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Abstract

We introduce and study a model of hardcore particles obeying run-and-tumble dynamics
on a one-dimensional lattice, where particles run in either +ve or —ve x-direction with
an effective speed v and tumble (change their direction of motion) with a constant rate w
when assisted by another particle from right. We show that the coarse-grained dynamics
of the system can be mapped to a beads-in-urn model called misanthrope process where
particles are identified as urns and vacancies as beads that hop to a neighbouring urn
situated in the direction opposite to the current. The hop rate is same as the magnitude of
the particle current; we calculate it analytically for a two-particle system and show that
it does not satisfy the criteria required for a phase separation transition. Nonexistence of
phase separation in this model, where tumbling dynamics is rather restricted, necessarily
imply that motility induced phase separation transition can not occur in other models in
one dimension with unconditional tumbling.
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1 Introduction

An important class of nonequilibrium systems is that of active matter systems (AMS) [1] where
the individual constituents are self-propelled; instances of such systems include bird flocks [2],
bacterial colonies [3], photophoretic colloidal suspensions [4] and actin filaments [5] etc.
They exhibit a number or interesting features like large number-fluctuations [1], clustering
and pattern formation [4]. A major area of interest in the study of AMS has been the so-called
motility-induced phase separation (MIPS) [6-13] which refers to spatially separated high and
low density regimes. Such aggregation or clustering of particles has been observed experimen-
tally in many active matter systems [4]. Relevance of the aggregation process has also been
proposed as a mechanism of formation bacterial biofilms [3], which are sources of infection.

Occurrence of MIPS relies on an argument that effective velocity of active particles de-
crease in crowded or high density regions formed either by explicit dependence of local den-
sity or merely by exclusion. Naturally such a slowing down of movement further increases the
density of particles and gives rise to a feedback loop allowing the stable high density (liquid-
like) regions to form and coexist with a low density (gas-like) phase elsewhere. MIPS has
been widely investigated in simulations and apparent phase separation has been observed.
Theoretical investigations of this phenomenon have thus far concentrated on continuum mod-
els [8-10] where motility parameters, such as particle flux or velocity are characterized as
functions of the coarse-grained local density [6, 7]. Lattice models of active particles have
been studied in one and two dimensions numerically [14-16] with run and tumble particles
(RTPs). RTPs move at a fixed speed along the direction of their orientation (a run) until they
tumble and change their orientation. In one dimension (1D), the two orientations (say, %)
are usually referred to as the internal degrees of the particle (spin), which flips with a certain
rate. Analytical studies of these lattice models are limited. Thompson et. al. [13] have in-
troduced a model of self propelled particles with RTP dynamics; in 1D. These models exhibit
inhomogeneous density profiles when particle velocities depend on their position. Recently
Slowman et. al. [17, 18] have obtained an exact solution for two RTPs and found jamming
induced attraction between the particles of the opposite spins, which indicates that, for many
particle systems, a phase separated state might originate from these attractive interactions.
Later, Dandekar et. al. [19] have obtained a mean-field solution of RTPs in 1D which turned
out to be a good approximation when tumbling rate is large.

An element of surprise in the formation of a phase separated state without any explicit
attractive interaction has generated much excitement to the study of MIPS and raised questions
about the stability of such states in 1D in absence of any explicit interaction or spatial potential.
Recent works have added to the doubt by showing that MIPS phase transition in 2D belongs
to the Ising universality class [20-22] which does not have a counterpart in one dimension.
In this article we argue and show explicitly using 1D lattice models of RTPs that indeed MIPS
transition can not occur in 1D; the inhomogeneous states observed in numerical simulations
and in hydrodynamic models are only long lived transient states.

First we introduce a generic model of hardcore RTPs in 1D with a restricted tumbling
dynamics and show that its coarse-grained dynamics can be mapped to a beads-in-urn model,
namely a misanthrope process [23, 24] where beads hop to their neighbouring urn, situated
in the opposite direction of the particle current, with a rate same as the magnitude of current.
The functional form of hop rate is determined from the exact steady state results of the model
with only two RTPs. To determine if MIPS transition is possible, we use the following criterion.
If a system of hardcore particles phase separates as its density p crosses a threshold p* then the
maximum density at which it remains homogeneous is p*. Since systems with homogeneous
densities are well described in the grand canonical ensemble (GCE) by a unique chemical
potential u (or fugacity z = e), we argue that phase separation transition is possible in a
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system when its density in GCE attains a maximum value p* = Max[p(z)] which is less than
unity (the density of a fully occupied lattice). Nonexistence of MIPS transition in restricted
tumbling model would imply that MIPS can not occur in any other RTP model in 1D where
tumbling occurs more frequently.

2 The restricted tumbling model

We introduce a generic model of RTPs on an one dimensional periodic lattice with sites labeled
by i =1,2,...L. The sites are either empty (represented by 7; = 0) or occupied by at most
one RTP 7; = + having orientation (spin) =*. Particles follow a run dynamics,

P+ p—
+0=0+;  —0=0-, )
q+ q—

where RTPs move forward or backward with rates p, and q. respectively. Along with this,
they can tumble and change their spin with rate «w as follows,

S5+, —x841 (2)

Tumbling is restricted here in the sense that only those particles which are assisted from right
by other particles can tumble their direction. This restriction helps us getting an approximate
steady state of the system without tampering the main aim: the proposition that a stable MIPS
state can not be sustained in 1D. Since frequent tumbling of particles helps the system to clear
jamming, a proof of nonexistence of MIPS in our model necessarily guarantees its nonexistence
in any other model that has more liberal tumbling dynamics. Hereafter we refer to the model
following dynamics (1) and (2) as restricted tumbling model (RTM).

Although RTM is defined for generic rates (p.,q.) we study the case p, = q; where the
run dynamics exhibit a symmetry transformation, namely simultaneous interchange of par-
ity (left = right) and spin (+ = —), that keeps the dynamics invariant. This symmetry was
present for both run- and tumble-dynamics in 1D lattice models studied earlier [17,19]. When
P+ = s, it is also ensured that in the limit when lattice spacing vanishes [25], a single par-
ticle dynamics of RTM reduces to that of a RTP moving in continuum space with same speed
v = p_—q_ = q,.—p. along +ve and —ve x-directions. Note that, under parity transformation
(left = right) the tumbling dynamics of our model is modified as tumbling now occurs for only
those particles which are assisted by other particles from left. But, for p, = g, a left-assisted
tumbling dynamics leads to the same steady state as the right-assisted tumbling. This can
be verified easily from the exact mapping of these models to the corresponding beads-in-urn
models (see later discussions).

A special case of RTM with p, = a =q_,p_ = 0 = ¢, and unrestricted tumbling dynamics

w
+=— was studied earlier by Slowman et. al. [17] and an exact steady state solution was

w
obtained for a system of two RTPs. It turned out that these two particles experience an effective
attractive interaction in the steady state when their spins are opposite; it is envisaged that this
attraction might be the source of MIPS states observed in corresponding hydrodynamic models.

In comparison, in Eq. (2) we have dropped one of the transition +0 = —0; as a consequence,
w
particles do not tumble if they are not assisted by a right neighbour.

3 Mapping of RTM to a beads-in-urn model

Any microscopic configurations {7;} of RTM can be viewed as urns containing beads —each
particle is an urn that contains beads which are uninterrupted sequence of Os (vacancies) to
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Figure 1: (a) Mapping lattice model of RTPs to an urn model. (b) Effective coarse-
grained dynamics: hop rate of a bead u(my, my;) from urn k (with m,, particles)
to k + 1 (with m;, particles) is assumed to be same as the local bead current
J(my, my.) averaged over internal degrees o, 0y 1-

the right of the particle (as described in Fig. 1(a)). The spin £ of the particle is termed
as the internal degree of the urn. Thus we have a beads-in-urn model of N urns indexed
by k = 1,2,...N, each carrying an internal degree o, = &+ and m; = 0,1,2... beads. The
dynamics (1) and (2) now translate to hopping of a bead from urn k to k+1 (k—1) with rate
Aoy, (Ps)s and flipping of internal degrees o, — —0o with rate w5mk,0. The total number of
beads lejzl my = L —N = M is conserved by the dynamics. Like particle density p = ]fv, the
bead density n = % = I_Tp is also conserved.

Note that in this beads-in-urn model the internal degrees of the urns can flip only when
they are empty; this restriction forces k-th urn either to transfer a bead (when m; > 0)or to
change the internal degrees (when m; = 0) and help us getting an exact steady state. It is
easy to see that a left-assisted tumbling dynamics with same rate w will also map to the same
beads-in-urn dynamics when particles are identified as urns containing number of beads same
as the consecutive vacancies to their left and the hope rates are p, = q.

The mapping of RTM to beads-in-urn model is exact but its steady-state could not be ob-
tained analytically. We proceed to develop a coarse-grained picture. In the steady state of
the urn model, the local bead current J (summed over &+ degrees) effectively transports the
beads from one urn to its neighbour situated along the direction of total current. Since hop-
rates (¢, ,,,Po,) In the original beads-in-urn model were dependent on spins of neighbouring
urns it is expected that the local bead current must depend on the number of beads present in
neighbouring urns, i.e. J = J(m;, my,1). This current can be set as the effective hop-rate of a
coarse-grained model where urns lose their internal degrees and a single bead hops from urn k
to (k+ 1) with rate u(my, my,;) = J(my, my,1); rightward hopping (k to (k+1)) is considered
assuming that the current is flowing in +ve x-direction. Thus, in this coarse-grained picture
(see Fig 1(b)), all urns are equivalent (as they lose their internal degrees) and the hop-rate
depends on the number of beads present in the departure and the arrival urn; such a process
is called a misanthrope process (MAP) [23,24].
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In fact, mapping of hardcore particle systems to urn model with an exact or effective coarse-
grained dynamics, similar to the dynamics of a zero range process (ZRP) [26] are quite reliable
and have helped researchers [27] earlier to establish non-existence of phase separation tran-
sition in certain lattice models [28] where rigorous numerical simulations have exhibited ap-
parent phase separated states. It also helped in predicting true phase separation transition in
many other models [27,29,30]. In contrast, mapping to that of misanthrope process, that we
introduce here, provides a better coarse-grained picture as steady-state correlation between
neighbouring urns are retained here.

The bead-current J(my, m;,,) flowing across the urns can be computed from numerical
simulations (will be discussed later), but that does not help us to compute p(z) in grand
canonical ensemble. To calculate p(z) we need functional form of J(m,, m,) which can be
calculated exactly using matrix product ansatz (MPA) [31] for a system of two urns containing
M number of beads (i.e., L = M +2), each one following the dynamics described in Fig. 1(a).

For urn models, a matrix product steady state (MPSS) can be obtained following Ref. [32].
We now consider RTM model, which is mapped exactly to the urn model described in Fig.
1(a). The steady state probability of a generic configuration {o;m;}, where k" urn (spin o)
has m; beads, is given by a matrix product ansatz,

N N
P({oxmy}) ~ Tr []‘[xak(mk)] 5 (Z mk—M) : 3
k=1 k=1

where matrix X, (m;) represents the k'™ urn having internal degree o and m; beads. The
o-function here ensures that the total number of beads M are conserved. These matrices are
constrained to follow a matrix algebra so that P({o;,m;}) defined above must satisfy the steady
state condition ‘é—f = 0 for the dynamics in Fig 1(a). We find (see Appendix) that for N = 2,
matrices X, (m) have a 2 x 2 representation (for any w > 0),

1 0 01 +q_
- +

The steady state probabilities of two urns containing m;, m, beads are then, P, ;,(m;,m,) =

M
& Tr[X g, ()Xo, (M)16(my + my — M), where Q= » . > Tr[Xg, (my)X,,(M —m;)].
01,02 m;=0

Explicitly,

1 1 11—
pU1O'2(m17m2) = Q_Yz(l om+3(1 GZ)mz: (5)
M

with my = M —m;. Thus, the average local current carried by the beads when the two urns
have (m;, m,) particles is

J(my,my) = Z Py, 5,(m1,m3)(qo, — Po,)

01,02

- [(q4 —p)+ (@e —p)y™ + (g —p Y™ +(q- —p)y™*™2].

Qm1+m2

For RTPs, which need to satisfy the condition p,. = qz,

my+my

1—y

Qm1+m2

; 6)

J(my,my) =v

wherev=p_—q_=¢q,—p,andy = g—t (as in Eq. (4)). Note that J(m;, m,) depends only
on the sum of its arguments, i.e., J(m;,my) = J(m; + my). We will now set J(m; + m,) as
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the hop-rate of beads in the coarse-grained model, i. e., u(my, my,1) = J(my + my,1). This
urn model is a misanthrope process where hop-rate is a function of total number of beads
present in the departure and the arrival site. It turns out that the steady state of this specific
misanthrope process has a factorized form,

N u(l,n—1)
PUMD~[ [F(ma), with fem)=] [=—==1
k=1 n=1 u(n, O)
N
The grand partition function with a fugacity y that controls the total number of beads M Z my
k=1
is
On() =D P({my™ = F(y);
{my}
i ) )
F(y)= > fm)y™=——.
m 1=y

In RTM, both N,M = Zgzl m; vary keeping the system size L fixed. To account for that we
introduce another fugacity 2, so that the new partition function is,

oo
VA = N_—_ = 8
(0= 2, 0" = Ty ®
which gives rise to (N) = z% InZ(z,y) and (M) = y% InZ(z,y). We now set (N) + (M) =L
to obtain z in terms of y, z = UHW(}’LW Then,
N F(y)
pU)E(>—- ' ~Y. )

T FO)+yF(y)

The maximum value of the RTP density, obtained when y — 0, p* = 1. Thus the fugacity y
can always be tuned to obtain any arbitrary particle density 0 < p < 1; thus, irrespective of
the value of p, the system remains homogeneous and can not phase separate.

The above argument is based on a coarse-grained picture where the hop rate
u(m,n) = u(m + n) is taken same as the average local current of beads. In the following
we employ a method to calculate J(.) numerically from Monte Carlo simulations of the model
and compare it with Eq. (6).

To simulate the dynamics we must set p,. = q-. required for the system to have a valid RTP
dynamics, which gives y = i—t in Eq. 4. Without loss of generality we can set p_ =1=gq,, by
choosing a suitable time unit; then, p, = q_ = y and the speed of RTPs v =q, —p, =1—7.
We also consider y < 1 (y > 1 case can be explored directly by using left/right and +/—
symmetry). From Eq. (6), J(m) = é(l — ™), which has an asymptotic form (for large m),
. 3—r

—_— 1 —_—
J(m):u(m)_mm+c, c-—l_Y. (10)

This implies that u(m)™! is a linear function of m™! with slope c(1 —y)™! and y-intercept
(1 —1v)7!, which we verify from the Monte Carlo simulations of the urn model (Fig 1(a)).
For a given value of y, p, w first we allow the system to relax for a long time starting from
a random initial configuration. The system may take a very long time to reach a true phase
separated state when it exists, but the hoping dynamics in the coarsening regime given by
u(my, my) = J(my, m,) can predict, well in advance, if the system is approaching towards a
inhomogeneous (MIPS) or a homogeneous state.

6
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Figure 2: Simulation of RTM model with dynamics (1) and (2) (equivalently an
urn model described in Fig. 1(a)). (a) Hop rate u(m)~! obtained from numerical
simulations (solid line) for y = 0,0.4 and «w = 0.005 to 1 (top to bottom) are com-
pared with Eq. (10) (dashed line) when p = 0.02. All the curves approach linearly
to the asymptotic value (1—y)™!, as predicted. (b) Marginal distribution p(m) of the
separation m are compared for y = 0 and p = 0.1,0.3,0.9 in semi-log scale. Solid
lines (results from simulations for «w = 0.2 to 10 (right to left) are shown along with
dashed lines, p(y)™ with y = 1 — p obtained from coarse-grained description of the
model. The inset shows the same for p = 0.1 but smaller w = 0.005 to 1 (right
to left). In all cases p(m) shows exponential behaviour; but for small w, y differs
substantially from the predicted value (1 —p). Here, p, =y =q_, p_ =1 =q,,
L = 10*. In each case, statistical averaging is done for more than 107 samples.

In the coarsening regime we consider a large time interval and calculate
(F.(my + my), F;(m; + my)), the number of times beads move to (right, left) when the de-
parture and arrival urns have exactly m; and m, beads respectively (internal degree of the
urns are ignored). Also, we keep track of F(m; + m,), the number of jump-events attempted
during that interval. Clearly, u(m) = (F.(m)—F;(m))/F(m). In Fig. 2(a) we plot u(m)~! versus
m~! for y = 0,0.4, 0 = 0.02 and w = 0.005 to 1; in all cases, u(m)~! is found to be linear
for large m as expected from Eq. (10). The y- intercepts also approach to the known value
(1—y)~! but the slopes differ a bit. Further, in Fig. 2(b) we plot the marginal distribution p(m)
of number beads m for y =0,p =0.1,0.3,0.9, & = 0.2 to 10. The dashed line corresponds to
the theoretical curve obtained from the coarse-grained picture: p(m) = y™f(m)/F(y) = py™
where y = 1 — p. In all cases, as shown Fig. 2(b), p(m) exhibits exponential distributions
that match very well with the prediction when w is large. As w — 0 the exponential feature
remains persistent but the value of y differs substantially from the theoretical value 1—p. This
is because ergodicity is broken at w = 0; the system there falls into one of the fully jammed
(or absorbing) configuration and remains there.

Essentially, the coarse-grained picture turns out to be a good description of the RTP model
as p(m) decays exponentially for large m as predicted - rest of the details are less relevant
because an exponential form of p(m) is enough to assure that the fugacity in GCE can always
be tuned to secure any desired particle density O < p < 1. Such a system can not support any
stable MIPS phase and settles to form a homogeneous density profile for all w > 0,y = 0.

The above conclusion can also be obtained from using an approximate matrix product
steady state (MPSS). Matrix representations (4), that provides exact MPSS exclusively for
N = 2, are also excellent approximations for larger N (justified in the Appendix). With these
matrices, for N > 2, the grand partition function Z(z, y) and density p(y) are given by Egs.
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(A.6) and (A.7) respectively,

1 1 1
Z(z,y)= 1_2F ()’ F(y)= m‘*‘ 17y
A-yA—ry)2-y—ry)
(Q=—ry2+1-y?*

Clearly, the maximum density that can be achieved in GCE by tuning y is p* = 1 (when
y = 0) and thus, this RTP model can not undergo a phase separation transition at any p < 1.
One can safely extend these results for restricted tumbling dynamics to other RTP models
where tumbling occurs more frequently; this is because tumbling is generally detrimental to
the stability of MIPS. Our conclusions are consistent with the recent results [20-22] that MIPS
transition in 2D belongs to the Ising universality class that does not have an one dimensional
analogue.

(11

and p(y)=

4 Summary

In this article we show that phase separation of free hardcore-RTPs with constant run and
tumble rates is not possible in 1D. One may however add some crucial features which are
known to enhance or freshly produce phase separated states of passive particles, like invoking
explicit attractive interaction [27] or making tumbling rates to decrease with L (so that it
vanishes in the thermodynamic limit) [33] or explicitly forcing the run dynamics to depend
on (and reduce substantially with increase of) local particle density [26] or adding impurities
[34]. Then a phase separation transition may occur, but will it keep its charm and glory to be
identified as the motility induced phase separation, particulary when the transition is anyway
expected for similar system of passive particles (without motility)?

Recently Kourbane-Houssene et. al. [35] have introduced a RTP model where the differ-
ence of run-rates (or effective velocity) are taken proportional to % and the tumbling rate is
proportional to % (downplayed by a factor 1/L compared to the run rates); using an exact
coarse-grained hydrodynamic description they show that a homogeneous phase in 1D loses its
stability in certain parameter regimes. Another way might be to use strongly biased tumbling
rates where, say, + — — occurs much more frequently than — — +. In this case a phase sep-
aration transition occurs [33] when g, = 0, where the dynamics of RTM reduces to that of a
two species exclusion process [36]. Its extension to small g, ~ 0, is a RTP model (having a
good continuum limit) and it is reasonable to assume that the phase separation features may
also survive there. Yet another possibility is to introduce defects. Recent studies [37] have
shown that a jammed phase does exist in RTM like models with defects. More investigations
are required in all these directions to confirm if RTP models in 1D can phase separate.
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A Appendix

The dynamics (1) and (2) of RTM can be mapped exactly to an urn model described in Fig. 1(a)
where beads hop from site k to site k+1 (or site k—1) with rates g, (or p,, ) respectively. The
probability density of a generic configuration {o,m,} evolves following the Master equation,

d

ap(- o5 Ok—1Mg—1, Ok My, Oy 1My 15 - - )

=—(Po, + 40, JP( - s Okm1Mp—1, Ok My, O M1, - - )
+q5,P(.., 011 + 1,00 — 1, O g1 My, - - )
+p0k+1P(. e Oy Mp_1, 0 My — 1, 0 yMp +1,..0)
- w5mk,OP(- cos O 1My 1, O My, Oy 1My, -)
+ b, 0P (-, Okm1 M1, —O My, O 1 Mpg15 - ) s (A1)

where first three terms in the right hand side corresponds to the run dynamics and the rest
describes tumbling at a generic site k. In the steady state %P({okmk}) must vanish; this,

along with the matrix product ansatz (3) leads to 25:1 Tr[HR + H, ] = 0, where HY and H]
correspond to the run and the tumble dynamics respectively,

Hi = _(pak + q0k+1 )XO'k_l(mk_].)XO'k(mk)XO'k+1(mk+1)

+ qO'kXO'k,1 (mk—l + ]‘)XO'k(mk - ]‘)X0'k+l(mk+1)
+ Do X, (M1 )X (M — )X, (Mg +1) (A.2)

and Hy = w[X_; (0)—Xy, (0)]X,,,, (mys1).

We now introduce some suitable choice of auxiliary matrices X’Uk’ah L (my, my4q), yet to be
determined along with X, (my), so that both »;, Hf and >, H kT vanish separately; one such

A

cancellation scheme for H;_ is,

Hf = XO'k_l,O'k(mk—].’ mk)XO'k+1 (mk+1) _XO'k_l (mk—l )XO'k,O'k_H (mk’ mk+1) . (AB)

We find that a choice XU,U/(m, n) = hyzXs(m)X 4 (n) with some scalar parameter h, ., does
satisfy the steady state condition with 2 x 2 matrices

1 0 01
X, (m) = [1 0] X m=y" [O 1] : (A4)
when y = gfig; ,h,_=0=h__ and

_ ) q,(1=v9), m>0,n>0,
h++_h___{ 0, else. (A.5)

These matrices also satisfy the condition Y, Tr[H kT ] = 0 set by the tumbling dynamics because
X,(0)X,/(m) = X,.(m) for all 0,0’, m. The only troubling part is that h, s depend implicitly
on m, n violating the assumption that they are constants. This implicit dependence of h,, and
h__ on m,n drops out when (i) g, = 0 (all particles move in the same direction), (ii)y = 1
(which sets the speed of RTPs v =1—y = 0 when p, = q). In both cases we have an exact
MPSS, but neither of these cases constitutes the scenario of MIPS. Yet another case is N = 2
where matrices given by Eq. (A.4) leads to an exact MPSS. This is because the cancellation
scheme in Eq. (A.2) acts on product of three consecutive matrices which are not present when
N = 2; thus, one can make h,,, independent of m,n by setting safely h,,. = 0 for all o,0”.
Steady state probabilities for N = 2 is given by Eq. (5).

9
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Figure 3: (a) n., the density of beads in + urn and (b) p,, the fraction of + urns
are shown as a function of y for different p = 0.1 to 0.9 (top to bottom). Data from
Monte Carlo simulations (solid lines) of RTM model described in Fig. 1(a), averaged
over 107 samples are compared with Egs. (A.9) (dashed line). Other parameters are
L=10%p,=y=q_,p_=1=gq, and w =1.

Now we proceed for larger N and get an approximate MPSS while dependence of h,/ on
m, n are ignored and both h,, and h__ are taken as q,(1 —y?) Vm,n > 0. We will see that
the matrices (A.4) provide a MPSS which are an excellent approximation to the exact ones.
The canonical partition function of the system is

N N
Quw= . Tr[ﬂxak(mk)]é(ka—M),
k=1

{ormi} k=1

and the grand partition function, with fugacities z, y associated with N, M, is

Zzy)= Y. 2NyMQuy= > NFO)Y,
M=0,N=0 N=0 (A.6)
1
F()=). Z Y Tr[X,(m)] = :
o=x m=0 _Y.y

Note that F(y)N acts as the partition function of the system when N is fixed.
From Z(z,y) = #F(y) one can calculate (N) = zdz InZ(z,y) and (M) = ydd InZ(z,y)

and set (N) + (M) to a desired value of L to eliminate z. Particle density p(y) = ) in GCE is
then,
1 A=) (a—yy)C-y—ry)

Fi(y) — _ 2 —v)2
+ YIS A-yy»+Q0-y)

To verify if MPSS obtained here is indeed a good approximation let us calculate and com-
pare from Monte Carlo simulations, the steady state values of 1, the average number of beads
per + urn and p_, the fraction of urns having internal degree +,

N N
1 1
+= N E :(mk5ak,+>; P+ = N E (50'k,+>' (A.8)
k=1 k=1

Since simulations are done at some specific L, N, we can use F(y)" as the partition function
of the system; thus p,.(m) =y™/F(y) and p_(m)=y™y™/F(y) and,

p(y)= (A.7)

__ 1 - y(I—7ry)
T )Z’"Tr[X*(m” =y 1)’
s s (A.9)
=153 Z " =
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Using density-fugacity relation (A.7), both 1, and p, can be obtained for different p.

In Fig. 3 we plot 1, and p. as a function of y (dashed lines), for different p in the range
(0.1,0.9), along with those obtained from the Monte Carlo simulations of the model (solid
lines). They match quite well for all y < 1, indicating that, the approximate MPSS describes
the RTP model very well.
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