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Abstract

We construct a basis of conformal primary wavefunctions (CPWs) for p-form fields in any
dimension, calculating their scalar products and exhibiting the change of basis between
conventional plane wave and CPW mode expansions. We also perform the analysis of
the associated shadow transforms. For each family of p-form CPWs, we observe the
existence of pure gauge wavefunctions of conformal dimension ∆ = p, while shadow
p-forms of this weight are only pure gauge in the critical spacetime dimension value
D = 2p + 2. We then provide a systematic technique to obtain the large-r asymptotic
limit near I based on the method of regions, which naturally takes into account the
presence of both ordinary and contact terms on the celestial sphere. In D = 4, this
allows us to reformulate in a conformal primary language the links between scalars and
dual two-forms.
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1 Introduction

Conformal primary wavefunctions (CPWs) [1, 2] with conformal dimension ∆ are solutions
of the free-field equations of motion T

µ1···µp

∆,a1···ak
(x , w) that transform covariantly under Lorentz

transformations Λµν, according to

T
µ1···µp

∆,a1···ak
(Λx , w′) = α∆−p

Λ (w)
∂ wb1

∂ w′a1
· · ·
∂ wbk

∂ w′ak
Λµ1

ν1
· · ·Λµp

νp
T
ν1···νp

∆,b1···bk
(x , w) , (1)

where qµ(w) with w= (w1, . . . , wD−2) is a fixed section of the light-cone qµ(w)qµ(w) = 0 and

Λµνq
ν(w) = αΛ(w)q

µ(w′) . (2)

The interest in this type of field solutions is mainly motivated by the celestial holography pro-
gram, where one aims at encoding the S-matrix of quantum gravity in four dimensions in terms
of a two-dimensional celestial conformal field theory; see [1–13] for early works and [14] for
more references. In this framework, one trades 4D scattering amplitudes for 2D correlators,
and symmetries of the “bulk” S-matrix naturally translate into Ward identities for the “bound-
ary” description. With the aim of studying the properties of such correlators in a conformal
basis, it is of course important to construct CPWs not only for electromagnetic potentials Aµa,∆

and linearized metric fluctuations hµνa,∆, but also for more exotic types of fields that can be rele-
vant in the ultimate celestial formulation of quantum gravity [15–20]. For instance, two-form
fields naturally emerge in double-copy constructions, whereby one decomposes the “square”
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of a one-form field into irreducible components, including a graviton, a scalar and a two-form.
Thus two-form primaries are expected to play a role in future investigations of celestial double
copies [19,21–24].

In this work, we explicitly construct CPWs for two-forms in D = 4 and more generally for
p-forms in generic spacetime dimensions D ≥ 4. For each family of CPWs, we calculate the
invariant scalar products and we identify conformal dimensions corresponding to pure gauge
configurations. For p-forms, these pure gauge CPWs turn out to occur for∆= p irrespectively
of the spacetime dimension D. We also carry out explicitly the construction of the correspond-
ing shadow transforms, obtaining for each CPW with dimension ∆ a shadow partner with
conformal weight ∆′ = D − 2 −∆. Moreover, in the critical dimension D = 2 + 2p for each
form degree p, shadows with ∆′ = p are proportional to the original non-shadow CPW and
thus are also pure gauge. Our strategy is based on two building blocks: the scalar CPWs,

Φ∆(x , w) =
(∓i)∆Γ (∆)

(−x · q(w)∓ i0)∆
, (3)

which can be seen as Mellin transforms of conventional plane wave states [1–3, 6], and the
“Mellin-space polarization vectors” [19]

εµa (x , w) =
∂

∂ wa

�

qµ(w)
−x · q(w)∓ i0

�

, (4)

which obey simple transformation rules under Lorentz transformations,

εµa (Λx , w′) =
∂ wb

∂ w′a
Λµνε

ν
a(x , w) . (5)

These two ingredients neatly combine to produce all higher-form CPWs. Along the way, we
also comment on the relation between conformal primary transformation rules and Wigner
rotations and translations arising in the standard little-group construction [25,26].

A further motivation for studying p-form conformal primaries is provided by dualities,
which for instance relate forms of different degrees to one another depending on the spacetime
dimension. When D = 4, in particular, the two-form field is naturally dual to a scalar degree
of freedom. This fact was at the basis of the proposal to identify scalar soft theorems and
their associated charges [27, 28] as manifestations of asymptotic symmetries involving their
dual two-forms [29, 30]. Here we provide an explicit realization of this duality. This turns
out to map scalar CPWs to two-form CPWs with the same conformal weight, with singularities
associated to the constant ∆= 0 on the scalar side and to the pure gauge mode ∆= 2 on the
two-form side. With an appropriate normalization, the canonical pairing between this ∆ = 2
pure gauge configuration and the∆= 0 CPW leads to an explicit finite and nonzero expression
for the associated charge.

In order to investigate the behavior of the CPWs obtained in this way near null infinity,
one is also led to analyze in detail the limits of scalar CPWs, and more generally of solutions
of the wave equation, as the radius r is sent to infinity for fixed retarded time [9, 20, 31, 32].
Due to singularities appearing in null directions and in particular on the celestial sphere, these
limits need to be taken in a distributional sense. We formulate here a strategy based on the
method of regions [33,34] to handle them in a systematic fashion, treating carefully contact-
term contributions. In the limit, one finds that two regions of integration are important, and
the near-collinear one dominates the asymptotic expansion for D > 4. In general, both re-
gions enter the leading-order expansion in D = 4, leading to the appearance of logarithmic
terms log r. However, the combination appropriate to the calculation of wave-forms is log-free,
consistently with previous analyses.
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Finally, we come back to the issue of two-forms and their dual scalar charges in D = 4,
discussing their explicit expressions both in the conventional plane wave basis and in the
new celestial basis. The two analyses agree and confirm that the ∆ = 1 mode can be held
responsible for the leading soft theorem [19,27,35].

The paper is organized as follows. After collecting some preliminary material about po-
larization vectors and little-group transformations in section 2, we discuss the construction of
CPWs for the various form degrees in section 3 and their shadow transforms in section 4. We
discuss our method for calculating asymptotic limits in section 5 and conclude with a discus-
sion of D = 4 two-forms and dual scalar fields in section 6.

Notation. Greek letters µ,ν,α,β , . . . denote D-dimensional spacetime indices, while Latin
letters a, b, . . . denote d ≡ (D − 2)-dimensional transverse-space indices. The square brack-
ets on p indices denote the alternating sum over permutations of such indices without ad-
ditional factors, for instance A[µBν] = AµBν − AνBµ. We adopt the mostly-plus signature
ηµν = diag(−+ · · ·+). In the discussion of shadow transforms, eΦ∆ denotes the shadow trans-
form of the conformal primary with weight ∆, itself with weight d −∆.

2 Plane waves and polarizations

In this section, we collect useful preliminary material that is later used to discuss conformal
primaries. We begin by recalling some facts about the geometry of the light-cone, which we
then employ in order to construct ordinary polarization vectors, making contact explicitly with
the transformation rules under little-group transformations and Wigner rotations. We then
employ such polarization vectors to construct two-form and p-form polarization tensors.

2.1 Projective light-cone

When dealing with massless fields, a distinguished role is played by the light-cone, defined by

p2 = 0 . (6)

To parametrize it, it can be useful to fix a reference chart of the form

pµ = λqµ(w) , (7)

where λ and wa, with a = 1,2, . . . , D− 2, are real coordinates. In the next subsection we will
specialize to a standard choice of qµ(w) (28) that simplifies several formulas. Once a choice
of qµ(w) has been made, it induces tangent vectors

eµa (q) = ∂aqµ , (8)

and a metric
hab(q) = eµa (q)ηµν eνa(q) , (9)

on the λ= 1 cross section it describes.
The projective light-cone can be defined by identifying vectors that differ only by an overall

rescaling:
p2 = 0 , pµ ∼ λ pµ . (10)

This suggests considering an expression that is automatically invariant under rescalings:

qµ→
qµ

u · q
, (11)
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with a suitable reference vector uµ, and to consider as tangent vectors

εµa (q) = ∂a

�

qµ

u · q

�

=
1

u · q

�

∂aqµ −
u · ∂aq
u · q

qµ
�

, (12)

so that, by construction,
εµa (λq) = εµa (q) . (13)

The metric associated to εµa (q) is given by

γab(q) = ε
µ
a (q)ηµν ε

ν
b(q) =

1
(u · q)2

eµa (q)ηµν eνb(q) =
hab(q)
(u · q)2

, (14)

since the additional pieces in (12) drop out by orthogonality. Again, (14) is manifestly invari-
ant under local rescalings.

We shall adopt (12) as our preferred tangent vectors. To denote points on the projective
light-cone, we shall also use interchangeably qµ or w, writing for instance

εµa (w) = ε
µ
a (q(w)) , (15)

and
ds2 = γab(w) dwadwb , γab(w) = γab(q(w)) . (16)

Under a generic coordinate change w= w(w′), one then has

ε′µa (w
′) =

∂ wb

∂ w′a
ε
µ

b(w) , γ′ab(w
′) =

∂ wc

∂ w′a
γcd(w)

∂ wd

∂ w′b
. (17)

Let us now consider a Lorentz transformation Λµν ∈ SO(1, D− 1), which acts via

qµ 7→ Λµν qν . (18)

Since Λµνqν(w) is null, the effect of the Lorentz transformation Λ can be also characterized by
a mapping w 7→ w′(w) such that

Λµν qν(w) = αΛ(w)q
µ(w′) , (19)

for a suitable factor αΛ. Taking a derivative of this relation with respect to w′a leads to

Λµν
∂ wc

∂ w′a
eνc (w) = αΛ(w)e

µ
a (w
′) +

∂ αΛ
∂ w′a

qµ(w′) . (20)

Taking the “square” of this identity, and using q2 = 0= eµa qµ, we see that αΛ acts as a conformal
factor for hab,

∂ wc

∂ w′a
hcd(w)

∂ wd

∂ w′b
= α2

Λ(w)hab(w
′) . (21)

The determinant of this relation gives

αD−2
Λ (w) =

√

√ h(w)
h(w′)

det
�

∂ wa

∂ w′b

�

, (22)

where h(w) = det(hab(w)). Under the Lorentz transformation described by (19), the metric
also obeys

ds2 = γab(w)dwadwb =
(u ·Λq(w))2

(u · q(w))2
γab(w

′) dw′adw′b , (23)
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as can be checked using eq. (21) and (19) contracted with uµ, so that

γ′ab(w
′) =

γab(w′)
Ω2(w)

, Ω(w) =
u · q(w)

u ·Λq(w)
. (24)

In view of (19), εµa behaves as follows under Lorentz transformations

εµa (Λq)≡
∂

∂ w′a

�

qµ(w′)
u · q(w′)

�

= εµa (w
′) . (25)

Consequently, it obeys the nonlinear transformation law

�

Λ µ
ν −

qµ

u · q
Λ ρ
ν uρ

�

ενa(Λq) =
u · q

u ·Λq
∂ wb

∂ w′a
ε
µ

b(q) . (26)

It is useful to make the dependence on the reference vector uµ explicit, writing for instance
ε
µ
a (u; q) or εµa (u; w). Then, one finds the simpler transformation rule

εµa (Λu; w′) =
∂ wb

∂ w′a
Λµνε

ν
b(u; w) . (27)

2.2 Standard parametrization

A very convenient choice for the section qµ(w) is

qµ(w) =

�

1+ |w|2

2
, wa,

1− |w|2

2

�

, (28)

i.e.

λ= p0 + pD−1 , wa =
pa

p0 + pD−1
, (29)

in (7). Notice that this choice differs from the one usually taken in the celestial hologra-
phy literature (e.g. [2, 7]) by a factor of two. The resulting metric hab with this choice is
flat hab = δab and the coordinates wa cover Euclidean space RD−2. Moreover, identifying
uµ = −nµ = (−1,0, . . . , 0, 1), one has u · q(w) = 1 for any wa, so that eµa (q) = ε

µ
a (q).

Under the Lorentz transformation Λµν, via (19), we find

−nµΛ
µ
ν qν(w) = αΛ(w) , (30)

while (21) and (22) reduce to

∂ wc

∂ w′a
∂ wc

∂ w′b
= α2

Λ(w)δab , (31)

and

αD−2
Λ (w) = det
�

∂ wa

∂ w′b

�

. (32)

In particular, the square root on the right-hand side of (22) yields 1 for this parametrization.
Finally, the transformation law (26) simplifies to

�

Λ µ
ν −

qµ

n · q
Λ ρ
ν nρ

�

eνa(Λq) =
1

αΛ(w)
∂ wb

∂ w′a
eµb (q) . (33)
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2.3 Little group

In this section we compare the polarization vectors constructed above with the ones that one
usually builds in terms of little-group elements (see e.g. [36,37]). In particular, this provides
an explicit link between their transformation laws on the celestial sphere and standard Wigner
rotations; see also [38,39].

Given the reference vector
kµ = (κ, 0, . . . , 0,κ) , (34)

the most general Lorentz transformation which leaves kµ invariant takes the form

R=





1+ |x |
2

2 x b − |x |
2

2
(Ox)a Oab −(Ox)a
|x |2

2 x b 1− |x |
2

2



 , (35)

where xa, with a = 1, . . . , D− 2, are real parameters and O is a (D− 2)-dimensional rotation
matrix. For any null vector pµ of the form

pµ =ωqµ(z) , qµ(z ) =
1
2

�

1+ |z|2, 2za, 1− |z|2
�

, (36)

one can always construct a Lorentz transformation L(p) such that

L(p)µν kν = pµ . (37)

For definiteness, let us take L(p) as follows

L(p) = R(z)B(ω) , (38)

with B(ω) a boost in the direction D − 1, which only affects the overall scale of kµ, and R(z)
a Lorentz transformation that aligns it in the direction specified by za,

B(ω) =





1
2

�

ω
2κ +

2κ
ω

�

0 1
2

�

ω
2κ −

2κ
ω

�

0 δab 0
1
2

�

ω
2κ −

2κ
ω

�

0 1
2

�

ω
2κ +

2κ
ω

�



 , R(z) =





1+ |z|
2

2 zb |z|2
2

za δab za

− |z|
2

2 −zb 1− |z|
2

2



 . (39)

Let us now define
R(Λ, p) = L(p)−1Λ−1L(Λp) . (40)

This transformation belongs to the little group of kµ, since it obeys

R(Λ, p)µν kν = kµ (41)

by construction, and therefore it must take the form (35) with suitable Oab(Λ, p) and xa(Λ, p).
We define the physical polarizations according to

êa =
�

0,δb
a , 0
�

, eµa (z) = L(z)µν êνa =
�

za,δab,−za
�

, (42)

where we can identify eµa (z) = eµa (q) = eµa (p). Note that, as a result, eµa (z) = ∂ qµ(z)/∂ za.
These obey

R(Λ, p)µν êνa = êµb O
ba(Λ, p) +

kµ

κ
xa(Λ, p) , (43)

and therefore, recalling the decomposition (41) and the defining property (37),

Λ µ
ν eνa(Λp) = eµb (p)O

ba +
pµ

κ
xa . (44)
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Since eµa (p) obeys
nµeµa (p) = 0 , nµ = (1,0, . . . , 0,−1) , (45)

for any p, contracting (44) with nµ we obtain

xa

κ
(n · p) = nµΛ

µ
ν eνa(Λq) , (46)

and we can recast (44) in the form
�

Λ µ
ν −

pµ

n · p
nρΛ

ρ
ν

�

eν(Λp) = eµb (p)O
ba(Λ, p) . (47)

Comparing with (33), this transformation rule is of the same type as (47), with the Wigner
rotation explicitly given by

Oba =
1

αΛ(w)
∂ wb

∂ w′a
. (48)

Note that, indeed, (48) identifies an orthogonal matrix thanks to (31).

2.4 Standard 4D expressions

When D = 4, switching to complexified coordinates and defining

z = z1 + iz2 , z̄ = z1 − iz2 , (49)

the convenient parametrization (28) can be cast as follows

qµ(z, z̄) =
1
2

�

1+ zz̄, z + z̄,−i(z − z̄), 1− zz̄
�

, (50)

so that

eµz =
1
2
(z̄, 1,−i,−z̄) , eµz̄ =

1
2
(z, 1, i,−z) , hzz̄ =

1
2

, hzz = 0= hz̄z̄ . (51)

Moreover, since finite Lorentz transformations are parametrized by

z 7→ z′ =
az + b
cz + d

, ad − bc = 1 , (52)

the Jacobian in (22) takes the simple form

∂ z′

∂ z
=

1
(cz + d)2

, αΛ(z, z̄) = (cz + d)(c∗z̄ + d∗) . (53)

The basic transformation rule (27) reads

εµz (Λu; z′, z̄′) = (cz + d)Λµνε
ν
z (u; z, z̄) , ε

µ
z̄ (Λu; z′, z̄′) = (c∗z̄ + d∗)Λµνε

ν
z̄ (u; z, z̄) . (54)

Other useful transformation rules are

∇2 = (∂1)
2 + (∂2)

2 = 4∂z∂z̄ , 2dz1dz2 = dz dz̄ , δ(2)(z1 − z′1, z2 − z′2) = 2δ(2)(z − z′) ,
(55)

together with

2dz1 ∧ dz2 = i dz ∧ dz̄ , ε12 = −ε21 = +1 , εzz̄ = −εz̄z =
i
2

. (56)
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2.5 Polarizations in momentum space

The scalar wave equation
□Φ(x) = 0 (57)

reads, in Fourier space,
p2ϕ(p) = 0 , (58)

which restricts the support of ϕ(p) to the light-cone p2 = 0. Positive- and negative-frequency
plane wave states can be thus taken as

Φ(x; p) = e±ipx , p2 = 0 , p0 > 0 . (59)

The free Maxwell equations for the vector potential Aµ(x), identified up to

Aµ(x)∼ Aµ(x) + ∂µΛ(x) , (60)

are given by
□Aµ(x)− ∂µ∂ νAν(x) = 0 . (61)

Adopting Lorenz gauge, one can reduce the discussion to the Fierz system

□Aµ(x) = 0 , ∂ µAµ(x) = 0 , □Λ(x) = 0 . (62)

In Fourier space, this translates into the conditions

p2aµ(p) = 0 , pµaµ(p) = 0 , p2λ(p) = 0 , (63)

which restrict the supports of aµ(p) and λ(p) to the light-cone p2 = 0 and enforce the transver-
sality of aµ(p). The residual gauge freedom in (63) is given by

aµ(p)∼ aµ(p) +λpµ . (64)

Thus, D−2 independent polarizations for aµ are naturally given by the tangent vectors εµa (p)
on the projective light-cone with a = 1,2, . . . , D−2. We may therefore consider general plane
wave states of the form

Aµa(x; p) = εµa (p)Φ(x; p) . (65)

The free two-form Bµν(x) is subject to the gauge equivalence

Bµν(x)∼ Bµν(x) + ∂µAν(x)− ∂νAµ(x) , (66)

with parameters Aµ(x) to be identified up to the gauge-for-gauge transformations

Aµ(x)∼ Aµ(x) + ∂µΛ(x) . (67)

In this case the equations of motion are given by1

□Bµν(x) + ∂µ∂
αBνα(x) + ∂ν∂

αBαµ(x) = 0 , (68)

and can be reduced to the Fierz-like system

□Bµν(x) = 0 , ∂ νBµν(x) = 0 , □Aµ(x) = 0 , ∂ µAµ(x) = 0 , □Λ(x) = 0 . (69)

1In analogy with the more familiar electromagnetic case, we note that the equations of motion of the 2-form
set to zero the divergence of the associated field strength, ∂ α(∂[αBµν]) = 0.
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In Fourier space, all the fields have support on the light-cone and they obey

pµbµν(p) = 0 , pµaµ(p) = 0 , (70)

while gauge and gauge-for-gauge transformations translate into

bµν(p)∼ bµν(p) + pµaν(p)− pνaµ(p) , aµ(p)∼ aµ(p) +λpµ . (71)

The second relation in (70) and the gauge-for-gauge residual freedom (71) can be used to
identify D−2 independent polarizations εµa for aµ as discussed for the spin-one case. The first
relation in (70) enforces D− 1 constraints on bµν (since pµpνbµν = 0 is identically true). On
the other hand, bµν starts out with D(D − 1)/2 independent components, in view of its anti-
symmetry, so that, after imposing transversality, one is left with (D−1)(D−2)/2 independent
components. Therefore, we can parametrize bµν in the following way

bµν =
∑

a<b

ϕab

�

εµaε
ν
b − ε

ν
aε
µ

b

�

+
∑

a

λa(p
µενa − pνεµa ) , (72)

with suitable coefficients ϕab and λa. The second type of terms can be eliminated using the
gauge freedom in eq. (71), arriving at

bµν =
∑

a<b

ϕab ε
[µν]
ab , ε

[µν]
ab = εµaε

ν
b − ε

ν
aε
µ

b , (73)

which shows how (D − 2)(D − 3)/2 independent two-form polarizations can be constructed
from the D− 2 photon polarizations. Consequently, we may write

Bµνab (x; p) = ε[µν]ab (p)Φ(x; p) . (74)

In the D = 4 case, only one independent polarization is available, for instance

ε[µν] = εµ1ε
ν
2 − ε

ν
1ε
µ
2 . (75)

For a p-form,
�D−2

p

�

independent polarizations can be constructed in a similar fashion, taking
antisymmetrized products of one-form polarizations

ε
[µ1···µp]
a1···ap

= ε[µ1
a1
· · ·εµp]

ap
. (76)

For completeness, let us also note that D(D− 3)/2 independent transverse, traceless po-
larizations for the spin-two field can be taken as follows

ε
(µν)
ab = εµaε

ν
b + ε

ν
aε
µ

b −
2γab

D− 2
εµc γ

cdενd , (77)

where γab = ε
µ
a ηµν ε

ν
b as in (14) and γab is its inverse. In D = 4, it is convenient to choose a

parametrization where γab vanishes for the two independent physical polarizations.

3 p-form conformal primary wavefunctions

In this section we construct the CPWs for p-form fields out of the building blocks discussed in
the previous section. We then evaluate their scalar products and identify conformal weights
corresponding to pure gauge configurations. We also provide explicit maps between plane
wave and CPW mode expansions for the quantized field operators. For ease of presentation,
we first review as a warm up the scalar (zero-form) and the vector (one-form) originally built
in [2], and then move to two-form and p-form fields.
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3.1 Scalar

The Mellin transform of a scalar plane wave state is given by [1–3,6]

Φ±∆(x; q) =

∫ ∞

0

dω
ω
ω∆ ei(±qµxµ+i0)ω =

Γ (∆)
(0∓ iq · x)∆

=
(∓i)∆Γ (∆)
(∓i0− q · x)∆

. (78)

Here, the upper (lower) sign corresponds to positive (negative) frequency plane waves and
+i0 indicates a small positive imaginary part. To simplify the notation, we will make the ±
labels on the fields such as Φ±∆ explicit only when strictly necessary. Incidentally, let us note
that the map x → −x has the only effect of flipping this sign, interchanging incoming with
outgoing plane waves.

The field Φ∆(x; q(w)) = Φ∆(x; w) defines a conformal primary wave function of dimension
∆ since indeed, under the mapping (19),

Φ∆(Λx; w′) = α∆Λ (w)Φ∆(x; w) , (79)

with αΛ(w) given in (22). In the standard D = 4 conventions of subsection 2.4, this reads

Φ∆(Λx; z′, z̄′) = (cz + d)∆(c∗z̄ + d∗)∆Φ∆(x; z, z̄) . (80)

Moreover, Φ∆(x; w) satisfies the Klein–Gordon equation with respect to x ,

□Φ∆(x; w) = 0 . (81)

To evaluate the standard scalar product

�

f , f ′
�

= −i

∫

Σ

dΣµ
�

f ∂µ f ′∗ − f ′∗∂µ f
�

(82)

between two such conformal primaries, it is convenient to use the integral representation in
(78), which leads to

�

Φ∆(x; q),Φ∆′(x , q′)
�

= −
∫ ∞

0

dω
ω
ω∆
∫ ∞

0

dω′

ω′
ω′∆

′∗
(ωqµ +ω

′q′µ)

∫

Σ

dΣµ ei(ωq·x−ω′q′·x) ,

(83)
focusing for definiteness on the product of two positive-frequency states. Note that the scalar
product satisfies

�

f , f ′
�∗
=
�

f ′, f
�

,
�

f ∗, f ′∗
�

= −
�

f ′, f
�

, (84)

so the product between negative-frequency states can be obtained by complex conjugation.
Choosing the x0 = 0 surface (so that dΣµ ≡ dD−1 x δµ0 ), eq. (83) yields

�

Φ∆(x; q),Φ∆′(x , q′)
�

=

∫ ∞

0

dω
ω
ω∆
∫ ∞

0

dω′

ω′
ω′∆

′∗
(ωq0 +ω′ q′0) (2π)D−1δ(D−1)(ωq−ω′q′) ,

(85)
where the argument of the delta function is restricted to the D − 1 spatial components. We
can use the identity

∫

dD−1p f (p)T (p) =

∫

dΩD−2(q)

∫ ∞

0

ωD−2dω f (ωq)T (ωq) , (86)

which follows from the change of variables pI =ωqI(w) with I = 1, . . . , D− 1

dD−1p = det

�

∂ pI

∂ (ω, wa)

�

dω dD−2w=ωD−2dωdet

�

qI

∂aqI

�

dD−2w=ωD−2dω dΩD−2(q) ,

(87)
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to conclude that the delta function can be factorized as follows

δ(D−1)(ωq−ω′q′) =
1

ωD−2
δ(ω−ω′)δ(q, q′) . (88)

Here δ(q, q′) is the invariant delta function on the (D−2)-surface parametrized by the spatial
components of q(w), which obeys

∫

dΩD−2(q
′)ϕ(q′)δ(q, q′) = ϕ(q) . (89)

In terms of the standard parametrization (28),

dΩD−2(q) = det

�

qI

∂aqI

�

dd w⃗= q0(w⃗ )dd w⃗ , δ(q, q′) =
1

q0(w⃗ )
δ(d)(w⃗− w⃗ ′) . (90)

We then have

�

Φ∆(x; q),Φ∆′(x , q′)
�

= (2π)D−12q0δ(q, q′)

∫ ∞

0

dω
ω
ω∆+∆

′∗−D+2 . (91)

The last integral is well-defined provided that the conformal weights take the form

∆=
D− 2

2
+ iλ , λ ∈ R , (92)

so that we can use
∫ ∞

0

dω
ω
ωi(λ−λ′) =

∫ +∞

−∞
d t ei t(λ−λ′) = 2πδ(λ−λ′) , (93)

to obtain
�

Φ∆(x; q),Φ∆′(x , q′)
�

= (2π)D2q0δ(q, q′)δ(λ−λ′) = (2π)D2δ(d)(w⃗− w⃗ ′)δ(λ−λ′) . (94)

This is by now a standard derivation showing that CPWs with dimensions lying on the principal
series (92) form a basis for normalizable radiative wave packets [2]. In the Mellin transform
(78), the conformal dimension is however in principle an arbitrary complex number∆ ∈ C. In
[31], it was showed that conformal primaries with analytically continued conformal dimension
can be understood as certain contour integrals on the principal series. Using the generalization
of the Dirac delta function to the complex plane considered in [31], we may write

�

Φ∆(x; q),Φ∆′(x; q′)
�

= I(∆, q;∆′, q′) , (95)

where we introduced the shorthand notation

I(∆, q;∆′, q′)≡ (2π)D2δ(d)(w⃗− w⃗ ′)δ(i(∆+∆′∗ − D+ 2)) , (96)

for later convenience. The precise meaning of the formal distribution δ(iz) has been discussed
in [31]. Note that, while in the present case the inner product between positive- and negative-
energy states is zero, in the massive case this would no longer be the case [2].

Let us also mention that the following more general family of functions, called generalized
conformal primaries [19],

φ∆(x; q) =
f (x2)
(x · q)∆

, (97)
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with f a real function, also obey the transformation rule (79). In this family, the Klein–Gordon
equation selects only two independent solutions (up to normalization):

φ1,∆ =
1

(−q · x)∆
, φ2,d−∆ =

(x2)
d
2−∆

(−q · x)d−∆
. (98)

Indeed, φ1,∆ is proportional to the scalar CPW (78), while as we shall see below φ2,∆ is
proportional to its shadow transform [2].

Let us now compare the the standard plane wave mode expansion of a scalar field operator
Φ(x) with its conformal basis counterpart. The former reads

Φ(x) =

∫

�

eip·x a(p) + e−ip·x a†(p)
�

2πδ(p2)θ (p0)
dDp
(2π)D

, (99)

with the usual commutation relations for creation and annihilation operators

[a(p), a†(p′)] = 2|p|(2π)D−1δ(D−1)(p− p′) , (100)

or equivalently (with the parametrization (36); more details on this step are given in Sect. 5.2)

Φ(x) =
1

(2π)d+1

∫

Rd

dd w⃗

∫ ∞

0

ωd dω
2ω

�

eiωq(w⃗ )·x a(ωq(w⃗ )) + e−iωq(w⃗ )·x a†(ωq(w⃗ ))
�

. (101)

The inverse Mellin transform gives

∫ c+i∞

c−i∞

ω−∆ Γ (∆)
(0∓ iq · x)∆

d∆
i2π

= e±iωq·x , (102)

as can be seen closing the contour to the left of the line (c − i∞, c + i∞), with positive c,
which runs parallel to the imaginary axis. Using (102) in (101) then yields (see [9, 31] for
analogous mode expansions for operators with spin)

Φ(x) =
1

2(2π)d+1

∫

Rd

dd w⃗

∫ c+i∞

c−i∞

d∆
i2π

�

Φ+∆(x; w⃗ )ad−∆(w⃗ ) +Φ
−
∆(x; w⃗ )a†

d−∆(w⃗ )
�

, (103)

where we defined as in [40]

a∆(w⃗ )≡
∫ ∞

0

ω∆−1a(ωq(w⃗ )) dω , a†
∆(w⃗ )≡
∫ ∞

0

ω∆−1a†(ωq(w⃗ )) dω . (104)

Consistently with (95) these obey [31]

[a∆(w⃗ ), a†
∆′
(w⃗ ′)] = (2π)D2q0δ(q, q′)δ(i(∆+∆′∗ − D+ 2)) , (105)

and, using the standard scalar product, one also finds
�

Φ(x),Φ+∆(x; w⃗)
�

= a∆(w⃗) ,
�

Φ(x),Φ−∆(x; w⃗)
�

= a†
∆(w⃗) , (106)

so that
a∆(w⃗ )Φ(x)|0〉= Φ−∆(x; w⃗)|0〉 , a†

∆(w⃗ )Φ(x)|0〉= Φ
+
∆(x; w⃗)|0〉 . (107)

Since the standard Fourier mode decomposition for asymptotic field operators is most
commonly employed in scattering amplitude calculations, the map (104) between cre-
ation/annihilation operators for plane waves and CPWs is particularly useful in comparing
energetically soft and conformally soft theorems [9–11,35,41,42].
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Let us consider the emission of a massless scalar particle on top of a given scattering event.
For this process, if in the energetically soft limit ω→ 0 the soft theorem dictates a behavior
like 1/ω for the emission amplitude, then the conformally soft limit is ∆→ 1. A quick way to
see this is the following [43]. Suppose f (ω)∼ cnω

n for some n asω→ 0+. Then, introducing
an upper cutoff Λ in the intermediate steps,

f∆ =

∫ ∞

0

ω∆ f (ω)
dω
ω
= cn

∫ Λ

0

ω∆+n dω
ω
+

∫ ∞

Λ

ω∆ f (ω)
dω
ω
= cn

Λ∆+n

∆+ n
+ regular , (108)

and thus
Res f∆
�

�

�

∆=−n
= cn . (109)

More precisely, we can start from the energetically soft theorem written as

〈out|a(ωq(w⃗ ))S|in〉 ∼ωα
∑

n

gn

pn · q(w⃗ )
〈out|S|in〉 , (110)

as ω→ 0+. We have kept the exponent α arbitrary in order to encompass different possible
soft behaviors. Then

〈out|a∆(w⃗ )S|in〉 ∼
∫ Λ

0

ωα+∆
dω
ω

∑

n

gn

pn · q(w⃗ )
〈out|S|in〉+ · · · , (111)

so that

〈out|a∆(w⃗ )S|in〉 ∼
Λα+∆

α+∆

∑

n

gn

pn · q(w⃗ )
〈out|S|in〉+ · · · , (112)

and
Res〈out|a∆(w⃗ )S|in〉

�

�

�

∆=−α
∼
∑

n

gn

pn · q(w⃗ )
〈out|S|in〉 . (113)

For instance, for the leading soft theorem, α = −1 and the relevant weight is thus ∆ = 1,
independently of the spacetime dimensions, while the subn-leading soft theorems single out
the conformal dimension ∆= 0,−1,−2, . . . (see e.g. [35,44,45]).

3.2 One-form

We now consider the Mellin-space counterpart of eq. (65), with polarization vectors given by
(12), identifying the reference vector with the observation point u = −x , or more precisely
writing

εµa (x; q(w)) =
∂

∂ wa

�

qµ(w)
∓i0− x · q(w)

�

= −
∂

∂ wa

∂

∂ xµ
log(±i0+ x · q(w)) , (114)

which satisfies

qµε
µ
a (x; q) = 0 , xµε

µ
a (x; q) = 0 , ∂µε

µ
a (x; q) = 0 , ∂ µενa(x; q)− ∂ νεµa (x; q) = 0 .

(115)
One then defines [2]

Aµa,∆(x; q) = εµa (x; q) (−q · x)Φ∆(x; q) = εµa (x; q)
(∓i)∆Γ (∆)

(∓i0− q · x)∆−1
, (116)

or more explicitly

Aµa,∆(x; q) = (∓i)∆Γ (∆)
�

∂aqµ

(∓i0− q · x)∆
+

x · ∂aq
(∓i0− q · x)∆+1

qµ
�

. (117)
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In view of the basic transformation rules (27) and (79), the field (116) behaves as a spin-one
conformal primary under Lorentz transformations:

Aµa,∆(Λx; w′) = α∆−1
Λ (w)

∂ wb

∂ w′a
ΛµνA

ν
b,∆(x; w) . (118)

In the standard D = 4 conventions of subsection 2.4, the Jacobian is simply (53) and αΛ is
given by (53), so that we have from (118)

Aµz,∆(Λx; z′, z̄′) = (cz + d)∆+1(c∗z̄ + d∗)∆−1ΛµνA
ν
z,∆(x; z, z̄) , (119)

and similarly for the z̄ component. Moreover, in view of the last equation in (115), the field
strength

Fµνa,∆ = ∂
µAνa,∆ − ∂

νAµa,∆ (120)

is given by

Fµνa,∆ = (∆− 1)(∓i)∆Γ (∆)
qµενa − qνεµa
(∓i0− q · x)∆

, (121)

and the ∆= 1 mode
Aµa,∆=1(x; q) = ∓iεµa (x; q) (122)

gives rise to a pure gauge configuration. This is also clearly displayed by writing (117) in the
form

Aµa,∆ =
�

1−
1
∆

�

Vµa,∆ + ∂
µ

�

1
∆

xνV νa,∆

�

, (123)

where one isolated a “representative” [2]

Vµa,∆ = (∓i)∆Γ (∆)
∂aqµ

(∓i0− q · x)∆
. (124)

Finally, we note that Aµa,∆(x; q) solves the Maxwell equations thanks to the properties (115).
To calculate scalar products, it is useful to first recast (116) in the equivalent form [31]

Aµa,∆ =
�

∂aqµ +
1
∆

qµ∂a

�

Φ∆(x; q) =
�

∂aqµ +
1
∆

qµ∂a

�

∫ ∞

0

dω
ω
ω∆ e±iωqµxµ−0ω , (125)

so that

Fµνa,∆ = ±i
�

1−
1
∆

�

(qµ∂aqν − qν∂aqµ)

∫ ∞

0

dω
ω
ω∆+1 e±iωqµxµ−0ω . (126)

In this case the scalar product reads

�

A, A′
�

= −i

∫

dΣµ
�

AνF ′∗µν − A′∗νFµν
�

, (127)

and we turn to evaluate it focusing for simplicity on positive-frequency wavefunctions. Choos-
ing the x0 = 0 surface and substituting the above expressions, one finds

�

Aa,∆(x; q), Aa′,∆′(x; q′)
�

= −(2π)Dδ(i(∆+∆′∗ − D+ 2))

×
�

�

1−
1
∆′∗

��

∂aqν +
1
∆

qν∂a

�

δ(q, q′)
�

q′0∂a′q
′
ν − q′ν∂a′q

′
0

�

+
�

1−
1
∆

��

∂a′q
′ν +

1
∆′∗

q′ν∂a′

�

δ(q, q′) (q0∂aqν − qν∂aq0)
�

.

(128)
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We now use q2 = 0= q · ∂aq, together with ∂aq · ∂bq = hab, and we note that

qν∂aδ(q, q′)
�

q′0∂a′q
′
ν − q′ν∂a′q

′0�= −haa′(q)q
0δ(q, q′) , (129)

as can be checked integrating by parts with respect to q. We then find

�

Aa,∆(x; q), Aa′,∆′(x; q′)
�

= haa′(q)
�

1−
1
∆

��

1−
1
∆′∗

�

I(∆, q;∆′, q′) , (130)

with I(∆, q;∆′, q′) as in (96). In fact, the same result for the inner product would obtain
dropping the pure gauge piece in eq. (123). In four dimensions, where the delta function
enforces ∆′∗ = 2−∆, this can be simplified to

�

Aa,∆(x; q), Aa′,∆′(x; q′)
�

= (2π)42q0haa′(q)
(∆− 1)2

∆(∆− 2)
δ(q, q′)δ(i(∆+∆′∗ − 2)) . (131)

In order to compare with (A.9) of [31], we need to divide both sides by

(−i)∆Γ (∆)(+i)∆
′∗
Γ (∆′∗) = e−iπ∆(∆− 1)

π

sin(π∆)
, (132)

to match the overall normalization, obtaining

(2π)42q0haa′(q) e
iπ∆ sin(π∆)

π∆

∆− 1
∆− 2

δ(q, q′)δ(i(∆+∆′∗ − 2)) , (133)

and take into account that haa′ = δaa′ in the parametrization (28). The two formulas agree
(see also (90)). As discussed in [31], the above inner products can be seen to vanish or
to have poles for specific integer values of ∆. Interestingly, recent works have shown that
integer ∆ CPWs span a complete, discrete basis, by taking residues of the Klein-Gordon inner
product [46], which leads to the more standard delta-function. The same conclusion was
achieved in [47] by considering a deformed version of the inner product involving the shadow
transforms. One can expect that those results will continue to carry once generalized to integer
∆ p-forms CPWs.

Let us conclude by mentioning the possibility to construct a more general family of primary
fields. Suppose that in addition to xµ, we have another D-vector Zµ at our disposal. Then we
can write down a conformal primary

Aµa,∆(x , Z; q) =
�

∂aqµ −
qµ Z · ∂aq

q · Z

�

Φ∆(x , p) . (134)

This is a solution to field equations in Lorenz gauge but it does not obey the radial gauge
xµAµa,∆ = 0. Rather, it satisfies ZµAµa,∆ = 0. In this regard, it can be compared to the general-
ized conformal primaries of [19]. The field strength for (134) is

Fµνa,∆(x , Z; q) = (qµeνa − qνeµa )
∆

−q · x
Φ∆(x , p) , (135)

which is non-vanishing except for ∆ = 0. We may in principle use this to construct a pure
gauge two form at ∆= 1. We shall return on this point in the next subsection.

In a similar spirit, we could consider the gradient of a conformal primary scalar wave-
function, ∂µΦ∆(x; q), which also transforms as a primary vector and obeys the Lorenz gauge
condition, but does not obey the “radial” gauge condition. However, it is easy to see, retracing
the steps leading to (130), that such wavefunctions are orthogonal to any Aµa,∆(x; q).

As for the scalar case, we conclude this section by working out the map between cre-
ation/annihilation operators for plane waves and for CPWs. We start from the textbook
Fourier-mode expansion of the vector field operator in Lorenz gauge, ∂µAµ = 0,
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Aµ(x) =
1

(2π)d+1

∫

Rd

dd w⃗

∫ ∞

0

ωd dω
2ω

�

eiωq(w⃗ )·x aµ(ωq(w⃗ )) + e−iωq(w⃗ )·x aµ†(ωq(w⃗ ))
�

. (136)

Proceeding like we did for the scalar, we change integration variables and arrive at

Aµ(x) =
1

2(2π)d+1

∫

Rd

dd w⃗

∫ c+i∞

c−i∞

d∆
i2π

�

Φ+∆(x; w⃗ )aµd−∆(w⃗ ) +Φ
−
∆(x; w⃗ )aµ†

d−∆(w⃗ )
�

, (137)

where

aµ∆(w⃗ )≡
∫ ∞

0

ω∆−1aµ(ωq(w⃗ )) dω , aµ†
∆ (w⃗ )≡
∫ ∞

0

ω∆−1aµ†(ωq(w⃗ )) dω , (138)

are the “naive” Mellin transforms of plane wave creation and annihilation operators, in com-
plete analogy with (104). Our objective is to compare (137) to the expansion of the one-form
field in terms of CPWs, according to

Aµ(x) =
1

2(2π)d+1

∫

Rd

dd w⃗

∫ c+i∞

c−i∞

d∆
i2π

�

A+µa,∆(x; w⃗)aa,d−∆(w⃗) + A−µa,∆(x; w⃗)a†
a,d−∆(w⃗)
�

, (139)

where the CPWs are given by (116), which obeys both Lorenz ∂µAµ = 0 and “radial” gauge
xµAµ = 0. To this end, we can use

Aµa,∆(x; w⃗) =
�

∂aqµ + qµ
1
∆
∂a

�

Φ∆(x; w⃗) , (140)

as in (125), equate (137) with (139) up to pure-gauge terms and take the invariant scalar
product of both sides with Φ∆′∗(x; q′). Integrating over x using (96), we find (“∼” stands for
equality up to pure-gauge terms)

aµ
∆′
(w⃗′)∼
∫

dd w⃗
��

∂aqµ +
qµ

d −∆′
∂a

�

δ(d)(w⃗− w⃗′)
�

aa,∆′(w⃗) . (141)

Performing the integral over the angles and dropping the “prime” superscripts we get

aµ∆(w⃗)∼ ∂aqµ
�

1−
1

d −∆

�

aa,∆(w⃗)−
qµ(w⃗)
d −∆

∂ aaa,∆(w⃗) . (142)

The latter term is manifestly pure-gauge. Contracting both sides with qµ(w⃗) and ∂aqµ(w⃗ ) we
see that (using hab = δab)

qµ(w⃗ )a
µ
∆(w⃗) = 0 , ∂aqµ(w⃗ )a

µ
∆(w⃗) =
�

1−
1

d −∆

�

aa,∆(w⃗) . (143)

The latter relation can be solved for aa,∆ provided d −∆ ̸= 1 and we obtain

aa,∆(w⃗) =
∂aqµ(w⃗ )a

µ
∆(w⃗)

�

1−
1

d −∆

� . (144)

This provides the sought-for relation between the ladder operators for conformal primary
states (on the left) and Mellin transforms of ladder operators for plane wave states (on the
right).
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Instead of the ladder operators aa,∆, it is customary to work with closely-related quantities
called celestial primary operators, defined as [31]

Oa,∆(w⃗ )≡
�

A+a,∆(x; w⃗ ), A(x)
�

. (145)

Using (139) in (145) and recalling the explicit form for the inner product (130), we see that
Oa,∆ and aa,∆ are proportional to each other,

Oa,∆(w⃗ ) =
�

1−
1
∆

��

1−
1
∆′∗

�

aa,d−∆′∗(w⃗ )
�

�

�

∆+∆′∗=d
=
�

1−
1
∆

��

1−
1

d −∆

�

aa,∆(w⃗ ) , (146)

so that by (144)

Oa,∆(w⃗ ) =
�

1−
1
∆

�

aν∆(w⃗)∂aqν(w⃗) . (147)

This equation provides the counterpart of (144), i.e. it links the celestial primary operator to
the Mellin transform of the momentum-space ladder operators.

The definition (145) suggests an alternative way to arrive at (147). Since the scalar product
is gauge invariant, we can insert in (145) the expansion (137) for Aµ(x), (here ad−∆′ is the
one-form annihilation operator)

Oa,∆(w⃗ ) =
1

2(2π)d+1

∫

Rd

dd w⃗′
∫ c+i∞

c−i∞

d∆′∗

i2π

�

A+a,∆(x , w),Φ+∆′(x; w⃗′ )ad−∆′(w⃗
′ )
�

. (148)

The inner product (·, ·) appearing in the integrand between CPWs can be computed retracing
the above steps leading to (130),

(·, ·) = −(2π)Dδ(i(∆+∆′∗ − d))

×
��

∂aqν +
1
∆

qν∂a

�

δ(q, q′)
�

q′0aν,d−∆′∗ − q′νa0,d−∆′∗
�

(w⃗′ )

+
�

1−
1
∆

�

aνd−∆′∗(w⃗
′)δ(q, q′) (q0∂aqν − qν∂aq0)

�

. (149)

The Lorenz gauge implies qµaµ∆ = 0, so this simplifies to

(·, ·) = −2(2π)Dδ(i(∆+∆′∗ − d))
�

1−
1
∆

�

aνd−∆′∗(w⃗
′)δ(q, q′)q0∂aqν . (150)

Finally, recalling that q0δ(q, q′) = δ(d)(w⃗− w⃗′),

Oa,∆(w⃗ ) =
2(2π)D

2(2π)d+1

∫ c+i∞

c−i∞

d∆′∗

i2π
δ(i(∆+∆′∗ − d))

�

1−
1
∆

�

aνd−∆′∗(w⃗)∂aqν(w⃗) , (151)

which reduces to (147). In conclusion, thanks to (147), in order to calculate amplitudes involv-
ing conformal primary states (celestial amplitudes), one need not worry too much about the
“pure gauge” difference between a true CPW and the naive Mellin transforms of a momentum-
space wavefunction, e.g. the second term on the right-hand side of (140). One can simply
calculate amplitudes involving ordinary momentum-space states projected on the ath polar-
ization, and take the Mellin transform as in (138). The only thing to keep track of is the factor
in the right-hand side of (147), which one can easily insert afterwards, as is usually done in
these kind of calculations (see e.g. [13]).

18

https://scipost.org
https://scipost.org/SciPostPhys.15.1.026


SciPost Phys. 15, 026 (2023)

3.3 Two-form

In order to discuss the the two-form case, let us begin by taking a closer look at the polarizations
(73), denoting as above

ε
[µν]
ab (u; w) = ε[µν]ab (u; q(w)) (152)

interchangeably. By eq. (27), these obey

ε
[µν]
ab (Λu; w′) = ΛµρΛ

ν
σ

∂ wc

∂ w′a
∂ wd

∂ w′b
ε
[ρσ]
cd (u; w) , (153)

for any Lorentz transformation Λ. When D = 4, a short calculation shows that,

ε[µν](Λu; w′) = Λµρ Λ
ν
σ ε
[ρσ](u; w)det
�

∂ w
∂ w′

�

, (154)

where ε[µν] = ε[µν]12 is the only independent polarization (75).
We can now consider the Mellin-space analog of (74), defining

Bµνab,∆(x; q) = ε[µν]ab (x; q)(−q · x)2Φ∆(x , q) , (155)

or more explicitly

Bµνab,∆(x; q) = (∓i)∆Γ (∆)

�

∂aq[µ∂bqν]

(∓i0− q · x)∆
+

q[µ(x · ∂aq)∂bqν] + ∂aq[µ(x · ∂bq)qν]

(∓i0− q · x)∆+1

�

, (156)

which, by (79) and (154), transforms according to

Bµνab,∆(Λx; w′) = α∆−2
Λ (w)ΛµσΛ

ν
ρ

∂ wc

∂ w′a
∂ wd

∂ w′b
Bρσcd,∆(x; w) (157)

under Lorentz transformations. When D = 4, this simplifies to

Bµν∆ (Λx; w′) = α∆−2
Λ (w)ΛµσΛ

ν
ρBρσ∆ (x; w)det

�

∂ w
∂ w′

�

, (158)

or using eq. (22),

Bµν∆ (Λx; w′) = α∆Λ (w)

√

√h(w′)
h(w)

ΛµσΛ
ν
ρBρσ∆ (x; w) , (159)

where the Jacobian determinant has canceled out. Adopting for instance the choice (28), for
which h(w) = h(w′) = 1, we note that (159) has the same conformal transformation law as
the scalar (79). In the standard conventions of subsection 2.4, we have

Bµν∆ (Λx; z′, z̄′) = (cz + d)∆(c∗z̄ + d∗)∆ΛµσΛ
ν
ρBρσ∆ (x; z, z̄) , (160)

which matches (80).
To calculate the field strength

Hµνρab,∆ = ∂
µBνρab,∆ + ∂

νBρµab,∆ + ∂
ρBµνab,∆ , (161)

we note that many terms drop out thanks to (115), so that the end result is simply

Hµνρ∆ = (∆− 2)(∓i)∆Γ (∆)
qµε[νρ] + qνε[ρµ] + qρε[µν]

(∓i0− q · x)∆−1
. (162)
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Therefore, we see that the ∆= 2 mode

Bµνa1a2,∆=2(x; q) = −ε[µa1
(x; q)εν]a2

(x; q) (163)

corresponds to a pure gauge configuration. In analogy with the one-form case, we can make
this more manifest by isolating a representative two-form plus a pure gauge configuration
according to

Bµνab,∆ =
�

1−
2
∆

�

Vµνab,∆ + ∂
[µ
�

1
∆

x · V ν]ab,∆

�

, (164)

where

Vµνab,∆ = (∓i)∆Γ (∆)
∂aqµ∂bqν − ∂aqν∂bqµ

(∓i0− q · x)∆
, x · V νab,∆ = xαVανab,∆ . (165)

The equations of motion are once again satisfied. In fact, all tensors that we have been
considering throughout are built out of terms the form

Tµ···να···β = qµ · · ·qν∂aqα · · ·∂bqβ f (x · q) , (166)

with f a scalar function. Therefore they are divergence-free and obey □Tµ···να···β = 0.
To evaluate the scalar products, for generic D, it is convenient to recast Bµνab,∆ in the form

Bµνab,∆(x; q) =
�

e[µν]ab +
1
∆

�

q[µ∂bqν]∂a + q[ν∂aqµ]∂b

�

�

∫ ∞

0

dω
ω
ω∆e±iωq·x−0ω , (167)

with
e[µν]ab = ∂aqµ∂bqν − ∂aqν∂bqµ , (168)

and the field strength Hab,µνρ
∆ in the form

Hµνρab,∆(x; q) = ±i
�

1−
2
∆

�

�

qµe[νρ]ab + qνe[ρµ]ab + qρe[µν]ab

�

∫ ∞

0

dω
ω
ω∆+1e±iωq·x−0ω . (169)

We then substitute into

�

B, B′
�

= −
i

2!

∫

dΣµ
�

BρσH ′∗µρσ − B′∗ρσHµρσ
�

, (170)

and follow very similar steps compared to the scalar and one-form cases. We are thus led to

�

Bab,∆(x; q), Ba′b′,∆′(x; q′)
�

= −
1
2!
(2π)Dδ(i(∆+∆′∗ − D+ 2))

×
�

�

1− 2
∆′∗

�

�

e[ρσ]ab + 1
∆

�

q[ρ∂bqσ]∂a + q[σ∂aqρ]∂b

�

�

×δ(q, q′)
�

q′0e′a′b′[ρσ] + q′ρe′a′b′[σ0] + q′σe′a′b′[0ρ]
�

+
�

1− 2
∆

�

�

e′[ρσ]a′b′ +
1
∆′∗

�

q′[ρ∂ ′b′q
′σ]∂ ′a′ + q′[σ∂ ′a′q

′ρ]∂ ′b′
�

�

×δ(q, q′)
�

q0eab[ρσ] + qρeab[σ0] + qσeab[0ρ]
�

�

, (171)

and thus, using integration by parts to simplify the action of the derivative on the delta func-
tion,

�

Bab,∆(x; q), Ba′b′,∆′(x; q′)
�

= I(∆, q;∆′, q′)
�

1−
2
∆

��

1−
2
∆′∗

�

(eab, ea′b′) , (172)
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with I(∆, q;∆′, q′) as in (96) and

(eab, ea′b′) =
1
2!

e[µν]ab ea′b′[µν] = det

�

haa′ hab′

hba′ hbb′

�

. (173)

As for the one-form inner product, the result (172) is insensitive to the pure gauge part in the
decomposition (164). When D = 4, one can also use the delta function δ(i(∆+∆′∗ − 2)) to
simplify the scalar product as follows,

�

B∆(x; q), B∆′(x; q′)
�

= I(∆, q;∆′, q′)det(h) , (174)

which is equal to the inner product for scalar CPWs when we choose parametrizations such as
(28) where det(h) = 1.

In principle, additional pure gauge “two-form CPWs” could be built by acting with an
exterior derivative on one-form CPWs, i.e. considering Bµνa,∆ = ∂

[µAν]a,∆ with arbitrary ∆.
These two-forms obey Lorenz gauge, but not radial gauge. However, the scalar product
�

Fa,∆(x; q), B∆′(x; q′)
�

, with Fµνa,∆ as in (126), is identically zero because

(qρeσa − qσeρa )
�

qµeρσ + qρeσµ + qσeµρ
�

= 0 . (175)

The generalized one-form primaries introduced at the end of the previous subsection (134)
have the same field strength as the standard ones (up to a constant relative factor). Therefore,
the property (175) holds for them as well. In conclusion, both types of pure gauge two-form
CPWs built out of them are always orthogonal to the CPWs (155).

We now turn to the map between creation/annihilation operators for plane wave and CPW
states. This can be worked out following the same logic employed for the one-form in the
previous subsection and using the same technical tools employed in the rest of the present
section.

Bµν(x) =
1

(2π)d+1

∫

Rd

dd w⃗

∫ ∞

0

ωd dω
2ω

�

eiωq(w⃗ )·x aµν(ωq(w⃗ )) + e−iωq(w⃗ )·x a†
µν(ωq(w⃗ ))
�

, (176)

and

Bµν(x) =
1

4(2π)d+1

∫

Rd

dd w⃗

∫ c+i∞

c−i∞

d∆
i2π

�

B+µνab,∆(x; w⃗)aab,d−∆(w⃗) + B−µνab,∆(x; w⃗)a†
ab,d−∆(w⃗)
�

. (177)

Using (167) we find

aµν∆ (w⃗)∼
1
2
∂aq[µ∂bqν]
�

1−
2

d −∆

�

aab,∆(w⃗)−
q[µ∂bqν]

d −∆
∂aaab,∆(w⃗) , (178)

so that

aab,∆(w⃗ ) =
eab,[µν](w⃗ )a

µν
∆ (w⃗ )

2
�

1− 2
d−∆

� , (179)

and similarly

Oab,∆(w⃗ ) =
�

B+ab,∆(x; w⃗ ), B(x)
�

=
1
2

�

1−
2
∆

�

eab,[µν](w⃗ ) a
µν
∆ (w⃗ ) . (180)

This extends the dictionary to convert insertions of momentum-space states into the corre-
sponding ones of conformal-primary states to the two-form case.
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3.4 Higher forms

The extension of the previous construction to anti-symmetric tensors of rank p can be achieved
naturally defining polarizations

ε
[µ1···µp]
a1···ap

(x; q) = ε[µ1
a1
(x; q) · · ·εµp]

ap
(x; q) , (181)

and conformal primaries

B
µ1···µp

a1···ap ,∆(x; q) = ε
[µ1···µp]
a1···ap

(x; q)(−q · x)pΦ∆(x; q) , (182)

or more explicitly

B
µ1···µp

a1···ap ,∆(x; q) = (∓i)∆Γ (∆)





e[µ1
a1
· · · eµp]

ap

(∓i0− q · x)∆
+

p
∑

k=1

x · eak
q[µk eµ1

a1
· · ·Óeµk

ak
· · · eµp]

ap

(∓i0− q · x)∆+1



 , (183)

where in the second term, the “hat” notation means that eµk
ak

is omitted from the product. As
for the two-form, these fields trivially obey the equations of motion as noted below (166).
An equivalent expression is obtained by isolating a p-form “Mellin representative” and a pure
gauge part

B
µ1···µp

a1···ap ,∆(x; q) =
�

1−
p
∆

�

V
µ1···µp

a1···ap ,∆ + ∂
[µ1

�

1
(p− 1)!

1
∆

x · Vµ2···µp]
a1···ap ,∆

�

, (184)

where

V
µ1···µp

a1···ap ,∆ = (∓i)∆Γ (∆)
e[µ1

a1
· · · eµp]

ap

(∓i0− q · x)∆
, x · Vµ2···µp

a1···ap ,∆ = xαV
αµ2···µp

a1···ap ,∆ . (185)

The corresponding field strength is easy to evaluate by remembering eqs. (115) and reads

H
αµ1···µp

a1···ap ,∆(x; q) = (∆− p)(∓i)∆Γ (∆)
q[αeµ1

a1
· · · eµp]

ap

(∓i0− q · x)∆+1
. (186)

Thus, as one can also observe from (184), p-form CPWs of conformal dimension ∆ = p are
pure gauge; see Table 1 below. This holds independently of the dimension d of the celestial
sphere, in contrast with the case of shadow p-forms, as we will see in section 4.3.

In order to evaluate scalar products, it is again convenient to trade the x-dependence in
the polarization for a derivative

B
µ1···µp

a1···ap ,∆(x; w) =
�

e
[µ1···µp]
a1···ap

+
1
∆

p
∑

k=1

q[µk eµ1
a1
· · ·Óeµk

ak
· · · eµp]

ap
∂ak

�

∫ ∞

0

dω
ω
ω∆e±iωq·x−0ω , (187)

and similarly for the field strength

H
αµ1···µp

a1···ap ,∆(x; w) = ±i
�

1−
p
∆

�

q[αeµ1
a1
· · · eµp]

ap

∫ ∞

0

dω
ω
ω∆+1e±iωq·x−0ω . (188)

This highlights that ∆= p mode

B
µ1···µp

a1···ap ,∆=p(x; q) = (∓i)pΓ (p)ε[µ1
a1
(x; q) · · ·εµp]

ap
(x; q) (189)

is a pure-gauge wavefunction. The inner product

(B, B′) = −
i
p!

∫

dΣµ
�

Bρ1···ρp H ′∗µρ1···ρp
− B′∗ρ1···ρp Hµρ1···ρp

�

, (190)
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thus takes the form

(Ba1···ap ,∆(x; q), Ba′1···a′p ,∆′(x; q′)) = −
1
p!
(2π)D δ(i(∆+∆′∗ − D+ 2))

×

�

�

1−
p
∆′∗

�

�

e
[ρ1···ρp]
a1···ap

+
1
∆

p
∑

k=1

q[ρk eρ1
a1
· · ·Óeρk

ak
· · · eρp]

ap
∂ak
δ(q, q′)q′[0|e

′
a′1···a′p|ρ1···ρp]

�

+
�

1−
p
∆

�

�

e
′[ρ1···ρp]
a′1···a′p

+
1
∆′∗

p
∑

k=1

q′[ρk e′ρ1

a′1
· · ·de′ρk

a′k
· · · e′ρp]

a′p
∂ ′a′k
δ(q, q′)q[0|ea1···ap|ρ1···ρp]

��

.

(191)

Derivatives acting on the delta function can be simplified integrating by parts and this leads to

(Ba1···ap ,∆(x; q), Ba′1···a′p ,∆′(x; q′)) =
�

1−
p
∆

��

1−
p
∆′∗

�

I(∆, q;∆′, q′) (ea1···ap
, ea′1···a′p

) , (192)

where I(∆, q;∆′, q′) is defined in (96) and

(ea1·ap
, ea′1···a′p

) =
1
p!

e
[µ1···µp]
a1···ap

ea′1···a′p[µ1···µp] . (193)

Eq. (192) provides the generalization of (172) to generic form degree, and, in analogy with
one- and two-forms, the same result would obtain dropping the pure-gauge term in the de-
composition (184). The result can be simplified by noting that, letting ea

µ = habηµνeνb ,

(e[µ1
b1
· · · eµp]

bp
)(ea1

µ1
· · · eap

µp
) = δa1

[b1
· · ·δap

bp]
. (194)

We conclude by remarking that, when D = 2p+ 2, the scalar product (192) can be written in
the form

(Ba1···ap ,∆(x; q), Ba′1···a′p ,∆′(x; q′)) =
(∆− p)2

∆(∆− 2p)
I(∆, q;∆′, q′) (ea1···ap

, ea′1···a′p
) , (195)

which highlights the pure gauge mode ∆= p, in analogy with the expression in eq. (131) for
the one-form. Note that D = 2p + 2 can be also regarded as a “critical dimension” for the p-
form theory [48,49], since it is the dimension for which the asymptotic behaviors of radiative
and Coulombic solutions coincide [50].

Comparing plane wave and CP decompositions of the operators

Bµ1···µp
(x) =

1
(2π)d+1

∫

Rd

dd w⃗

∫ ∞

0

ωd dω
2ω

�

eiωq(w⃗ )·x aµ1···µp
(ωq(w⃗ )) + e−iωq(w⃗ )·x a†

µ1···µp
(ωq(w⃗ ))
�

,

(196)
and

Bµ1···µp(x) =
1

2p!(2π)d+1

∫

Rd

dd w⃗

∫ c+i∞

c−i∞

d∆
i2π

�

B
+µ1···µp

a1···ap ,∆(x; w⃗)aa1···ap ,d−∆(w⃗)

+ B
−µ1···µp

a1···ap ,∆(x; w⃗)a†
a1···ap ,d−∆(w⃗)
i

,

(197)

we deduce

Oa1a2···ap ,∆(w⃗ ) =
�

B+a1a2···ap ,∆(x; w⃗ ), B(x)
�

=
1
p!

�

1−
p
∆

�

ea1a2···ap ,[µ1µ2···µp](w⃗ ) a
µ1µ2···µp

∆ (w⃗ ) ,

(198)
which completes our dictionary to convert insertions of momentum-space states into the cor-
responding ones of conformal-primary states.
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3.5 Hodge duality and self-duality

We want to show that, using the parameterization (28), if Ba1···ap ,∆ is a p-form conformal
primary in D = d + 2 dimensions with field strength Ha1···ap ,∆ = dBa1···ap ,∆ then

1
∆− p

∗Ha1···ap ,∆ = −
1

(d − p)!(∆− d + p)
εa1···ap

b1···bd−p Hb1···bd−p ,∆ . (199)

That is to say, Hodge duality maps a p-form conformal primary to a (d−p)-form with dualized
polarization.

To this end, let us first decompose the anti-symmetric tensor according to

εαµ1···µdβ = n[αeµ1
1 · · · e

µd
d qβ] =

1
d!

n[αeµ1
b1
· · · eµd

bd
qβ] εb1···bd , nµ = (1,0, · · · , 0,−1) , (200)

which can be proved by
eµa = nµwa +δ

µ
a , q · n= −1 . (201)

Alternatively, we may first check (200) in the wa = 0 case, and then apply the transformation
R given in (39) to obtain the general case. Then, it is sufficient to note that

det





1 0 −1
0 δb

a 0
1
2 0 1

2



= 1 . (202)

By eq. (186), in order to retrieve the duality (199), it is sufficient to show that

1
(p+ 1)!

εαµ1···µdβ
q[αeµ1

a1
· · · eµp]

ap
= −

1
(d − p)!

εa1···ap bp+1···bd
q[β e

bp+1
µp+1
· · · ebd

µd]
. (203)

This can be seen using (200) according to the following steps:

1
(p+ 1)!

εαµ1···µdβ
q[αeµ1

a1
· · · eµp]

ap
=

1
d!

�

n[αeb1
µ1
· · · ebd

µd
q
β] εb1···bd

��

qαeµ1
a1
· · · eµp

ap

�

= −
1
d!

�

eb1
[µ1
· · · ebd

µd
q
β] εb1···bd

��

eµ1
a1
· · · eµp

ap

�

= −
1
d!
δ
[b1
a1
· · ·δbp

ap
e

bp+1

[µp+1
· · · ebd]

µd
q
β] εb1···bd

1
(d − p)!

= −
1

(d − p)!
εa1···ap bp+1···bd

e
bp+1

[µp+1
· · · ebd

µd
q
β] .

(204)

In the third line, the factor 1/(d−p)! compensates for double anti-symmetrization in µp+1 · · ·µd .
Let us apply this duality to a few examples, especially, to critical dimensions where self-dual

forms exist [51]. For one-forms in four dimensions we have

1
2
εµν

αβ Fµνa,∆ = −ε
b

a Fαβb,∆ . (205)

In complex coordinates of subsection 2.4, we have εzz̄ = i/2 and εz̄
z̄ = εz

z = i. As a result,

1
2
εµν

αβ Fµνz,∆ = −iFαβz,∆ (206)

is an anti-self-dual form, while
1
2
εµν

αβ Fµνz̄,∆ = iFαβz̄,∆ (207)
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is self-dual. Another example we have already encountered is that of a two-form in four di-
mensions and in real coordinates (z1, z2),

1
3!(∆− 2)

εµνρσHµνρ∆ = −
1
∆
∂σΦ∆ , (208)

where Hµν∆ = Hµν12,∆ as in (357).
A two-form in six dimensions has 6 degrees of freedom. Defining two pairs of complex

coordinates w, w̄, z, z̄, they are {ww̄, zz̄, wz̄, w̄z, w̄z̄, wz}. From εww̄zz̄ = −4 we have for instance

1
3!
εµνρ

σαβHµνρwz,∆ = −Hσαβwz,∆ . (209)

{wz, w̄z̄, } are anti-self-dual while {w̄z, z̄w} are self-dual. Finally, Hww̄↔ Hzz̄ , hence Hww̄±Hzz̄
is self-dual with positive sign and anti-self-dual with negative sign. Similarly, p-form CPWs in
D = 2p + 2 dimensions are mapped to p-form CPWs by the duality, so that one can organize
them in 1

2

�2p
p

�

self-dual and 1
2

�2p
p

�

anti-self-dual degrees of freedom.

4 Shadow transforms

In this section we construct the shadow transforms of the p-form conformal primaries ob-
tained in the previous section. To this end, we also describe their uplifts obtained via the
ambient-space construction, whereby polarization indices a, b are promoted to spacetime in-
dices up to suitable projections. From now on, we shall systematically employ the convenient
parametrization (28) and the shorthand notation

d = D− 2 . (210)

We also highlight (Euclidean) d-vectors using an arrow, writing for instance q(w⃗ ).

4.1 Scalar shadows

We start by revisiting the construction of [2] for the shadow scalar conformal primary wave-
functions. We use the following definition of the shadow transform (see [52, 53] for early
works and [2,54–57] for a more recent literature)

eΦ∆(x; w⃗ ) =

∫

dd w⃗ ′

|w⃗− w⃗ ′|2(d−∆)
Φ∆(x; w⃗ ′) . (211)

This non-local integral transform maps the scalar CPW Φ∆ (78) to an operator eΦ∆ of conformal
dimension d−∆. Notice that, with the present normalization, the shadow transform does not
square to unity, but instead leads to the following proportionality factor:

e

eΦ∆ =
πdΓ ( d

2 −∆)Γ (∆−
d
2 )

Γ (∆)Γ (d −∆)
Φ∆ . (212)

Letting for brevity q = q(w⃗), q′ = q(w⃗ ′) and using the identity

−2q · q′ = |w⃗− w⃗ ′|2 , (213)

the shadow (211) reads

eΦ∆(x; q) =

∫

dd w⃗ ′

(−2q · q′)d−∆
Φ∆(x; q′) , (214)
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whose calculation involves the integral

S∆(x; q)≡
∫

dd w⃗ ′

|w⃗− w⃗ ′|2(d−∆)(−2q′ · x)∆
. (215)

Since
−2q′ · x = x+|w⃗ ′|2 − 2 x⃗ · w⃗ ′ + x− , x± = x0 ± xd+1 , (216)

this can be recast in the form

S∆(x; q) =
1

(x+)∆

∫

dd w⃗ ′

(|w⃗− w⃗ ′|2)d−∆(|w⃗ ′|2 − 2 x⃗
x+ · w⃗ ′ +

x−
x+ )∆

. (217)

This can be simplified introducing Schwinger parameters and performing the Gaussian integral
over w⃗ ′, which gives

S∆(x; q) =
1

(x+)∆

∫

R2
+

d t1d t2

t1 t2

td−∆
1 t∆2

Γ (d −∆)Γ (∆)
π

d
2

(t1 + t2)
d
2

e
− 1

t1+t2

�

t1 t2
(−2q·x)

x+ +t2
2
(−x2)
(x+)2

�

. (218)

Changing variables according to t1 = λ, t2 = λt and carrying out the integration over λ then
yields

S∆(x; q) =
(−x2)−

d
2

(x+)∆−d

π
d
2 Γ ( d

2 )

Γ (d −∆)Γ (∆)

∫ ∞

0

d t
t

t∆−
d
2

�

t + (−2q·x)
(−x2) x+
�

d
2

. (219)

The last integral can be reduced to the Euler Beta function by suitably rescaling t and then
letting t = 1−s

s , which finally leads to

S∆(x; q) =
(−x2)

d
2−∆

(−2q · x)d−∆
π

d
2 Γ (∆− d

2 )

Γ (∆)
. (220)

Using this basic result and the definition (78), provided x+ > 0, we obtain

eΦ∆(x; w⃗) = π
d
2 (−i0− x2)

d
2−∆

(∓2i)∆Γ (∆− d
2 )

(∓i0− 2q(w⃗ ) · x)d−∆
, (221)

recovering (up to the different choice for the normalization factor) expressions given in [2,54].
One can check that eΦ∆ is indeed a solution of the equation of motion and behaves as a CPW
with weight d −∆. The more general case where x+ can be positive or negative is instead
captured by

eΦ∆(x; w⃗) =
π

d
2 (−i0x+ − x2)

d
2−∆

[sgn(x+)]d
(∓2i)∆Γ (∆− d

2 )

(∓i0− 2q(w⃗ ) · x)d−∆
. (222)

This is crucial in order to ensure that the antipodal mapping x → −x leaves eΦ∆ unmodified
up to reversing the ∓i0 prescription (i.e. interchanging incoming with outgoing states), as
apparent from (78) and (211). Note that x+ = −n · x where nµ = (1, 0, . . . , 0,−1) is the vector
characterizing our preferred choice (28) of slicing of the light cone, −n · q = 1.

To compute scalar products involving shadow transforms, one can proceed as follows. Let
us first turn to

�

Φ∆(x; w⃗), eΦ∆′(x; w⃗ ′)
�

=

∫

dd z⃗ ′

|z⃗ ′ − w⃗ ′|2(d−∆′∗)
�

Φ∆(x; w⃗),Φ∆′(x; z⃗ ′)
�

. (223)

Using (95),
�

Φ∆(x; w⃗),Φ∆′(x; w⃗ ′)
�

= 2(2π)D δ(d)(w⃗− w⃗ ′)δ(i(∆+∆′∗ − d)) , (224)
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when specialized to (28), using in particular (90), we immediately get

�

Φ∆(x; w⃗), eΦ∆′(x , w⃗ ′)
�

=
2(2π)D

|w⃗− w⃗ ′|2∆
δ(i(∆+∆′∗ − d)) . (225)

A similar approach can be adopted to calculate

�

eΦ∆(x; w⃗), eΦ∆′(x; w⃗ ′)
�

=

∫

dd z⃗
|z⃗ − w⃗|2(d−∆)

∫

dd z⃗ ′

|z⃗ ′ − w⃗ ′|2(d−∆′∗)
�

Φ∆(x; z⃗ ),Φ∆′(x; z⃗ ′)
�

, (226)

obtaining

�

eΦ∆(x; w⃗), eΦ∆′(x; w⃗ ′)
�

= 2(2π)Dδ(i(∆+∆′∗ − d))

∫

dd z⃗
|z⃗ |2(d−∆)|z⃗ + w⃗− w⃗ ′|2∆

. (227)

Starting from

∫

dd z⃗
|z⃗ |2α|z⃗ + w⃗− w⃗ ′|2β

=
Γ (α+ β − d

2 )

|w⃗− w⃗ ′|2(α+β−
d
2 )

Γ ( d
2 −α)Γ (

d
2 − β)

Γ (α)Γ (β)
π

d
2

Γ (d −α− β)
, (228)

setting α= d −∆− λ2 , β =∆, and considering the λ→ 0 limit, we find

∫

dd z⃗
|z⃗ |2(d−∆)−λ|z⃗ + w⃗− w⃗ ′|2∆

∼
Γ ( d

2 )Γ (∆−
d
2 )Γ (

d
2 −∆)

2Γ (d −∆)Γ (∆)
π

d
2λ |w⃗− w⃗ ′|λ−d . (229)

Now, using (A.7), which implies to leading order

lim
λ→0

λ|w⃗− w⃗ ′|λ−d =
2π

d
2

Γ ( d
2 )
δ(d)(w⃗− w⃗ ′) , (230)

one finally has [2]

�

eΦ∆(x; q), eΦ∆′(x; q′)
�

=
πdΓ (∆− d

2 )Γ (∆
′∗ − d

2 )

Γ (∆)Γ (∆′∗)

�

Φ∆(x; q),Φ∆′(x; q′)
�

, (231)

in terms of the scalar inner product (95), (96). In conclusion, the shadow transform preserves
the inner products as expected, up to a factor arising from our choice of normalization in the
shadow definition (211).

4.2 Embedding formalism

For objects carrying nontrivial polarizations, such as Aµa,∆ and Bµνab,∆ with a, b = 1,2, . . . , d, per-

forming the shadow transform involves first building uplifts Aµα,∆ or Bµν
αβ ,∆, where the indices

a, b are promoted to α,β = 1,2, . . . , D in such a way that the resulting tensors obey [54]

qαAµα,∆(x; q) = 0 , qαBµν
αβ ,∆(x; q) = 0 , (232)

and are defined up to terms of the type qα(· · · )µ or q[α(· · · )
µν

β] . These uplifts can be obtained

systematically replacing the basic polarization εµa (x; q) in (114) by

ϵµα(x; q) =
δ
µ
α

∓i0− q · x
+

xαqµ

(∓i0− q · x)2
, (233)
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which can be also written formally as follows

ϵµα(x; q) =
∂

∂ qα

�

qµ

∓i0− x · q

�

= −
∂

∂ qα
∂

∂ xµ
log(±i0+ x · q) , (234)

and reduces to εµa when projected along eαa = ∂aqα, i.e.

eαa ϵ
µ
α = ε

µ
a . (235)

Note that ϵµα also satisfies xαϵ
α
µ(x; q) = 0. We can thus choose

Aµα,∆(x; q) = (∓i)∆Γ (∆)

�

δ
µ
α

(∓i0− q · x)∆
+

xαqµ

(∓i0− q · x)∆+1

�

, (236)

Bµν
αβ ,∆(x; q) = (∓i)∆Γ (∆)

�

δ
µ
αδ
ν
β

(∓i0− q · x)∆
+

xαqµδν
β
+ xβqνδµα

(∓i0− q · x)∆+1
−µ↔ ν

�

, (237)

which we can rewrite in the following way (here all derivatives are with respect to x)

Aµα,∆(x; q) =
�

δµα +
1
∆

xα∂
µ

�

Φ∆(x; q) , (238)

Bµν
αβ ,∆(x; q) =
�

δµαδ
ν
β −δ

ν
αδ
µ

β
+

1
∆

�

δµαxβ∂
ν +δνβ xα∂

µ −δναxβ∂
µ −δµ

β
xα∂

ν
�

�

Φ∆(x; q) ,

(239)

in terms of the scalar conformal primary.

4.3 p-form shadows

Given the uplifted fields discussed in the previous subsection, the shadow transforms are de-
fined by first taking

eAµα,∆(x; q) =

∫

dd w⃗ ′
−2q · q′δρα + 2qρq′α
(−2q · q′)d−∆+1

Aµ
β ,∆(x; q′) , (240)

eBµν
αβ ,∆(x; q) =

∫

dd w⃗ ′
�

−2q · q′δρα + 2qρq′α
�

�

−2q · q′δσ
β
+ 2qσq′

β

�

(−2q · q′)d−∆+2
Bµνρσ,∆(x; q′) (241)

and then projecting along eαa (x; q), eβb (x; q) to finally obtain eAµa,∆(x; q) and eBµν∆ (x; q). In fact,
(238), (239) can be also cast in the compact form

eAµα,∆(x; q) =

∫

dd w⃗ ′
Aρ
α,d−∆(q

′; 2q)

(∓i)d−∆Γ (d −∆)
Aµρ,∆(x; q′) , (242)

eBµν
αβ ,∆(x; q) =

1
2!

∫

dd w⃗ ′
Bρσ
αβ ,d−∆(q

′; 2q)

(∓i)d−∆Γ (d −∆)
Bµνρσ,∆(x; q′) . (243)

Again, it is convenient to first rewrite the kernels in terms of derivatives,

eAµα,∆(x; q) =
�

δβα +
1

d −∆
qβ

∂

∂ qα

�

∫

dd w⃗ ′

(−2q · q′)d−∆
Aµ
β ,∆(x; q′) , (244)

eBµν
αβ ,∆(x; q) =
�

δραδ
σ
β +

1
d −∆

�

δραqσ
∂

∂ qβ
+δσβ qρ

∂

∂ qα

��

∫

dd w⃗ ′

(−2q · q′)d−∆
Bµνρσ,∆(x; q′) .

(245)
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Using (238), (239), the previous equations can be expressed as derivatives of the scalar
shadow,

eAµα,∆(x; q) =
�

δβα +
1

d −∆
qβ

∂

∂ qα

��

δ
µ

β
+

1
∆

xβ∂
µ

�

eΦ∆(x; q) , (246)

eBµν
αβ ,∆(x; q) =
�

δραδ
σ
β +

1
d −∆

�

δραqσ
∂

∂ qβ
+δσβ qρ

∂

∂ qα

��

×
�

δµρδ
ν
σ −δ

ν
ρδ

µ
σ +

1
∆

�

δµρ xσ∂
ν +δνσxρ∂

µ −δνρ xσ∂
µ −δµσxρ∂

ν
�

�

eΦ∆(x; q) .

(247)

One should note that, strictly speaking, taking derivatives with respect to qα is not allowed,
due to the constraint q2 = 0. To be more precise, for each such derivative, one ought to first
consider expressions of the type

∂

∂ kα
F(k, x) , with F(k, x) =

∫

dd w⃗ ′

(−2k · q(w⃗ ′))d−∆(−2x · q(w⃗ ′))∆
, (248)

where both kµ and xµ are unconstrained D-vectors, and only evaluate the result at kµ = qµ(w⃗)
after taking the derivative. However, we find that this only introduces mismatches that project
to zero at the end of the calculations, and are thus immaterial for our present purposes. To
see this explicitly, let us first note that, following steps very similar to those applied in the
calculation of eΦ∆(x; q), the integral F(k, x) can be cast in the form

F(k, x) =
π

d
2 Γ
� d

2

�

Γ (d −∆)Γ (∆)
1

(−x2)
∆
2

G(−k2,−k · x̂) , (249)

where

x̂µ =
xµ
p
−x2

, G(−k2,−k · x̂) =
∫ ∞

0

d t
t

td−∆

[(−k2)t2 + 2t(−k · x̂) + 1]
d
2

. (250)

Performing the change of variables

λ= k+ , wa =
ka

k+
, ρ = −

k2

(k+)2
, (251)

with k± = k0 ± kD−1, according to which

kµ = λ
h

qµ(w⃗ ) +
ρ

2
mµ
i

, m= (1,0, . . . , 0,−1) , (252)

or more explicitly,
k+ = λ , ka = λwa , k− = λ

�

|w⃗ |2 +ρ
�

, (253)

one obtains

∂

∂ k+
=
∂

∂ λ
−

1
λ

wa ∂

∂ wa
+

1
λ

�

|w⃗ |2 −ρ
� ∂

∂ ρ
, (254)

∂

∂ ka
=

1
λ

�

∂

∂ wa
− 2wa ∂

∂ ρ

�

, (255)

∂

∂ k−
=

1
λ

∂

∂ ρ
. (256)
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Using these derivatives, one can check that, denoting by G1 and G2 the partial derivatives of
G with respect to its two arguments,

∂ G(−k2,−k · x̂)
∂ kα

�

�

�

λ=1,ρ=0
= − x̂αG2(0,−q · x̂)− 2qα G1(0,−q · x̂) . (257)

This differs by the “naive derivative”

∂ G(0,−q · x̂)
∂ qα

= − x̂αG2(0,−q · x̂) , (258)

just by a term proportional to qα. Terms of this type project to zero by construction after going
back from the embedding space to the physical polarizations, so that we can safely drop them
throughout our calculations. We only need to deal with first derivatives with respect to qα, so
this analysis is exhaustive for the present purposes.

It turns out convenient to introduce [19]

mµα = δ
µ
α +

xαqµ

−q · x
= (−q · x)ϵµα . (259)

Using (246) and the explicit expression (221), we see that, in the embedding space, the shadow
vector primary is directly related to mβα ,

eAµα,∆(x; q) =
�

δ
µ

β
+

1
∆

xβ∂
µ
�

mβα eΦ∆(x; q). (260)

From
xβ mβα = 0 , (261)

we see that no contribution comes from the action of the derivative on eΦ∆. In addition,
�

δ
µ

β
+

1
∆

xβ∂
µ

�

mβα =
�

1−
1
∆

�

mµα , (262)

and thus,
eAµα,∆ =
�

1−
1
∆

�

mµα eΦ∆(x; q) . (263)

For the two-form, we may similarly write (247) in the form

eBµν
αβ ,∆(x; q) =

1
2

�

δ[µρ δ
ν]
σ +

1
∆
δ[µρ xσ∂

ν] +
1
∆
δ[νσ xρ∂

µ]
�

m[ρ
α

mσ]
β
eΦ∆ . (264)

To evaluate this expression, one may note that, by (261), xσ∂
ν gives a non-vanishing contri-

bution only when it acts on mσµ with upper index σ, so that

xσ∂
νmσµ = −mνµ . (265)

Therefore, the final result is simply

eBµν
αβ ,∆(q, x) =
�

1−
2
∆

�

m[µα mν]
β
eΦ∆ . (266)

In summary,

eAµα,∆ =
�

1−
1
∆

�

(−q · x)ϵµα eΦ∆ , eBµν
αβ ,∆ =
�

1−
2
∆

�

(−q · x)2
�

ϵµαϵ
ν
β − ϵ

ν
αϵ
µ

β

�

eΦ∆ . (267)
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The projection on the tangent space to the light-cone has the only effect of turning ϵµα into εµa
via (235), so that the shadow transforms read

eAµa,∆ =
�

1−
1
∆

�

(−q · x)εµa eΦ∆ , eBµνab,∆ =
�

1−
2
∆

�

(−q · x)2ε[µν]ab
eΦ∆ . (268)

As for the scalar case, the factors of (1 − 1
∆) and (1 − 2

∆) can be reabsorbed into different
choices of normalization in the definition of the shadow transform for fields with nontrivial
tensor structure (see e.g. [2,19] for one-form expressions).

For a generic p-form CPW, we define the shadow transform by

eBµ1···µp

α1···αp ,∆(x; q) =
1
p!

∫

dd w⃗ ′
Bρ1···ρp

α1···αp ,d−∆(q
′; 2q)

(∓i)d−∆Γ (d −∆)
Bµ1···µp

ρ1···ρp ,∆(x; q′) . (269)

After evaluating the integral we need to compute

eBµ1···µp

α1···αp ,∆ =
1
p!

�

δ[µ1
ρ1
· · ·δµp]

ρp
+

1
∆

p
∑

k=1

δ[µ1
ρ1
· · ·dδµk

ρk
· · ·δµp

ρp
xρk
∂ µk]

�

m[ρ1
α1
· · ·mρp]

αp
eΦ∆ , (270)

where dδµk
ρk

means that the factor is omitted from the product. From (261) and (265) we
conclude that

eBµ1···µp

α1···αp ,∆(x; q) =
�

1−
p
∆

�

m[µ1
α1
· · ·mµp]

αp
eΦ∆ , (271)

and projecting back from the embedding space,

eB
µ1···µp

a1···ap ,∆(x; q) =
�

1−
p
∆

�

(−q · x)pε[µ1
a1
· · ·εµp]

ap
eΦ∆ . (272)

The corresponding shadow field strength is thus

eH
αµ1···µp

a1···ap ,∆(x; q) =
�

1−
p
∆

�

r[αeµ1
a1
· · · eµp]

ap
eΦ∆ , rα ≡

(d/2−∆)xα

x2
+
(d −∆− p)qα

∓i0− q · x
, (273)

which is to be compared with (186).
In the critical dimension d = 2p, we get

rα = (p−∆)
�

xα

x2
+

qα

∓i0− q · x

�

, (274)

so that the shadow of ∆ = p is pure gauge. This is actually not surprising because, in
D = 2 + 2p, working out the explicit expressions for the shadow field (using in particular
(221)), one has

eB
µ1···µp

a1···ap ,∆(x; q) =
1
∆
(−q · x)pε[µ1

a1
· · ·εµp]

ap
πp(−x2)p−∆

(∓2i)∆Γ (∆− p+ 1)
(−2q · x)2p−∆ , (275)

and setting ∆= p leads to

eB
µ1···µp

a1···ap ,∆=p(x; q) =
(∓iπ)p

p
ε[µ1

a1
· · ·εµp]

ap
, (276)

which is proportional to the pure-gauge wavefunction already obtained in (189). In other
words, the pure-gauge shadow CPW coincides with the ordinary pure gauge CPW (up to an
overall factor); see Table 1.
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Table 1: Occurrences of “pure gauge” p-forms in D = d + 2 spacetime dimensions.
While p-form CPWs of dimension ∆ = p are pure gauge in any d, their shadow is
pure gauge only in the critical dimension d = 2p. In that case, the expression of the
shadow pure-gauge mode coincides (up to a factor) with the non-shadow one, given
in (189).

B
µ1···µp

a1···ap ,∆
eB
µ1···µp

a1···ap ,∆

d ̸= 2p ×
∆= p

d = 2p ∆= p

Let us now turn to the calculation of scalar products involving shadow transforms, starting
from the one-form case. To compute the inner product between Aa,∆ and eAb,∆, we can start
from the definition (242). The uplifted inner product for one-form primaries can be calcu-
lated using the same technique as for (130), where ∂a can be replaced by formal derivatives
∂ /∂ qα. As discussed above, this only introduces ambiguities proportional to qα, which can be
systematically dropped. Similarly, (129) translates to

qν∂αδ(q, q′)(q′0ηα′ν − q′νδ
0
α′) = −ηαα′q

0δ(q, q′) + · · · , (277)

where the omitted terms are proportional to qα or qα′ . Proceeding in this way, one obtains

�

Aα,∆(x; q),Aα′,∆′(x; q′)
�

= ηαα′
�

1−
1
∆

��

1−
1
∆′∗

�

I(∆, q;∆′, q′) . (278)

In turn, this leads to the shadow product

�

Aα,∆(x; q), eAβ ,∆′(x; q′)
�

=

∫

dd z⃗Aρ
β ,d−∆′∗(2q′, z⃗ )
�

Aα,∆(x; q),Aρ,∆′(x; z⃗)
�

= ηαρ

�

1−
1
∆

��

1−
1
∆′∗

�

Aρ
β ,d−∆′∗(2q′, q)2(2π)D δ(i(∆+∆′∗ − d)) ,

(279)

and contracting with eαa (q)e
β

b (q
′) this reduces to

�

Aa,∆(x; q), eAb,∆′(x; q′)
�

= hab

�

1−
1
∆

��

1−
1
∆′∗

�

2(2π)D

|w⃗− w⃗ ′|2∆
δ(i(∆+∆′∗ − d)) . (280)

The inner product for two shadow one-form primaries can be computed analogously. One has

�

eAα,∆(x; q), eAβ ,∆′(x; q′)
�

=

∫

dd s⃗Aρ
α,d−∆(2q, s⃗)

∫

dd z⃗Aσβ ,d−∆′∗(2q′, z⃗)
�

Aρ,∆(x; s⃗),Aσ,∆′(x; z⃗)
�

,

(281)
and therefore, using (278) and dropping terms proportional to qα or qβ ,

�

eAα,∆(x; q), eAβ ,∆′(x; q′)
�

=
�

1− 1
∆

� �

1− 1
∆′∗

�

δ(i(∆+∆′∗ − d))

∫

dd s⃗ηαβ 2(2π)D

|w⃗− s⃗|d−∆|w⃗′ − s⃗|d−∆′∗
.

(282)
Projecting along eαa and eβb , and recognizing the same expression appearing in the scalar case
(227), we thus obtain
�

eAα,∆(x; q), eAβ ,∆′(x; q′)
�

= ηαβ eαa eβb
�

1− 1
∆

� �

1− 1
∆′∗

� �

eΦ∆(x; q), eΦ∆′(x; q′)
�

. (283)
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A very similar discussion extends to forms with generic degree p and leads to

�

Ba1···ap ,∆(x; q), eBa′1···a′p ,∆′(x; q′)
�

= (ea1···ap
, ea′1···a′p

)
�

1− p
∆

� �

1− p
∆′∗

� 2(2π)Dδ(i(∆+∆′∗ − d))
|w⃗− w⃗ ′|2∆

,

(284)
�

eBa1···ap ,∆(x; q), eBa′1···a′p ,∆′(x; q′)
�

= (ea1···ap
, ea′1···a′p

)
�

1− p
∆

� �

1− p
∆′∗

� �

eΦ∆(x; q), eΦ∆′(x; q′)
�

,

(285)

with (ea1···ap
, ea′1···a′p

) as in (193).

5 Singular asymptotics

In order to discuss the role that conformal primary wavefunctions play in the context of soft
theorems and more broadly in celestial holography, it is crucial to have a detailed understand-
ing of their asymptotic expansion when approaching the conformal boundary of flat spacetime,
null infinity I . In order to do so, one has to deal with the problem of calculating the limit
as r → ∞, for fixed retarded time u and observation angles, of conformal primary wave-
functions [9, 20, 31, 32]. As we have seen in previous sections, scalar CPWs form the basic
ingredient also for p-form ones. The delicate issue arises from the presence in denominators
of the type 1/(∓i0 − 2q · x)∆ of terms where the r → ∞ limit can be compensated by the
collinear limit, in which the observation point and the null momentum can be almost paral-
lel. It has been pointed out in [32] that conformally soft limits ∆ → Z [9] do not commute
with the large-r expansion. Indeed, the stationary phase space approximation usually taken in
the soft theorem-asymptotic symmetry literature [58,59] is only strictly valid for finite energy
wavefunctions, while generic conformally soft operators, for which Re(∆) ̸= 1, do not corre-
spond to radiative, finite energy modes. One way to handle this issue, advocated in [32], is to
take the conformally soft limit last: this prescription allows to analytically continue the Mellin
transform of a radiative amplitude to conformal dimensions lying outside the principal series.
The alternative road is to take the opposite order of limits, namely taking first the conformally
soft limit of CPWs and then expand them in large-r. This leads to overleading wavefunctions
at I (that one would have typically excluded from the phase space), whose inner product
with radiative wavefunctions is divergent and thus needs to undergo a renormalization proce-
dure [31,32,60].

In this section, we present a systematic treatment of the asymptotic expansion of CPWs
which is based on the method of regions [33,34]. In order to take into account the full range
of available directions, we will treat the angular dependence in the distributional sense. In
this way, contributions due to the collinear regions turn out to be regular, but give rise to
contact terms (i.e. delta functions and their derivatives) on the celestial sphere. Moreover,
the limits ∆→ 1, 2, . . . involve nontrivial cancellations of singularities between collinear and
non-collinear contributions, which lead in general to the appearance of log r terms in the
asymptotic expansion, exhibiting a “resonance” phenomenon already noted e.g. in [61].

We conclude by presenting a similar analysis for general solutions of the scalar wave equa-
tions, expressed in terms of their Fourier representation, highlighting also in that case the
presence of two types of series in the asymptotic expansion and their interplay. As an appli-
cation, we consider the field generated by an idealized scattering event taking place at the
origin of the spacetime. This allows us to show how in the physically relevant combination of
positive- and negative-frequency modes the log r terms drop out and one retrieves the standard
memory effect [62].
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5.1 Asymptotics of scalar CPWs

We now want to discuss the limit of the scalar CPW of conformal dimension∆ in d+2 spacetime
dimensions

Φ±∆(x; q) = (∓2i)∆Γ (∆) f ±∆ (x; q) , f ±∆ (x; q) =
1

(∓i0− 2q · x)∆
, (286)

near future null infinity I + (analogous expressions can be obtained for past null infinity I −).
Cartesian coordinates xµ relate to Bondi coordinates (u, r, z⃗) via

xµ = u tµ +
2r

1+ |z⃗ |2
qµ(z⃗ ) , (287)

with tµ = (1, 0, . . . , 0) and employing the standard parametrization (28) for qµ(z⃗ ). I + is
reached in the limit r →∞, while u, z⃗ are kept fixed. For later convenience, we define

ρ2 =
2r

1+ |z⃗ |2
, m2 = (∓i0+ u)(1+ |w⃗ |2) , (288)

so that
∓i0− 2q(w⃗ ) · x = m2 +ρ2|w⃗− z⃗ |2 , (289)

and the ±i0 prescription is absorbed into the definition of m2. We want to analyze the asymp-
totic expansion of the quantity [61]

f∆ =
1

(m2 +ρ2|w⃗− z⃗ |2)∆
, (290)

regarded as a distribution in z⃗, as ρ →∞, using the so-called method of regions [33, 34].2

To this end, we need to consider the integral

I∆ =

∫

ϕ(z⃗ )
(m2 +ρ2|w⃗− z⃗ |2)∆

dd z⃗ , (291)

for a generic test function ϕ. As ρ→∞, we need to distinguish two regions in the integration
domain. The first region is characterized by the scaling |w⃗− z⃗ | ∼O(1), so that m≪ ρ|w⃗− z⃗ |,
while the second one is characterized by the scaling |w⃗− z⃗ | ∼O(m

ρ ), so that |w⃗− z⃗ | ≪ 1. We
can separate the integral accordingly as

I∆ ∼ I (r)∆ + I (c)∆ , (292)

where

I (r)∆ ∼
∫

ϕ(z⃗ )
(ρ2|w⃗− z⃗ |2)∆

�

1−
m2∆

ρ2|w⃗− z⃗ |2
+O
�

1
ρ4

�

�

dd z⃗ , (293)

and

I (c)∆ ∼
md−2∆

ρd

∫

dd x⃗
(1+ | x⃗ |2)∆

�

ϕ(w⃗ ) +
m
ρ

xa∂aϕ(w⃗ ) +
m2

2ρ2
xa1 xa2∂a1

∂a2
ϕ(w⃗ ) +O
�

1
ρ3

�

�

.

(294)
In the first integral, we expanded the denominator for m≪ ρ|w⃗− z⃗|, while in last integral we
introduced the variable x⃗ via

z⃗ = w⃗+
m
ρ

x⃗ , (295)

2We thank S. Pasterski and A. Puhm for discussions on this expansion.

34

https://scipost.org
https://scipost.org/SciPostPhys.15.1.026


SciPost Phys. 15, 026 (2023)

and expanded ϕ for ρ≫ m| x⃗ |. Moreover, both in (293) and (294), we extended the integra-
tion region back to the whole space, applying the method of regions. The leftover integration
in (294) can be dealt with using
∫

xa1 · · · xa2n

(1+ | x⃗ |2)∆
dd x⃗ =

π
d
2

22nΓ (∆)
∂

a1
b · · ·∂

a2n
b

�

Γ (∆− d
2 − 2n)

(1− |b⃗ |2)∆−
d
2−2n

�

b⃗=0

, (296)

so that in particular

∫

1
(1+ | x⃗ |2)∆

dd x⃗ =
π

d
2 Γ (∆− d

2 )

Γ (∆)
,

∫

xa1 xa2

(1+ | x⃗ |2)∆
dd x⃗ =

π
d
2 Γ (∆− d

2 − 1)

2Γ (∆)
δa1a2 . (297)

As a result, (293) and (294) read

I (r)∆ ∼
∫ �

1
(ρ2|w⃗− z⃗ |2)∆

−
m2∆

(ρ2|w⃗− z⃗ |2)∆+1

�

ϕ(z⃗ ) dd z⃗ +O
�

1
ρ2(∆+2)

�

, (298)

and

I (c)∆ ∼
π

d
2

Γ (∆)

�

Γ (∆− d
2 )

ρd(m2)∆−
d
2

ϕ(w⃗ ) +
Γ (∆− d

2 − 1)

4ρd+2(m2)∆−
d
2−1
∇2ϕ(w⃗ )

�

+O
�

1
ρd+4

�

. (299)

These two expansions translate into the following double series for the distribution (290) itself,

f∆ ∼
1

(ρ2|w⃗− z⃗ |2)∆
−

m2∆

(ρ2|w⃗− z⃗ |2)∆+1
+O
�

1
ρ2(∆+2)

�

+
π

d
2

Γ (∆)

�

Γ (∆− d
2 )

ρd(m2)∆−
d
2

δ(d)(w⃗− z⃗ ) +
Γ (∆− d

2 − 1)

4ρd+2(m2)∆−
d
2−1
∇2δ(d)(w⃗− z⃗ )

�

+O
�

1
ρd+4

�

.
(300)

This expansion is valid for generic complex∆, and it is straightforward to obtain higher orders
in both series. However, care must be exerted for ∆= d

2 , d
2 + 1, · · · where terms in the second

line can diverge. Such divergences are canceled by corresponding “resonant” terms in the first
line, as can be seen applying (A.7) and (A.15). For instance, letting ∆ = d−λ

2 , retaining the
first nontrivial terms, we have

f d−λ
2
∼

1
(ρ|w⃗− z⃗ |)d−λ

+O
�

1
ρd+2−λ

�

+
π

d
2

Γ ( d−λ
2 )

Γ (−λ2 )

ρd(m2)−
λ
2

δ(d)(w⃗− z⃗ ) +O
�

1
ρd+2

�

, (301)

and sending λ→ 0 the 1
λ singularities cancel between the two terms, thanks to (A.7), leaving

behind3

f d
2
∼

1
(ρ|w⃗− z⃗ |)d

+
π

d
2

Γ ( d
2 )ρd

�

log
ρ2

m2
−ψ
� d

2

�

− γE

�

δ(d)(w⃗− z⃗ ) +O
�

logρ
ρd+2

�

, (302)

with ψ the digamma function. In a similar fashion, one can obtain the next terms in the
expansion retaining one more order and using (A.15), obtaining

f d
2
∼

1
(ρ|w⃗− z⃗ |)d

+
π

d
2

Γ ( d
2 )ρd

�

log
ρ2

m2
−ψ
� d

2

�

− γE

�

δ(d)(w⃗− z⃗ )

−
m2d

2(ρ|w⃗− z⃗ |)d+2
−

π
d
2 m2

4Γ ( d
2 )ρd+2

�

log
ρ2e2

m2
−ψ
� d

2

�

− γE

�

∇2δ(2)(w⃗− z⃗ ) +O
�

logρ
ρd+4

�

.

(303)

3For simplicity, we omit the ε in |w⃗− z⃗|−d
ε

and |w⃗− z⃗|−d−2
ε

(see appendix A).
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Letting instead ∆= d+2−λ
2 , we find

f d+2−λ
2
∼

1
(ρ|w⃗− z⃗ |)d+2−λ +O

�

1
ρd+4−λ

�

+
π

d
2

Γ ( d+2−λ
2 )

�

Γ (1− λ2 )

ρd(m2)1−
λ
2

δ(d)(w⃗− z⃗ ) +
Γ (−λ2 )

4ρd+2(m2)−
λ
2

∇2δ(d)(w⃗− z⃗ )

�

+O
�

1
ρd+4

�

,

(304)

and sending λ→ 0 yields, after using (A.15), yields the finite expression

f d+2
2
∼

π
d
2

Γ ( d
2 + 1)

1
ρd m2

δ(d)(w⃗− z⃗ ) +
1

(ρ|w⃗− z⃗ |)d+2

+
π

d
2

Γ
� d

2 + 1
�

1
4ρd+2

�

log
ρ2e
m2
−ψ
� d

2

�

− γE

�

∇2δ(d)(w⃗− z⃗ ) +O
�

logρ
ρd+4

�

,

(305)

after using ψ(z + 1) = 1
z +ψ(z). To highlight the same cancellation as ∆→ d+4

2 , we would

need to go further subleading in the expansion of I (c)∆ . Instead, retaining only the first few
leading terms, the I (r) series stays subleading and the limit can be taken naively, obtaining

f d+4
2
∼

π
d
2

Γ ( d
2 + 2)

�

1
ρd m4

δ(d)(w⃗− z⃗ ) +
1

4ρd+2m2
∇2δ(d)(w⃗− z⃗ )
�

+O
�

logρ
ρd+4

�

. (306)

We note that the expansion we obtained are consistent with the identity

∂m2 f∆ = −∆ f∆+1 . (307)

It is useful to write down explicitly (302), (305) and (306) for the specialized case of a
d = 2 celestial sphere. Recalling ψ(1) = −γE , we obtain

f1 ∼
1

(ρ|w⃗− z⃗ |)2
+
π

ρ2
log
ρ2

m2
δ(2)(w⃗− z⃗ )−

m2

(ρ|w⃗− z⃗ |)4

−
πm2

4ρ4
log
ρ2e2

m2
∇2δ(2)(w⃗− z⃗ ) +O

�

logρ
ρ6

�

,

(308a)

f2 ∼
π

ρ2m2
δ(2)(w⃗− z⃗ ) +

1
(ρ|w⃗− z⃗ |)4

+
π

4ρ4
log
ρ2e
m2
∇2δ(2)(w⃗− z⃗ ) +O

�

logρ
ρ6

�

, (308b)

f3 ∼
π

2ρ2m4
δ(2)(w⃗− z⃗ ) +

π

8ρ4m2
∇2δ(2)(w⃗− z⃗ ) +O

�

logρ
ρ6

�

. (308c)

Going back to the original variables using (288), one finds that in d = 2 the asymptotic ex-
pansion near I + (287) of

f∆ =
1

(−2q(w⃗) · x)∆
=

1
�

u(1+ |w⃗ |2) + 2r
1+|z⃗ |2 |w⃗− z⃗ |2
�∆

, (309)
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for ∆= 1,2, 3 is given by

f1 ∼
(1+ |z⃗ |2)
2r|w⃗− z⃗ |2

+
π(1+ |z⃗ |2)

2r
log
�

2r
u(1+ |w⃗ |2)2

�

δ(2)(w⃗− z⃗ )−
u(1+ |w⃗ |2)(1+ |z⃗ |2)2

4r2|w⃗− z⃗ |4

−
πu(1+ |w⃗ |2)(1+ |z⃗ |2)2

16r2
log

�

2e2 r
u(1+ |w⃗ |2)(1+ |z⃗ |2)

�

∇2δ(2)(w⃗− z⃗ ) +O
�

log r
r3

�

,

(310)

f2 ∼
π

2ur
δ(2)(w⃗− z⃗ ) +

(1+ |z⃗ |2)2

4r2|w⃗− z⃗ |4

+
π(1+ |z⃗ |2)2

16r2
log
�

2e r
u(1+ |w⃗ |2)(1+ |z⃗ |2)

�

∇2δ(2)(w⃗− z⃗ ) +O
�

log r
r3

�

,

(311)

f3 ∼
πδ(2)(w⃗− z⃗ )

4u2r(1+ |w⃗ |2)
+

π(1+ |z⃗ |2)2

32ur2(1+ |w⃗ |2)
∇2δ(2)(w⃗− z⃗ ) +O

�

log r
r3

�

, (312)

where the ∓i0 prescription u → ∓i0 + u is left implicit for brevity. These expansions are
consistent with the identity

∂u f∆ = −∆ (1+ |w⃗ |2) f∆+1 . (313)

In appendix (B), we also provide an explicit cross-check that these expressions satisfy□ f∆ = 0.
Alternatively, one could write these expansions in complex coordinates, recalling from (55)
that δ(2)(w⃗− z⃗ ) = 2δ(2)(w− z) and ∇2 = 4∂z∂z̄ .

5.2 Asymptotics of solutions of the wave equation

In this subsection we analyze the asymptotics of the solutions of

□Φ(x) = 0 . (314)

Going to Fourier space, the most general solution of this equation can be written as follows

Φ(x) =

∫

eip·x f (p)δ(p2) dDp , (315)

where f is arbitrary. This can be split into positive- and negative-frequency parts according to
Φ(x) = Φ+(x) +Φ−(x), where

Φ±(x) =

∫

e±ip·x f (p)θ (p0)δ(p2) dDp , (316)

each of which separately satisfies the wave equation. This splitting is Lorentz-invariant and
we can first focus on the positive-frequency part for definiteness.

Similarly to (287), we can change integration variables via

pµ = µ tµ +ωqµ(w⃗ ) , (317)

whose Jacobian determinant is simply
�

�

�

�

det
∂ pµ

∂ (µ, w⃗,ω)

�

�

�

�

= |ω|d q0(w⃗) . (318)

Then,

p2 = −µ2 − 2µωq0(w⃗) , θ (p0)δ(p2) =
θ (ω)δ(µ)
2ωq0(w⃗)

. (319)
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Therefore,

Φ+(x) =

∫ ∞

0

ωd dω
2ω

∫

Rd

dd w⃗ eiωq(w⃗ )·x f (ωq(w⃗ )) , (320)

or more explicitly

Φ+(x) =

∫ ∞

0

ωd dω
2ω

∫

Rd

dd w⃗ e−iωq0(w⃗ )u− iωr|w⃗−z⃗ |2

1+|z⃗ |2 f (ωq(w⃗ )) . (321)

At this stage we want to take the limit r →∞ and note that there are two regions that
grant an O(1) scaling for the exponent

−
iωr|w⃗− z⃗ |2

1+ |z⃗|2
. (322)

A first possibility is to consider the near-collinear scaling w⃗= z⃗+ 1p
r s⃗, with s⃗ formally of O(1),

for which to leading order

Φ
(c)
+ (x)∼

1

r
d
2

∫ ∞

0

ωd dω
2ω

e−iωq0(z⃗ )u f (ωq(z⃗ ))

∫

Rd

dd s⃗ e−
iω|s |2

1+|z⃗ |2 . (323)

Performing the resulting Gaussian s⃗-integral, we find

Φ
(c)
+ (x)∼
∫ ∞

0

�

π(1+ |z⃗ |2)
ir

ω

�
d
2

e−iωq0(z⃗ )u f (ωq(z⃗ ))
dω
2ω

. (324)

Rescaling ω this can be also cast in the form

Φ
(c)
+ (x)∼
∫ ∞

0

�

2πω
ir

�
d
2

e−iωu f
�

ω
q(z⃗ )
q0(z⃗ )

� dω
2ω

. (325)

A second possibility is to consider the scalingω∼O(r−1), with generic |w⃗−z⃗ |2. To leading
order, considering a general scaling

f (ωq(w⃗ ))∼ωα−d fα(w⃗ ) , as ω→ 0 , (326)

this leads to

Φ
(r)
+ (x)∼
∫

Rd

dd w⃗ fα(w⃗ )

∫ ∞

0

ωα e−
iωr|w⃗−z⃗ |2

1+|z⃗ |2
dω
2ω

. (327)

The ω integral can be performed obtaining

Φ
(r)
+ (x)∼

Γ (α)
(ir)α

(1+ |z⃗ |2)α
∫

Rd

fα(w⃗ )
2|w⃗− z⃗ |2α

dd w⃗ . (328)

As a cross-check, we can verify that effecting the choice

f (ωq(w⃗ )) = 2ω∆−d δ(d)(w⃗− w⃗0) , (329)

in eq. (320) reproduces the scalar conformal primary Φ∆, and that correspondingly eqs. (328),
(324) reproduce the leading terms in the two lines of (300). In conclusion, including the
corresponding analysis for negative-frequency modes as well, to leading order in each region

Φ±(x)∼
Γ (α)
(±ir)α

(1+ |z⃗ |2)α
∫

Rd

fα(w⃗ )
2|w⃗− z⃗ |2α

dd w⃗+

∫ ∞

0

�

2πω
±ir

�
d
2

e∓iωu f
�

ω
q(z⃗ )
q0(z⃗ )

� dω
2ω

. (330)
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The two terms are of the same order when α∼ d/2.
As an application, let us consider the field

ΦF (x) =

∫

�

eip·x F(p) + e−ip·x F∗(p)
�

θ (p0)2πδ(p2)
dDp
(2π)D

, F(p) =
∑

n

gn

pn · p
, (331)

where pn are the hard momenta of a background scattering process dressed with soft scalar
emissions, and gn denotes the coupling between the nth hard state and the scalar itself. Since
F(ωq) = ω−1F(q), for positive ω, the scaling (326) corresponds to α = D − 3 = d − 1 and
Fd−1(w⃗ ) = F(q(w⃗ )). Then, the expansion (330), which we consider for D ≃ 4 (i.e. d ≃ 2) so
that it provides the leading-order terms in the 1/r-expansion, gives

ΦF (x)∼
Γ (d − 1)(1+ |z⃗ |2)d−1

(2π)d+1rd−1

∫

Rd

i1−d + (−i)1−d

2|w⃗− z⃗ |2(d−1)
F(q(w⃗ )) dd w⃗

+ 2Re

∫ +∞

0

� ω

2iπr

�
d
2

e−iωu dω
4πω2

F
�

q(z⃗ )
q0(z⃗ )

�

,

(332)

where we have used F∗(p) = F(p) in the first line and F(ωq/q0) =ω−1 F(q/q0) in the second
line. Let us also define

N(z⃗ ) =
q(z⃗ )
q0(z⃗ )

= (1, x̂(z⃗ )) . (333)

At this point we can set D = 4−2ε and perform the integral in the second line, which leads to

ΦF (x)∼
Γ (1− 2ε)(1+ |z⃗ |2)1−2ε

(2π)3−2εr1−2ε

∫

Rd

sin(πε)
|w⃗− z⃗ |2−4ε

F(q(w⃗ )) d2−2εw⃗

+ 2 Re
1

(2iπr)1−ε
Γ (−ε)

4π(0+ iu)−ε
F (N(z⃗ )) .

(334)

In order to take the limit ε→ 0 we can use

lim
ε→0

sin(πε)
|w⃗− z⃗ |2−4ε

= lim
ε→0

πε

2|w⃗− z⃗ |2−4ε
=
π2

2
δ(2)(w⃗− z⃗ ) , (335)

1
(2iπr)1−ε

Γ (−ε)
4π(0+ iu)−ε

= −
1
ε

1
8iπ2r

−
log r + log(0+ iu)

8iπ2r
+O(ε) . (336)

Note that the fact that we are focusing on the real combination in (331) is crucial to grant two
simplifications. First, the limit (335), which follows from (A.6), involves the sin(πε) and this
compensates the singularity of 1/|z⃗−w⃗ | in D = 4. Second, while the expansion (336) contains
singular 1/ε and logarithmic (log r)/r terms, they both drop out in the real part. Using

−
log(0+ iu)

iπ
+

log(0− iu)
iπ

= sgn(u) =

¨

+1 , (u> 0) ,
−1 , (u< 0) ,

(337)

one is led to

ΦF (x) =
F(N)
8πr
−

F(N)
8πr

sgn(u) = θ (−u)
F(N)
4πr

, (338)

θ denoting the Heaviside step function θ (x) = +1 if x > 0 and θ (x) = 0 if x < 0. We can
make this more explicit defining ηn = +1 if n is an outgoing state and ηn = −1 if n is an
incoming state, and pn = ηn(En,kn), so that

ΦF (x)∼ −
θ (−u)
4πr

�

∑

out

gn

En − kn · x̂
−
∑

in

gn

En − kn · x̂

�

, (339)
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where q(z⃗ )/q0(z⃗ ) = N = (1, x̂). In this way, we retrieve the standard memory effect [62],

ΦF (x)
�

�

�

u>0
−ΦF (x)
�

�

�

u<0
∼

1
4πr

�

∑

out

gn

En − kn · x̂
−
∑

in

gn

En − kn · x̂

�

. (340)

Note that, while in the present example all logarithmic terms have dropped out, in general they
can appear in more involved setups, especially in connection with tail effects (see e.g. [63] and
references therein), themselves related to logarithmic corrections to soft theorems [64].

In D = 4, we can consider a more physical regularization, given by the −i0 prescription
[65–68]

ΦF (x) =

∫

�

eip·x F(p) + e−ip·x F∗(p)
�

θ (p0)2πδ(p2)
d4p
(2π)4

, F(p) =
∑

n

gn

pn · p− i0
. (341)

In this case, one sees that only the near-collinear region contributes and one is led to

ΦF (x)∼
1

4πr

∫ +∞

−∞

dω
2iπ

e−iωuF(ωN) , (342)

so that thanks to
∫ +∞

−∞

dω
i2π

e−iωu

−ηnω− i0
=

∫ +∞

−∞

dω
i2π

eiωηnu

ω− i0
= θ (ηnu) , (343)

one finds

ΦF (x)∼
1

4πr

∑

n

gn θ (ηnu)
En − kn · x̂

, (344)

or more explicitly

ΦF (x)∼
1

4πr

�

θ (u)
∑

out

gn

En − kn · x̂
+ θ (−u)
∑

in

gn

En − kn · x̂

�

, (345)

which we recognize as the appropriate asymptotics of the retarded solution [69,70]. Of course,
(345) also reproduces the standard memory effect (340), as it only differs by the solution we
had found by taking the D→ 4 limit by a u-independent term.

6 Two-form and scalar celestial primaries in 4D

In this section, we analyze more in detail certain properties of two-form primaries in four
spacetime dimensions and discuss their duality to scalar degrees of freedom. This allows us
to discuss in a concrete setup the connection between two-form asymptotic charges and scalar
soft theorems.

6.1 Hodge duality between scalar and two-form primaries

We will mostly work in the standard four-dimensional conventions detailed in subsection 2.4.
We begin by recalling the scalar conformal primary wave function (CPW) (78)

Φ∆(x; w, w̄) =
(∓i)∆Γ (∆)
(∓i0− q · x)∆

, (346)
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which satisfies the Klein-Gordon equation □Φ∆ = 0 and where the parametrization for the
null vector qµ(w, w̄) is taken as in (50). Under Lorentz transformations Λ,

Λµνq
µ(w, w̄) = (cw+ d)(c∗w̄+ d∗)qµ(w′, w̄′) , w′ =

aw+ b
cw+ d

, (347)

and the conformal primary transforms as

Φ∆(Λx; w′, w̄′) = (cz + d)∆(c∗z̄ + d∗)∆Φ∆(x; w, w̄) . (348)

On the other hand, the two-form CPW (156) reads (dropping the a = ww̄ index)

Bµν∆ (x; w, w̄) = (∓i)∆Γ (∆)

�

∂wq[µ∂w̄qν]

(∓i0− q · x)∆
+

q[µ(x · ∂wq)∂w̄qν] + ∂wq[µ(x · ∂w̄q)qν]

(∓i0− q · x)∆+1

�

, (349)

and under Lorentz transformations

Bµν∆ (Λx , w′, w̄′) = (cz + d)∆(c∗z̄ + d∗)∆Λµρ Λ
ν
ρBρσ∆ (x , w, w̄) . (350)

Hodge duality provides an on-shell link between a scalar Φ and the field strength Hµνρ of
the two-form Bµν,

Hµνρ = ∂ µBνρ + ∂ νBρµ + ∂ ρBµν , (351)

according to
1
3!
εµνρσHνρσ = ∂

µΦ , Hµνρ = εµνρσ ∂
σΦ . (352)

The duality interchanges the equations of motion and Bianchi identities:

□Φ= 0↔ εµνρσ∂µHνρσ = 0 , εµνρσ∂ρ∂σΦ= 0↔ ∂ µHµαβ = 0 . (353)

The duality can be explored at the level of conformal primaries. Using the explicit param-
eterization (28), and ϵ0123 = +1, a short calculation allows one to check that

ϵµνρσeν1 eρ2 qσ = −qµ , (354)

and therefore

ϵµνρσε
ν
1 ε
ρ
2 qσ = −

qµ
(−q · x)2

, ϵµνρσε
[νρ] qσ = −

2qµ
(−q · x)2

. (355)

As a result, the field strength (162) obeys

1
3!
ϵµνρσHνρσ∆ = −(∆− 2)

(∓i)∆Γ (∆)
(∓i0− q · x)∆+1

qµ , (356)

or, equivalently,
1
3!
ϵµνρσHνρσ∆ = −

�

1−
2
∆

�

∂µΦ∆ . (357)

Therefore, while for generic ∆ this scalar/two-form duality determines Φ∆ in terms of Bµν∆ up
to a constant, it fails to do so for ∆ = 2. Notice that this is to be expected because ∆ = 2
corresponds to a pure gauge two-form, as discussed in section 3.3. Of course, this is only
one possible way of explicitly solving the duality equation, which is invariant under gauge
transformations on the Bµν∆ side and under shifts by constant numbers on the Φ∆. However,
this is a nice solution because it preserves the conformal primary nature of both objects, as
already remarked.
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6.2 Revisiting the scalar charge

Within the family of soft theorem-asymptotic symmetry relationships, the scalar case is at the
root of potential conceptual puzzles, despite the fact that spinless fields are the easiest to
handle technically. Indeed, how can we understand soft factorization theorems for scattering
amplitudes as Ward identities in the absence of large local symmetries? In [27], Campiglia et
al. studied soft scalar theorems in the field theoretical context where a massless scalar field Φ
is coupled to a massive one via a Yukawa-type interaction.4 They showed that the leading soft
scalar factorization could be understood as arising from the conservation of certain asymptotic
charges, whose soft part

Qsoft =

∮

I+−

κ (358)

is expressed in terms of an antisymmetric tensor

κµν = jµΛξ
ν − jνΛξ

µ , jµΛ = Λ∂
µΦ−Φ∂ µΛ , (359)

where ξ = ξµ∂µ is the dilatation vector field and Λ(x) a “symmetry parameter” that satisfies
□Λ = 0. In Bondi coordinates, the relevant component of κ is κur and, since ξ = u∂u + r∂r ,
we then have

κur = (Λ∂uΦ−Φ∂uΛ)(−u) + (Λ∂rΦ−Φ∂rΛ)(u+ r) . (360)

The field Φ is taken to be a radiative configuration for which

Φ∼
1
r
ϕ(u, z⃗ ) + · · · , (361)

and such that
∂uϕ(u, z⃗ )∼ |u|−1−ε , (362)

for |u| →∞. A particular choice satisfying this is the real part in (310) of the∆= 1 conformal
primary,

ReΦ±∆=1 =
π2(1+ |z⃗ |2 )

r
θ (−u)δ(2)(w⃗− z⃗ ) + · · · . (363)

From this expression, we thus see that the radiative free data corresponds to a pure retarded
time shift at future null infinity; one can thus interpret (363) as the “memory” imprint coming
from the conformally soft (∆= 1) scalar primary, which was already introduced and analyzed
in [19].

On the other hand, the asymptotic limit of Λ near I + is captured by [27]

Λ∼
1
r
λ(1) +

1
r

log
2|u|

r
λ+ · · · , (364)

where both λ(1) and λ are arbitrary functions of the angles but do not depend of u. This as-
sumption is satisfied in particular by the imaginary part of the conformal primary wavefunction
with ∆= 1, for which we have, by (310),

∓ ImΦ±∆=1 ∼
1+ |z⃗ |2

r|w⃗− z⃗ |2
+
π(1+ |z⃗ |2)

r
log
�

2r
|u|(1+ |w⃗ |2)2

�

δ(2)(w⃗− z⃗ ) + · · · . (365)

The imaginary part of the scalar primary thus plays the role of what would be the scalar version
of a “large gauge” transformation at I +.

4See [28] for a study of scalar soft theorems for massless cubic interactions in even D > 4.
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Now, substituting (361)-(364) in (360), multiplying by r2 and retaining only terms that
do not tend to zero as r →∞, we have

r2κur ∼ −u∂uϕ

�

λ(1) + log
2u
r
λ

�

+ϕλ−ϕ
�

λ(1) + log
2u
r
λ

�

+ϕ
�

λ(1) +λ+ log
2u
r
λ

�

. (366)

Notice that the first term drops out when evaluating this quantity at I+± because of (362).
Then, recalling that the unit sphere is parametrized by qµ(z⃗)/q0(z⃗), the scalar charge (358)
reads [27]

Qsoft
λ =

∫

I+

4dud2z⃗
(1+ |z⃗ |2)2

2λ(z⃗)∂uϕ(u, z⃗) . (367)

In particular, employing the two conformal primaries Λ= ImΦ+∆=1, Φ= ReΦ+∆=1, one obtains

Qsoft
λ = (2π)3δ(2)(w⃗− w⃗′) . (368)

Following [9, 19, 31, 32], this soft charge can thus also be regarded as the canonical pairing
between the (would-be) Goldstone and memory modes, whose role is played by the imaginary
and real part of the conformally soft CPW, respectively.

Let us now discuss the asymptotic limit for the field operator itself. We know that the
leading energetically soft theorem

〈out|a(ωq)S|in〉 ∼
∑

n

gn

ω pn · q
〈out|S|in〉 , 〈out|Sa†(ωq)|in〉 ∼ −

∑

n

gn

ω pn · q
〈out|S|in〉

(369)
translates to the conformally soft one

Res〈out|a∆(q)S|in〉
�

�

∆=1 ∼
∑

n

gn

pn · q
〈out|S|in〉 , (370)

Res〈out|Sa†
∆(q)|in〉
�

�

∆=1 ∼ −
∑

n

gn

pn · q
〈out|S|in〉 . (371)

Since we have shown that Φ∆ are smooth functions of ∆, we can calculate 〈out|Φ(x)S|in〉,
where Φ(x) is the scalar field operator, by using the explicit expansion (103) and using (370)
to evaluate the ∆ integral via residues, deforming the contour by closing it in the right half-
plane. We assume that the only relevant pole comes from ∆ = 1. Consistently, we see from
(309) that higher values ∆ = 2,3, . . . corresponding to subleading soft behaviors are further
suppressed in the large-r or in the large-|u| limit. Then,5

〈out|Φ(x)S|in〉= 1
2(2π)3

∫

Rd

d2w⃗Φ+1 (x; w⃗ ) 〈out|S|in〉
∑

n

gn

pn · q
. (372)

Using (286)

〈out|Φ(x)S|in〉= − 2i
2(2π)3

∫

Rd

d2w⃗ f1(x; w⃗ ) 〈out|S|in〉
∑

n

gn

pn · q
. (373)

Combining with the other “half” of the commutator,

〈out|SΦ(x)|in〉= −1
2(2π)3

∫

Rd

d2w⃗Φ−1 (x; w⃗ ) 〈out|S|in〉
∑

n

gn

pn · q
, (374)

5The minus sign due to the fact that the contour runs clockwise is compensated by the minus sign in the
argument of a2−∆.
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and

〈out|SΦ(x)|in〉= −2i
2(2π)3

∫

Rd

d2w⃗ f ∗1 (x; w⃗ ) 〈out|S|in〉
∑

n

gn

pn · q
. (375)

Therefore

〈out| [Φ(x),S] |in〉= − 2
(2π)3

∫

Rd

d2w⃗ Im f1(x; w⃗ ) 〈out|S|in〉
∑

n

gn

pn · q
. (376)

Near I +, using (310) and recalling q = 1+z⃗2

2 N ,

〈out| [Φ(x),S] |in〉= θ (−u)
4πr

∑

n

gn

pn · N
. (377)

Of course we can smear this with λ( x⃗) in particular again with the δ function term in f1, as
we are instructed to do by (367).

This derivation parallels the one following from the plane wave representation:

〈out|[Φ(x),S]|in〉= 1
(2π)3

∫

d3p
2|p|
�

eip·x〈out|a(p)S|in〉 − e−ip·x〈out|Sa†(p)|in〉
�

, (378)

and in the large-r limit [59]

〈out|[Φ(x),S]|in〉= 1
4πr

∫ ∞

0

dω
2iπ

�

e−iωu〈out|a(ω x̂)S|in〉+ eiωu〈out|Sa†(ω x̂)|in〉
�

. (379)

Since we are only interested in the large-|u| limit, we can expand each matrix element using
the soft theorem, so that

〈out|[Φ(x),S]|in〉= 1
4πr

∫ +∞

−∞

dω
2iπω

e−iωu
∑

n

gn

pn · N
, (380)

and one recovers

〈out|[Φ(x),S]|in〉= θ (−u)
4πr

∑

n

gn

pn · N
. (381)

Let us finish by commenting on the dual two-form approach to the scalar soft charge (358).
By the Hodge duality (352), for any scalar Φ1,2 and two-form B1,2 pairwise dual to each other,
the corresponding scalar products obey

(Φ1,Φ2) = (B1, B2)− i

∫

∂Σ

�

Φ1B∗2 − B1Φ
∗
2

�

. (382)

So, in general, the standard inner products for scalars and two-forms dual to one another
may differ by a boundary term. For our specific solution of the duality however, we find that
the scalar products are exactly equal, so that the boundary term must be zero. Therefore,
since the Hodge duality relates scalar and form CPWs of the same conformal dimension ∆,
one might have expected that inserting the ∆ = 1 two-form primary in the dual form inner
product would lead to recovering the scalar soft symmetry charge, in the spirit of [29, 30].
This turns out however not to be the case, since Bµν∆=1 does not reduce to a pure “dual large
gauge” configuration. We thus see that this contrasts with the case of the soft photon and soft
graviton charges, whose expression can be derived from the inner product between a generic
(spin-one or spin-two) field perturbation and a pure gauge, conformally soft, CPW [9,31]. As
it was pointed out in [27], the spin zero soft charge rather resembles the magnetic version of
the soft photon and soft graviton charges [71–76]; further connections between form celestial
primaries and these new dual asymptotic charges would thus be worth exploring.
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7 Discussion and outlook

Let us briefly summarize our main results. In this work, we explicitly constructed CPWs for
p-form fields B

µ1···µp

a1···ap ,∆ with arbitrary form degree p in generic spacetime dimension D. We
derived the expressions for their inner products and for the corresponding mode decomposi-
tion of the canonically quantized free field operators. For each p, the CPW B

µ1···µp

a1···ap ,∆=p with
conformal weight ∆ = p is pure gauge in any D. We then constructed the associated families
of shadow transforms eB

µ1···µp

a1···ap ,∆, working in the embedding formalism. Such shadow families

also possess a pure-gauge waveform eB
µ1···µp

a1···ap ,∆=p with ∆ = p only in the special dimension
D = 2+ 2p, corresponding to the “critical” dimension for the given form degree, which how-
ever coincides with the ordinary one eB

µ1···µp

a1···ap ,∆=p = B
µ1···µp

a1···ap ,∆=p. In order to discuss the limit at

I + of such wavefunctions, we investigated the limit r →∞ for fixed retarded time and fixed
angles, providing a systematic strategy to perform such singular limits based on the method
of regions. Finally, we revisited the asymptotic charges of scalar fields in D = 4 and their
associated dual two-form CPW.

We leave to future work the discussion in the conformal primary basis of dual form mem-
ory effects of [77], as well as of further duality links between asymptotic charges associated to
forms of different degrees, such as the one proposed in D = 4 in [29,30]. The main appeal of
such constructions is that the symmetry interpretation of the charges can be more transparent
in one formulation than in the other. In particular, scalars do not have bona fide asymptotic
symmetries, while two-forms do [29, 30]. The technical reason for the absence of a natu-
ral map between the soft charge associated to a leading soft scalar theorem and a symmetry
charge involving a dual two-form CPW is that the latter is not pure gauge for ∆ = 1 and
therefore its canonical pairing cannot be interpreted as the charge associated to a symmetry
transformation. However, pairings between scalars and pure-gauge forms might occur when
investigating subleading soft theorems [78,79], a direction which is therefore worth exploring.
In this respect, it would be natural to investigate conformally soft theorems providing analogs
of known energetically soft theorems involving for instance two-forms and scalars. The lat-
ter, particularly in the case of the axion and the dilaton, have been reformulated in terms of
the geometry of field space [80], and very recently a geometric formulation of conformally
soft theorems was given [81, 82]. Finally, it can also be of interest to complement the study
initiated in this paper by constructing CPWs for more “exotic” types of field including higher-
spin ones [83–87]. Although interacting theories involving such fields are severely limited
by a number of no-go results, including Weinberg’s soft theorem which rules out their long
range interactions, interest in theories involving massless higher-spin quanta is motivated by
its connections to the high-energy limit of the string spectrum [88].
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A Distribution identities

Starting from the one-dimensional case, we note that, provided Reλ > 0, integration by parts
gives
∫ ∞

0

λtλ−1ϕ(t) d t = −
∫ ∞

0

tλϕ′(t) d t ∼ ϕ(0)−λ
∫ ∞

0

log(t)ϕ′(t) d t +O(λ2) , (A.1)

for any test function ϕ. This implies, as λ→ 0 for Reλ > 0,

λtλ−1θ (t)∼ δ(t) +
λ

|t|ε
+O(λ2) , (A.2)

where |t|−1
ε is the distribution defined by

∫

1
|t|ε

ϕ(t) d t = −
∫ ∞

0

log(t)ϕ′(t) d t . (A.3)

Noting that
∫

1
|t|ε

ϕ(t) d t = lim
ε→0+

�

ϕ(0) log(ε) +

∫ ∞

ε

d t
t
ϕ(t)

�

, (A.4)

we can also write
1
|t|ε
= lim
ε→0+

�

δ(t) log(ε) +
θ (t − ε)

t

�

. (A.5)

The d-dimensional analog of (A.2) can be obtained considering
∫

λ|w⃗− z⃗ |λ−dϕ(z⃗ ) dd z⃗ =

∮

dΩd( x̂)

∫ ∞

0

λrλ−1ϕ(w⃗+ r x̂) dr , (A.6)

and applying (A.2) to the integral over r. One obtains

λ|w⃗− z⃗ |λ−d ∼
2π

d
2

Γ ( d
2 )
δ(d)(w⃗− z⃗ ) +

λ

|w⃗− z⃗ |dε
+O(λ2) (λ→ 0 , Reλ > 0) . (A.7)

Once again a subtraction of the type (A.5) is needed to make sense of the ill-defined distribu-
tion |w⃗− z⃗ |−d in d dimensions,

1
|w⃗− z⃗ |dε

=
2π

d
2

Γ ( d
2 )
δ(d)(w⃗− z⃗ ) log(ε) +

θ (|w⃗− z⃗ | − ε)
|w⃗− z⃗ |d

, (A.8)

where the limit ε→ 0+ is left implicit.
For instance, using (A.7) and the identities

∂a|w⃗− z⃗ |α = αxa|w⃗− z⃗ |α−1 , (A.9)

∇2|w⃗− z⃗ |α = α(α+ d − 2)|w⃗− z⃗ |α−2 , (A.10)

one gets
∇2|w⃗− z⃗ |λ+2−d = (λ+ 2− d)λ|w⃗− z⃗ |λ−d , (A.11)

and, sending λ→ 0, one retrieves in this way the expressions of the Green’s functions

∇2|w⃗− z⃗ |2−d =
2π

d
2

Γ ( d
2 )
δ(d)(w⃗− z⃗ ) , (A.12)

∇2 log |w⃗− z⃗ |
|w⃗− z⃗ |d−2

=
2π

d
2

Γ ( d
2 )
δ(d)(w⃗− z⃗ ) +

2− d
|w⃗− z⃗ |dε

. (A.13)
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When d = 2 the latter reduces to the formula

∇2 log |w⃗− z⃗ |= 2πδ(2)(w⃗− z⃗ ) . (A.14)

Applying the Laplace operator ∇2 to (A.2) itself, one also gets

λ|w⃗− z⃗ |λ−d−2 ∼
π

d
2

2Γ ( d
2 + 1)

�

1+
d + 2
2d

λ

�

∇2δ(d)(w⃗− z⃗ ) +
λ

|w⃗− z⃗ |d+2
ε

+O(λ2) , (A.15)

where we have defined |w⃗− z⃗ |−d−2
ε appearing on the right-hand side via

∇2|w⃗− z⃗ |−d
ε = 2d|w⃗− z⃗ |−d−2

ε , (A.16)

in order to comply with the formal behavior of |w⃗− z⃗ |−d under (A.10).
Let us work out these quantities explicitly in d = 2, starting from the definition (A.8),

which reads
1

|w⃗− z⃗ |2ε
= 2π log(ε)δ(2)(w⃗− z⃗ ) +

θ (|w⃗− z⃗ | − ε)
|w⃗− z⃗ |2

. (A.17)

The first derivative involves in particular

1
|z⃗ |2

∂aθ (|z⃗ | − ε) =
za

|z⃗ |3
δ(|z⃗ | − ε)∼ −π∂aδ

(2)(z⃗ ) +O(ε) , (A.18)

where in the last step we used, letting n̂(θ ) = (cosθ , sinθ ),

∫

za

|z⃗ |3
δ(|z⃗ | − ε)ϕ(z⃗ )d2z⃗ =

1
ε

∫ 2π

0

na(θ )ϕ (ε n̂(θ )) dθ ∼ π∂aϕ(0) +O(ε) . (A.19)

Using (A.18) in (A.17), we obtain

∂a
1

|w⃗− z⃗ |2ε
= 2π log(ε)∂aδ

(2)(w⃗− z⃗ )−π∂aδ
(2)(w⃗− z⃗ )+θ (|w⃗− z⃗ | −ε)

−2(za −wa)
|w⃗− z⃗ |4

. (A.20)

The next derivative involves

−2za

|z⃗ |4
∂aθ (|z⃗ | − ε) =

−2
|z⃗ |3

δ(|z⃗ | − ε)∼ −
4π
ε2
δ(2)(z⃗ )−π∇2δ(2)(z⃗ ) +O(ε) , (A.21)

where we used

1
|z⃗ |3

δ(|z⃗ | − ε) =
1
ε2

∫

ϕ(εn̂(θ ))dθ ∼
2π
ε2
ϕ(0) +

π

2
∇2ϕ(0) +O(ε) . (A.22)

We then obtain

∇2 1
|w⃗− z⃗ |2ε

= −
4π
ε2
δ(2)(w⃗− z⃗ ) + 2π log(ε)∇2δ(2)(w⃗− z⃗ )− 2π∇2δ(2)(w⃗− z⃗ ) +

4θ (|w⃗− z⃗ | − ε)
|w⃗− z⃗ |4

.

(A.23)
Via (A.16), this defines 4|w⃗− z⃗ |−4

ε .
Let us also calculate

∇2 1+ |z⃗ |2

|w⃗− z⃗ |2ε
=

4
|w⃗− z⃗ |2ε

+ 4za∂a
1

|w⃗− z⃗ |2ε
+ (1+ |z⃗ |2)∇2 1

|w⃗− z⃗ |2ε
. (A.24)
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Using (A.20) and (A.23), we find

∇2 1+ |z⃗ |2

|w⃗− z⃗ |2ε
= −(1+ |w⃗|2)

4π
ε2
δ(2)(w⃗− z⃗ ) + 2π log(ε)

�

4+ 4za∂a + (1+ |z⃗ |2)∇2
�

δ(2)(w⃗− z⃗ )

− 4π za∂aδ
(2)(w⃗− z⃗ )− 2π(1+ |z⃗ |2)∇2δ(2)(w⃗− z⃗ ) + θ (|w⃗− z⃗ | − ε)

4(1+ |w⃗ |2)
|w⃗− z⃗ |4

,

(A.25)

and after integration by parts this reduces to

∇2 1+ |z⃗ |2

|w⃗− z⃗ |2ε
=

4(1+ |w⃗ |2)
|w⃗− z⃗ |4ε

+ 4πwa∂aδ
(2)(w⃗− z⃗ ) . (A.26)

B Asymptotic expansion cross-checks

The equation of motion □ f∆ = 0 provides useful cross-checks on the asymptotic expansions
worked out in section (5.1). Using (287) to go to retarded coordinates, we have (see e.g. [89])

□= ∂µ∂ µ = −
�

2∂r +
d
r

�

∂u +
�

∂ 2
r +

d
r
∂r +

1
r2
∇̃2
�

, (B.1)

where ∇̃2 is the Laplacian on the sphere Sd , which is related to the one on the Euclidean space
Rd , denoted ∇2 = ∂a∂a, by

∇̃2 =

�

1+ |z⃗ |2

2

�d

∂a

�

�

1+ |z⃗ |2

2

�2−d

∂a

�

. (B.2)

Writing the asymptotic expansion of a generic f in the form

f ∼
∑

k

f (k)

rk
+
∑

k

g(k)

rk
log(r) , (B.3)

the equation of motion for f translates into the recursion relations

(d − 2k)∂u g(k) = [∇̃2 + (k− 1)(k− d)]g(k−1) , (B.4)

(d − 2k)∂u f (k) + 2∂u g(k) = [∇̃2 + (k− 1)(k− d)] f (k−1) + (d + 1− 2k)g(k−1) . (B.5)

For simplicity, let us only verify the d = 2 expansions (310), (311), (312), for which

g(1)1 =
π(1+ |z⃗ |2)

2
δ(2)(w⃗− z⃗ ) , g(2)1 = −

πu(1+ |w⃗ |2)(1+ |z⃗ |2)2

16
∇2δ(2)(w⃗− z⃗ ) ,

f (1)1 =
1+ |z⃗ |2

2|w⃗− z⃗ |2
+
π(1+ |z⃗ |2)

2
log
�

2
u(1+ |w⃗ |2)2

�

δ(2)(w⃗− z⃗ ) ,

f (2)1 = −
u(1+ |w⃗ |2)(1+ |z⃗ |2)2

4|w⃗− z⃗ |4

−
πu(1+ |w⃗ |2)(1+ |z⃗ |2)2

16
log

�

2e2

u(1+ |w⃗ |2)(1+ |z⃗ |2)

�

∇2δ(2)(w⃗− z⃗ ) ,

(B.6)

f (1)2 =
π

2u
δ(2)(w⃗− z⃗ ) , g(2)2 =

π(1+ |z⃗ |2)2

16
∇2δ(2)(w⃗− z⃗ ) ,

f (2)2 =
(1+ |z⃗ |2)2

4|w⃗− z⃗ |4
+
π(1+ |z⃗ |2)2

16
log
�

2e
u(1+ |w⃗ |2)(1+ |z⃗ |2)

�

∇2δ(2)(w⃗− z⃗ ) ,
(B.7)

f (1)3 =
πδ(2)(w⃗− z⃗ )
4u2(1+ |w⃗ |2)

, f (2)3 =
π(1+ |z⃗ |2)2

32u(1+ |w⃗ |2)
∇2δ(2)(w⃗− z⃗ ) . (B.8)
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Using these expressions and (B.2) when d = 2, we see that: f1 trivially solves (B.4), (B.5) for
k = 1, while (B.4) for k = 2 provides a cross-check involving g(1)1 and g(2)1 ; f2 trivially solves

(B.4) for k = 2 and (B.5) for k = 1, while (B.5) for k = 2 provides a cross-check involving f (1)2

and the u-dependent part f (2)2 ; (B.5) for k = 2 provides a cross-check involving f (1)3 and f (2)3 .
To check (B.5) for f1 when k = 2, we note that

−2∂u f (2) + 2∂u g(2)

(1+ |w⃗ |2)(1+ |z⃗ |2)2
=

1
2|w⃗− z⃗ |4

+
π

8
log
�

2
u(1+ |w⃗ |2)(1+ |z⃗ |2)

�

∇2δ(2)(w⃗− z⃗ ) , (B.9)

and

∇̃2 f (1) − g(1)

(1+ |w⃗ |2)(1+ |z⃗ |2)2
=

1
2|w⃗− z⃗ |4

+
πwa∂aδ

(2)(w⃗− z⃗ )
2(1+ |w⃗ |2)

+
π

8
log
�

2
u(1+ |w⃗ |2)2

�

∇2δ(2)(w⃗− z⃗)−
πδ(2)(w⃗− z⃗ )
2(1+ |w⃗ |2)2

,

(B.10)

where we used (see (A.26))

∇2

�

1+ |z⃗ |2

|z⃗ − w⃗ |2

�

=
4(1+ |w⃗ |2)
|w⃗− z⃗ |4

+ 4πwa∂aδ
(2)(w⃗− z⃗ ) . (B.11)

The difference between (B.9) and (B.10) is thus

π

8
log

1+ |w⃗ |2

1+ |z⃗ |2
∇2δ(2)(w⃗− z⃗ )−

πwa∂aδ
(2)(w⃗− z⃗ )

2(1+ |w⃗ |2)
+
πδ(2)(w⃗− z⃗ )
2(1+ |w⃗ |2)2

. (B.12)

This quantity indeed vanishes, as one can check integrating by parts.
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