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Abstract

We study transport in a one-dimensional lattice system with two conserved quantities –
‘volume’ and energy. Considering a slowly evolving local equilibrium state that is slightly
deviated from an underlying global equilibrium, we estimate the correction to the local
equilibrium distribution. This correction arises mainly through the space-time correla-
tions of some local currents. In the continuum limit, we show that the local equilibrium
distribution along with the correction yields drift-diffusion equation for the ‘volume’
and super-diffusion equation for the energy in the linear response regime as macro-
scopic hydrodynamics as one would obtain from non-linear fluctuating hydrodynamic
theory. We find explicit expression of the super-diffusion equation. Further, we find dif-
fusive correction to the super-diffusive evolution. Such a correction allows us to study a
crossover from diffusive to anomalous transport. We demonstrate this crossover numer-
ically through the spreading of an initially localized heat pulse in equilibrium as well as
through the system size scaling of the stationary current in non-equilibrium steady state.
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1 Introduction

In low dimensional systems, the transport of energy on macroscopic scale is often anoma-
lous as manifested by emergence of super-diffusion [1–14]. According to the Green-Kubo
formula the average current in a non-equilibrium system is related to the time integral of the
equilibrium total current-current correlation in the linear response regime. Several numerical
studies as well as theoretical arguments reveal that super-diffusion of energy is associated to
the power-law tail of the current-current correlation at long time. The non-linear fluctuating
hydrodynamic (NLFHD) theory provides a general framework (applicable to a wide class of
systems both Hamiltonian as well as stochastic) to understand this super-diffusion [4, 5, 15].
This theory describes the evolution of conserved fields on a mesoscopic scale in terms of hydro-
dynamics (HD) equations in which corresponding currents are expanded to non-linear order in
the deviation from their values in an underlying global equilibrium (GE). For this, one assumes
a slowly varying and slowly evolving local-equilibrium picture that is slightly deviated from a
global equilibrium state of the system. Further the dissipation and the noise terms, obeying
fluctuation-dissipation relation, are added phenomenologically to the currents in order to de-
scribe fluctuations. By decomposing the hydrodynamic evolution of the conserved fields into
evolution of sound and heat modes (also known as normal modes), this theory reveals the
connection between the super-diffusion (or anomalous transport) in translationally invariant
Hamiltonian systems having short range interaction with the Kardar-Parisi-Zhang universality
class [4,5,15,16]. This connection brought out by identifying the structural similarity between
the stochastic HD equation of the sound mode fields with (coupled) noisy Burgers equations.
However for the heat mode, which is non-propagating, one requires to study the sub-leading
correction which is achieved through a mode-coupling approximation. The NLFHD theory suc-
cessfully applies to a wider class of Hamiltonian systems with short range interactions and the
predictions of this theory classifies Hamiltonians into different universality classes depending
on their transport behaviours.

In this paper, we study anomalous transport in a simple model defined on a one dimen-
sional lattice of size N . Each lattice site contains a ‘volume’ variable ηi , that evolves according
to

η̇i = V ′(ηi+1)− V ′(ηi−1) + stochastic exchange at rate γ , (1)

for i = 1,2, ..., N , where V (η) = ko
2 η

2 with ko > 0. The second line in the above equation
represents stochastic exchange between η variables across a bond with rate γ, independently
for each bond {i, i+1}. We consider periodic as well as open boundary conditions in different
situations, details of which will be provided in the particular sections. This model was first
introduced in [17] and was called “harmonic chain with volume exchange” (HCVE) system in
[18]. The stochastic exchange terms are added to the dynamics to make the system posseses
good ergodic properties such that the system in the limit of large size reaches an invariant
state. It is easy to see that this model has two globally conserved quantities, namely the
total ‘volume’
∑

i ηi and total energy
∑

i V (ηi) which yields two conservation equations for
the corresponding locally conserved fields, again namely ‘volume’ density field and energy
density field. Previously this model was shown to exhibit anomalous energy transport in the
non-equilibrium steady state [15,17,18] and super-diffusion of space-time correlation in close
system set-up (i.e. not connected to reservoirs) [10,15].

Following microscopic approaches it was shown in [10] and [18], that the energy field
(with the convective part subtracted) follows a super-diffusive evolution equation on the
macroscopic scale. In the first part of the paper we provide a simpler alternative derivation of
the macroscopic hydrodynamic equations corresponding to the conserved fields of the system
in a close system set-up. We show that the non-convective part of the energy field evolves
according to a super-diffusion equation and the ‘volume’ density field evolves diffusively in
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the linear response regime. We find explicit expressions of these equations. Additionally we
find the diffusive correction to the super-diffusion equation explicitly. The procedure followed
in [18] involves finding coupled differential equations for the correlation and the tempera-
ture fields in open system set-up starting from the equations of the microscopic two point
correlations 〈ηi(t)η j(t)〉c (subscript ‘c’ represents connected correlation). Integrating the cor-
relation field provides a non-local evolution for the temperature field. The approach in [10]
also involves analysing the scaling properties of the (microscopic) energy-energy correlation
with complete mathematical rigor. In particular it was shown that after space-time scaling,
the energy-energy correlation function (on infinite line) is given by the solution of a skew-
fractional heat equation with exponent 3

4 . In contrast, our derivation is based on estimating
the correction to the local-equilibrium distribution. Such a correction includes the contribution
of current-current correlation to the computation of the average current which would appear
in the macroscopic hydrodynamics. To compute these correlations, we invoke fluctuating hy-
drodynamics on a mesoscopic scale. Our derivation is intuitive and reveals the importance
and significance of the various approximations that goes into deriving the hydrodynamics on
a macroscopic scale. Moreover, as we will show, the present derivation provides an explicit
expression of the super-diffusion operator in terms of a non-local kernel (in bounded domain)
and demonstrates how this kernel naturally appears from the space-time correlations of the
local currents in the linear response regime through hydrodynamics.

In the second part of the paper we demonstrate a crossover from diffusive transport to
anomalous transport as one goes from mesoscopic length scale Λ (s.t. 1≪ Λ≪ N) to macro-
scopic length scale. More precisely, one would expect to have a crossover length scale Nc
depending on the microscopic parameters and the underlying equilibrium state (density, tem-
perature), such that the dominant mechanism of transport is diffusive for systems size N < Nc
and the transport becomes anomalous for N > Nc . Existence of such crossover behaviour has
been reported earlier [19–24]. In NLFHD, one can expect such a crossover from the structure
of the the HD currents which have two parts: the Euler part that comes from the deviation
from the global equilibrium and the second part constituting of dissipation (in the form of
diffusion) and noise. The later part generically originates while coarse graining the conserved
quantities, both in space and time. In the coarse graining procedure one usually replaces
the values of the locally conserved fields by values averaged with respect to a local (canon-
ical) thermal equilibrium distribution, which is different from the actual distribution of the
microscopic degrees of freedom. The actual distribution involves correlations of the locally
conserved fields among themselves as well as across space and time. The NLFHD theory, in
fact, computes contribution of these correlations to the steady state currents which could be
anomalous in the leading order (of system size). In a recent work [19], the diffusive correction
to the mode-coupling solution of the density correlations in NLFHD have been computed in a
model system to demonstrate crossover from diffusive to anomalous transport.

Although the actual values of the diffusion and noise terms in NLFHD do not affect the
leading anomalous behaviour of the energy current and similarly the super-diffusion, their
presence is crucial for deriving the anomalous transport or super-diffusive behaviour. For a
given Hamiltonian, deriving the fluctuating HD equations, especially the dissipation and the
noise terms, is a difficult problem and till now only a few attempts have been made. Using
the projection operator technique and Markovian approximation, the study in [25] derives the
diffusion and noise terms for a class of Hamiltonian systems defined on a one-dimensional
lattice, although the expressions are not explicit. Another study that derives these terms in-
volves one dimensional ideal gas of identical point particles undergoing stochastic collisions
(conserving both momentum and energy) among three consecutive particles in addition to
their Newtonian dynamics [19]. In the current study, we also provide a heuristic derivation of
the dissipation and noise terms for the ‘volume’ field of the HCVE model in the linear response
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· · · · · ·

Lattice with (stochastic) exchange of volume 
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Exchange

Figure 1: A schematic diagram of the HCVE model. Each site contains some variable
ηi which are called ‘volume’. These variables are subjected to harmonic potential

V (η) = koη
2

2 at each lattice site. In addition to the deterministic evolution, ‘volume’
variables on successive sites are exchanged with rate γ.

regime. The presence of the stochastic exchange terms in Eq. (1) makes it possible to derive
the noise terms explicitly.

While the diffusion terms do not affect the leading anomalous system size scaling of the
steady state current in the linear response regime, they can provide the sub-leading correction
which has normal scaling as one finds in the Fourier’s Law i.e. inversely proportional to the
system size [19]. This suggests a crossover from diffusive to anomalous transport as one
increases the system size from a mesoscopic scale to macroscopic scale in comparison to the
microscopic scale (e.g. lattice spacing, interaction core or mean free path). In this paper
we demonstrate such a crossover, both analytically and numerically through the system size
scaling of the stationary current of the system in the non-equilibrium steady state in the open
system set-up.

The paper is organized as follows. In sec. 2, we describe the system and define the con-
served quantities and, write the corresponding continuity equations. In the next section 3,
we provide the derivation of the linearized hydrodynamic equations. This section starts with
the Fokker-Planck equation and the solution of it. This solution is used to derive the hydrody-
namic equations in two stages which are presented in sections 3.1 and 3.2. To complete the
derivation of the linearized hydrodynamics, as will be shown, one requires to compute space-
time correlation of the local currents, which is done in sec. 3.2.1. This section is followed by
a demonstration of crossover from diffusive to anomalous transport in open system set-up in
sec. 4. Finally in section 5, we provide a summary of our results along with possible future
directions of study.

2 Conservation laws and the equilibrium state

We first consider the HCVE model on a circular lattice of size N with periodic boundary con-
dition ηi+N = ηi with i = 1,2, ..., N . A schematic of the system is given in fig. 1. It is easy
to see that the dynamics in Eq. (1) keeps the total volume and the total energy invariant i.e.
d
d t

∑

i ηi = 0 and d
d t

∑

i V (ηi) = 0. The sum structure of these global conservations suggests
the following two local conserved quantities, namely

local ‘volume’: ĥi(η⃗) = ηi ,

local energy: êi(η⃗) = V (ηi) =
ko

2
η2

i ,
(2)
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where η⃗ = (η1,η2, ...,ηN ). One can write the following conservation laws for these local
quantities

∂t ĥi = ĵ(h)i−1,i − ĵ(h)i,i+1 , (3)

∂t êi = ĵ(e)i−1,i − ĵ(e)i,i+1 , (4)

where ĵ(h)i,i+1 and ĵ(e)i+1,i are the local currents corresponding to the ‘volume’ field and the energy
field, respectively. From the explicit form the dynamics given in Eq. (1) one finds that the local
currents have the following form

ĵ(h)i,i+1(η⃗, t) = −ko(ĥi + ĥi+1) + (ĥi − ĥi+1)(γ− ξi+1/2(t)) ,

ĵ(e)i,i+1(η⃗, t) = −k2
o(ĥi ĥi+1) + (êi − êi+1)(γ− ξi+1/2(t)) ,

(5)

with ξi+1/2(t) =
dNi+1/2(t)

d t − γ where Ni+1/2(t) represents the Poisson process describing the
exchanges happening at the bond (i, i + 1) [represented by the subscript (i + 1/2)] with rate
γ. It was shown in [17] that, for N →∞, the evolution given in Eq. (1) makes the system
ergodic in the sense that the system reaches an invariant measure which is a mixture of Gibbs
state. Hence, one can describe the system in the stationary state by the following canonical
ensemble distribution

PGE({ηi}) =
N
∏

i=1

√

√ ko

2πT0
e−

ko
2T0

�

ηi+
τ0
ko

�2

, (6)

where T0 is the temperature and τ0 is the ‘pressure’ of the system. We have set the Boltzmann
constant kB = 1 throughout the paper. The quantities T0 and τ0 are related to the average
volume h0 = 〈ĥi(η⃗)〉PGE

and average energy e0 = 〈êi(η⃗)〉PGE
per particle (for all i) through the

equations of state

h0 = −
τ0

ko
, e0 =

T0

2
+
τ2

0

2ko
, (7)

where 〈....〉P denotes average with respect to a joint distribution P({ηi}).

3 Derivation of the hydrodynamic equations

Since the dynamics of the system is ergodic (in our case evolves to a homogeneous equilibrium
state given by Eq. (6) at t → ∞) and the microscopic currents in Eqs. (5) depend only on
local variables, one may expect hydrodynamic evolutions to emerge for the locally conserved
quantities, namely the ‘volume’ density and the energy density over coarse grained length
and time scales. We assume a slowly evolving local equilibrium state for the system which is
characterized by slowly varying conserved density fields at each time.

We start with the Fokker-Planck (FP) equation corresponding to the dynamics given in
Eq. (1) which describes the evolution of the joint probability density P(η⃗, t) of
η⃗= (η1,η2, ...,ηN ) at time t. The FP equation is given by

∂t P(η⃗) = LP(η⃗) , with L= Lℓ +Lex . (8)

HereLℓ is the Liouvillian part andLex represents the contribution from the stochastic exchange
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events. Explicit expressions of these operators are given by

LℓP(η⃗, t) =
N
∑

i=1

�

V ′(ηi−1)− V ′(ηi+1)
�

∂ηi
P(η⃗, t) , (9)

Lex P(η⃗, t) =
N
∑

i=1

�

P(η⃗i,i+1, t)− P(η⃗, t)
�

, (10)

where η⃗i,i+1 represents the configuration after exchanging the η variables at sites i and i + 1
and we impose periodic boundary condition. Note, for other boundary conditions the expres-
sions of the FP operators will change. For these cases we will provide the expressions of the
corresponding FP operators in the relevant section later.

To solve the FP equation we follow a method similar to the one described in [26]. Starting
from a local equilibrium (LE) state that is slightly deviated from the GE state, the solution of
the FP equation (8) at a later time t can be formally written as sum of the local equilibrium
distribution PLE(η⃗) plus a deviation Pd(η⃗, t) from it

P(η⃗, t) = PLE(η⃗, t) + Pd(η⃗, t) . (11)

The LE distribution PLE(η⃗, t), characterised by the local temperature field Ti(t) and the ‘pres-
sure’ field τi(t), is given by

PLE(η⃗, t) =
N
∏

i=1

√

√ ko

2πTi(t)
e−

ko
2Ti (t)

�

ηi+
τi (t)

ko

�2

, (12)

which implies the following local equations of state

hi = 〈ĥi〉PLE
= 〈ηi〉PLE

= −
τi

ko
,

ei = 〈êi〉PLE
= 〈V (ηi)〉PLE

=
Ti

2
+
τ2

i

2ko
.

(13)

The deviation Pd(η⃗, t) from the LE distribution satisfies

∂t Pd(η⃗, t)−LPd(η⃗, t) = LPLE(η⃗, t)− ∂t PLE(η⃗, t) . (14)

A formal solution of this equation is given by

Pd(η⃗, t) =

∫ t

0

d t ′eL(t−t ′)[Φ(η⃗, t ′)−ΦLE(η⃗, t ′)]PLE(η⃗, t ′) , (15)

with Pd(η⃗, 0) = 0 and

Φ(η⃗, t) = PLE(η⃗, t)−1LPLE(η⃗, t) =
N
∑

i=1

�

−β2
0∇i TiŶ

(e)
i,i+1 +∇i

�

τi

Ti

�

Ŷ (h)i,i+1

�

,

ΦLE(η⃗, t) = PLE(η⃗, t)−1∂t PLE(η⃗, t) =
N
∑

i=1

�

−β2
0∂t Ti Ẑ

(e)
i − β0∂tτi Ẑ

(h)
i

�

,

(16)

6

https://scipost.org
https://scipost.org/SciPostPhys.15.1.038


SciPost Phys. 15, 038 (2023)

where ∇i fi = fi+1− fi represents the discrete forward difference and β0 = 1/T0 . The expres-
sions of Y (h)i,i+1, Y (e)i,i+1, Z (h)i and Z (e)i are given explicitly as

Ŷ (h)i,i+1(η⃗) = −ko(ĥi + ĥi+1)− γ(ĥi − ĥi+1) , (17)

Ŷ (e)i,i+1(η⃗) = −k2
o(ĥi ĥi+1)− γ(êi − êi+1) , (18)

Ẑ (h)i (η⃗) =
�

ĥi +
τi

ko

�

, (19)

Ẑ (e)i (η⃗) =
T0

2
−

ko

2

�

ĥi +
τi

ko

�2

, (20)

where the functions ĥi(η⃗) and êi(η⃗) are provided in Eq. (2). To arrive at the expressions in
Eq. (16) to Eq. (20), we have used the explicit form of PLE(η⃗, t) given in Eq. (12). Note, the
currents Ŷ (h)i,i+1 and Ŷ (e)i,i+1 are generated due to spatial inhomogeneity of the local temperature

and ‘pressure’ fields in the LE state, whereas the the quantities Ẑ (h)i and Ẑ (e)i appearing due
the time variations of these local fields. We will later see that the deviation from the LE,
characterized by Pd(η⃗, t)would incorporate the contributions from the space-time correlations
of the local currents in the system.

Since we are interested in linearised hydrodynamics, it is sensible to assume that the de-
viations from the global equilibrium characterised by the deviations T̃i(t) = Ti(t) − T0 and
τ̃i(t) = τi(t)−τ0, and their space-time variations are small so that the system always remains
close to a LE state which is slightly deviated from the GE state. Equivalently, one assumes the
deviation Pd to the LE distribution in Eq. (11), that depends on T̃i(t) and τ̃i(t) and their space-
time derivatives (see Eq. (16)), is also small. These assumptions, as shown later in sec. 3.2,
allows one to neglect terms involving higher order in deviations as well as higher order in
(spatiotemporal) variations.

We now ask how should the fields Ti(t) and τi(t) vary over space and evolve with time
such that the form of P(η⃗, t) given in Eq. (11) as a solution of the FP equation (8), remains
always close to LE (to linear order in deviations of the fields i.e. T̃i and τ̃i). The space-time
evolution of these fields are determined by evaluating the continuity equations in (3) and (4)
for the average ‘volume’ and energy fields. Performing average over the state η⃗ at time t with
respect to the joint distribution P(η⃗, t) and average over the noises at the bonds (i − 1, i) and
(i, i + 1) appearing from the exchange events, one finds

∂thi(t) = j(h)i−1,i(t)− j(h)i,i+1(t) ,

∂t ei(t) = j(e)i−1,i(t)− j(e)i,i+1(t) ,
(21)

where the average currents are

j(h)i,i+1(t) = 〈 ĵ
(h)
i,i+1(η⃗, t)〉P ,

j(e)i,i+1(t) = 〈 ĵ
(e)
i,i+1(η⃗, t)〉P .

(22)

Our aim is to express these average currents in terms of the average fields hi(t) = 〈ĥi(η⃗)〉P ,
ei(t) = 〈êi(η⃗)〉P . Assuming the distribution P in 〈...〉P is given by Eq. (11) along with Eqs. (12)
and (15), one can get evolution equations for the average conserved fields hi(t) and ei(t),—
hence for the fields βi(t) and τi(t) through the equations of state in Eq. (13). We emphasise
that we are interested to obtain hydrodynamic evolutions of these fields to linear order in
deviations. Our strategy consists of two steps. In the first step, we find the equations for the
fields averaged only over the LE distribution in the linear response regime. In this computation
we will get linearized HD equations which are diffusive in the form because the space-time
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correlations of the currents in this step will be ignored (since the LE distribution in Eq. (12)
is product in structure). Such correlations can provide extra contributions to the average
currents at linear order in deviations from the GE state. To incorporate the effects of such
correlations, we, in the second step, consider the contribution from the deviation Pd(η⃗, t)
from the LE distribution.

Next we compute the average fields hi(t) = 〈ĥi(η⃗)〉P , ei(t) = 〈êi(η⃗)〉P using the form of
P(η⃗, t) in Eq. (11) and also evaluate the average currents j(h)i,i+1(t) and j(e)i,i+1(t) following the
two steps mentioned above.

3.1 Contribution to the Linearized hydrodynamics from LE distribution

In order to compute the average fields hi(t) = 〈ĥi(η⃗)〉P , ei(t) = 〈êi(η⃗)〉P , we first make the
approximation P(η⃗, t) ≈ PLE(η⃗, t) assuming the deviations from the global equilibrium char-
acterized by T̃i(t) = Ti(t)− T0 and τ̃i(t) = τi(t)− τ0 are small. Keeping terms up to linear
order in deviations, we get [from Eq. (13)]

hi(t)≈ h0 + h̃i(t) , ei(t)≈ e0 + ẽi(t) ,

with h̃i(t) = −
τ̃i(t)

ko
, and ẽi(t) =

T̃i(t)
2
+
τoτ̃i(t)

ko
,

(23)

for the average values of the conserved fields and for the corresponding average currents, we
get

j(h)i,i+1(t)
�

�

LE ≈ 2τ0 − ko(h̃i + h̃i+1) + γ(h̃i − h̃i+1) ,

j(e)i,i+1(t)
�

�

LE ≈ −τ
2
0 − k2

oh0(h̃i + h̃i+1) + γ(ẽi − ẽi+1) .
(24)

where h0 and τ0 are given in Eq. (7). Inserting these equations, on both sides of Eq. (21), and
simplifying we get

∂t h̃i(t) = ko∇i(h̃i + h̃i−1) + γ∆i h̃i ,

∂t ẽi(t) = k2
oh0∇i(h̃i + h̃i−1) + γ∆i ẽi .

(25)

Using the equations (23), one can rewrite these equations in terms of T̃i(t) and τ̃i(t) as

∂t τ̃i = ko∇i(τ̃i + τ̃i−1) + γ∆iτ̃i ,

∂t T̃i = γ∆i T̃i ,
(26)

where∆i fi = fi+1−2 fi+ fi−1. The Eqs. (25) represent the linearized hydrodynamic equations
when the space-time correlations among the currents are ignored. These equations can be im-
proved by incorporating such correlations. In systems exhibiting normal transport, such corre-
lations decay fast enough both in space and time that they effectively lead to (on macroscospic
scale) diffusion of the locally conserved quantities. However, such correlations in our prob-
lem, as we will see, decay as power law (in time) in the leading order of (macroscopic) coarse
graining scale leading to anomalous transport. In the next section we will see how these cor-
relations appear to modify the equations (25).

3.2 Contribution to the linearized HD from the correction Pd

Recall that the equations (25) were obtained by computing averages of the locally conserved
quantities with respect to PLE . In this section we include the contribution from Pd also to
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compute the average currents appearing in Eq. (21). The average currents for the conserved
fields u= (h, e), are computed as follows

j(u)i,i+1(t) = 〈 ĵ
(u)
i,i+1(t)〉P=PLE+Pd

= 〈 ĵ(u)i,i+1(t)〉PLE
+

∫ t

0

d t ′ ĵ(u)i,i+1(η)
¦

eL(t−t ′)[Φ(η⃗, t ′)−ΦLE(η⃗, t ′)]PLE(η⃗, t ′)
©

= 〈 ĵ(u)i,i+1(t)〉PLE
+

∫ t

0

d t ′
¬

ĵ(u)i,i+1(t)[Φ(t
′)−ΦLE(t

′)]
¶

PLE

= j(u)i,i+1(t)
�

�

LE +

∫ t

0

d t ′
¬

ĵ(u)i,i+1(t)[Φ(t
′)−ΦLE(t

′)]
¶

PGE
+O(T̃2, τ̃2, T̃ τ̃) . (27)

While going from the third to fourth line we have changed the average 〈...〉PLE
inside the

integral to 〈...〉PGE
because [Φ− ΦLE] is already in the linear order of the deviations from the

GE characterised by T̃i and τ̃i . This is our first approximation. To see this more clearly, let
us write [Φ− ΦLE] explicitly. First we recall Ti(t) = T0 + T̃i(t) and τi(t) = τ0 + τ̃i(t). As a
second approximation we assume that the deviations T̃i and τ̃i , and their variations are small
i.e. |T̃i(t)| ≪ T0, |τ̃i(t)| ≪ |τ0|, (∇i T̃i)/T0≪ 1 and (∇iτ̃i)/τ0≪ 1. This enables us to replace
∂t T̃i and ∂t τ̃i from Eq. (26) (obtained in the first step using P ≈ PLE) in Eq. (16). Performing
some straightforward manipulations one gets

Φ(η⃗, t)−ΦLE(η⃗, t) =
N
∑

i=1

�

−β2
0∇i Ti(t)
¦

Ŷ (e)i,i+1 +τ0Ŷ
(h)

i,i+1

©

+β0

¦

∇iτi(t)Ŷ
(h)

i,i+1 + ko∇i(τi +τi−1)Ẑ
(h)
i

©�

+ β0γ

N
∑

i=1

�

β0∆i Ti Ẑ
(e)
i +∆iτi Ẑ

(h)
i

�

.

(28)

Now using the definitions of the currents Ŷ (u) and the quantities Ẑ (u) from Eqs. (17) - (20)
for u= (h, e) we get

Φ(η⃗, t)−ΦLE(η⃗, t) = −
N
∑

i=1

�

β2
0∇i Ti(t) (k

2
oh2

0 + T̂
(e)

i,i+1) + β0∇iτi(t)(2koh0 + T̂
(h)

i,i+1)
�

+O(∆i T,∆iτ,∆i ĥ,∆i ê) ,

where T̂ (e)i,i+1 = −k2
o
ˆ̃hi

ˆ̃hi+1 , T̂ (h)i,i+1 = −ko(
ˆ̃hi+1 −

ˆ̃hi) ,

(29)

with ˆ̃hi = ĥi − h0 . (30)

Note T̂ (e)i,i+1 depends non-linearly on the deviations ˆ̃hi . The ΦLE term cancels the non-gradient
type convective terms that depend linearly on the deviations. Hence, as we will see later [see
Eq. (34)], the additional contribution (at linear order in gradients of T̃i , τ̃i) to the average
currents arising from the deviation Pd appears through the space-time correlations of the non-
linear (in deviations of the fields from GE) parts of the currents. Note that it is important to
consider the non-linear parts of the currents in the hydrodynamic description in order to in-
corporate possible relevant contribution to the average current at linear order in the gradients
of the fields T̃i , τ̃i arising through the space time correlations of these currents. We will see in
the next section that such correlations can in fact create a super-diffusive channel for transport
of conserve quantities on macroscopic scale.

Coming back to the expression in Eq. (29), we further note that T̂ (h)i,i+1 is of the form ∇i
ˆ̃hi

and is accompanied with ∇iτi . It will not contribute at the leading order to the average
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current in Eq. (27). Similarly, other terms of the same form in Eq. (29) can also be neglected.
Moreover, the constant parts of the currents, like k2

oh2
0 and −2koh0 in Eq. (29) will also not

survive after averaging over the GE in Eq. (27). Hence the right hand side of the expression
for the average current j(u)i,i+1(t) in Eq. (27) simplifies a lot and we finally get

〈 ĵ(u)i,i+1(t)〉P ≈ 〈 ĵ
(u)
i,i+1(t)〉PLE

− β2
0

∫ t

0

d t ′
N
∑

ℓ=1

∇ℓTℓ(t) 〈 ĵ
(u)
i,i+1(t

′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

, (31)

with u= (h, e). Since we are interested in the evolution at macroscopic time scale, we assume
the integration time duration is very large (in microscopic time units) and approximate the
time integral by performing integration over (0,∞). As a consequence we get

〈 ĵ(u)i,i+1(t)〉P ≈ 〈 ĵ
(u)
i,i+1(t)〉PLE

− β2
0

∫ ∞

0

d t ′
N
∑

ℓ=1

∇ℓTℓ(t) 〈 ĵ
(u)
i,i+1(t

′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

. (32)

In the next section we will see that ˆ̃hi(t) [see difinition in Eq. (30)] satisfies a linear fluctuat-

ing equation with white Gaussian noise. Additionally, in global equilibrium the fields ˆ̃hi are
independent and distributed according to Gaussian with zero mean. Hence average over any

odd power of ˆ̃hi , even at different times are zero. Since 〈 ĵ(h)i,i+1(t
′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

involves odd

powers of ˆ̃hi , as can be seen from the expressions of the currents in Eq. (5) and Eq. (29), it
is zero. Once again ignoring contributions involving higher order derivatives of the fields, we
get

〈 ĵ(h)i,i+1(t)〉P = 〈 ĵ
(h)
i,i+1(t)〉PLE

+O(ũ2,∆i ũ) ,

〈 ĵ(e)i,i+1(t)〉P = 〈 ĵ
(e)
i,i+1(t)〉PLE

− β2
0

N
∑

ℓ=1

∇ℓTℓ(t)Mi,ℓ +O(ũ2,∆i ũ) , (33)

where Mi,ℓ = lim
τ→∞

∫ τ

0

d t ′〈T̂ (e)i,i+1(t
′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

,

with T̂ (e)i,i+1(t) = −k2
o
ˆ̃hi(t)

ˆ̃hi+1(t) .

(34)

Note Mi,ℓ is similar to a transport coefficient. In order to compute this coefficient one needs

to solve for the stochastic field ˆ̃hi(η⃗) = ĥi(η⃗) − h0 which evolves according to Eq. (1). We
proceed to do that in the next section.

3.2.1 Fluctuating hydrodynamics of the ‘volume’ field:

We first note that the coefficient Mi,ℓ should be independent of i,ℓ for a finite size N of the
system. This quantity is i,ℓ dependent only when N →∞ limit is taken before the τ→∞
limit is taken. Hence, it is more appropriate to rewrite this coefficient as

Mi,ℓ = k4
o lim
τ→∞

lim
N→∞

∫ τ

0

d t ′〈T̂ (e)i,i+1(t
′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

,

where recall, T̂ (e)i,i+1(t) = −k2
o
ˆ̃hi(t)

ˆ̃hi+1(t) .

(35)

The NLFHD theory provides a general method to compute the time-integral of the space-time
current-current correlation [27]. For the HCVE model it was shown in [15] that there is a
sound mode and a heat mode corresponding to the two conserved quantities. For the partic-

ular choice of the harmonic potential V (η) = koη
2

2 , one finds that the sound mode satisfies a

10

https://scipost.org
https://scipost.org/SciPostPhys.15.1.038


SciPost Phys. 15, 038 (2023)

drift-diffusion equation whereas the heat mode depends nonlinearly on the sound mode. It
was argued that the traveling peak of the space-time correlations of sound mode satisfies dif-
fusive scaling whereas the same for the heat mode is described by a 3

2 -Lévy scaling function.
Such a scaling suggests super-diffusive contribution to the evolution from the current-current
correlation 〈T̂ (e)i,i+1(t

′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

in Eq. (35). A brief discussion on the NLFHD theory for the
HCVE model is provided in Appendix A. In the next we provide a detail computation of the
〈T̂ (e)i,i+1(t

′)T̂ (e)
ℓ,ℓ+1(0)〉PGE

.
Since we are interested to compute Mi,ℓ in N →∞ limit, one convenient way is to start

with the dynamics in Eq. (1) on infinite line. Furthermore, we are interested on the evolution
of the local fields on coarse grained length and time scales for which one may consider the

following effective dynamics for ˆ̃hi = ĥi − h0 as

∂t
ˆ̃hi = ko∇i(

ˆ̃hi +
ˆ̃hi−1) + γ∆i

ˆ̃hi +∇i[
p
Bξi+1/2(t)] , (36)

for i = ...,−2,−1,0, 1,2, ... with the boundary conditions ˆ̃hi(t)→ 0 for i→±∞ at any t. The
noise ξi+1/2(t) appearing from the exchange events at the (i, i + 1) bond, is a white Gaussian

noise of zero mean and unit variance. The strength of the noise is given byB = 2γ
�

T0
ko
+ h2

0

�

.
A heuristic derivation of the above stochastic equation is given in Appendix B.

It is interesting to note that the equation (36) is same as the fluctuating HD equations that
one starts with in the NLFHD theory. For generic Hamiltonian system one finds non-linear
fluctuating HD equations [4, 5]. For the particular model studied here, the fluctuating equa-
tion for the volume field is linear whereas the corresponding equation for the energy field is
non-linear [15]. In the NLFHD theory one finds scaling forms for the space-time correlations
of the density fields of conserved quantities through mode-coupling solutions. Such solutions
in many cases exhibit super-diffusive scaling which, through linear response theory also pre-
dict super-diffusive evolution of small initially localised excitations in the conserved fields. We
point out that our starting point is different from the NLFHD theory. We start from the FP equa-
tion and seek solution of it that is in the LE form and always remain close to an underlying GE
state. As usually done in fluid hydrodynamics, we compute the averages of the conserved fields
and the associated currents (related via continuity equations) with respect to these solutions.
Invoking certain physical assumptions, we have demonstrated that the contribution from the
deviations from the LE state to the average current indeed comes from the time-integral of
un-equal time correlations of currents at different locations. Note such local current-current
correlations are not usually studied in the NLFHD theory, instead one often studies the total
current-current correlation. The particularly simple (linear) form of the fluctuating equation
satisfied by the volume field in our model allows us to compute this correlation and its time
integral analytically, both for the closed and open-system (with reservoirs) set-up. The case
for the closed system set-up is discussed in the next, whereas the case with reservoirs attached
to the system is discussed in sec. 4.

The formal solution of Eq. (36) can be written as

ˆ̃hi(t) =
∑

j

Gi, j(t)ĥ j(0) +
p
B
∫ t

0

d t ′
∑

j

Gi, j(t − t ′)∇ jξ j+1/2(t
′) , (37)

where Gi, j(t) is the Green’s function. We now insert this solution in Eq. (35) and use the fact

〈ˆ̃hi(0)
ˆ̃h j(0)〉PGE

=
δi, j

β0ko
[proved using Eq. (6) along with Eq. (2)], where δi, j is the Kronecker

delta. One finally gets

Mi,ℓ =
k2

o

β2
0

∫ ∞

0

d t ′[Gi,ℓ(t
′)Gi+1,ℓ+1(t

′) + Gi,ℓ+1(t
′)Gi+1,ℓ(t

′)] . (38)
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The Green’s function Gi, j(t) satisfies the following equation

∂t Gi, j = ko∇i(Gi, j + Gi−1, j) + γ∆iGi, j +δi, jδ(t) . (39)

Note that the above equation can be interpreted as the FP equation of a drifted random walker
moving on an infinite lattice with velocity µ = −2ko and diffusion constant D = γ. For large
|i − j| and t, the Green’s function has the following scaling form

Gi, j(t)≃
1
p

t
G
�

i − j + 2ko t
p

t

�

, where G(z) = 1
p

4πγ
e−

z2
4γ . (40)

Using this form of the Green’s function in Eq. (38) and simplifying one gets

Mi,ℓ =
k2

o

2πγβ2
0

∫ ∞

0

d t ′
1
t ′
G
�

i − ℓ+ 2ko t ′
p

t ′

�

G
�

i − ℓ+ 2ko t ′
p

t ′

�

(41)

=
k2

o

πγβ2
0

e−
2(i−ℓ)ko
γ K0

�

2|i − ℓ|ko

γ

�

, (42)

where K0(z) is modified Bessel function of second kind of zeroth order. Inserting the expres-
sions of the current in LE from Eq. (24) in Eq. (33), we get the following expressions of the
average currents

j(h)i,i+1(t)≈ 2τ0 − ko(h̃i + h̃i+1)− γ∇i h̃i ,

j(e)i,i+1(t)≈ −τ
2
0 − k2

oh0(h̃i + h̃i+1)− γ∇i ẽi − β2
0

∑

ℓ

Mi,ℓ∇ℓTℓ(t) .
(43)

Further inserting these expressions of the average currents in the continuity equations (21)
we get

∂t h̃i(t) = ko∇i(h̃i + h̃i−1) + γ∆i h̃i ,

∂t ẽi(t) = k2
oh0∇i(h̃i + h̃i−1) + γ∆i ẽi + 2β2

0∇i

∑

ℓ

Mi,ℓ

�

τ0∇ℓh̃ℓ +∇ℓ ẽℓ
�

, (44)

where we have used the relation between T̃ℓ with ẽℓ and h̃ℓ from Eq. (23) and neglected terms
involving higher order in deviations. Comparing these equations with Eqs. (25), we observe
that the evolution equation for the ‘volume’ field did not get modified while the equation for
the energy field got modified after incorporating the contribution from the deviation Pd from
the local equilibrium distribution [see Eq. (11)]. In terms of the local ‘pressure’ deviation field
τ̃i = τi −τ0 and the local temperature deviation field T̃i = Ti − T0, these equations read

∂t τ̃i(t) = ko∇i(τ̃i + τ̃i−1) + γ∆iτ̃i , (45)

∂t T̃i(t) = γ∆i T̃i + 2β2
0∇i

∑

ℓ

Mi,ℓ∇ℓ T̃ℓ(t) , (46)

where we have used the equations of state in Eq. (23).

3.3 Continuum limit

In order to get proper space-time continuous hydrodynamic equations one uses the fact that
the conserved fields vary slowly over space, i.e. their values change appreciably only over large
number of lattice sites and the system size is very large i.e. N →∞. Equivalently, one can say
that the temperature and ‘pressure’ fields vary slowly over the lattice and with time as

Ti(t) = T (εi, ε̄t) and τi(t) = τ(εi, ε̄t) , (47)
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Di↵usive scaling

Figure 2: Space-time scaling of the evolution of a initially localized temperature field
for two cases (i) ko = 0.02 and (ii) ko = 1.0. For the former case Nc ∼ 34888 and
for the later case Nc ∼ 1. Plots for ko = 0.02 are given in the top panel [figs. (a),
(b)] and those with ko = 1.0 are provided in the lower panel [figs. (c), (d)]. For both
cases we plot the evolution of temperature profile with diffusive scaling (plots on the
left in each panel) and with the super-diffusive scaling (plots on the right in each
panel). In the top panel we observe that data collapses better with diffusive scaling
as expected because the crossover length scale Nc ∼ 34888 in this case is very high.
On the other hand, for the lower panel the crossover length scale Nc ∼ 1. We expect
better data collapse with super-diffusive scaling i.e. x/s2/3 than with diffusive scaling
which we indeed observe in fig. (d). The lines in the plot are obtained by numerically
integrating the Langevin equations (1) on a periodic ring of size N with time steps
d t = 0.005 and averaged over 2× 108 independent realizations.

where ε−1 and ε̄−1 are macroscopic space and time scales measured in lattice (microscopic)
units. In such situations one can formally replace the fields ei(t) and hi(t) by density functions
e(x , s) and h(x , s), respectively where x = iε and s = tε̄. Similarly, the differences would get
replaced by derivatives such as∇i fi = fi+1− fi = ε∂x f (x),∆i fi = fi+1−2 fi+ fi−1 = ε2∂ 2

x f (x)
and the sums by integrals such as

∑

i →
∫

d x . Also time derivative gets changed as ∂t f = ε̄∂s f .
We take continuum limit by making the transformation i → x = iε and t → s = ε̄t.

Let us first focus on the ‘pressure’ field equation (45). Observe that the field τ̃i(t) has a
ballistic propagation with velocity µ = −2ko. This suggests us to expect the following scaling
form τ̃i(t) → T̃ ((i + 2ko t)ε, ε̄t) for the pressure field. This scaling density function evolves
according to

∂sT̃ (z, s) =
ε2

ε̄
γ∂ 2

z T̃ (z, s) , with z = (i + 2ko t)ε . (48)

Choosing diffusive space-time scaling ε̄∼ ε2, we find that the ‘pressure’ field moves ballistically
and spreads diffusively at the ballistic front.

For the temperature field, we consider the scaling form T̃i(t)→ T̃ (iε, ε̄t) and get,

∂s T̃ (x , s) =
ε2

ε̄
γ∂ 2

x T̃ (x , s) +
ε3/2

ε̄

k3/2
op
πγ
∂x

∫

d y
Θ(y − x)
p

y − x
∂y T̃ (y, s) . (49)
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To arrive at the above equation we have used the below limit

lim
ε→0
ε−1/22β2

0Mi=x/ε,ℓ=y/ε→
k3/2

op
πγ

Θ(y − x)
p

y − x
, (50)

where Θ(x) is Heaviside theta function. From this equation one can get different hydrody-
namic evolutions, depending on the choice of the space-time scaling for the coarse graining.

• Ballistic space-time scaling i.e. ε̄= ε: In this case one finds

∂s T̃ (x , s) = εγ∂ 2
x T̃ (x , s) +

p
ε

k3/2
op
πγ
∂x

∫

d y
Θ(y − x)
p

y − x
∂y T̃ (y, s)≈ 0 , (51)

which indicates that the temperature profile does not evolve.

• Super-diffusive scaling i.e. ε̄= ε3/2: For this case one finds

∂s T̃ (x , s) =
k3/2

op
πγ

�

∂x

∫

d y
Θ(y − x)
p

y − x
∂y T̃ (y, s) +
√

√ ε

εc
∂ 2

x T̃ (x , s)

�

, (52)

with εc = π
�

ko

γ

�3

. (53)

This equation implies that the local temperature field (equivalently the energy density
field) performs super-diffusion at large length and time scales. The diffusive correction
suggests a crossover from diffusive evolution at shorter space-time scale (x ∼

p
s) to

super-diffusive evolution on larger space-time scale (x ∼ s2/3). The crossover occurs
at a length scale Nc ∼ ε−1

c . This means, if one studies the evolution of initially local-
ized pulses of the conserved fields, then at shorter time scale one would observe the
temperature pulse to spread diffusively as long as the spread is smaller than Nc . But at
larger times when the amount of spread becomes larger than Nc , the spreading happens
super-diffusively (i.e. governed by the first term inside the bracket in Eq. (52)). Note
that this non-local term (on infinite line) can in fact be interpreted as (skew-) fractional
Laplacian [7,10,18].

It seems harder to see this crossover numerically with time for given set of microscopic
parameters and GE (i.e. for a fixed Nc). Instead we study such pulse spreading problem
for two choices of system parameters, one corresponding to large Nc and one to very
small Nc . For both cases one should observe that the ‘pressure’ pulse to move ballistically
and spread diffusively. Whereas for the temperature pulse we should observe diffusive
spreading in case of large Nc for a long long time and super-diffusive spreading in case
of small Nc . We demonstrate this in fig. 2 where we plot the space-time scaling of the
spreading of the initially localized temperature pulse. We consider initial conditions with
pulses in temperature and ‘pressure’ fields localized around i = N/2 on a periodic ring
by choosing the initial configuration η⃗(0) from the distribution given in Eq. (12) with
τi(0) = −gi and Ti(0) = 1.0+ ḡi where gi , ḡi are Gaussian functions of i, centered at
i = N/2 with variance 1.5 and strength 3.0. We consider two values of the harmonic
strength ko = 0.02 and ko = 1.0. The corresponding crossover length scales are of
order Nc ∼ 39788 and Nc ∼ 1, respectively. In fig. 2a we observe good data collapse
with diffusive scaling whereas in fig. 2d we observe better data collapse with super-
diffusive scaling as expected. The different scaling behavior in the two cases imply a
crossover with time for a fixed set of parameters on a ring of large size. Another way
of demonstrating this crossover is to look at the system size scaling of the stationary
current in non-equilibrium steady state of the system in the open system set-up which
we discuss in the next section.
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4 Study in open system set-up and crossover from diffusive to
anomalous transport

In this section we consider the open set-up in which we attach two Langevin reservoirs of
different temperatures TL and TR at the two ends of the system. The dynamics in Eq. (1) is
modified to

η̇i = V ′(ηi+1)− V ′(ηi−1)

+ stochastic exchange η between neighbouring sites at rate γ

+δi,1

�

−λV ′(η1) +
Æ

2λTLζL(t)
�

+δi,L

�

−λV ′(ηL) +
Æ

2λTRζR(t)
�

,

(54)

with fixed boundary conditions η0 = ηN+1 = 0. Here ζL,R(t) are mean zero and unit variance
white Gaussian noises and λ is the strength of the dissipation into the bath (which we assume
to be a constant of O(1).). The FP equation now reads

∂t P(η⃗) = LP(η⃗) , with L= Lℓ +Lex +Lb . (55)

The Liouvillian part Lℓ is given in Eq. (9) and for the stochastic exchange part Lex in Eq. (10),
the summation now runs from i = 1 to (N − 1). The boundary part Lb is given by

LbP(η⃗, t) = λTL∂
2
η1

P +λ∂η1
V ′(η1)P +λTR∂

2
ηN

P +λ∂ηN
V ′(ηN )P . (56)

For TL = TR = T0 the dynamics in Eq. (54) takes the system to the global equilibrium state
described by

PGE({ηi}) =
N
∏

i=1

√

√ ko

2πT0
e−

ko
2T0
η2

i , (57)

which implies e0 = 〈êi〉PGE
= T0/2 and h0 = 〈ĥi〉PGE

= 0, ∀i.
When TL ̸= TR, we write approximate solution of the FP equation as sum of local equi-

librium distribution PLE plus a deviation from it as in Eqs. (11) to (15). We further assume
δT = TL − TR is small, hence the local equilibrium is slightly deviated from an underlying GE
described by the distribution PGE in Eq. (57) with T0 =

TL+TR
2 . The expression of ΦLE(η⃗, t)

remains same as in Eq. (16). However, the expression of Φ(η⃗, t) gets slightly modified due the
presence of boundary currents from the baths and it now reads as

Φ(η⃗, t) =
N−1
∑

i=1

�

−β2
0∇i TiŶ

(e)
i,i+1 +∇i

�

τi

Ti

�

Ŷ (h)i,i+1

�

+λko

�

β1 − βL

βL

�

koβ1

�

ĥ1 +
τ1

ko

�2

− 1

�

+ β1τ1

�

ĥ1 +
τ1

ko

�

�

+λko

�

βN − βR

βR

�

koβN

�

ĥN +
τN

ko

�2

− 1

�

+ βNτN

�

ĥN +
τN

ko

�

�

,

(58)

where βL = 1/TL and βR = 1/TR.
Following the steps as done in sections 3.1, 3.2 and 3.2.1, one arrives at the same equations

as in Eq. (44):

∂t h̃i(t) = ko∇i(h̃i + h̃i−1) + γ∆i h̃i , (59)

∂t ẽi(t) = γ∆i ẽi + 2β2
0∇i

∑

ℓ

Mi,ℓ ∇ℓ ẽℓ , (60)
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with the kernel Mi,ℓ given in Eq. (38) and β0 = T−1
0 = 2

TL+TR
except for different bound-

ary conditions. Note, unlike Eq. (44) there are no terms depending on the ‘volume’ field in
Eq. (60). This is because h0 = 〈ĥ〉GE = 0 (hence τ0 = 0) in the GE as can be seen from the GE
distribution in Eq. (57). The boundary currents in the expression of Φ(η⃗, t) in Eq. (58) do not
contribute at the leading order in system size while calculating the average current. The main
difference with the previous case is that the boundary conditions now are

hi=0 = 0 , hi=N+1 = 0 , (61)

ei=0 = eL =
TL

2
, ei=N+1 =

TR

2
, (62)

which imply h̃i=0 = 0, h̃i=N+1 = 0 and ẽi=0 =
TL−TR

4 , ẽi=N+1 =
TR−TL

4 . To evaluate the kernel
Mi,ℓ given in Eq. (38), one needs to solve the Green’s function equation (39) with absorbing
boundary conditions Gi, j = 0 for i or j equal to 0 and N+1. In the scaling limit (as in Eq. (40),
the Green’s function is given by

Gi, j(t) =
e−

ko(i− j)
2γt e−

2k2
o t

2γ

p

4πγt

∞
∑

p=−∞

�

e−
(i− j+2pN)2

4γt − e−
(i+ j+2pN)2

4γt

�

, (63)

using which in Eq. (38) one can show

lim
N→∞

p
N2β2

0 Mi=xN ,ℓ=yN →
k3/2

op
πγ

Θ(y − x)
p

y − x
. (64)

Note in the continuum limit, we get the same position space representation of the kernel as
in the infinite chain case studied in the previous section, however with different boundary
conditions. A similar kernel was obtained for the harmonic chain with momentum exchange
model for different boundary conditions [8,28].

To take continuum limit as discussed in sec. 3.3 once again we make the transformation
i→ x = iε and t → s = ε̄t. For the ‘pressure’ field we choose ε = N−1 and ε̄ = N−2 since one
expects diffusive behavior for τ̃i(t)→ T̃ ((i + 2ko t)ε, ε̄t). We get drift-diffusion for T̃ (z, s) as
given in Eqs. (48). For the evolution of the temperature field, we again expect super-diffusive
evolution for T̃i(t)→ T̃ (iε, ε̄t) with ε = N−1, ε̄ = N−3/2 and we get the same super-diffusive
evolution as given in Eq. (52).

The boundary conditions in Eq. (61) implies that the ‘volume’ profile decays to zero ev-
erywhere in the non-equilibrium steady state. On the other hand, the temperature profile
Tss(x) = T0 +δTΨ(x) in the steady state satisfies

k3/2
op
πγ
∂x

∫ 1

0

d y
Θ(y − x)
p

y − x
∂yΨ(y) +

√

√ 1
N
γ∂ 2

x Ψ(x) = 0 , for ≤ x ≤ 1 , (65)

with Ψ(0) = 1/2 and Ψ(1) = −1/2. The energy current in the steady state can be read off from
Eq. (43) with h0 = 0 and is given by Jss = −γ∇iei +2β2

0

∑

ℓMi,ℓ∇ℓeℓ which in the continuum
limit can be expressed in terms of the temperature profile using 2e(x) = Tss(x) = T0+δTΨ(x).
It reads as

Jss = −
1
N
γ

2
∂xΨss(x)−

1
p

N

k3/2
o

2
p
πγ

∫ 1

0

d y
Θ(y − x)
p

y − x
∂yΨss(y) . (66)

The equation (65) ensures that the stationary current Jss is x independent. Hence integrating
both sides of Eq. (67) with respect to x over [0, 1], one gets

Jss =
δT
2

�

1
p

N

k3/2
o C
p
πγ
+

1
N
γ

�

, with C =

∫ 1

0

d x

∫ 1

0

d y
Θ(y − x)
p

y − x
∂yΨ(y) . (67)

At this stage, few comments are in order.
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Figure 3: Plot of Jss vs. N for γ= 1 and different values of ko i.e. for different values
of Nc as given by Eq. (68). The symbols are obtained by solving the equations of the
two-point correlations 〈ηiη j〉Pss

in the non-equilibrium steady state numerically for
different N . In (a) we observe diffusive scaling as one has N ≪ Nc = 159155. In
(b), the value of Nc = 218. We observe a change in the exponent of the system size
scaling from 0.75 to 0.62. In principle, one should observe a crossover from diffusive
(exponent 1) to anomalous (exponent 0.5) behaviour. For that one needs to have a
sufficiently large Nc so that one has sufficiently large N even for N < Nc to observe
the true diffusive scaling and then one should be able to evaluate stationary currents
Jss for N much large than Nc to observe the true anomalous scaling. Numerically this
is very hard to achieve. Instead, in (c) we choose ko = 1.0 so that one observes only
the anomalous scaling because Nc = 1.

– Anomalous scaling: From Eq. (67) we see that the stationary current decays anomalously
with N as ∼ 1p

N
at the leading order in N . This anomalous scaling was obtained pre-

viously in [17] and [18] using methods different from the one presented here. The
O(1/N) term provides a diffusive correction to the anomalous scaling.

– Non-local Fourier’s law: The expression of the current in Eq. (67) is a non-local linear
response relation, which is drastically different from the usual Fourier’s law. In local
Fourier’s law, the current at any point x in the system is directly proportional to the local
derivative of the temperature profile. On the other hand, in the non-local version, the
current at any point x gets contribution from the derivative of the temperature profile
at other points also. Such non-local generalisation of Fourier’s law was also obtained
in few other systems [7–9, 28–30] and it implies a non-local generalization of the heat
diffusion equation as we have obtained in Eq. (52). Such a generalization of the heat dif-
fusion equation was obtained for the HCVE model in [18] by computing the microscopic
two-point correlations 〈ηiη j〉Pss

in the steady state described by a stationary distribution
Pss(η⃗). In this paper we have re-derived the same equation using a different method
along with a diffusive correction.

– Nonlinear temperature profile Ψ(x): Neglecting the diffusive part one can solve the non-
local part of Eq. (65) and the solution is given by Ψ(x) =

p
1− x −1/2 [18]. Using this

solution in Eq. (67) one finds C = π
2 . Unlike the (purely) diffusive case, the temperature

profile Ψ(x) is non-linear and singular (has diverging derivative at the right boundary).
Similar non-linear and singular temperature profiles were also obtained in different con-
texts, such as in momentum exchange model [8, 28, 29], in hard-point gas [31, 32], in
non-linear chains [22], in graphene layers [33,34] and in nanotubes [35].

– Diffusive to anomalous crossover: Putting the value C = π/2 in the expression of Jss in
Eq. (67) one rewrites

Jss =
TL − TR

4
1
p

N

k3/2
o
p
π
p

2γ

�

1+

√

√Nc

N

�

, with Nc =
4
π

�

γ

ko

�3

. (68)
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For fixed ko and γ this expression suggests a crossover from diffusive scaling ∼ 1
N for

N ≪ Nc to anomalous scaling ∼ 1p
N

for N ≫ Nc as the system size N is increased. We
have numerically verified this crossover in fig. 3 where we plot Jss versus N for three
choices of the parameters ko and γ such that we have three scenarios of Nc being very
small, very large and intermediate. For very large Nc we observe only diffusive scaling
in fig. 3(a) within the system sizes that were possible to study numerically. Whereas
in fig. 3(c) we observe purely anomalous scaling ∼ 1p

N
because Nc is very small. In

fig. 3(b), we observe a sort of crossover as manifested by the change in the exponent
of the system-size scaling of Jss though not from pure diffusive scaling exponent to the
correct anomalous scaling exponent. For that one requires to compute Jss for very large
N along with large Nc .

– Anomalous to diffusive crossover: We end this section by making the following remark: If
one considers ko to be system size dependent as ko = N−α, then for 0< α < 1

3 , one finds,
as can be shown following the procedure described in this paper, that the anomalous
scaling for the stationary current Jss ∼

1
N (1+3α)/2 and for α ≥ 1

3 the transport becomes
diffusive with Jss ∼

1
N . This crossover by tuning the strength ko of the interaction was

predicted previously in [36].

5 Conclusion

In this paper we have derived macroscopic linearized hydrodynamics for the two conserved
quantities present in the HCVE model. Assuming a slowly varying (both in space and time) LE
state that is slightly deviated from a underlying GE state, we have studied the evolution of the
average conserved field densities. This is achieved by asking what equations the temperature
and the ‘pressure’ fields (characterizing the LE state) should satisfy to linear order in deviations
from their GE values. Approximating the solution of the FP equation by the LE distribution
yields linear diffusive hydrodynamics in which one neglects the space-time correlations of the
currents corresponding to the conserved fields. In order to include the contributions from such
correlations in the linear response regime, we estimate the correction to the local equilibrium
distribution in the solution of the relevant FP equation. Such correction naturally produces
contributions to the average currents as space-time integrals of certain current-current cor-
relations. Interestingly, we find that these current-current correlations involves mainly the
non-linear parts of the currents when written in terms of the deviations of the conserved fields
from their GE values. To compute such correlations, we invoke fluctuating hydrodynamics
equations for the ‘volume’ field written at a mesoscopic scale. We finally obtain drift-diffusion
equation for the ‘volume’ field and super-diffusion equation for the non-convective part of the
energy field to linear order in deviations i.e. in the linear response regime.

Our calculation, in addition, also provides the diffusive correction to the super-diffusion
equation which allows us to study a crossover from diffusive to super-diffusive transport. In
particular, our analysis allows us to identify a length scale Nc which depends on the micro-
scopic parameters. Below this length scale, one would observe a diffusive transport and above
this length scale the super-diffusive transport sets in. The physical picture is the following: at
smaller length scale the conserved quantities dissipate through diffusion. However at larger
length scales the correlations among the hydrodynamic currents starts providing dominant
channels for transport and as a result one observes a crossover from a diffusive transport to
anomalous transport. We have demonstrated this crossover through the system size scaling of
the steady state current in the system when connected to two reservoirs of different tempera-
tures at the two ends. Since the HCVE model dynamics is linear (due to harmonic potential),
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we believe the linearized macroscopic hydrodynamics is exact in the sense there will be no
non-linear corrections. However, one can expect to get non-linear corrections both local and
non-local in other models such as Fermi-Past-Ulam-Tsingou model. It would be interesting
to see how super-diffusion and higher order corrections appear following the formalism pre-
sented in this paper. Applying this formalism to non-linear hamiltonian models in open set-up
requires to solve NLFHD equations in bounded domain with appropriate boundary conditions
which, to our knowledge, are not known. It would be interesting to investigate such cases.
Often an interesting problem that people consider in systems permitting hydrodynamics de-
scription is to observe the evolution from a domain wall initial condition. In systems exhibiting
anomalous transport, one should solve the super-diffusion equation for such problems. We be-
lieve our result will be useful in such contexts.
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A NLFHD for the HCVE model

In this appendix we discuss the NLFHD theory for the HCVE model as given in [15]. We start
with the conservation equations (21), which in the hydrodynamic limit can be written as

∂thi(t) = −2ko∇ihi(t) + γ∆
2
i hi(t) ,

∂t ei(t) = −k2
o∇ihi(t)

2 + γ∆2
i ei(t) .

(A.1)

Writing hi(t) = h0+ h̃i(t) and ei(t) = e0+ ẽi(t) and expanding the currents up to second order
in the deviations h̃i and ẽi from the global equilibrium values, one gets

∂t ũi +∇i

�

Aũi +
1
2

�

ũT
i H(h) ũi

ũT
i H(e)ũi

��

= 0 , with ũi =

�

h̃i
ẽi

�

, (A.2)

where for the Harmonic potential V (η) = koη
2/2,

A=

�

−2ko 0
−k2

oh0 0

�

, H(h) =

�

0 0
0 0

�

, and H(e) =

�

−2k2
o 0

0 0

�

. (A.3)

Adding diffusion and noise terms phenomenologically, one gets the non-linear fluctuating hy-
drodynamic equations

∂t
ˆ̃ui+∇i

�

Aˆ̃ui +
1
2

�

ˆ̃uT
i H(h) ˆ̃ui

ˆ̃uT
i H(e) ˆ̃ui

�

−∇i D̃ ˆ̃ui + B̃ξ̃i

�

= 0 , (A.4)

where D̃ = D̃T > 0 is the diffusion matrix, and ξ(α)i (t) for α = 1, 2 are white Gaussian noises
with zero mean and covariance

〈ξ(α)i (t)ξ
(α′)
i′ (t

′)〉= δαα′δi,i′δ(t − t ′) . (A.5)
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The strength of the noise B̃B̃T is related to the diffusion matrix as D̃C̃ + C̃ D̃ = B̃B̃T , where C̃
is the susceptibility matrix given by

〈ˆ̃uα(i, 0)ˆ̃uα′(i′, 0)〉PGE
= C̃α,α′δi,i′ . (A.6)

Following [4, 5, 15], one next decomposes the fields ũ into normal modes φ using the trans-
formation

φ̂ = R ˆ̃u , (A.7)

where the matrix R has the properties

RAR−1 =

�

−2ko 0
0 0

�

, and RCRT = 1 . (A.8)

For our case R is explicitly given by

R=

�

−
p

koβ0 0p
2β0τ0

p
2β0

�

, (A.9)

which implies

φ̂i = R ˆ̃ui =

�

−
p

koβ0
ˆ̃hip

2β0 (ˆ̃ei +τ0
ˆ̃hi)

�

=

�

−
p

koβ0
ˆ̃hip

2β0
ˆ̃θi

�

, (A.10)

where we have written ˆ̃θi = (ˆ̃ei + τ0
ˆ̃hi). Note, 〈 ˆ̃θi〉PLE

= T̃i/2 according to Eq. (23). The HD

equations (A.4) can now be written in terms of φ(1)i (t) and φ(2)i (t) as

∂tφ̂
(1)
i (t) +∇i

�

−2k0φ̂
(1)
i (t)−∇i(D11φ̂

(1)
i (t) + D12φ̂

(2)
i (t)) + (Bξ)

(1)
�

= 0 , (A.11)

∂tφ̂
(2)
i (t) +∇i

�

−
p

2k0φ̂
(1)
i (t)

2 −∇i(D21φ̂
(1)
i (t) + D22φ̂

(2)
i (t)) + (Bξ)

(2)
�

= 0 , (A.12)

where D = RD̃R−1 > 0 and B = RB̃. The matrices D and B now satisfies

D+ DT = BBT . (A.13)

Using Eq. (A.10), one can express these equations in terms of ˆ̃h and ˆ̃θ as

∂t
ˆ̃hi(t) +∇i

�

−2ko
ˆ̃hi(t)−∇i

�

D11
ˆ̃hi(t)−
p

2β0D12
p

ko

ˆ̃θi(t)

�

−
(Bξ)(1)
p

koβ0

�

= 0 , (A.14)

∂t
ˆ̃θi +∇i

�

−k2
o
ˆ̃hi(t)

2 −∇i

�

−
D21
p

2koβ0

ˆ̃hi(t) + D22
ˆ̃θi(t)

�

+
(Bξ)(2)
p

2β0

�

= 0 . (A.15)

Note, in order for the above equations to be stable one is required to choose D12 = D21 = 0.
Hence, the matrix D is a diagonal matrix and consequently by Eq. (A.13) the matrix B is also
diagonal. The fluctuating hydrodynamic equations now look like

∂t
ˆ̃hi(t) +∇i

�

−2ko
ˆ̃hi(t)−∇i

�

D11
ˆ̃hi(t)
�

+
B11ξ

(1)

p

koβ0

�

= 0 , (A.16)

∂t
ˆ̃θi +∇i

�

−k2
o
ˆ̃hi(t)

2 −∇i

�

D22
ˆ̃θi(t)
�

+
B22ξ

(2)

p
2β0

�

= 0 . (A.17)

Note Eq. (A.16) is of the same form as the Eq. (36), except the diffusion and the noise terms
are introduced phenomenologically and not explicitly known. In the next section, we provide
a heuristic derivation of Eq. (36) with explicit dissipation and noise terms.
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One of the main prediction of the NLFHD theory is the space-time dependence of the
correlations

Sα,α′(i, t) = 〈 ĝα(i, t) ĝα′(0, 0)〉 − 〈 ĝα(i, t)〉〈 ĝα′(0, 0)〉 , (A.18)

where ĝ1(i, t) = ĥi(η⃗(t)) and ĝ2(i, t) = êi(η⃗(t)). The space-time correlation of the normal
mode fields can be obtained by transforming the matrix S(i, t) as S(φ)(i, t) = RS(i, t)RT .
Since the mode φ(1)i (t) gets linearly separated from the non-moving mode φ(1)i (t) with time,
on sufficiently large space-time scales, the matrix S(φ)(i, t) is approximately diagonal i..e.
S(φ)
α,α′(i, t) ≃ δα,α′Fα(i/N , t). In [15] it was argued that for V (η) = koη

2/2, the sound peak
F1(i/N , t) asymptotically possess diffusive scaling and is described by a Gaussian whereas
the heat peak possess anomalous scaling and is described by a 3

2−Lévy distribution. For other
choices of potentials one may get Kardar-Parisi-Zhang (KPZ) scaling for the sound mode and
5
3−Lévy heat mode. A complete classification of the scaling behaviors of the modes for general
potential V (η) is given in [15].

B Heuristic derivation of Eq. (36)

From Eq. (3) and Eq. (5) we rewrite the equation for the ‘volume’ field explicitly as

∂t ĥi = ko∇i(ĥi + h̃i−1) + γ∆i ĥi +∇i

�

dZi+1/2

d t

�

, (B.1)

with Zi+1/2(t) =

∫ t

0

d t ′ [ĥi+1(t
′)− ĥi(t

′)]

�

dNi+1/2(t ′)

d t ′
− γ
�

, (B.2)

where Ni+1/2(t) represents the Poisson process describing the exchanges that are happening
at the bond (i, i+1) with rate γ. More precisely, Ni+1/2 counts the number of exchange events
happened till time t on the bond (i, i + 1).

Since we are interested in a slowly evolving LE picture in which the conserved fields are
slowly varying both over space and time, one can imagine appreciable evolution to occur
over time scale that is much larger than the microscopic time scales of the system. Over δt
time, there are many independent exchange events whose cumulative effect can be obtained
following the idea of central limit theorem. Hence we can write

δZi+1/2 = Zi+1/2(t +δt)−Zi+1/2(t) , (B.3)

=
Ni+1/2(t+δt)
∑

k=Ni+1/2(t)

[ĥi+1(tk)− ĥi(tk)]− γ
∫ t+δt

t
d t ′[ĥi+1(t

′)− ĥi(t
′)] , (B.4)

where the set of times {tk} represent the times at which exchanges have occurred in the time
interval t to t +δt. Assuming the field ĥi(t) is changing slowly, for small δt one can approxi-
mate the above expression as

δZi+1/2 ≃ [ĥi+1(t)− ĥi(t)]
�

Ni+1/2(δt)− γδt
�

, (B.5)
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It can be shown that

〈δZi+1/2〉= 0 , (B.6)

〈δZ2
i+1/2〉c = γδt〈(ĥi+1(t)− ĥi(t))

2〉c,P (B.7)

≃ γδt〈(ĥi+1(t)− ĥi(t))
2〉c,PGE

+O(∇i ũi) (B.8)

= 2γδt
�

T0

ko
+ h2

0

�

+O(∇i ũi) , (B.9)

〈δZm
i+1/2〉c ≃ O(∇i ũi) , for m> 2 , (B.10)

where 〈ô〉c,P represents cumulants of ô evaluated with respect to the distribution P. Hence,

for δt → 0, one can write
dZi+1/2

d t =
p
B ξi+1/2(t) withB = 2γ

�

T0
ko
+ h2

0

�

at the leading order
in deviations. Using this in Eq. (B.1) gives rise to Eq. (36).
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