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Abstract

We study a superfluid in a planar annulus hosting vortices with massive cores. An analyt-
ical point-vortex model shows that the massive vortices may perform radial oscillations
on top of the usual uniform precession of their massless counterpart. Beyond a critical
vortex mass, this oscillatory motion becomes unstable and the vortices are driven to-
wards one of the edges. The analogy with the motion of a charged particle in a static
electromagnetic field leads to the development of a plasma orbit theory that provides a
description of the trajectories which remains accurate even beyond the regime of small
radial oscillations. These results are confirmed by the numerical solution of coupled
two-component Gross-Pitaevskii equations. The analysis is then extended to a necklace
of vortices symmetrically arranged within the annulus.
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1 Introduction

The velocity flow in a superfluid is necessarily irrotational, implying that the circulation around
a closed contour C is different from zero only if C encloses a phase singularity. Such a sin-
gularity generally corresponds to a vortex with a circulation which is an integer multiple of
h/m [1,2], being h the Planck’s constant and m the mass of the particles in the superfluid.

In an unbounded superfluid in equilibrium, vortices form a two-dimensional rotating tri-
angular lattice, which supports small-amplitude collective modes [3, 4]: these vortex arrays
have been observed in superfluid 4He [5] and also in cold atomic Bose-Einstein condensates
(BECs) [6]. The determination of the equilibrium configuration in a superfluid with boundaries
is more difficult, but it is related to the study of the dynamics of vortices in an incompressible
nonviscous fluid. The latter traces back to the late 19th century with Ref. [7]: the motion of
point vortices obeys first order equations where the x and y coordinates of each vortex serve
as canonical variables. This description found wide applications first to superfluid 4He [8] and
then also to dilute ultracold superfluid atomic BECs [9, 10]. It is in this context that, besides
the usual Hamiltonian formalism (see Sec. 157 of Ref. [7]), a powerful time-dependent La-
grangian approach was developed in Ref. [11] to study a ring of vortices in a BEC trapped in
a circular container. At present, the study of the real-time dynamics of few-vortex systems is a
very active field of research [12–14]. Additional states are possible in a multiply connected do-
main, consisting of the combination of vortices in the bulk of the fluid with circulation around
the boundaries. Contrary to vortices in the fluid, the circulation along an inner boundary can
have a quantum number much larger than one [15]. The dynamics of vortices on a planar
annulus, one of the simplest realizations of a multiply connected domain, was first analyzed
in Ref. [16] and then resumed in Ref. [17].

The first observation of a vortex in a cold dilute BEC took place at JILA with a bosonic
mixture of two internal spin states of 87Rb. As explained in Ref. [18], coherent processes
were used to create vortices in either of the two hyperfine components: one state supported
a vortex, while the other (nonrotating) one played the role of a “defect” that filled the vortex
core. Soon after, they also analyzed the dynamics and stability of vortices with a fraction of
core particles varying from 10% to 50% [19]. This posed the question about the relevance of
the effective mass of a vortex line and how it affects the dynamical properties of the vortex
itself. Richaud et al. focused in Ref. [20] on vortices with massive cores in a two-dimensional
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Figure 1: Schematic representation of the physical system for a single vortex (Nv = 1)
inside a planar annulus with radii R1 < R2 and quantized flow circulation n1 around
the inner boundary. The superfluid a component (light blue region) is confined inside
the annulus and it contains a vortex with unit positive charge at position r 0 = (r0,θ0).
The b component (brown circle) is trapped within the vortex core.

binary Bose mixture confined in a circular trap: the minority component trapped in the vortex
cores provides an inertial mass that introduces second order acceleration terms, as in usual
Newtonian mechanics. In the subsequent Ref. [21], the time-dependent variational Lagrangian
method was used to derive the massive point-vortex model and to obtain various analytical
predictions for the dynamics of two-component vortices with small massive cores.

The goal of this work is to analyze the dynamics of massive vortices on a planar superfluid
film with annular geometry. This geometrical configuration is nowadays easily accessible using
annular trapping potentials for ultracold atoms [23–28]. The physical system we focus on (see
the sketch in Fig. 1) is a two-component mixture composed by Na≫ Nb particles with masses
ma and mb, which is confined in a planar annulus with inner and outer radii R1 and R2. The
a component is superfluid: it has a total mass Ma = Nama, it contains Nv identical vortices
with unit positive charge and it features n1 quanta of circulation around the inner radius
R1. Consequently, there are n1 + Nv quanta of circulation around the outer radius R2. The b
component (which may or may not be superfluid) has total mass Mb = Nbmb and is trapped
inside the vortex cores: this second species therefore provides each vortex with an effective
core mass Mc = Mb/Nv . Fig. 1 shows the particular case of a single vortex (Nv = 1): the light
blue area stands for the species a that is spread inside the annular region hosting a vortex at
position r 0, while the brown circle denotes the species b which is localized in the vortex core.

The organization of the work is the following. Section 2 contains the derivation of the
massive point-vortex model from a variational Lagrangian approach and the analytical pre-
dictions for the dynamics of a single massive vortex. Earlier works [20, 21, 29] dealt with
simply-connected geometries of the background superfluid, while here we focus on a ring ge-
ometry, which has a number of interesting features due to its non-trivial topology. Section 3
starts from the analogy with the familiar Lagrangian for a massive charged particle in a given
electromagnetic field to develop a plasma orbit theory: this provides a framework to describe
the trajectories of massive vortices beyond the regime of small radial oscillations. This theory
represents the key novelty of this work and its validity can be extended to arbitrary planar
geometries (included the disk one). The analytical predictions for one massive vortex are then
compared in Section 4 with the numerical solution of the two-component Gross-Pitaevskii
equation: the good agreement we find confirms that the point-vortex model provides an ac-
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curate description of two-component vortices with small cores. Section 5 is devoted to the
extension of our treatment to a necklace, i.e. a symmetric configuration of Nv vortices in the
annulus: the interest for this configuration is motivated by a strong experimental relevance,
as it will be better explained in the following. Conclusions will be drawn in Section 6, to-
gether with an outlook on possible future extensions of the present work. The mathematical
apparatus is rich of several technicalities which have been collected in the Appendices for sake
of clarity. The material in the Appendices may safely be skipped, without compromising the
physical understanding of the main concepts of this work. The dynamics of a single vortex
without massive core was studied in Ref. [17] relying on the complex velocity potential: a
generalization of this approach for a configuration of massless vortices in an annular geom-
etry can be found in Appendix A. Appendices B and C review the main derivations for the
model Lagrangian La and the plasma orbit theory, respectively. Appendix D, finally, develops
the point-vortex model for a massive necklace.

2 Time-dependent variational Lagrangian method

Following the procedure outlined in Ref. [21], we use the time-dependent variational La-
grangian method (see Refs. [11, 30]) to obtain the Lagrangian of the system starting from
simple trial quantum-mechanical wave functions.

For a one-component condensate wave function ψ, this method is based on a Lagrangian
functional L

L[ψ] = T [ψ]− E[ψ] , (1)

where

T [ψ] = iħh
2

∫

d2r
�

ψ∗(r , t)
∂ψ(r , t)
∂ t

− ∂ψ
∗(r , t)
∂ t

ψ(r , t)
�

(2)

is the time-dependent part of the Lagrangian, the analog of kinetic energy in classical mechan-
ics, and

E[ψ] =
∫

d2r

�

ħh2

2m
|∇ψ(r , t)|2 + Vtr |ψ(r , t)|2 + g

2
|ψ(r , t)|4

�

(3)

is the customary Gross-Pitaevskii (GP) energy functional. It is easily proved that the Euler-
Lagrange equation for the Lagrangian functional (1) corresponds to the time-dependent GP
equation for ψ. Apart from being an exact approach, this Lagrangian formalism provides the
basis for a powerful approximate variational method. If the trial wave function depends on
several time-dependent parameters, the variational approach returns the dynamical equations
governing their motion. For a system in equilibrium and stationary parameters, the resulting
normal modes can be found from a next-order variation of the Lagrangian. In our case, the
time-dependent parameters are the positions of the vortices {r j(t)} j=1,...,Nv

≡ {r j(t)}.

2.1 Derivation of the massive point-vortex Lagrangian

The time-dependent variational Lagrangian La for the a component can be derived using a
trial wave function of the form

ψa(r , {r j}) =
Æ

na(r ) e
iS(r ,{r j}) , (4)

in terms of the density profile na(r ) and the phase S(r , {r j}). The notation (r , {r j}) de-
notes a parametric dependence on the positions of all the vortices: they have the same charge
+1 and polar coordinates on the plane are used in the following, i.e. r j = (r j ,θ j), with
j = 1, 2, . . . , Nv . This is precisely the approach followed in previous works with a rigid cylinder:
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Refs. [21,22] assume a uniform condensate, Refs. [11,31] consider the more realistic Thomas-
Fermi parabolic density profile, while Ref. [29] deals with generic rk potentials. For simplicity,
we work here with a constant two-dimensional number density na = Na/

�

π(R2
2 − R2

1)
�

. The
method of images, well known from electrostatics [32], provides a convenient approach to
satisfy the condition that the normal component of fluid velocity vanishes at all boundaries.
While for a vortex inside a rigid cylinder a single image is sufficient, in an annulus an infinite
series of images is needed since there are two boundaries: as specified in Ref. [16], there is
actually a double infinite set of image vortices, beyond both the inner and outer edges of the
annulus, that are arranged with alternating sign along the same radius as the physical vor-
tex. In terms of polar coordinates on the plane r = (r,θ ), the resulting phase, as derived in
Appendix A, reads:

S(r , {r j(t)}) = n1θ +
Nv
∑

j=1

Im

¨

ln

�

ϑ1

�

ξ j(r ), q
�

ϑ1

�

η j(r ), q
�

�«

. (5)

The first term accounts for the quantized flow circulation around the inner boundary of the
annulus, while the second term encodes the contribution coming from the Nv vortices and the
corresponding images. The latter contains the Jacobi elliptic theta functions ϑ1(z, q) that are
integral functions of the complex variable z and also depend on the geometric ratio:

q ≡ R1/R2 . (6)

The arguments of the theta functions in Eq. (5) are defined in Eq. (A.6). The evaluation of Ta
and Ea follows from Eqs. (2), (3) after inserting our trial wave function (4): the details of the
derivation are presented in Appendix B, while here we show the final results. The first term is
given by:

Ta

��

r j , θ̇ j

	�

= πħhna

Nv
∑

j=1

�

R2
2 − r2

j

�

θ̇ j . (7)

With our trial wave function, both the external potential energy and the mean field energy in
Eq. (3) give a constant contribution that play an irrelevant role in the Lagrangian formalism.
The quantity of interest is then the energy difference ∆Ea between the vortex state and the
vortex-free state. In our approximation, this difference corresponds to the kinetic energy of
the physical vortices and their images integrated over the condensate density:

∆Ea =
ħh2na

2ma

∫

ann
d2r

�

�∇S �r ,
�

r j

	��

�

2
=

∫

ann
d2r

1
2

mana v2 , (8)

where the subscript ann means that the integral is taken over the radial region R1 < r < R2.
In evaluating the energy difference it is convenient to use a stream function χ together with
the phase of the condensate wave function S. It is also necessary to introduce a cut-off at the
vortex core to ensure the convergence of the radial integral in Eq. (8). The lengthy analysis
contained in Appendix B yields the compact result

∆Ea

��

r j

	�

=
Nv
∑

j=1

Φ j +
Nv
∑

j,k=1

′
Vjk , (9)

where the primed sum means that we omit the terms j = k. The one-body term

Φ j = Φ(r j)≡
πħh2na

ma



(1− 2n1) ln
� r j

R2

�

+ ln





2
i

ϑ1

�

−i ln
� r j

R2

�

, q
�

ϑ′1(0, q)







 (10)

5

https://scipost.org
https://scipost.org/SciPostPhys.15.2.057


SciPost Phys. 15, 057 (2023)

is the self-energy arising from the interaction of the vortex at r j with its infinite set of images,
while the two-body term

Vjk = V (r j , r k)≡
πħh2na

ma
Re

�

ln

�

ϑ1

�

ηk(r j), q
�

ϑ1

�

ξk(r j), q
�

��

(11)

is the interaction energy between vortices at r j and at r k, including all their images (see
Ref. [33] for the cylinder geometry). The a component Lagrangian hence becomes:

La =
Nv
∑

j=1

¨

πħhna

�

R2
2 − r2

j

�

θ̇ j −Φ j −
Nv
∑

k=1

′
Vjk

«

. (12)

For the species b contribution Lb, the trial wave function for the massive core is chosen
to be a linear combination of Gaussian wave packets [30] localized at the positions of the
vortices,

ψb(r , {r j}) =
Nv
∑

j=1

�

Nb

Nvπσ2

�1/2

e−|r−r j(t)|2/2σ2
eir ·α j(t) , (13)

depending on r j(t) and α j(t) as time-dependent parameters. The time-varying and space
dependent overall phase ensures a non-zero superfluid velocity ṙ j(t) = ħhα j(t)/mb, and the
trial function is correctly normalized provided that the vortices are well-separated, i.e. for
|r j − r k| ≫ σ. A straightforward analysis (see Refs. [21, 30]) gives the corresponding La-
grangian:

Lb =
Nv
∑

j=1

Mb

2Nv
ṙ 2

j . (14)

Note that we always work in the immiscible regime where atoms of species b only live inside
the vortices of species a: this provides the physical justification to describe the species b-core
with the same coordinates as the species a-vortex that hosts it.

It is useful to introduce dimensionless variables in terms of the properties of the a com-
ponent that contains the vortices, so that the resulting equations only depend on the mass
ratio µ = Mb/Ma. In particular, choosing the outer radius R2 as the unit of length, maR2

2/ħh
as the unit of time and πħh2na/ma as the unit of energy, the model Lagrangian of the system
L= La +Lb has the form:

L=
Nv
∑

j=1

�

µ̃

2Nv
ṙ 2

j +
r2

j − 1

r2
j

ṙ j × r j · ẑ −Φ j

�

−
Nv
∑

j,k=1

′
Vjk , (15)

with µ̃= µ(1− q2) and Φ j , Vjk the dimensionless forms of Eqs. (10), (11).
The canonical angular momentum associated to the j th vortex is obtained from the model

Lagrangian (15) as:

ℓ j =
∂L
∂ θ̇ j

=
Mb

Nv
r2

j θ̇ j +πħhna

�

R2
2 − r2

j

�

. (16)

Here we restored physical units to make it clear that ℓ j is made of the “mechanical” (Newto-
nian) contribution from species b and the “vortex” contribution from species a: the latter, in
particular, decreases as the vortex moves towards the outer boundary of the annulus. On the
other hand, the angular momentum carried by each of the two species is directly computed
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from the trial wave functions as

La = 〈L̂z〉ψa
= πħhna

�

R2
2 − R2

1

�

n1 +πħhna

Nv
∑

j=1

�

R2
2 − r2

j

�

, (17)

Lb = 〈L̂z〉ψb
=

Nv
∑

j=1

Mb

Nv
r2

j θ̇ j , (18)

where L̂z = −iħh∂ /∂ θ is the angular momentum operator. The total angular momentum of
the system is then

L = La + Lb = πħhna

�

R2
2 − R2

1

�

n1 +
Nv
∑

j=1

ℓ j , (19)

where one recognizes a first term accounting for the quantized circulation around the inner
ring and a second term due to the presence of Nv quantized vortices inside the annulus. The
symmetry of the Lagrangian (15) with respect to the polar angles of the vortices guarantees
the total angular momentum to be a conserved quantity.

Before proceeding, the system under study admits three interesting simple limits that we
briefly discuss considering a positive vortex at position r j inside the annulus:

(i) when R1≪ R2 and n1 = 0, all the image vortices annihilate, except the one with negative
charge at r j

′ = (R2/r j)2 r j . The annulus reduces to a disk of radius R2 where a single
image vortex is required: the reader is referred to Appendix B of Ref. [17] for further
details about the limit R1→ 0;

(ii) for R1 →∞, keeping R2 − R1 = D fixed, the curvature of the annulus becomes irrel-
evant and the system reduces to an infinitely long channel, or slab, with width D. As
derived in detail in Refs. [34, 35], the vortex performs a uniform translation along the
vertical direction with a different sign depending on the boundary it is closer to. This is
a consequence of the equivalence between a vortex on a planar geometry and an electric
charge, hence the interaction is a 2D Coulomb-like force scaling with the inverse of the
distance. When the vortex is exactly in the middle of the slab, in particular, it doesn’t
move. Together with the infinite images, in fact, it forms a linear chain of equidistant al-
ternating charges: the interactions from pair of symmetric images perfectly cancel each
other and the dynamics is then inhibited;

(iii) when the vortex approaches either of the two boundaries, r j ≃ R1 or r j ≃ R2, the dom-
inant contribution to the interaction comes from the image charge (with opposite sign)
just beyond the closest edge, since all the others accumulate towards the centre of the
annulus or far away from the outer border.

2.2 Dynamics of a single massive vortex

The starting point corresponds to the study of a single massive vortex inside the species a at
position r = (r,θ ). The Lagrangian (15) reduces to

L(r, ṙ, θ̇ ) =
1
2
µ̃
�

ṙ2 + r2θ̇2
�

+
�

1− r2
�

θ̇ −Φ(r) , (20)

where we define the potential as

Φ(r)≡ (1− 2n1) ln r + ln

�

2
i
ϑ1 (−i ln r, q)
ϑ′1 (0, q)

�

. (21)
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Figure 2: We consider an annulus with R2/R1 = 5 and n1 = 0: these geometric
parameters will not be changed in the rest of the work. (a) Uniform precession
angular velocity for a massless vortex (µ = 0). The red point marks the position
where the angular velocity vanishes. (b) Effective potential for fixed ℓ = 0.75 and
increasing values of the mass ratio µ. The smallest value µ= 0.1 can support stable
trajectories around the minimum r0 of Veff, while the curve with largest µ does not
allow any stable trajectory.

Since the Lagrangian (20) does not depend on the polar angle θ , the canonical angular mo-
mentum

ℓ=
∂L
∂ θ̇
= µ̃r2θ̇ + 1− r2 ⇒ ℓ= Mbr2θ̇ +πħhna

�

R2
2 − r2

�

(22)

is a conserved quantity. On the right side of Eq. (22) we restored physical units to show that
ℓ is a specific case of Eq. (16) for Nv = 1. The Euler-Lagrange equations

µ̃r̈ = µ̃rθ̇2 − 2rθ̇ −Φ′(r) , µ̃rθ̈ = 2ṙ
�

1− µ̃θ̇� (23)

are second-order differential equations in time. In the case of a massless vortex (µ = 0) they
reduce to first-order equations that determine the uniform precession of a massless vortex
along an orbit of radius r0 with constant angular velocity

θ̇0 = −
Φ′(r0)

2r0
=
ħh

mar2
0



n1 −
1
2
+

i
2

ϑ′1
�

−i ln
�

r0
R2

�

, q
�

ϑ1

�

−i ln
�

r0
R2

�

, q
�



 . (24)

The above result, given in conventional units, coincides with what was derived in Ref. [17]
with a different approach based on the use of the complex velocity potential (here we briefly
review it in Appendix A). Notice that the angular velocity (24) can change sign according to
the radius of the circular orbit, as shown in Fig. 2(a). The physical intuition underlying this
behaviour is related to the dominant role played by the closest image vortex with opposite
sign. As the vortex approaches the outer boundary R2, it mainly feels the interaction of the
negative image charge beyond the edge: this situation is similar to the case of a circular trap,
hence the rotation is counterclockwise (θ̇0 > 0). Moving towards R1, instead, the situation
is reversed resulting into a clockwise rotation (θ̇0 < 0). A similar discussion can be found in
Appendix B of Ref. [17].

The conservation of angular momentum dℓ/d t = 0 allows to reduce Eqs. (23) to a single
differential equation for r(t) and develop the entire formalism based on the introduction of an
effective potential Veff(r) [21,29]. Following the same derivation as in Sec. III.A of Ref. [21],
the explicit form of the effective potential turns out to be:

Veff(r) =
(ℓ− 1)2

2µ̃r2
+

r2

2µ̃
+Φ(r) . (25)
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Figure 3: (a) Stability diagram of massive vortices. In the white region, massive
vortices may perform small radial oscillations around the local minimum of Veff. In
the orange region (µ > µc,2), Veff only displays a local maximum, so that the vortex
is rapidly expelled towards one of the two borders. In the light brown region on the
right of the blue curve (µ > µc,1), the precession frequencies Ω(±)0 become complex.
(b) Effective potentials obtained for the four values of the mass ratio µ indicated
by the corresponding dots in panel (a). For each curve, we chose a value of the
angular momentum ℓ such that Veff has an extremum (minimum or maximum) at
fixed r/R1 = 2.

The first term is a repulsive centrifugal potential, while the last one is the analog of an attrac-
tive two-body central potential. The term in the middle, instead, plays the role of an attractive
harmonic oscillator potential and it comes from the vortex contribution

�

1− r2
�

θ̇ in the La-
grangian (20). Fig. 2(b) shows typical plots of Veff for a fixed value of ℓ and different mass
ratios µ. For small µ and ℓ the effective potential for the annulus has one local minimum and
two local maxima, since it diverges to −∞ when approaching both the boundaries. As the
mass ratio increases, the local minimum and the two maxima merge into a single maximum.

The motion at the local minimum corresponds to a uniform precession, but for massive
cores there exist two solutions for the precession frequency:

Ω
(±)
0 (r0) =

1
µ̃

 

1±
√

√

√

1+ µ̃
Φ′(r0)

r0

!

. (26)

When Φ′(r0) > 0 the two solutions are real for every µ. Since Φ′(r0) = −2r0θ̇0, this hap-
pens whenever the precession frequency of the massless case θ̇0 [which is plotted in Fig. 2(a)]
is negative. In the small-mass limit the larger root Ω(+)0 ≈ 2/µ̃ diverges, becoming irrelevant,

while the smaller root Ω(−)0 reduces to the precession rate (24) for a massless vortex.
When θ̇0 > 0 instead the roots become complex, signalling an instability, as soon as

µ > µc,1 = −
r0

(1− q2)Φ′(r0)
=

1

2(1− q2)θ̇0

. (27)

This unstable region is the light brown-shaded area in the phase diagram shown in Fig. 3(a).
A linear analysis of the perturbation around the precession radius r0 yields the squared

small-oscillations frequency

ω2 =
4
µ̃2

�

1+
µ̃

4

�

3
Φ′(r0)

r0
+Φ′′(r0)

��

. (28)
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Notice that, for given ℓ and µ̃, the energy is minimized when the system performs a simple
uniform circular orbit: the onset of any oscillations corresponds to a dynamics with a higher
total (conserved) energy. The small oscillations become unstable for mass ratios

µ > µc,2 = −
�

1− q2

4

�

3
Φ′(r0)

r0
+Φ′′(r0)

�

�−1

, (29)

which defines the critical region represented by the orange-shaded area in Fig. 3(a). The
diagram shows that Eq. (29) always provides a more restrictive condition than Eq. (27). In
the white region in Fig. 3(a) both the uniform precession and small oscillations are allowed:
consistently, the curves of the corresponding effective potential in Fig. 3(b) display a local
minimum. In the region where the precession is stable but the small-oscillations are not,
Fig. 3(b) shows that the local minimum turns into a local maximum, i.e. the orbit takes place
on a classically unstable point: any arbitrary radial perturbation is enough to destabilize the
uniform precession, leading to the expulsion of the vortex.

Notice also that the unique minimum of the effective potential gets deeper and deeper
approaching the massless limit µ→ 0: this explains why the small radial oscillations are not
allowed in the massless case, where the velocity of a given vortex is simply determined by the
superposition of the velocities generated by all the other (real and virtual) vortices.

In Fig. 4 we display representative trajectories for a single positive massive point vortex
in a planar annulus with q = 1/5, using various mass ratios µ. Fig. 4(a) shows the uniform
precession on an orbit of radius r0 = 3 R1. We then perturb the initial condition introducing
a radial displacement r0 + δ. For small δ (compared to r0), the corresponding trajectory,
that is presented in Fig. 4(b), consists of small rapid stable oscillations superimposed on a
slow precession. Fig. 4(c) is obtained for a larger displacement δ and the trajectory can be
classified as an epitrochoid: this is a planar curve that is obtained from a smaller circle that rolls
without sliding around the outside of a larger circle (a clear animation is found in Ref. [36]).
This concept will be revised in the following section and we refer the reader to the last part of
Appendix C for a more specific mathematical treatment. In general, an arbitrary initial radial
displacement leads to such peculiar trajectories that cannot be regarded as small oscillations.
We decide to denote them as plasma orbits, the reason being that they resemble the trajectory
of a massive charged particle under the influence of an electromagnetic field: this analogy will
be the central subject of Sec. 3. Finally, in Fig. 4(d) we show the dynamics when the mass of
the species b overcomes the critical value in Eq. (27): the vortex is expelled from the annulus
following an unstable orbit.

3 Plasma orbit theory

The Lagrangian of a particle of mass m and charge Q1 in an electromagnetic field with scalar
potential φ(r , t) and vector potential A(r , t) is given by

L(r , ṙ , t) =
1
2

mṙ 2 +Q ṙ · A(r , t)−Qφ(r , t) . (30)

A direct comparison with the model Lagrangian (20) shows that a massive vortex with one
quantum of circulation is equivalent to a particle with mass m= µ̃ and charge Q = +1 moving
inside a static electromagnetic field

E(r) = −∇φ(r ) = −πħh
2na

maR2
Φ′(r) r̂ , B =∇× A(r ) = −2πħhna ẑ , (31)

1We use Q instead of the usual notation q for the electric charge to avoid confusion with the geometric ratio
introduced in Eq. (6).
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Figure 4: Four possible trajectories for a single positive massive point vortex confined
in the same planar annulus as in Fig. 2. Curves correspond to the numerical solutions
of the Euler-Lagrange equations (23). We consider a mass ratio µ = 0.1. (a) Circu-
lar orbits followed with uniform angular velocity. (b) The presence of a core mass
leads to small-amplitude radial oscillations for a little initial displacement from the
precession orbit. (c) A plasma orbit appears for a larger initial radial displacement:
the specific curve is an epitrochoid (further details in the main text). (d) For larger
core mass, more precisely µ = 0.5 > µc,1, the massive vortex moves continuously
towards the outer boundary where it is expelled.

where the second forms are expressed in conventional units.2 Within this formal analogy,
the massive vortex behaves as a massive charge which experiences an effective nonuniform
electric field pointing in the radial direction and an effective uniform magnetic field normal
to the plane and proportional to the density of species a condensate inside the annulus. The
charged particle is subject to the Lorentz force and it obeys the equations of motion, given in
terms of the total velocity v = ṙ :

µ̃
dv
d t
= E(r) + v × B . (32)

It is easy to prove that, after singling out the components in both the radial and tangential di-
rections, one recovers the Euler-Lagrange eqs. (23) previously obtained within the Lagrangian
formalism. Following a common approach in plasma physics, the overall motion of a charged

2Φ′(r) is here dimensionless.
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Figure 5: Schematic representation of the circular trajectory around the magnetic
field lines followed by the massive vortex in the presence of uniform electric and
magnetic fields. (a) On the first half of the orbit, the radial electric field opposes the
magnetic force v×B, resulting in a lower centripetal acceleration and a larger radius
of curvature. (b) On the second half of the orbit the situation is the opposite: the
electric and magnetic forces sum up to give a smaller radius of curvature.

particle inside an electromagnetic field can be thought as the combination of a gyromotion,
i.e., a circular motion with velocity vc around a central point called guiding centre (g.c.), and
a translational motion of the guiding centre with velocity vg c . Such a decomposition implies
that the position of the particle can be written as

r = rg c + rc . (33)

In the following we will present the main results. The guidelines for the derivations can be
found in Appendix C, while we refer to Ref. [37] for a pedagogical treatment of the subject.

In the presence of a uniform electric and magnetic field, the decomposition v = vg c + vc
separates Eq. (32) into two independent equations for the two motions. The one for the
gyromotion

µ̃
dvc

d t
= vc × B (34)

describes a uniform circular orbit around the guiding centre characterized by the cyclotron
frequency ωc ≡ B/µ̃ = 2/µ̃ and the Larmor radius rL ≡ |vc|/ωc . Notice that the rotation of
the charged particle is such that it generates a magnetic field that counteracts the external
one: for the magnetic field in Eq. (31), a positive charge describes a counterclockwise rotation
along the circular trajectory shown in Fig. 5. The second equation

µ̃
dvg c

d t
= E + vg c × B (35)

describes the so called E × B drift of the guiding centre that moves with a uniform velocity
vg c ∝ E × B. The fields in Eq. (31) are such that the drift velocity is along the tangential
direction: the guiding centre follows a precession orbit with radius rgc and uniform angular
velocity Ωgc . The reason for this drift can be understood from the following physical picture.
In the first half-cycle of the particle’s orbit in Fig. 5(a), the electric force is opposite to the
magnetic force v × B: this causes a reduction of the total centripetal force that results in a
larger rL . In the second half-cycle in Fig. 5(b), instead, the electric and magnetic forces sum
up to give a stronger centripetal acceleration that makes rL smaller. The difference in the
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radius of curvature on the two sides of the orbit is responsible for the drift vg c and gives rise
to peculiar epitrochoidal trajectories, as the one in Fig. 4(c).

The assumption of uniform electric field is satisfied when the particle follows exactly a cir-
cular orbit with radius rgc: in such a case, there is no gyromotion and it is straightforward to
verify that the precession frequency Ωgc(rgc) is given by two solutions that coincide with the
two uniform precession frequencies in Eq. (26), previously derived with the Lagrangian for-
malism. Whenever a particle deviates from the orbit of radius rgc , it experiences a non-uniform
electric field that changes in magnitude and direction according to its spatial position: the de-
composition in Eq. (33) is not exact and both the gyrofrequency and the uniform precession
frequency gain corrections with respect to the expressions in Eqs. (C.4), (C.9). Nonetheless,
the superimposition of the gyromotion and the drift of the guiding centre still remains a valid
approximation when the Larmor radius is much smaller than the typical length scale for the
spatial variation of the electric field. Within this regime, one can apply the undisturbed orbit
approximation3 and expand the components of the electric field around the guiding centre po-
sition up to second order in the gyroradius rc ≪ rgc: this procedure (see Appendix C for further
details) introduces new corrective terms inside the equations of motion (32). An average of
these equations over an entire cycle of the gyratory motion provides the following corrected
form for the angular velocity of the uniform precession:

Ωgc(rgc) =
1
µ̃

 

1±
√

√

√

1+ µ̃
Φ′(rgc) +∆gc

rgc

!

, (36)

where the quantity ∆gc is defined in Eq. (C.13) of Appendix C. Importantly, such a correction
depends on the second derivative of the electric field and it reproduces the finite Larmor radius
effect introduced in Ref. [37].

We test this prediction on the specific plasma orbit shown in Fig. 4(c). A numerical integra-
tion for an entire period gives a “numeric” precession frequency Ωnum/2π≈ 0.25378 Hz. The
maximum and minimum value of the radial coordinate give an estimate of the Larmor radius
rL ≈ 4.525µm (see the final part of Appendix C for a more detailed explanation), from which
we can extract the corrected frequency in Eq. (36) as Ωgc/2π≈ 0.25384 Hz. The latter result
is indeed closer to Ωnum with respect to the bare prediction of the massive point-vortex model
in Eq. (26), namely Ω(−)0 ≈ 0.23370 Hz. As a second effect, the non-uniformity of the electric
field is also responsible for a shift of the gyrofrequency, as shown in Ref. [38]. Focusing on
the terms that average to zero over one cycle of the gyromotion, one can obtain an improved
expression for the gyrofrequency:

ωc ≈
2
µ̃

√

√

√

1+
µ̃

4

�

3
Φ′(rgc)

rgc
+Φ′′(rgc)

�

=ω . (37)

Within the undisturbed orbit approximation, the gyromotion frequency is corrected by the local
value and the first derivative of the electric field, so to recover the frequency of small oscilla-
tions given in Eq. (28). We remark that, when deriving Eq. (28), the small oscillations were
assumed to be straight and transverse, while the gyromotion is inherently circular.

As a final remark, the advantage in developing the plasma orbit theory is twofold. On
the one hand, it yields a more realistic model since it accounts for the local curvature of the
effective electric field that is missed by the point-vortex model, where only the local value
E(rgc)matters: this provides a quantitative correction to the frequency of uniform precession.
On the other hand, it gives a qualitative explanation for the trajectories of a massive vortex that
cannot be captured by the regime of small oscillations. As anticipated at the end of Sec. 2,

3This is the name used in Ref. [37], while it is defined as small Larmor radius approximation in Ref. [38].
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the trajectories within the plasma orbit regime are epitrochoids: they arise from a peculiar
combination of two circular motions that is compatible with the decomposition in Eq. (33)
(see Appendix C for a more detailed description). This analogy was already realized in the
literature in studies of the motion of charged particles along a plane orthogonal to a specific
magnetic field configuration: a twisted magnetic flux tube is considered in Ref. [39], while
Sec. II.A of Ref. [40] deals with a Penning trap. Moreover, the results in Eqs. (36) and (37)
are valid for a general planar geometry, provided the correct identification of the one-body
potential Φ(r). In particular, they can be applied to the circular trap discussed in Ref. [21].

4 Gross-Pitaevskii analysis

The massive point-vortex model developed in Sec. 2 requires the species a to be superfluid,
but it does not imply any condition on the species b which provides the massive contribution
to the vortices. Such a model can therefore be applied to a broad variety of systems. In this
Section we focus on a heteronuclear dilute Bose mixture at zero temperature, where both
species are superfluid and any normal fraction can be safely neglected. The interparticle in-
teraction can be described at the mean field level by a contact pseudopotential (see Chapter
4 of Ref. [9]): the intra-species interaction constants ga/b = (4πħh2/ma/b)aa/b and the inter-
species one gab = (2πħh2/mab)aab, with mab the reduced mass, are proportional to the s-wave
scattering lengths aa/b, aab. The values of the three coupling constants can be experimentally
tuned by means of Feshbach resonances [41]. Here we restrict to repulsive intra- and inter-
species interactions that satisfy the immiscible regime condition gab >

p
ga gb, meaning that

the two species are not spatially overlapping. As discussed in Sec. 12.1.1 of Ref. [42], this
condition holds for a uniform system. For a trapped system (where the density distribution is
not uniform), the condition is more complex, and it involves the number of atoms in the two
components, as discussed for example in Ref. [43] (see also Ref. [44] for the case of a ring
trimer geometry). However, since the confining potential is composed of hard walls and the
majority component is in the Thomas-Fermi regime, our system is effectively uniform apart
from those regions around the vortices. As such, the condition gab >

p
ga gb is sufficient to

ensure immiscibility.
Such a two-dimensional system is naturally embedded inside a three-dimensional world.

A quasi-2D configuration can be achieved experimentally by applying a strong harmonic con-
fining potential along the z direction. The full 3D wave function of the gas then factorizes
into a planar contribution and a narrow 1D Gaussian with a width σz equal to the harmonic
oscillator length along z. The z degree of freedom is frozen and it can be integrated out lead-
ing to an effective 2D system described by planar coordinates r = (x , y): this procedure,
known as dimensional reduction, is outlined in Ref. [45] and it is explained in detail in Chap-
ter III of Ref. [46]. Therefore, the Bose mixture admits as order parameters two 2D complex
wave functions ψa, ψb, one for each species: they are related to the local number densities
by na/b(r ) = |ψa/b(r )|2 so that they are normalized to the total number of particles. The
dynamics of the system is thus governed by two coupled GP equations,

iħh
∂ψa(r , t)
∂ t

=

�

−ħh
2∇2

2ma
+ V a
⊥(r ) +

ga

dz
|ψa(r , t)|2 + gab

dz
|ψb(r , t)|2

�

ψa(r , t) ,

iħh
∂ψb(r , t)
∂ t

=

�

−ħh
2∇2

2mb
+ V b
⊥ (r ) +

gab

dz
|ψa(r , t)|2 + gb

dz
|ψb(r , t)|2

�

ψb(r , t) ,
(38)

where dz =
p

2πσz is the effective thickness of the thin two-dimensional condensate, assum-
ing an equal confining potential along z for both species, while V a/b

⊥ are the external confining
potentials on the plane which imprint the annular potential.
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(a)

Figure 6: (a) Density of the a-component at the end of the imaginary-time evolution
of the two coupled GP equations. Black (white) color corresponds to zero (high)
values of the density. The model parameters employed for the simulation are reported
in the text. (b) Comparison between the numerical results (points) and the analytical
prediction (lines) for the precession frequency as a function of the radius of the orbit.
For the massive case, Ω0 stands here for Ω(−)0 in Eq. (26).

To test the predictions of the massive point-vortex model presented in Sec. 2.2, we per-
formed numerical experiments with the two-component GP Eqs. (38). We consider an annulus
with R1 = 10µm, R2 = 50µm, dz = 2µm and vanishing inner circulation n1 = 0. The param-
eters for the two components are similar to the values in Refs. [20, 21]: Na = 5 × 104 23Na
atoms and Nb ≈ 1500 39K atoms, giving a mass ratio µ≈ 0.05. The s-wave scattering lengths
aa ≈ 52 a0, ab ≈ 7.6 a0, aab ≈ 24 a0, where a0 ≈ 5.29 × 10−11 m is the Bohr radius, satisfy
the immiscibility condition gab >

p
ga gb [47]. We implement the simulation mapping the sys-

tem on a 256 × 256 square grid with length Lx = L y = 120µm, such that the grid spacing
∆x ≃ 0.5µm is smaller than the core size for a massless vortex, that can be estimated by the
bare healing length ξ = (8πnaaa)

−1/2 ≃ 2µm. The kinetic operators are implemented via
FFT, while the time-dependent equations have been solved using a fourth order Runge-Kutta
algorithm: the choice of the time step ∆t = 10µs is such that an excellent conservation of
the total energy of the system is guaranteed during the time evolution. With this choice of the
parameters one has that µa≪ ħhωz (being µa the chemical potential of species a), thus satisfy-
ing the assumption of a quasi-2D system, and Naaa/dz ≫ 1, corroborating the validity of the
Thomas-Fermi approximation for the a condensate. To generate the initial condition for our
dynamics, we nucleate a vortex inside the species a using a phase imprinting procedure. We
also introduce a narrow and intense Gaussian pinning potential acting only on species a and
centred at the position of the vortex where a Gaussian peak in the species b is also placed. We
move to the frame rotating with angular velocity Ω adding the term −Ω L̂z to both Eqs. (38).
The value of Ω is chosen accordingly to the radial position as given by the point-vortex model
in Eq. (26). We perform an imaginary-time propagation in the rotating frame with this initial
state, letting the system converge towards the ground state with the b-species core embedded
in the a-species vortex: the ground state density of the a component, that is shown in Fig. 6(a),
is characterized by a vortex core which is broadened due to the presence of the b-atoms. No-
tice that the radius of the black circle represents an estimate for the core size of approximately
6µm, corroborating the choice of the spatial mesh spacing. Subsequently, we turn off both the
pinning potential and the rotation frequency to initiate a real-time propagation: at each time
t, we track the position of the massive vortex by measuring the centre of mass of |ψb|2.

As a first analysis, we study the uniform precession by fixing the radial position r0 and mea-
suring the corresponding angular velocity coming out from the real-time evolution. Fig. 6(b)
shows how the points obtained from the numerical simulations nicely follow the analytical
curves given by Eq. (24) for Nb = 0 (orange) and by Eq. (26) for Nb ≈ 3000, i.e., µ≈ 0.1 (blue).
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Figure 7: Numerical simulation of a plasma orbit obtained with the two-component
GP numerical evolution (blue) compared with the analytical prediction of the massive
point-vortex model (orange). The model parameters are the same as for Fig. 6, with
Nb ≈ 1500 (µ ≈ 0.05). (a) Trajectory of the vortex core. (b) Radial position of the
vortex core.

Then, using the same numerical parameters introduced at the beginning of this section, we
move to the analysis of plasma orbits. We start the imaginary time evolution by imprinting and
pinning a massive vortex at r∗0 = r0+δ (with |δ| ≪ r0) but we let the reference frame rotate at

the precession frequency Ω(−)0 (r0) of the unshifted vortex. The subsequent propagation in real
time shows that the vortex features radial oscillations superposed to the precession motion.
In Fig. 7 we compare the numerical GP results (blue curve) with the prediction of the massive
point-vortex model (orange curve) for a small b-species component Nb ≈ 1500, corresponding
to µ ≈ 0.05: the agreement is quite remarkable. This agreement is the natural consequence
of having used the GP functional (3) in the time-dependent variational Lagrangian method
explained in Sec. 2. The plot in Fig. 7(b) shows that the frequency of the radial oscillations in
the numerical solution is slightly lower compared to the result of the point-vortex model. This
discrepancy stems from the fact that the two-component GP equations describe two coupled
many-body BECs with various internal modes that are completely missed by the point-vortex
model, where the only degrees of freedom are the coordinates of the vortex core. The onset of
vortex expulsion is also captured by numerical GP simulations: the agreement with the point-
vortex model remains remarkable until the finite-sized vortex core touches either of the two
boundaries.

5 Dynamics of a vortex necklace

In this section we consider the motion of a symmetric necklace composed by Nv vortices that
follow the same precession orbit with radius r0 and uniform angular velocity ΩNv

. The polar
coordinates of the j th vortex ( with j = 1,2, . . . , Nv) are given by

r j(t)≡ r0 , θ j(t) = ϕ0 +
2π
Nv
( j − 1) +ΩNv

t , (39)

where ϕ0 is an arbitrary initial phase for the first vortex that is irrelevant since only phase
differences matter in Eq. (11).

For a massless necklace there is a unique angular velocity ΩNv
(r0) that can be derived

with the complex potential formalism and it is given by Eq. (D.3) in Appendix D. It is shown
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Figure 8: Uniform precession of a massless necklace for the same annular geometry
as in Fig. 2. (a) Angular velocity as a function of the radius of the orbit for different
numbers of vortices Nv (the numbers label the value of Nv for each curve). (b) An-
gular velocity as a function of the number of vortices for different radii of the orbit
r0/R1 (the numbers refer to the value of r0/R1 for each curve).

in Fig. 8(a) as a function of the radius of the orbit r0: each curve corresponds to a necklace
with a different number of vortices Nv . All the curves are continuous, signalling that a uniform
precession can take place at any radial position and with any number of vortices: depending on
r0, ΩNv

can be positive, negative or even zero. The higher the number of vortices, the smaller
is the region of clockwise precession. Fig. 8(b) is obtained taking vertical cuts of Fig. 8(a), i.e.,
it shows the dependence of the angular velocity on the number of vortices at different fixed
radii of the orbit r0/R1. For a fixed Nv > 2, the smaller the radius, the higher the velocity of
the necklace; moreover, all the data sets display an almost linear behaviour for large Nv .

For a massive necklace, a careful analysis shows that the necklace can precess rigidly at
frequencies (given here in conventional units)

Ω
(±)
Nv
(r0) =

ħh
maR2

2

Nv

µ̃



1±
√

√

√

1− 2µ̃R2
2

Nv

B(r0)
r2
0



 . (40)

See Appendix D.2 for the derivation of this result, and for the definition of B. Exactly as in the
case of a single massive vortex, there are two solutions for the precession frequency. In the
following we consider only the physically relevant solution Ω(−)Nv

, which is well-behaved in the
small-mass limit. In the presence of more than one vortex, the value of the mass ratio is chosen
to scale linearly with Nv: in this way, the quantity µ/Nv fixes the amount of mass inside each
vortex core for any arbitrary necklace. Now, the condition under which the uniform precession
becomes unstable involves not only µ and r0, but also Nv . To better understand the appearance
of this instability, in Fig. 9(a) we fix the mass ratio to µ= 0.015 Nv and we look at the critical
regions in the (r0, µ) plane for various numbers of vortices. Next to it, Fig. 9(b) shows the
dependence of the angular velocity on the radius of the orbit for different Nv . For a necklace
of 6 vortices the red line corresponding to the fixed µ does not intersect the critical (green-
shaded) area, but it is safely inside the stable region. This means that the uniform precession
is allowed for every value of r0 inside the annulus, in fact the green curve in Fig. 9(b) is a
continuous curve qualitatively similar to the massless situation. This is true for all the necklaces
with a small number of vortices, 1 ≤ Nv ≤ 6, for this value of µ. For a necklace of 7 or more
vortices, instead, the horizontal red line crosses the critical (shaded) area: the two crossing
points delimit the radial region within which the uniform precession is not allowed. Moving
to the figure on the right, two vertical asymptotes develop in correspondence of these radial
positions: for Nv ≥ 7, Ω(−)Nv

(r0) becomes discontinuous and splits into two distinct branches.
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Figure 9: Uniform precession of a massive necklace for the same annular geometry
as in Fig. 2. (a) Shaded areas represent regions of unstable uniform precession for
different number of vortices Nv . The red horizontal line marks the selected value of
the mass ratio µ = 0.015 Nv . (b) Angular velocity as a function of the radius of the
orbit for different numbers of vortices Nv (the choice of the colours is the same as in
the left panel). An unstable region appears when Nv ≥ 7.

As a benchmark for the previous discussion, we study the trajectories of a vortex necklace
by numerically solving the equations of motion, as obtained from the model Lagrangian (15).
We consider, in particular, a necklace made of Nv = 4 vortices, each of them carrying an amount
of mass µ/Nv = 0.025. Fig. 10(a) shows the uniform precession taking place along a circular
orbit of radius r0 = 3 R1 with constant angular velocity given by Eq. (40). We then modify
the initial conditions, displacing radially outwards all vortices by a small quantity (from r0 to
r0 + δ), while maintaining fixed the angular momentum at the value which would give sta-
ble precession at the unshifted radial position r0. The resulting trajectories in Fig. 10(b) are
epitrochoids, like the one observed in Fig. 4(c) for the single vortex case. The necklace appears
dynamically stable for a radially symmetric perturbation, however the study of the linear sta-
bility of the necklace and the possible chaotic regimes resulting from dynamical instabilities is
at present an open and intriguing question.

6 Conclusions and outlook

We investigated the dynamics of vortices with empty and filled cores in a planar annulus ge-
ometry, motivated by the fact that the real-time dynamics of few-vortex systems is receiving
considerable attention at present [12–14] and annular trapping potentials are within easy ex-
perimental reach [23–28]. We focused on the motion of vortices with massive cores and we
obtained fully analytical predictions by means of a powerful point-vortex model. While a sin-
gle massless vortex can only precess uniformly, the scenario is richer for a finite core mass.
Uniform precession is allowed for small core masses, while it becomes unstable for large ones.
The instability results in the collision of the massive vortex against either the inner or outer
wall of the annular trap. This is explained in terms of an effective radial potential Veff(r)which
depends on the mass ratio µ and the angular momentum ℓ. Small radial oscillations are pos-
sible around the local minimum in Veff, and we derived their frequency and stability with a
linear theory in the perturbation.

Larger radial perturbations in the initial conditions lead to more peculiar trajectories, called
epitrochoids, that constitute a non-trivial extension of the simpler small transverse radial os-
cillations. A new approach, borrowed from plasma physics (hence termed as plasma orbit
theory), was developed to characterize them starting from the analogy with the Lagrangian of
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Figure 10: Trajectories for a necklace of Nv = 4 massive vortices obtained from a
numerical solution of the equations of motion obtained from the Lagrangian (15).
We consider a vortex mass µ/Nv = 0.025. The dots stand for the initial position of
each of the four vortices. (a) Circular orbits followed with uniform angular velocity.
(b) When the dynamics is initiated with a radial position of the core which doesn’t
match the one needed for uniform precession (but maintaining the same angular
momentum), massive vortices follow epitrochoidal trajectories.

a charged particle inside a transverse magnetic field and a radial, nonuniform electric field.
For a weakly varying electric field, the plasma orbit theory provides results that recover the pre-
dictions from the point-vortex model, for the gyromotion frequency, and even improve them,
for the precession frequency. Both these corrections result in a more refined model which, as
long as the Larmor radius is small compared to the orbit radius, well captures the features of
the vortex trajectories, both qualitatively and quantitatively.

We benchmarked the predictions of the massive point-vortex model against numerical sim-
ulations of the complete two-component GP equations. The analytical model finds a robust
confirmation in the numerical results, as far as both the uniform precession and plasma orbits
are concerned.

Finally, we generalized the analysis to a symmetric necklace of vortices. A neutral vortex
necklace on a planar annulus was already studied in Ref. [48], while here all the vortices have
unit positive charge. The presence of the mass leads to two possible roots for the precession
frequency which become imaginary beyond a critical mass ratio. For a fixed mass ratio, instead,
there exists a critical number of vortices which is connected to a region inside the annulus
where stable precession orbits are not allowed (in contrast to a massless necklace). If the
necklace is dynamically stable and the perturbation is radially symmetric, then each vortex of
the necklace will have an epitrochoid-like orbit.

The present study suggests several interesting perspectives for future investigations. The
planar annulus is topologically equivalent to a cylinder of finite length [17]: it is therefore
very appealing to study the motion of massive vortices on cylindrical surfaces. In particular,
it would be interesting to analyze the hydrodynamic analog of the Laughlin pumping [49] in
such a geometry: as mentioned in Ref. [17], a slow pumping of angular momentum inside
the system would allow a vortex to enter the lower rim of the cylinder, progressively spiral
up and then leave it after reaching the upper rim, resulting in an increase by ħh of the total
angular momentum per particle. Since the point-vortex model is very general, one can con-
sider thin films of liquid helium with tracer particles instead of the binary BEC treated here in
Sec. 4. Within this context, notice that Refs. [50–52] showed that the GP framework is able to
reproduce many qualitative features of strongly interacting superfluid helium.
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Another possible perspective is the characterization of the Kelvin-Helmholtz instability for
a system of massless vortices. This instability is related to the elastic normal modes, known
as Tkachenko modes [4, 53], and it was recently investigated in a single-component atomic
superfluid in Ref. [54]. We expect that the massive cores may alter profoundly the dynamics
of this instability.
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A Complex potential theory for massless vortices on an annulus

An incompressible superfluid system can be described in terms of a macroscopic condensate
wave function Ψ = |Ψ|eiS , whose phase S determines the superfluid velocity v = (ħh/M)∇S,
being M the atomic mass. The quantum-mechanical phase plays thus the role of the velocity
potential and the irrotational condition is guaranteed (namely∇× v = 0, except eventually at
isolated points). Within the Thomas-Fermi regime, the local changes in the density of dilute
ultracold superfluid BECs become small: the condition ∇ · (nv) = 0, i.e. current conservation
for a steady flow, then reduces to the incompressibility condition∇ · v = 0. An incompressible
flow can be alternatively described by means of the stream function χ. In particular, for a
two-dimensional flow in the xy plane, the velocity becomes

v = (ħh/M) n̂ ×∇χ , (A.1)

where n̂ = x̂ × ŷ is the unit vector normal to the two-dimensional plane.
For an irrotational incompressible flow in two dimensions, the complex variable z = x+ i y

provides a natural framework for the study of vortex dynamics. One can introduce a com-
plex potential F(z) = χ(x , y) + iS(x , y) which determines the hydrodynamic flow velocity
components as:

vy + ivx =
ħh
M

dF
dz

. (A.2)

A detailed discussion about the role of the complex potential can be found in Ref. [17]. In
the same work, exploiting the fact that the surface of a cylinder of finite length is topologically
equivalent to that of a planar annulus, the complex potential for a single positive vortex located
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at z0 = x0 + i y0 on a planar annulus of radii R1 < R2 is derived as:

F(z) = n1 ln
�

z
R2

�

+ ln





ϑ1

�

− i
2 ln

�

z
z0

�

, q
�

ϑ1

�

− i
2 ln

�

zz∗0
R2

2

�

, q
�



 . (A.3)

The Jacobi elliptic theta functions appear because an infinite set of image vortices is required
to ensure that the normal component of the fluid velocity vanishes at the two boundaries (the
inner and outer rings). The same complex potential had already been derived in Ref. [16]
performing a conformal transformation on the solution for a line of equally spaced vortices
between parallel boundaries. The two results in Refs. [16,17] are related by a Jacobi imaginary
transformation (see Ref. [55] for more details on this) and differ by an overall factor i.

For a configuration of Nv positive massless vortices inside a planar annulus at complex posi-
tions z j(t) = r j(t) e

iθ j(t) ( j = 1,2, . . . , Nv), the complex potential comes from a straightforward
generalization of Eq. (A.3):

FNv
(z) = n1 ln

�

z
R2

�

+
Nv
∑

j=1

ln





ϑ1
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z
z j

�

, q
�

ϑ1

�

− i
2 ln

� zz∗j
R2

2

�

, q
�



 . (A.4)

The stream function for a system of vortices in an annulus is obtained as the real part of
Eq. (A.4):

χ(r,θ ) = Re FNv
(z)

�

�

�

�

z=reiθ

= n1 ln
�

r
R2

�

+
Nv
∑

j=1

Re

�

ln

�

ϑ1

�

ξ j(r ), q
�

ϑ1

�

η j(r ), q
�

��

, (A.5)

where we introduced

ξ j(r )≡ −
i
2

ln
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z
z j

��
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=
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=
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(A.6)

The imaginary part of the complex potential (A.4) gives the phase of the condensate wave
function

S(r,θ ) = Im FNv
(z)

�

�

�

�

z=reiθ

= n1θ +
Nv
∑

j=1

Im

¨

ln

�

ϑ1

�

ξ j(r ), q
�

ϑ1

�

η j(r ), q
�

�«

. (A.7)

Using the results of Eqs. (A.5), (A.7) and exploiting some properties of theta functions, one
can verify that the radial component of the flow velocity vanishes exactly at the borders of the
annulus.

B Explicit calculation of the Lagrangian functional La

In this Appendix we provide more details on the application of the time-dependent variational
Lagrangian method discussed in Sec. 2. In particular, we focus on the derivation of the La-
grangian La for the species a starting from the trial wave function (4), whose phase field is
given in Eq. (5). The bulk of the mathematical calculations is based on what already done by
Fetter in Ref. [16].
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B.1 Kinetic energy functional

Using the ansatz (4), the kinetic energy functional (2) becomes:

T [ψa] = −ħhna

∫

ann
d2r

∂ S
�

r ,
�

r j

	�

∂ t

=
ħhna

2

Nv
∑

j=1

Im

�

θ̇ j

∫ R2

R1

dr r I(−)j (r)− i
ṙ j

r j

∫ R2

R1

dr r I(+)j (r)

�

,

(B.1)

where we introduced

I(±)j (r)≡
∫ π

−π
dθ

�

ϑ′1(ξ j(r ), q)

ϑ1(ξ j(r ), q)
± ϑ
′
1(η j(r ), q)

ϑ1(η j(r ), q)

�

. (B.2)

Since the physical properties of the system are unchanged by a change of coordinate axis, the
above integrals are independent of the angles θ j , which may be set to zero for convenience.
We also set

y0 = − ln
�

r/r j

�

/2 , y1 = − ln
�

r r j/R
2
2

�

/2 , (B.3)

so that Eq. (B.2) becomes:

I(±)j (r) = 2

∫ π/2

−π/2
d x

�

ϑ′1(x + i y0, q)

ϑ1(x + i y0, q)
± ϑ
′
1(x + i y1, q)

ϑ1(x + i y1, q)

�

. (B.4)

Let us start focusing on I(−)j (r). The integral is most simply evaluated by exploiting the peri-
odicity of the theta functions in the complex plane. We shall therefore consider the following
contour integral

∮

C
dz
ϑ′1(z, q)

ϑ1(z, q)
, (B.5)

taken over the rectangular path shown in Fig. 11(a), with corners at the points z = ±π/2+i y0
and z = ±π/2+ i y1. The integrand function has simple poles that correspond to the simple
zeros of ϑ1(z, q): from Fig. 11(a) it is clear that the only relevant zero is at the origin, which
lies inside the contour C only if r > r j . The contour integral then reduces to

∮

C
dz
ϑ′1(z, q)

ϑ1(z, q)
= 2πi Res

z=0

�

ϑ′1(z, q)

ϑ1(z, q)

�

Θ(r − r j) = 2πiΘ(r − r j) , (B.6)

where Θ is the Heaviside step function. The integral along the horizontal portions of the
contour is just I(−)j (r)/2, while the contribution from the vertical portions of the contour
vanishes due to the periodicity of the theta function (see Ref. [55], p. 465). Substitutions
inside Eq. (B.6) yield:

I(−)j (r) = 4πiΘ(r − r j) . (B.7)

As far as I(+)j (r) is concerned, by using the parity properties of the theta functions it can be
rewritten as:

I(+)j (r) = 2

∫ π/2

−π/2
d x

�

ϑ′1(x + i y0, q)

ϑ1(x + i y0, q)
− ϑ
′
1(x − i y1, q)

ϑ1(x − i y1, q)

�

. (B.8)

Considering now the rectangular path shown in Fig. 11(b), with corners at the points
z = ±π/2+ i y0 and z = ±π/2− i y1 and repeating the same procedure as before, one gets:

I(+)j (r) = −4πiΘ(r j − r) . (B.9)

After plugging Eqs. (B.7),(B.9) inside Eq. (B.1), the final expression for the kinetic energy
functional as in Eq. (7) is obtained.
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Figure 11: Integration contour C for the evaluation of the integrals in Eq. (B.2): red
crosses represent the single poles of the integrand in Eq. (B.5), black points denote
the coordinates of the corners of the rectangular path. (a) For I(−)j (r) the integration

contour encloses the pole at z = 0 only if r > r j . (b) For I(+)j (r) the contour contains
the singularity at z = 0 only if r < r j .

B.2 Potential energy functional

The potential energy functional (8) is quadratic in the velocity field and it can be conveniently
written in terms of the stream function

∆E[ψa] =
ħhna

2
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,

(B.10)

where the contours C1 and C2 are circles of radii R1 and R2, taken in the positive sense. The
second line of Eq. (B.10) is obtained by partial integration, while the third line is an application
of Green’s theorem. Using Eq. (A.5), the line integral around C2 vanishes because χ(R2,θ ) = 0,
while the line integral around C1 can be easily evaluated as:

∮

C1

d l · v χ = R1χ(R1)

∫ π

−π
dθ vθ (R1,θ )

=
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(B.11)

The last term of Eq. (B.10) depends on the specific model adopted for the vortex core. We
assume here that the vorticity ζ = ∇ × v is constant over a circular core of radius ac and
vanishes outside of that region. The vortices do not overlap inside the annulus, therefore the
integral simply reduces to a sum of terms evaluated at the position of each vortex

∫

ann
d2r ζχ =

Nv
∑

j=1

∫

j
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∫
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+
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d2r ζχ0 j ,

(B.12)
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where the subscript j means that the integral is taken over the core of the j th vortex. The
stream function displays a logarithmic divergence near the position of each vortex: in the
second line of Eq. (B.12) the singular contribution of the j th vortex, denoted as χ0 j , has been
conveniently isolated. In the limit of vanishing core radius, the first term of Eq. (B.12) can be
evaluated by setting ζ= 2πħhδ(r − r j)/ma, yielding

Nv
∑

j=1

∫

j
d2r ζ

�

χ −χ0 j

�

=
2πħh
ma

Nv
∑
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χ( j) , (B.13)

where
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(B.14)

The last line of Eq. (B.14) is obtained using Eq. (A.5), while the explicit form of ξk(r j) and
ηk(r j) comes straightforwardly from the definition in Eq. (A.6). The second term of Eq. (B.12)
represents the small contribution to the energy from the core of each vortex. We develop the
assumption of uniform vorticity by means of the Rankine vortex model that assumes a rigid
body rotation inside a cylinder of radius ac and an irrotational flow outside of it. With such a
model, the contribution from each vortex core is easily computed as:

∫

j
d2r ζχ0 j = −

1
4

2πħh
ma

. (B.15)

A combination of Eqs. (B.10),(B.11),(B.14) and (B.15) leads to the final form for the po-
tential energy functional:
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(B.16)

where the primed sum means that we omit the terms j = k. After simple algebraic manipula-
tions and neglecting irrelevant constant contributions, one gets the final expression in Eq. (9):

∆Ea

��

r j

	�

=
Nv
∑

j=1

Φ j +
Nv
∑

j,k=1

′
Vjk . (B.17)

C Plasma orbit theory: detailed calculations

Restoring conventional units, the Lagrangian (20) for a single massive vortex reads:

L= 1
2

Mb ṙ 2 +πħhna
r2 − R2

2

r2
ṙ × r · ẑ −Φ(r) . (C.1)
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The comparison with Lagrangian (30) allows to identify the scalar and vector potentials

φ(r ) = Φ(r) , A(r ) = πħhna
r2 − R2

2

r2
r × ẑ = πħhna

�

R2
2

r
− r

�

θ̂ , (C.2)

from which the electric and magnetic fields in Eq. (31) are easily derived:

E(r) = −πħh
2na

maR2
Φ′(r) r̂ , B = −2πħhna ẑ . (C.3)

C.1 Uniform electric field

Let us start with the analysis of the motion of a charged particle inside a uniform electric and
magnetic field, following the pedagogical approach developed in Ref. [37]. On the one hand,
Eq. (34) corresponds to a simple harmonic oscillator, with solution vc = rc×ωc , that describes
a circular orbit around the guiding centre at the cyclotron frequency

ωc ≡ B
µ̃
= −2

µ̃
ẑ . (C.4)

A further integration allows to get the coordinates of the gyromotion

xc(t) = rL sin(ωc t) , yc(t) = rL cos(ωc t) , (C.5)

where the Larmor radius quantifies the curvature of the trajectory and it is defined as

|rc|= rL ≡
|vc|
ωc

. (C.6)

On the other hand, Eq. (35) describes the E×B drift of the guiding centre that, due to the spe-
cific shape of the electromagnetic field in Eq. (31), undergoes a precession orbit with velocity

vg c = Ωg c × rg c , (C.7)

where Ωg c = Ωgc ẑ is the constant angular velocity and rg c = rgc r̂ is the guiding centre
position.

When the particle follows exactly a circular orbit with radius rgc , there is no gyromotion
and it is possible to derive the expression of the precession frequency. The time derivative
of Eq. (C.7) gives the centripetal acceleration of the guiding centre and, once plugged into
Eq. (35), provides the following quadratic equation

µ̃Ω2
gc − BΩgc +

E(rgc)

rgc
= 0 , (C.8)

whose two solutions coincide with the two uniform precession frequencies in Eq. (26):

Ωgc(rgc) =
1
µ̃

 

1±
√

√

√

1+ µ̃
Φ′(rgc)

rgc

!

≡ Ω(±)0 (rgc) . (C.9)

C.2 Corrections due to a non-uniform electric field

Whenever the particle deviates from the orbit of radius rgc , then it experiences a non-uniform
electric field that changes in magnitude and direction: in the following we will provide more
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details about the derivations of these corrections within the undisturbed orbit approximation
introduced in Sec. 3.

For each component i = x , y of the electric field, the expansion up to second order in the
gyroradius rc ≪ rgc reads:

Ei(r) = Ei(rgc) +∇Ei

�

�

rgc
· rc +

1
2

rc ·H[Ei]
�

�

rgc
rc +O

�

r3
c

�

, (C.10)

where H[Ei] is the Hessian matrix of the i th component and each spatial derivative is evaluated
exactly at the position of the guiding centre. Notice that the electric field points in the radial
direction and the above expansion is realized in cartesian coordinates: the zero-order terms
then carry an angular part that is by itself dependent on the gyroradius components. As a first
approximation, for the specific case of the x component, one has:

Ex(rgc) = Ex(r)
x
r

�

�

�

�

rgc

≃ Ex(rgc)

rgc

�

xgc + xc

�

. (C.11)

At this stage, the new equations of motion are obtained after plugging both the expansions
(C.10), (C.11) inside Eq. (32).

The correction to the drift velocity can be evaluated by averaging the equations of motion
over a cycle of the gyratory motion. Remembering the parametrization in Eq. (C.5), all the
linear terms average to zero, while the only finite contributions are given by x2

c = y2
c = r2

L/2,
so that the drift velocity satisfies the equation

µ̃
dvg c

d t
= E(rgc)

rg c

rgc
+

r2
L

4
∇2E

�

�

rgc
+ vg c × B . (C.12)

A direct comparison with Eq. (35) shows that the correction depends on the second derivative
of the electric field with a term that perfectly coincides with the finite Larmor radius effect
introduced in Ref. [37]. The corrected form for the angular velocity of the uniform precession
is then given in Eq. (36), where the quantity ∆gc is defined as

− r2
L

4
∇2E

�

�
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=

r2
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4

�
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1
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rg c

rgc
. (C.13)

As a second effect, the non-uniformity of the electric field is also responsible for a shift of
the gyrofrequency, as shown in [38]. Focusing on those terms that average to zero over one
cycle of the gyromotion, one recovers the following linear equations of motion

µ̃r̈c =





∂x Ex

�

�
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+
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

 rc + ṙc × B , (C.14)

that can be solved using the Laplace transform technique (see [38] for further details). The
poles of the Laplace-transformed solution define the gyration of the particle around the guiding
centre, providing the corrected expression for the gyrofrequency in Eq. (37):

ωc ≈
2
µ̃

√

√

√

1+
µ̃

4

�

3
Φ′(rgc)

rgc
+Φ′′(rgc)

�

=ω . (C.15)
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C.3 Parametrization of the trajectories

The peculiar trajectories obtained in the plasma orbit theory regime, such as Fig. 4(c), belong
to a particular class of plane curves, known as epitrochoids. Referring to the clear animation
in Ref. [36], an epitrochoid is a roulette [56] traced by a point attached to a circle of radius b
rolling around the outside of a fixed circle of radius a, where the point is at a distance h from
the center of the exterior circle. The parametric equations are

x(ϕ) = (a+ b) cos(ϕ) + h cos
�

a+ b
b
ϕ

�

,

y(ϕ) = (a+ b) sin(ϕ) + h sin
�

a+ b
b
ϕ

�

,
(C.16)

and they resemble at once the superposition of two oscillatory motions. In particular, choosing
a + b = rgc , h = rc and ϕ = Ωgc t, one recovers the decomposition of the overall motion that
is explained in Sec. 3:

x(t) = rgc cos
�

Ωgc t
�

+ rc cos (ωc t) = xgc(t) + xc(t) ,

y(t) = rgc sin
�

Ωgc t
�

+ rc sin (ωc t) = ygc(t) + yc(t) .
(C.17)

The frequencies of the gyromotion and of the guiding centre are related by
ωc = rgcΩgc/b > Ωgc: this is a consequence of the pure rolling of the circle of radius b on
the circle of radius a. The mathematical parameters a, b and h are physically related to the
shape of the effective potential (that, in its turn, depends on the angular momentum ℓ and the
mass ratio µ) and the initial displacement δ: however, there is not any easy way to establish
a direct correspondence between them. Moreover, we stress again that the above decompo-
sition is exact strictly in the presence of uniform fields: the nonhomogeneities of the electric
field allow us only to provide approximate results. Nonetheless, Eq. (C.17) is the best proof to
identify the type of trajectories beyond the small oscillations regime. Some trajectories corre-
spond to an epicycloid [57], but it is simply a particular case of an epitrochoid with b = h. As a
final comment, the identification of the trajectory allows to obtain an accurate estimate of the
Larmor radius, that reduces to rL = h. Eq. (C.17) imply that the radial coordinate oscillates in
time between a maximum value rmax = rgc + rL and a minimum value rmin = rgc − rL . Both
rmax and rmin can be easily extracted from the numerical solution of the equations of motion,
hence obtaining rL = (rmax − rmin)/2.

D Lagrangian approach for a necklace of massive vortices

In this Appendix we present the derivation of the angular velocity for the uniform precession of
a vortex necklace on a planar annulus. We first present results for the massless case obtained
with the complex potential formalism, and then we study the case of massive vortices by means
of the Lagrangian approach.

D.1 Massless necklace

The dynamics of Nv massless vortices on a planar annulus can be studied by means of the
complex potential formalism that we introduced in Appendix A. In particular, combining to-
gether Eqs. (A.2), (A.4) and developing some algebra, the complex velocity of the kth vortex
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is obtained as

ẏk + i ẋk =
ħh

ma
lim
z→zk

�

dFNv
(z)

dz
− 1

z − zk

�

=
ħhe−iθk

mark



n1 −
1
2
+

i
2

ϑ′1
�

−i ln
�

rk
R2

�

, q
�

ϑ1

�

−i ln
�

rk
R2

�

, q
� − i

2

Nv
∑

j=1

′
�

ϑ′1
�

ξk(r j), q
�

ϑ1

�

ξk(r j), q
� − ϑ

′
1

�

ηk(r j), q
�

ϑ1

�

ηk(r j), q
�

�



 .

(D.1)

A simple case is given by a symmetric configuration of Nv vortices undergoing a uniform preces-
sion with radius r0 and angular velocity ΩNv

. All the vortices have the same velocity, therefore
it is possible to write the complex positions as:

z j(t) = r0ei(ΩNv t+2π( j−1)/Nv) , j = 1, 2, . . . , Nv . (D.2)

Plugging this ansatz inside Eq. (D.1) and exploiting several properties of the Jacobi theta
functions, one ends up with the following expression for the precession angular velocity of a
necklace of Nv massless vortices with radius r0,

Ω0
Nv
(r0) =

ħh
mar2

0



n1 −
1
2
+

i
2

ϑ′1
�

−i ln
�

r0
R2

�

, q
�

ϑ1

�

−i ln
�

r0
R2

�

, q
� +

i
2

Nv
∑

j=2





ϑ′1
�

α j − i ln
�

r0
R2

�

, q
�

ϑ1

�

α j − i ln
�

r0
R2

�

, q
�







 , (D.3)

where we defined
α j =

π

Nv
(1− j) . (D.4)

In the presence of a single massless vortex, the summation gives no contribution and one
recovers the expected result in Eq. (24):

Ω0
Nv=1(r0) =

ħh
mar2

0



n1 −
1
2
+

i
2

ϑ′1
�

−i ln
�

r0
R2

�

, q
�

ϑ1

�

−i ln
�

r0
R2

�

, q
�



 . (D.5)

D.2 Massive necklace

The introduction of the mass requires to rely on the time-dependent variational Lagrangian
method in order to study the corresponding dynamics. The starting point is the model dimen-
sionless Lagrangian for a necklace of Nv vortices that is explicitly written starting from Eq. (15)
as:

LNv
=

Nv
∑

j=1

¨

µ̃

2Nv

�

ṙ2
j + r2

j θ̇
2
j

�

+
�

1− r2
j

�

θ̇ j −Φ(r j)−
Nv
∑

k=1

′
Re

�

ln

�

ϑ1

�

ηk(r j), q
�

ϑ1

�

ξk(r j), q
�

��«

. (D.6)

We focus on the uniform precession of the symmetric configuration described in Sec. 5, there-
fore we make use of the ansatz (39). Since all the vortices have the same radial position and
angular velocity, we may consider simply the Euler-Lagrange equations for the first one:

µ̃

Nv
Ω2

Nv
− 2ΩNv

+
2

r2
0

�

n1 −
1
2
+

i
2

ϑ′1(−i ln r0, q)

ϑ1(−i ln r0, q)

+
1
2

Nv
∑

j=2

Im

�

ϑ′1
�

α j , q
�

ϑ1

�

α j , q
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�

ϑ1

�

α j − i ln r0, q
�

�

)

= 0 ,
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α j , q
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α j , q
� − ϑ
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1
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α j − i ln r0, q
�

ϑ1

�

α j − i ln r0, q
�
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= 0 .

(D.7)
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0 x

yNv = 5

0 x
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Figure 12: Symmetric necklaces made of odd (left) or even (right) vortices.

To simplify these equations, let us first recall the explicit expression of Jacobi elliptic theta
functions and its first derivative

ϑ1(z, q) =
∞
∑

n=0

Fn(q) sin [(2n+ 1)z] , ϑ′1(z, q) =
∞
∑

n=0

(2n+ 1)Fn(q) cos [(2n+ 1)z] , (D.8)

with the shorthand notation Fn(q) = 2(−1)nq(n+1/2)2 .
For simplicity we will consider only symmetric configurations like the ones shown in

Fig. 12. The black circle represents the circular orbit with radius r0 and the blue dot is the first
vortex that we arbitrarily fix at position (r1,θ1) = (r0, 0).

For an odd number of vortices, the vortices with j > 1 [bright green dots in Fig. 12(left)]
can be grouped into pairs that are symmetric with respect to the horizontal axis. For each pair,
the indices ( j, j′) satisfy j + j′ = Nv + 2, so that the angular parts in the arguments of theta
functions are related by:

α j′ =
π

Nv
(1− j′) = −α j −π . (D.9)

Two ratios between theta functions appear in Eq. (D.7) and for one of them the two contribu-
tions within each pair exactly cancel out, as it easily follows from:

ϑ′1(−α j −π, q)

ϑ1(−α j −π, q)
= −

∑∞
n=0(2n+ 1)Fn(q) cos

�

(2n+ 1)α j

�

∑∞
n=0 Fn(q) sin

�

(2n+ 1)α j

� = −ϑ
′
1(α j , q)

ϑ1(α j , q)
. (D.10)

For the second ratio, instead, one ends up with a purely imaginary term. If we call
βn ≡ ln

�

r2n+1
0

�

, in fact, one gets:

ϑ′1(−α j −π− i ln r0, q)

ϑ1(−α j −π− i ln r0, q)
= −

∑∞
n=0(2n+ 1)Fn(q) cos

�

(2n+ 1)α j + iβn

�

∑∞
n=0 Fn(q) sin

�

(2n+ 1)α j + iβn

�

= −
�

ϑ′1(α j − i ln r0, q)

ϑ1(α j − i ln r0, q)

�∗
.

(D.11)

When the number of vortices Nv is even, there is an additional vortex located at angle π
[see the red dot in Fig. 12(right)] for which α j = −π/2. In this specific point, the two ratios
become:

ϑ′1
�−π2 , q

�

ϑ1

�−π2 , q
� = −

∑∞
n=0(2n+ 1)Fn(q) cos [(2n+ 1)π/2]
∑∞

n=0 Fn(q) sin [(2n+ 1)π/2]
= 0 ,

ϑ′1
�−π2 − i ln r0, q

�

ϑ1

�−π2 − i ln r0, q
� = i

∑∞
n=0(2n+ 1)Fn(q)(−1)n sinhβn
∑∞

n=0 Fn(q)(−1)n coshβn
.

(D.12)
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Exactly as for the situation previously discussed, the first contribution vanishes, while the
second one gives a purely imaginary term.

It is now clear that the second of Eqs. (D.7) becomes an identity, while the properties of
the theta functions allow to reduce the first one to:

µ̃

Nv
Ω2

Nv
− 2ΩNv

+
2

r2
0



n1 −
1
2
+

i
2

ϑ′1(−i ln r0, q)

ϑ1(−i ln r0, q)
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i
2
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j=2

ϑ′1
�

α j − i ln r0, q
�

ϑ1

�

α j − i ln r0, q
�



= 0 . (D.13)

We denote with B(r0) the dimensionless function in the square parenthesis, so that the two
roots of the quadratic equation read, in conventional units:

Ω
(±)
Nv
(r0) =

ħh
maR2

2

Nv

µ̃



1±
√

√

√

1− 2µ̃R2
2

Nv

B(r0)
r2
0



 . (D.14)

As in the case of an isolated vortex, Ω(−)Nv
is the stable solution that in the small mass limit

µ→ 0 correctly recovers the result in Eq. (D.3).
Notice that when n1 = 0 and in the limit R1 → 0, using the expansion of ϑ1 for small q, one
can verify that Eq. (D.13) reduces to the equation for a necklace of Nv vortices inside a circular
trap of radius R2, as derived in Ref. [58]:

ΩNv

�

1− µ̃

2Nv
ΩNv

�

=
1

r2
0

�

Nv − 1
2

+ Nv
r2Nv
0

1− r2Nv
0

�

. (D.15)
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