

with the jump operators J;(p) = LpL' — %(LTLp + pL'L) and the Hamiltonian
H = %(aT2 —a?)+V(a',a). We concentrate on two important nonlinearities V that have
been studied before. For a voltage-biased Josephson junction, previously studied, e.g., in

"Due to the Z,-symmetry, there is no transition to the first excited state.
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Refs. [22,24-28,40], the stabilizing potential assumes the form V; = i"f—;(a"fa?’ —a"3a) with the
effective fine-structure constant k = 167Z,G,), Z, the characteristic impedance of the oscilla-
tor, and G, = e?/nh the quantum of conductance.® The system is driven by a voltage-biased
Josephson junction with Josephson energy E;. Using a method developed in [41], we can
show that the slow dynamics of the system maps on the universal form (3) with € = kE; /4Hh,
m = 2, and a = /24, see Appendix B for details. Typically, the characteristic impedance Z,
is of the order of 502 [40], which yields a ~ 1072, so indeed a is as small as required for the
application of our theory. The Duffing oscillator with the nonlinearity V;, = yya'a'aa that is
independent of the phase of a is the generic term for a system with a nonlinearity in the labora-
tory frame. In this case, due to the additional symmetry in the rotating frame, the nonlinearity
leads to a weaker confining force [4]. As shown in Appendix B, the slow-dynamics close to
thresholds maps on the universal form with m = 4 and @ = 2y2. In Fig. 3, we compare the
results of the full system to the ones of the effective model of the universal Liouvillian. As ex-
pected, we find rather good agreement in the whole critical regime with deviations controlled
by the strength of the nonlinearity.

5 Conclusion

In conclusion, we have shown that in the critical regime, the dynamics of a degenerate para-
metric oscillator for long-time scales at weak nonlinarity a is described by a universal Liou-
villian. The system only enters via the characteristic scales 7, and x, that exhibit a universal
dependence on a. The effective model allows to efficiently calculate arbitrary observables.
We have provided results for the photon current in the critical regime and for the first four
cumulants at threshold. We predict that the ratio (N )y, (N?) g,/ (N*)2 of the first three cu-
mulants assumes a universal value of order 1 at threshold. We have compared our results to the
full numerical solution of the Lindblad evolution of a parametrically driven oscillator in the ro-
tating frame. We have demonstrated that the effective model accurately describes the physics
in the critical regime. In particular, we have shown that a voltage-biased Josephson junction
embedded in a cavity, a system actively investigate in many experimental groups [40,42-47],
naturally realizes a weak nonlinearity. Thus, we believe that our results can be readily tested in
present-day devices. Extending our approach to other driven-dissipative instabilities remains
an interesting question for future research.
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A Derivation of the universal Liouvillian

Using the general equivalence of the Langevin equation for a single stochastic path x(t) and
the Fokker-Planck equation for the corresponding probability-distribution P(x, t) [37], Eq. (2)

8The Josephson energy in the rotating frame leads to the potential iE, :J,(vxaTa)(a™ —a?)/2a’a: with J, a
Bessel-function of the first kind. Expanding this result for k < 1 yields the result quoted in the main text.
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corresponds to the Fokker-Planck equation

- 2 fl)+ 2 dx

(A1)

-1
0 0 n+s
22ty 0D 2],
ot dx

with f(x) = %(ex—yaxm“). Going over from x to g with x = x,q, the Fokker-Planck equation
can be brought into the dimensionless form

8 p_ii[w—e)

10
—P= + m+1+——}P, A2
2P =75 q+q (A.2)

2 20q

which corresponds to the universal Liouvillian (3) (via the identification p = —id /dq).

B Derivation of the effective Lindbladian

Starting from the Lindbladian Ly given in Eq. (11) in the main text, we show how to derive
the effective model describing the slow dynamics. The first step is to define a set of (super-
Joperators, O, = 0, —O_ and O, = (O, + 0_)/2 with O,(p) = Op and O_(p) = pO where p
is the density matrix of the system. Using these definitions for the ladder operators, we obtain
the commutators [aq,aZ] = [ac,a(‘;] = 1 (while the rest of the commutators of aq,ac,a(‘;, aZ‘
vanish).

At first, we diagonalize the quadratic part of the Lindbladian £ ,,q for s = 0 and without
the stabilizing potential in the Hamiltonian H by a symplectic diagonalization to conserve the
bosonic structure [41]. The Lindbladian assumes the form

Equad = _%(Y —€)vu,— %(Y + G)Vfuf (B.1)

in terms of ladder operators v;,u; such that [u;, vi ] = & j;. Explicitly, they are given by

Y(Zfl-l—l) .
us—xc+12(y_€) 4> Ve =—iY,,
L _a@i+D B (B.2)
=Y 2(y + ¢€) q f=1Xg,

where we introduced the two quadratures x, . = (az‘i,C +aq0)/ V2 and Yge = i(az‘i,C —ag.)/ V2
with [x., y,] = [x4,¥.] = i. Note, however, that the creation and annihilation operators, v;
and u;, are not the adjoint of each other which is due to the fact that the Lindbladian L4 is
not Hermitian.

The slow dynamics of the system is given by the u, v, (or x, y, respectively) while uz, v,
correspond to a mode that decays with the rate y at threshold. The spectrum of the system is
givenby A = —%(y—e)ns—%(y+ e)ny withng,ny € Ny. The corresponding right eigenstates are
the product states |ng,ns) = |n;)|ns) with ujln;) = /njln; — 1) and vj|n;) = y/n; +1|n; +1). The
left eigenstates similarly are characterized by (n;|v; = /n;(n;—1| and (n;lu; = y/n; + 1(n; + 1.
Note that in the superoperator formalism |0, 0) corresponds to the stationary state P, and (0, O|
is the trace operation.

Next, we can take the nonlinearity given by the stabilizing potential V into account. It
produces the additional term Ly = —i(V, —V_) with Ly = Lyyaq + Ly +sf ya,a'. The small
parameters a allows to treat Ly perturbatively. In particular, we are only interested in the
effect of Ly on the slow mode as the fast mode remains in the stationary state [n; = 0). Since
we are close to threshold, we also set e =y in Ly,.
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For the Josephson oscillator, we can simply project L onto the subspace with ny = 0.
Using the expressions (B.2), we obtain

Ly =~ (np =0|Ly|n; =0) = %Kyiyqxc + 4i81<y (iyqxf’ + %iyé”xc) . (B.3)

The first term corresponds to a small shift of the threshold. This shift, which vanishes for
a — 0, can be seen in Fig. 3. The model is then given by y, — p/x, and x. — x,q with a
rescaling factor x, > 1 that is specified in the main text. As discussed in the main text, we
have y, ~ x*_1 and x, ~ x, and thus y, < x, for a — 0. Due to this, the term i yqxc3 is the most
relevant nonlinearity. We can thus neglect y‘?xC which allows to identify m = 2 and a = k/24
for the Josephson oscillator.

The case of the Duffing potential needs more careful treatment due to the rotational sym-
metry as noted in the main text. In particular, we have (n; = 0|Ly|n; = 0) = 0 due to this
symmetry. In order to find the stabilizing effect, we need to include virtual excitations of the
fast mode in second-order perturbation theory. We obtain (i = 0 for simplicity)

(”f = 0|£V|n/f)(n}|£vlnf =0)
n

Ly (g =0|Lyln; =0)— > (B.4)

n}>0

— 2., (_31: _ 13- 3, ; 5,5,2_5,2,2,1.2.4,13-.3_. 5. .4,1.4.2 6 1.6
=X Y( T61YqXc 4lyqxc+lyqxc+16yq Syqxc+4yqxc+16lyqx5 32yq+8yqxc+64yq)'

As before, the rescaling y, — p/x, and x, — x,q leads to y, < x, in the limit of weak
nonlinearities. Because of this, the most relevant nonlinearity is the term i xz)/yqxf. This
allows to identify m = 4 and a = 2y?2 for the Duffing oscillator. Note that the term oc yqxf
has the wrong sign and does not stabilize the mode. Moreover, it is subleading as yqxf o< xf
while yqxc5 o< xf. While the result (B.4) is shown for 1 = 0 for simplicity, the relevant term

iy%y yqxc5 is in fact independent of 1. The counting field leads to the additional term

sfracal = szY[(xc + 5y %+ (e — £x)%]. (B.5)

In the limit @ < 1, the dominant term is given by 3sfyx2 = 3sf yx2q? as stated in the main
text.
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