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Abstract

Conformal field theories (CFTs) with U(m)×U(n) global symmetry in d = 3 dimensions
have been studied for years due to their potential relevance to the chiral phase transition
of quantum chromodynamics (QCD). In this work such CFTs are analyzed in d = 4−ϵ and
d = 3. This includes perturbative computations in the ϵ and large-n expansions as well
as non-perturbative ones with the numerical conformal bootstrap. New perturbative re-
sults are presented and a variety of non-perturbative bootstrap bounds are obtained in
d = 3. Various features of the bounds obtained for large values of n disappear for low
values of n (keeping m < n fixed), a phenomenon which is attributed to a transition of
the corresponding fixed points to the non-unitary regime. Numerous bootstrap bounds
are found that are saturated by large-n results, even in the absence of any features in the
bounds. A double scaling limit is also observed, for m and n large with m/n fixed, both
in perturbation theory as well as in the numerical bootstrap. For the case of two-flavor
massless QCD existing bootstrap evidence is reproduced that the chiral phase transition
may be second order, albeit associated to a universality class unrelated to the one usu-
ally discussed in the ϵ expansion. Similar evidence is found for the case of three-flavor
massless QCD, where we observe a pronounced kink.
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1 Introduction

The Lagrangian of quantum chromodynamics (QCD) with N f massless flavors of fundamental
Dirac fermions (quarks) qi , i = 1, . . . , N f , has U(N f )L×U(N f )R global symmetry. This is easiest
to describe if we decompose qi into left- and right-handed quarks, qi

L, qi
R, in which case it acts

on qi
L and qi

R by independent N f ×N f unitary matrices and is thus chiral. Two U(1) symmetries
are part of this symmetry group: the vector U(1), commonly denoted by U(1)V, which acts on
left- and right-handed quarks by the same phase, and the axial U(1), commonly denoted by
U(1)A, which acts on left- and right-handed quarks with opposite phases. With the exception of
U(1)A, which is broken by an anomaly, the global symmetry group of the Lagrangian of QCD
persists in the quantum theory. Starting from the original symmetry group of the classical
theory, henceforth denoted by GLRVA = SU(N f )L × SU(N f )R × U(1)V × U(1)A,1 the remaining
symmetry at the quantum level is then GLRV = SU(N f )L × SU(N f )R × U(1)V.

If we consider nuclear matter at finite temperature, the global symmetry GLRV (or GLRVA
depending on the fate of U(1)A at finite temperature) may or may not be broken depend-
ing on the temperature. More specifically, chiral symmetry is spontaneously broken at low
temperatures due to a non-zero vacuum expectation value for a quark bilinear (quark con-
densate), namely 〈q̄ i

Lq j
R〉, which breaks GLRV (or GLRVA) to SU(N f )V × U(1)V, where SU(N f )V

is the diagonal subgroup of GLR = SU(N f )L × SU(N f )R. At high temperatures, however, the
quark condensate is zero and thus GLRV (or GLRVA) remains unbroken. The order of the asso-
ciated phase transition at the critical temperature Tc , with an order parameter given by the
quark condensate, has phenomenological consequences and has been the subject of multiple
investigations over the years, starting with the seminal work of Pisarski and Wilczek [1].

Due to its non-chiral nature, the U(1)V part of GLRV is expected to play no role in the
symmetry breaking and it is common in the literature to neglect it and discuss the group GLR
instead. On the contrary, the U(1)A part of GLRVA is of paramount importance. Despite the fact
that U(1)A is anomalous in QCD, it may be effectively restored when non-zero temperature
effects are considered [1–4]. If that is the case, then the chiral symmetry to consider in the
unbroken phase (T > Tc) is GLRA = SU(N f )L × SU(N f )R × U(1)A and not GLR. The two cases
that have been considered in the literature are those of symmetry GLR and GLRA.

Quarks are not massless and so consequences obtained in the strict chiral limit are not
expected to hold unaltered. However, quark masses much smaller than Tc can be treated as
perturbations of the strict chiral case, and then the N f = 2 massless case is of particular interest
(with all other quarks treated as infinitely heavy). This is because the critical temperature is
given by Tc ≈ 160 MeV, which is two orders of magnitude larger than the masses of the up
and down quarks. Tc is slightly larger than the mass of the strange quark, so one may consider

1We ignore factors of ZN f
that result from the isomorphism U(N)≃ [SU(N)× U(1)]/ZN .
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the N f = 3 massless case and treat the mass of the strange quark as a perturbation as well,
although this approximation may not be as well justified as in the case of up and down quarks.

For the case N f = 2, GLR becomes SU(2)L × SU(2)R ≃ SO(4), while GLRA becomes
SU(2)L × SU(2)R × U(1)A ≃ SO(4)× SO(2).2 In the GLRA case the order of the chiral phase
transition was originally suggested to be first order using the ϵ expansion [1], and supporting
evidence for this conclusion has also been reported [5, 6]. However, the conformal bootstrap
method applied to this scenario in [7] (for a review see [8]) produced evidence for the ex-
istence of a potentially relevant O(4) × O(2) universality class in d = 3 dimensions. The
work [9] has also provided evidence in favor of a second order phase transition in the case of
effective restoration of U(1)A using renormalization group methods and resummations. For
N f = 3 GLRA is SU(3)L × SU(3)R × U(1)A and perturbative methods have not found a fixed
point that would open the possibility of a second-order chiral phase transition in three-flavor
massless QCD. A recent Monte Carlo analysis for O(4)×O(2) can be found in [10], whereas
the three-flavor case has been studied recently in [11,12]; see also [13] for an overview.

In this work we study conformal field theories (CFTs) with mn complex scalar fields and
U(m)×U(n) global symmetry. The scalar fields are assembled into a complex m× n matrix Φ
which transforms as a bifundamental under the action of U(m)×U(n). Our results for the case
m = n = 2,3 are of potential relevance to the case of the chiral phase transition of two- and
three-flavor massless QCD, respectively.3 We note that U(m)×U(n) is the symmetry group that
naturally arises in the corresponding Landau–Ginzburg model built with Φ as a fundamental
field [1,5,6,9], which has been discussed in the context of the chiral phase transition of QCD
for many years (as discussed above).

Before proceeding to outline our methodology and results, let us point out which results
will be relevant if the symmetry of QCD at high temperature is GLRA, and which will be relevant
if it is GLR. Our non-perturbative numerical results, due to the bootstrap, will apply to both
cases. The logic is very similar to that of [14]. The relevant difference between the groups
U(n) and SU(n) for our purposes is in the existence of the n-index Levi–Civita tensor, which
is an invariant of SU(n) but not U(n). This will affect the case U(4)×U(4), which will not be
equivalent to SU(4)× SU(4), in that there will be more sum rules in the SU(4)× SU(4) case.
However, without further assumptions these additional sum rules would not yield different
results for the bounds obtained in this work using the U(4)× U(4) sum rules. On the other
hand, our perturbative results will apply to the case of GLRA only. That is because, as discussed
in [1] for example, the absence of the U(1)A symmetry allows one to add the schematic term
g(det(Φ)+det(Φ†)) to the Lagrangian, where g is some coupling. To find controlled perturba-
tive fixed points in our work we necessarily take g = 0, which enhances the symmetry to GLRA.

We analyze the U(m)× U(n) model in the standard ϵ expansion below d = 4 up to three
loops and also in the large-n expansion at leading order in 1/n using analytic bootstrap meth-
ods. Our results include expressions for the scaling dimensions of scalar operators quadratic
(bilinear) in Φ that belong to various irreducible representations (irreps) of the global symme-
try group. Dimensions of such non-singlet operators determine crossover exponents. We also
use the non-perturbative numerical conformal bootstrap [15] (for a review see [16] and [17];
for a pedagogical introduction see [18]) to obtain upper bounds on various operator dimen-
sions by considering the constraints of unitarity and crossing symmetry in the four-point func-
tion of Φ.

For the N f = 2 case our numerical bootstrap bounds coincide with those obtained in [7].
This includes a kink that indicates the possible existence of a CFT with O(4)×O(2) symmetry
(see also [19]). For N f = 3 we also obtain bounds with kinks. Our results provide possible
evidence in favor of a second order chiral phase transition in the case of QCD with two or

2Note that we drop factors of Z2 in the isomorphism SU(2)× SU(2)/Z2 ≃ SO(4) for convenience of notation.
3We may think of Φ as the order parameter 〈q̄LqR〉 of the phase transition.
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three massless flavors. The associated universality classes, however, do not appear to be con-
tinuations of the ones predicted by the standard ϵ expansion for U(m)×U(n) theories with n
sufficiently larger than m.

While not immediately relevant for finite temperature QCD with a small number of mass-
less flavors, we also probe various parameter limits of U(m)× U(n) symmetric CFTs, such as
large n and m/n fixed with both m and n large (for a pedagogical discussion around the signif-
icance of fixed points with m/n fixed see [20] and [21]). These are expected to be interesting
from the point of view of field theory, given that we make numerous comparisons between
perturbative and non-perturbative predictions. Notably, we observe that at large n a lot of our
exclusion plots are almost exactly saturated by the perturbative predictions. In some cases this
happens even in the absence of any feature in the exclusion plot. Typically, in the numerical
conformal bootstrap, kinks are seen as signals of an exclusion bound being saturated by a CFT.
In the present work we see explicit examples where this is not strictly necessary. We also see
kinks due to theories, that at least naively according to the ϵ expansion, should be non-unitary.

This paper is organized as follows. In the next section we review known results regarding
theories with U(m)× U(n) global symmetry in the ϵ = 4− d expansion. In section 3 we work
out the group theory required for our analysis of U(m)× U(n) CFTs. These results are used
in section 4 to derive ϵ expansion results up to three loops (following the methods developed
in [22]), and in section 5 to derive results in the 1/n expansion valid in any d. In section 6 we
obtain non-perturbative numerical bootstrap bounds relevant for U(m)× U(n) CFTs in d = 3.
We conclude in section 7. In two appendices we include two different but equivalent ways
to derive the crossing equations required in our bootstrap problem, which are of course also
equivalent to the way described in section 3 of the main text.

2 Fixed points of theories with U(m)×U(n) global symmetry in
the ϵ expansion

In the theories we consider, the mn complex scalar fields (2mn real scalar fields) are assembled
into an m× n complex matrix Φar , a = 1 . . . , m, r = 1, . . . , n. The Hermitian conjugate of Φar
is Φ†

ra. Using these fields, we may construct the U(m)× U(n) invariant Lagrangian [1,5,6]

L = ∂ µΦ†
ra ∂µΦar +

1
4u(Φ†

raΦar)
2 + 1

4 vΦ†
raΦasΦ

†
sbΦbr , (1)

where repeated indices are summed over and we consider up to quartic terms but neglect the
mass term m2Φ†

raΦar .
4 As far as interactions are concerned, we have the two couplings u and v.

A theory with v = 0 preserves O(2mn) symmetry. To examine stability of the quartic potential
we choose m ⩽ n without loss of generality and we find that stability requires u + v ⩾ 0 if
v < 0 and u+ 1

m v ⩾ 0 if v ⩾ 0.5

4We note that either U(m) or U(n) can realize the U(1) transformation Φar → eiαΦar . Therefore, strictly speak-
ing, the global symmetry group of (1) is [U(m) × U(n)]/U(1). With this in mind, we will continue to refer to
the global symmetry of (1) as U(m)× U(n) for brevity. For completeness, let us mention that it is also possible to
construct a fully U(m)×U(n) symmetric multiscalar Lagrangian using results of [23]. This would have two distinct
mass terms. To our knowledge the existence of a non-trivial fixed point in such a theory in the ϵ expansion has not
been studied in the literature.

5Let X = ΦΦ†. X is an m × m Hermitian matrix and by the Cauchy–Schwarz inequality with inner product
〈A, B〉= Tr(AB) for two Hermitian matrices A, B, by taking A= X and B = 1m we find (Tr X )2 ⩽ m Tr X 2. Addition-
ally, since X is positive-definite, we have (Tr X )2 ⩾ Tr X 2.
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Figure 1: Schematic flow diagrams corresponding to the four regimes mentioned in
the text. The location of the fixed points should not be viewed as precise, but the
fixed points are placed at locations consistent with the sign of the coupling v for
which they occur. The region between the hatched lines in each diagram represents
the basin of attraction of the stable fixed point.

The number of real fixed points of the Lagrangian (1) depends on the values of m and n.
There are four regimes:

(I) For n > n+(m) there are four real fixed points (Gaussian, O(2mn), U−, U+). Stable6

fixed point: U+.

(II) For n−(m) < n < n+(m) there are two real fixed points (Gaussian and O(2mn)). They
are both unstable.

(III) For nH(m) < n < n−(m) there are four real fixed points (Gaussian, O(2mn), U−, U+).
Stable fixed point: U+.

(IV) For n< nH(m) there are four real fixed points (Gaussian, O(2mn), U−, U+). Stable fixed
point: O(2mn).

The Gaussian fixed point has u = v = 0, while the O(2mn) fixed point has u > 0, v = 0. The
fully-interacting fixed points (i.e. the ones besides Gaussian and O(2mn)) both have uv ̸= 0
and U(m)×U(n) global symmetry. These fixed points move around in the u-v coupling plane
as m, n change. For every m there is a value of n, indicated by n+(m) above, for which U−
and U+ collide in the real u-v plane and subsequently move to the complex u-v plane as we
go below n+(m). For n > n+(m) the U+ fixed point is stable and has v > 0, as does U−, but
for n < n+(m) there is no real stable fixed point. However, for some n−(m) < n+(m) these
two fixed points reappear in the u-v plane—this time they have v < 0 and U+ is again stable.
Furthermore, there is a value nH(m) < n−(m) below which the O(2mn) fixed point is stable,
since one of the fully interacting fixed points of the nH(m) < n < n−(m) regime crosses the
v = 0 line and acquires v > 0, while the other remains with v < 0. These four regimes are
depicted in Fig. 1.

The values of n±(m) can be estimated in the ϵ expansion:

n±(m) = 5m± 2
Æ

6(m− 1)(m+ 1)−
�

5m±
(5m− 4)(5m+ 4)

2
p

6(m− 1)(m+ 1)

�

ϵ +O(ϵ2) . (2)

In a recent paper, these results have been extended to six loops, or order ϵ5 [6]. The value of
n+(m) is of interest due to applications to m-flavor QCD. In particular, if n+(m)< m in d = 3,
then there exists a unitary 3D CFT with U(m)× U(m) global symmetry (corresponding to U+

6A fixed point with only one relevant scalar singlet operator, namely the mass operator Φ†
raΦar , is called stable.
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in regime (I) above). However, the essential conclusion of the ϵ expansion after resummations
is that n+(m) > m [5,6] in d = 3. This has been used to argue that there is no stable unitary
fixed point of (1) for m = n that could describe the m-flavor chiral phase transition of QCD,
which requires a stable fixed point as well as v > 0 for the appropriate symmetry-breaking
pattern and thus could not lie in regimes (II), (III) or (IV).

3 Group theoretic considerations

In this section we describe the group theoretic ingredients that will allow us to derive results in
the ϵ expansion as well as the crossing equation that we will use for our analytic and numerical
bootstrap studies.

For our purposes7 it is more economical (index-wise) to consider the replacement [24]

Φar = Tar
iφi , Φ†

ra = T †
ra

iφi , i = 1, . . . , 2mn , (3)

where the 2mn complex m×n matrices Tar
i encode the complex nature of Φar , while the 2mn

fields φi are real. Essentially, the fields Φ and Φ† are repackaged into their real and complex
parts, schematically (Φ+Φ†) and −i(Φ−Φ†).8 The T matrices satisfy

T †
ra

i Tbs
i = δabδrs , Tar

i Tbs
i = 0 , T †

ra
i T †

sb
i = 0 ,

T †
ra

i Tar
j + T †

ra
j Tar

i = Tr(T † i T j + T † j T i) = δi j .
(4)

3.1 Rank-four invariant tensors

The T matrices allow us to construct the rank-four (in the indices i, j, . . .) invariant tensors of
U(m)× U(n). These can be used to derive a variety of results in the ϵ expansion up to three
loops as described in [22].9

For m ̸= n there is one fully symmetric traceless rank-four primitive invariant tensor, ζi jkl ,
three rank-four primitive invariant tensors ωu,i jkl , u= 1,2, 3, with symmetry properties

ωu,i jkl =ωu, jikl , ωu,kli j =ωu,i jkl , ωu,i( jkl) = 0 , ωu,iikl = 0 , (5)

and two fully antisymmetric rank-four primitive invariant tensors, ψx ,i jkl , x = 1,2. With the
addition of the non-primitive rank-four invariant tensors δi jδkl , δikδ jl and δilδ jk we have a
total of 12 independent rank-four invariant tensors.10 One can check that products of these
12 tensors with four free indices (such as e.g. ωu,i jkl ζklmn) close on themselves, i.e. they do
not produce any additional tensors. For m = n we can treat the two U(n)’s as distinguishable
or indistinguishable. In the latter case one of the ω and one of the ψ tensors disappear and
we are left with 9 independent invariant tensors.

With the use of the real scalar fields φi , the U(m)× U(n) invariant Lagrangian takes the
form11

L = 1
2∂

µφi∂µφi +
1
8λ(φ

2)2 + 1
24 gζi jklφiφ jφkφl , (6)

7Converting to a one-index real-field notation allows us to readily extract results from existing ϵ expansion
computations in the literature. The reader directly interested in numerical bootstrap sum rules may see Appendix
A.

8As an explicit example, consider Φ11 = φ1 + iφ2; then T11
1 = 1 and T11

2 = i. Also, all other elements, such as
e.g. T12

1 or T44
1, are zero. With this example in mind, the reader may convince themselves by inspection that (4)

holds (up to normalization).
9With the recent work of [24] some of these results can be extended to six loops.

10There are two inequivalent index permutations and therefore two independent invariant tensors for each ω.
11We consider terms up to quartic in φ and neglect the mass term 1

2 m2φ2.
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where φ2 = φiφi and

ζi jkl =
1
2 Tr
�

T †
(i T j T

†
kTl)
�

−
m+ n
mn+ 1

(δi jδkl +δikδ jl +δilδ jk) , (7)

where parentheses around indices are used to denote symmetrization of the enclosed indices.12

Due to cyclicity of the trace there are 12 distinct terms among the 24 produced by the sym-
metrization of the indices. Choosing, without loss of generality, m⩽ n, the bound

3(m− 1)(m+ 1)
m(mn+ 1)

(φ2)2 ⩽ ζi jklφiφ jφkφl ⩽
3(m− 1)(n− 1)

mn+ 1
(φ2)2 (8)

is satisfied. The couplings λ, g of (6) are related to the couplings u, v of (1) via

λ= 1
2

�

u+
m+ n
mn+ 1

v
�

, g = 1
2 v . (9)

The tensor ζi jkl satisfies

ζi jmnζmnkl =
1

2mn− 1
a
�

mn(δikδ jl +δilδ jk)−δi jδkl

�

+ euωu,i jkl + bζi jkl , (10)

with

a =
6(m− 1)(m+ 1)(n− 1)(n+ 1)

(mn+ 1)2
,

e1 =
2(m+ n)

3
, e2 = m− n , e3 =

2
3
(2m+ 2n+ 3) ,

b =
2(m+ n)(mn− 5)

3(mn+ 1)
,

(11)

where

ω1,i jkl = Sym
i j

Sym
kl

�1
2 Tr
�

T †
i T j T

†
kTl − T †

i TkT †
j Tl − T †

kTi T
†
l T j + T †

i Tl T
†
kT j

�

− 2
�

Tr
�

T †
i Tk

�

Tr
�

T †
j Tl

�

+ Tr
�

T †
kTi

�

Tr
�

T †
l T j

�

− 2Tr
�

T †
i T j

�

Tr
�

T †
kTl

��	

+
4mn+m+ n
2(2mn− 1)

(δikδ jl +δilδ jk − 2δi jδkl) ,

ω2,i jkl = Sym
i j

Sym
kl

�

Tr
�

T †
i T j T

†
kTl − T †

i Tl T
†
kT j

��

+
m− n

2mn− 1
(δikδ jl +δilδ jk − 2δi jδkl) ,

ω3,i jkl = Sym
i j

Sym
kl

�

Tr
�

T †
i Tk

�

Tr
�

T †
j Tl

�

+ Tr
�

T †
kTi

�

Tr
�

T †
l T j

�

− 2Tr
�

T †
i T j

�

Tr
�

T †
kTl

��

−
mn

2mn− 1
(δikδ jl +δilδ jk − 2δi jδkl) .

(12)

The operator Symi j simply symmetrizes the indices i, j of the expression on which it acts.
There are further identities like (10) involving the ωu tensors in the left-hand side. These

take the form
ωu,i jmnζmnkl = fu

vωv,i jkl + huζi jkl , (13)

12Here and hereafter symmetrization and antisymmetrization of indices is defined without an overall factorial
normalization factor.
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with

f1
1 =

m2n+mn2 + 8mn− 5m− 5n+ 8
3(mn+ 1)

, f1
2 = 1

2(m− n) , f1
3 = 2

3(m+ n+ 5) ,

f2
1 = 2

3(m− n) , f2
2 =
(m+ n)(mn− 1)

mn+ 1
, f2

3 = 4
3(m− n) ,

f3
1 = −4

3 , f3
2 = 0 , f3

3 = −
2(4mn+ 3m+ 3n+ 4)

3(mn+ 1)
,

h1 =
2(m+ n+ 2)(mn+ 1)

3(2mn− 1)
, h2 =

4(m− n)(mn+ 1)
3(2mn− 1)

, h3 = −
2(mn+ 1)
3(2mn− 1)

,

(14)

and

ωu,i jmnωv,mnkl =
1

2mn− 1
a′uv

�

mn(δikδ jl +δilδ jk)−δi jδkl

�

+ e′uv
wωw,i jkl + b′uv ζi jkl , (15)

with the parameters appearing also determined but not quoted here.
Further relations involving the ωu tensors in the left-hand side require the ψx tensors in

the right-hand side:

ωu,im jnωv,kmln =
1

(mn+ 1)(2mn− 1)2
�

ãuvδikδ jl + âuvδilδ jk + ǎuvδi jδkl

�

+
1

2mn− 1
(ẽuv

wωw,i jkl + êuv
wωw,ik jl) + b′′uv ζi jkl + duv

xψx ,i jkl ,
(16)

and there are similar relations for ωu,im jnψx ,mnkl and ψx ,i jmnψy,mnkl . The tensors ψx are
given by

ψ1,i jkl = Tr
�

T †
[i T j T

†
kTl]
�

, ψ2,i jkl = Tr
�

T †
[i T j

�

Tr
�

T †
kTl]
�

,

where brackets around indices are used to denote antisymmetrization of the enclosed indices.
There are 12 distinct terms in ψ1 and 6 in ψ2.

Finally, there is a relevant identity involving four ζ tensors,

ζii′ j′k′ ζ ji′ l ′m′ ζk j′ l ′n′ ζlk′m′n′ =
1
4 A
�

δi jδkl +δikδ jl +δilδ jk

�

+ c ζi jkl , (17)

with

A= 1
N − 1

a
�

(N − 2)a+ 2(N − 1) b2
�

− a euhu ,

c = −
2(m+ n)(5m3n3 −m2n2 + 71mn− 20m3n− 20mn3 + 4m2 + 4n2 + 29)

(mn+ 1)3
.

(18)

When m = n the two U(n) factors in the global symmetry group U(n) × U(n) may be
treated as distinguishable or indistinguishable. In the former case one simply needs to take
m= n in the various expressions given in this work. In the latter case the indices carried by Φ
are indistinguishable, the global symmetry is enhanced to U(n)2 ⋊Z2 and the tensors ω2 and
ψ1 vanish. We will comment on this case separately at various points below.
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3.2 Rank-four projectors

To derive the projectors we will convert to invariant tensors that are not traceless. This is not
essential and is only done for simplicity of the expressions for the projectors. We thus define

ζ̃i jkl = ζi jkl +
m+ n
mn+ 1

(δikδ jl +δilδ jk +δi jδkl) ,

ω̃1,i jkl =ω1,i jkl −
m+ n+ 2

2(2mn− 1)
(δikδ jl +δilδ jk − 2δi jδkl) ,

ω̃2,i jkl =ω2,i jkl −
m− n

2mn− 1
(δikδ jl +δilδ jk − 2δi jδkl) ,

ω̃3,i jkl =ω3,i jkl +
1

2(2mn− 1)
(δikδ jl +δilδ jk − 2δi jδkl) .

(19)

The ω̃u tensors satisfy all but the last of the properties in (5). Using these tensors one can
define the 12 rank-four projectors

PSeven
i jkl =

1
2mn

δi jδkl ,

PSodd
i jkl =

1
3mn

�

ω̃3,i jkl + 2ω̃3,ik jl +ψ2,i jkl

�

,

PRSeven
i jkl = −

1
2mn

δi jδkl +
1

6n
(ζ̃i jkl + ω̃1,i jkl −

3
2 ω̃2,i jkl + 2ω̃3,i jkl) ,

PRSodd
i jkl = −

1
6n
(ω̃1,i jkl + 2ω̃1,ik jl +

1
2 ω̃2,i jkl + ω̃2,ik jl +ψ1,i jkl)

−
1

3mn
[(m+ 1)(ω̃3,i jkl + 2ω̃3,ik jl) +ψ2,i jkl] ,

PSReven
i jkl = −

1
2mn

δi jδkl +
1

6m
(ζ̃i jkl + ω̃1,i jkl +

3
2 ω̃2,i jkl + 2ω̃3,i jkl) ,

PSRodd
i jkl = −

1
6m
(ω̃1,i jkl + 2ω̃1,ik jl −

1
2 ω̃2,i jkl − ω̃2,ik jl +ψ1,i jkl)

−
1

3mn
[(n+ 1)(ω̃3,i jkl + 2ω̃3,ik jl) +ψ2,i jkl] ,

PRReven
i jkl = 1

4(δikδ jl +δilδ jk)−
1

2mn
δi jδkl −

m+ n
6mn

ζ̃i jkl

−
1

6mn
[(m+ n)ω̃1,i jkl −

3
2(m− n)ω̃2,i jkl + (3mn+ 2m+ 2n)ω̃3,i jkl] ,

PRRodd
i jkl = −

1
4(δikδ jl −δilδ jk) +

1
6mn

[(m+ n)(ω̃1,i jkl + 2ω̃1,ik jl) +
1
2(m− n)(ω̃2,i jkl + 2ω̃2,ik jl)

+ (mn+ 2m+ 2n+ 2)(ω̃3,i jkl + 2ω̃3,ik jl)] +
m− n
6mn

ψ1,i jkl −
mn− 1
3mn

ψ2,i jkl ,

PT Teven
i jkl = 1

8(δikδ jl +δilδ jk) +
1
12 ζ̃i jkl −

1
6ω̃1,i jkl −

1
12ω̃3,i jkl ,

PTAodd
i jkl = −1

8(δikδ jl −δilδ jk) +
1
12(ω̃2,i jkl + 2ω̃2,ik jl)

− 1
12(ω̃3,i jkl + 2ω̃3,ik jl)−

1
12ψ1,i jkl +

1
6ψ2,i jkl ,

PATodd
i jkl = −

1
8(δikδ jl −δilδ jk)

− 1
12(ω̃2,i jkl + 2ω̃2,ik jl)−

1
12(ω̃3,i jkl + 2ω̃3,ik jl) +

1
12ψ1,i jkl +

1
6ψ2,i jkl ,

PAAeven
i jkl = 1

8(δikδ jl +δilδ jk)−
1
12 ζ̃i jkl +

1
6ω̃1,i jkl +

7
12ω̃3,i jkl , (20)

where the subscripts “even” and “odd” refer to the Lorentz spins with which the corresponding
irreps appear in the φi ×φ j OPE. Note that ω̃u, jikl + 2ω̃u, jkil = −ω̃u,i jkl − 2ω̃u,ik jl so that the
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“odd” projectors are odd under i↔ j (and under k↔ l). The projectors satisfy

P I
i jmnPJ

nmkl = P I
i jkl δ

I J ,
∑

I

P I
i jkl = δilδ jk , P I

i jkl δilδ jk = d I
r , (21)

where d I
r is the dimension of the irrep indexed by I :

d⃗r =
�

[1]2, [(m− 1)(m+ 1)]2, [(n− 1)(n+ 1)]2, [(m− 1)(m+ 1)(n− 1)(n+ 1)]2,
1
2 m(m+ 1)n(n+ 1), 1

2 m(m+ 1)(n− 1)n, 1
2(m− 1)mn(n+ 1), 1

2(m− 1)m(n− 1)n
�

,
(22)

where by [x]2 we mean that x appears two consecutive times.
In the case where m = n and we treat the two U(n) factors as indistinguishable, then, as

a consequence of the disappearance of ω̃2 and ψ1, instead of separate projectors PRSeven and
PSReven we only have the sum PRSeven + PSReven ,13 and the same happens for PRSodd , PSRodd and
PTAodd , PATodd . Consequently, we have a total of 9 independent rank-four projectors.

In Appendices A and B we give projectors using different ways of parametrizing the scalar
fields. Parametrizing the field with a suitable number of indices, one is able to express the
projectors solely in terms of Kronecker deltas for both real and complex fields. These have the
advantage of being the most straightforward tensors one can write down.

4 Results in the ϵ expansion

The results of the previous section suffice to determine beta functions and anomalous dimen-
sions up to three loops following [22]. With the rescalings (λ, g) → 16π2(λ, g) and using
N = 2mn, these are

βλ
(1) = −ϵ λ+ (N + 8)λ2 + a g2 ,

βg
(1) = −ϵ g + 12λ g + 3 b g2 ,

(23)

βλ
(2) = −3(3N + 14)λ3 − 1

6(5N + 82) aλg2 − 2 ab g3 ,

βg
(2) = −(5N + 82)λ2 g + 1

6(N−1)(N
2 − 17N + 34) a g3 − 6 b(6λg2 + b g3) + 3 euhu g3 ,

(24)

and

βλ
(3) = 1

8(33N2 + 922N + 2960)λ4 + 12(5N + 22)ζ3λ
4

+ 1
16(N

2 + 500N + 3492) aλ2 g2 + 12(N + 14)ζ3 aλ2 g2

+ 1
8(27N + 470) a bλg3 + 48ζ3 a bλg3

− 1
16(N−1)(7 N2 − 33 N + 114) a2 g4 + 13

2 a b2 g4 − 11
2 a euhu g4 + 3Aζ3 g4 ,

βg
(3) = −1

4(13N2 − 368N − 3284)λ3 g + 48(N + 14)ζ3λ
3 g

+ 3
8(43N + 1334) bλ2 g2 + 432ζ3 bλ2 g2

+ 3
N−1

�

3 N2 + 33 N − 50
�

aλg3 + 156 b2λg3 − 42 euhuλg3 + 72A/aζ3λg3

− 1
16(N−1)(11 N2 − 289 N + 626) a b g4 + 39

2 b3 g4 − 3
4

�

29 b euhu − 8 eu fu
vhv

�

g4

+ 12ζ3 c g4 . (25)

The φ anomalous dimension matrix is γφ1N with

γ
(2)
φ
= 1

4(N + 2)
�

λ2 + 1
6 a g2
�

, (26)

13in which case we will refer to the corresponding irrep as RSSR.
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and
γ
(3)
φ
= − 1

16(N + 2)(N + 8)λ3 − 1
32(N + 2)(6aλg2 + a b g3) . (27)

Relevant operators quadratic in φ can be considered by extending (6) by

L →L + 1
2σφ

2 + 1
2 ρi jφiφ j , ρii = 0 . (28)

The corresponding beta functions for σ,ρ are then [22]

βσ
(1) = (N + 2)λσ , βσ

(2) = −5
2(N + 2)(λ2 + 1

6 a g2)σ ,

βσ
(3) = 1

16(N + 2)
�

12(5N + 37)λ3 + (N + 164) a g2λ+ 27 ab g3
�

σ ,

βρ,i j
(1) = 2λρi j + g ζi jklρkl ,

βρ,i j
(2) = − 1

2

�

(N + 10)λ2 − N2−5N+10
6(N−1) a g2
�

ρi j − (4λg + b g2)ζi jklρkl +
1
2 euωu,i jklρkl ,

βρ,i j
(3) = − 1

4

�1
2(5N2 − 84N − 444)λ3 − 5N2+65N−82

N−1 a g2λ+ N2−35N+54
4(N−1) ab g3
�

ρi j

+1
8

�

3(9N + 146)g λ2 + 192 b g2λ− 3N2−25N+66
2(N−1) a g3 + 32 b2 g3 − 22 euhu g3

�

ζi jklρkl

−
�

3 g2λ+ 5
4 b g3
�

euωu,i jklρkl + g3 eu fu
vωv,i jklρkl . (29)

In general, βσ = γσσ, but anomalous dimensions for ρ are determined by the eigenvalue
problem

ζi jkl vkl = µ vi j , ωu,i jkl vkl = µu vi j , vi j = v ji , vii = 0 , (30)

requiring, using (10), (13) and (15),

µ2 = euµu + bµ+ N
N−1 a , µµu = fu

vµv + huµ , µuµv = e′uv
wµw + b′uv µ+

N
N−1 a′uv . (31)

The results (23)–(27) and (29), (31), for the appropriate a, b, c, eu, fu
v , hu, a′uv , b′uv and

e′uv
w, apply to any scalar theory with a global symmetry group that has a unique rank-four

symmetric traceless primitive invariant tensor [22]. In this work we will focus on the two
fixed points of (6), labeled U±, that preserve U(m)×U(n) symmetry.14 At leading order in the
ϵ expansion,

λ
(1)
± =

1
4(mn+ 1)Dmn

�

Amn ± Bmn
p

Rmn

�

ϵ ,

g(1)± =
1

2 Dmn

�

Bmn ∓ 3
p

Rmn

�

ϵ ,
(32)

where

Amn = 2m2n2 + 14mn+m3n+mn3 − 11m2 − 11n2 + 36 , Bmn = m2n+mn2 − 5m− 5n ,

Dmn = 2m2n2 − 16mn+m3n+mn3 − 8m2 − 8n2 + 108 , Rmn = m2 + n2 − 10mn+ 24 .
(33)

The two fixed points coincide when Rmn = 0, in which case the upper bound of [25] on the
quantity λi jklλi jkl at leading order in the ϵ expansion, namely λi jklλi jkl ⩽

1
8 Nϵ2, is saturated.

Using [26] we find that the Diophantine equation Rmn = 0 has an infinite number of positive
integer solutions given by (without loss of generality we assume m< n)

mi+1 = ni , ni+1 = −mi + 10ni , i = 1, 2, . . . ,

m1 = 1 , n1 = 5 .
(34)

14There are two further fixed points of (6): the free theory and the O(2mn) model.
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The solution with smallest N is m = 5, n = 49, N = 490, since for m = 1 g(1)± is singular at
n = 5. When the U± fixed points coincide they annihilate and move off to the complex (λ, g)
plane as discussed in section 2. The solutions (34) correspond to n+ of (2) at ϵ = 0.

To present results in compact form we will assume, without loss of generality, that m < n
and present anomalous dimensions in a large-n expansion up to three loops but at leading or-
der in 1/n. The full unexpanded in n results are straightforward to compute with our methods
and they are included in an ancillary file. The anomalous dimension of φ is

γφ,+ =
m
8n

�

ϵ2 − 1
4 ϵ

3
�

, γφ,− =
(m− 1)(m+ 1)

8mn

�

ϵ2 − 1
4 ϵ

3
�

. (35)

The dimension of φ at the fixed points U± is equal to ∆± = 1− 1
2 ϵ + γ±.

For the φ2 operator (leading scalar in the irrep Seven above) we find

γσ,+ = ϵ −
m
n

�

3ϵ − 13
4 ϵ

2 + 3
16 ϵ

3
�

, γσ,− =
(m− 1)(m+ 1)

mn

�

3ϵ − 13
4 ϵ

2 + 3
16 ϵ

3
�

. (36)

Finally, for the ρi jφiφ j operators we find a decomposition into five distinct cases, with

γρ1,+ = ϵ −
m
n

�

ϵ − 5
4 ϵ

2 + 3
16 ϵ

3
�

, γρ1,− = ϵ −
1

mn

�

(m2 − 5)ϵ − 5
4(m

2 − 5)ϵ2 + 1
16(3m2 − 11)ϵ3

�

,

γρ2,+ =
m
n

�

ϵ − 1
4 ϵ

2 − 5
16 ϵ

3
�

, γρ2,− =
(m− 1)(m+ 1)

mn

�

ϵ − 1
4 ϵ

2 − 5
16 ϵ

3
�

,

γρ3,+ =
m
4n

�

ϵ2 − 1
4 ϵ

3
�

, γρ3,− = −
1

mn

�

ϵ − 1
4(m

2 + 1)ϵ2 + 1
16(m

2 − 5)ϵ3
�

,

γρ4,+ =
1
n

�

ϵ + 1
4(m− 2)ϵ2 − 1

16(m+ 4)ϵ3
�

, γρ4,− =
m− 1
mn

�

ϵ + 1
4(m− 1)ϵ2 − 1

16(m+ 5)ϵ3
�

,

γρ5,+ = −
1
n

�

ϵ − 1
4(m+ 2)ϵ2 − 1

16(m− 4)ϵ3
�

, γρ5,− = −
m+ 1
mn

�

ϵ − 1
4(m+ 1)ϵ2 + 1

16(m− 5)ϵ3
�

.

(37)

These correspond to the leading scalar operators in the irreps RSeven, SReven, RReven, T Teven,
AAeven above, respectively. The dimensions of the quadratic in φ operators at the fixed points
U± are equal to ∆σ,ρ,± = 2 − ϵ + γσ,ρ,±. Since γσ,+ and γρ1,± are equal to ϵ at n → ∞,
there should exist a large n expansion (independent of the ϵ expansion studied in this section)
in which the scaling dimensions of these operators at the corresponding fixed points go to 2
in the infinite-n limit. In the next section, using the analytic bootstrap, we will compute the
1
n corrections for d arbitrary. We will see that indeed the ϵ and large-n expansions agree in
their region of overlapping validity. Our non-perturbative numerical bootstrap results in d = 3
below are also consistent with the existence of the large-n limit.

When m= n from (33) we have Rnn = 8(3− n2) and thus the ϵ expansion gives a unitary
fixed point for n2 ⩽ 3.15 For positive integer n this is only satisfied for the uninteresting case
n= 1.

When m = n > 1 and we treat the two U(n) factors as indistinguishable, then the indices
u, v, w in (31) take only two values (as opposed to three in the m ̸= n case). As a result, the
ρi jφiφ j operators decompose into four distinct cases (as opposed to the five in (37)), due to
the fact that RSeven and SReven can no longer be distinguished. The anomalous dimensions of
the corresponding operators are real when n2 ⩽ 3.

If we take m, n large with m/n held fixed, then we observe that ∆φ,− = ∆φ,+,
∆σ,− + ∆σ,+ = d and ∆ρi ,− = ∆ρi ,+ for i = 1, . . . , 5. Assuming m, n > 0 and n = αm,

then Rmn in (32), (33) is positive when α < 5− 2
p

6
p

1− 1/m2 or α > 5+ 2
p

6
p

1− 1/m2.

15This holds for ϵ infinitesimal. When ϵ is finite, this value is expected to change.
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If m is assumed large and n > m, then we may focus in the region α ≳ αc = 5+ 2
p

6, where
the fixed points U± are unitary. The value of αc has an ϵ expansion that follows from (2). As
we will see below, the numerical conformal bootstrap provides evidence that for large m, n
the fixed points U± either remain unitary down to αc = 1 in d = 3, or their non-unitarities
are small enough to still allow the bootstrap to produce a kink. Lastly, let us mention that the
results in (37) have the same strict double scaling limit, α = m/n fixed with m and n large,
with the corresponding results in [19], differing only in subleading 1/n corrections. We will
see this reflected in one of our plots later (see the discussion around Fig. 8).

5 Results in the large-n expansion

In this section we use analytic bootstrap methods as outlined in [19, Sec. 3] to determine scal-
ing dimensions of operators at leading order in 1/n as a function of the spacetime dimension
d. Our basic assumption is that there exist auxiliary Hubbard–Stratonovich fields as leading
scalar operators in some irreps. This assumption can be verified a posteriori by means of a
comparison with the ϵ expansion results of the previous section.

The essential ingredient needed for our application of the analytic bootstrap method is the
crossing equation. The four-point function of φ is written in the form

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉=
1

(x2
12 x2

34)
∆φ

∑

I

P I
i jkl GI(u, v) , (38)

where P I
i jkl are the projectors (20), u, v are the usual cross-ratios defined by

u=
x2

12 x2
34

x2
13 x2

24

, v =
x2

14 x2
23

x2
13 x2

24

, x i j = x i − x j , (39)

and
GI(u, v) =
∑

OI

c2
φφOI

G∆OI ,ℓOI
(u, v) , (40)

with G∆,ℓ(u, v) the usual conformal block [27–29].16 The crossing equation follows from ex-
changing operators at x2 and x4 and can we written as

GI(u, v) = MI J

�u
v

�∆φ
GJ (v, u) , (41)

where the explicit form of the 12 × 12 matrix MI J is easy to work out and is included in an
ancillary file.

Imposing that the leading spin-two operator in the irrep Seven is the stress-energy tensor
with dimension d, and that the leading spin-one operators in the irreps RSodd and SRodd are
conserved currents with dimensions d − 1, we may determine the dimensions of operators at
leading order in 1/n in each of the U± fixed points. Here we report only the leading scalar
operators. We have included operators of higher spin in an ancillary file. First let us define
µ= d/2 and

η1 =
(µ− 2)Γ (2µ− 1) sin(πµ)

πΓ (µ)Γ (µ+ 1)
. (42)

16Our conventions for the normalization of the conformal block are those of [30].
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At U+ we find, at leading order in 1/n,

∆φ,+ = µ− 1+
m
2
η1

n
3d
=

1
2
+

2m
3π2n

,

∆S,+ = 2−
2(µ− 1)(2µ− 1)m

2−µ
η1

n
3d
= 2−

16m
3π2n

,

∆RS,+ = 2−
2(µ− 1)2m

2−µ
η1

n
3d
= 2−

4m
3π2n

,

∆SR,+ = 2∆φ+ +
µm

2−µ
η1

n
3d
= 1+

16m
3π2n

,

∆RR,+ = 2∆φ+
3d
= 1+

4m
3π2n

,

∆T T,+ = 2∆φ+ +
µ

2−µ
η1

n
3d
= 1+

4(m+ 3)
3π2n

,

∆AA,+ = 2∆φ+ −
µ

2−µ
η1

n
3d
= 1+

4(m− 3)
3π2n

. (43)

At U− and again at leading order in 1/n we find

∆φ,− = µ− 1+
(m− 1)(m+ 1)

2m
η1

n
3d
=

1
2
+

2(m− 1)(m+ 1)
3π2mn

,

∆S,− = 2∆φ− +
µ(4µ− 5)(m− 1)(m+ 1)

(2−µ)m
η1

n
3d
= 1+

16(m− 1)(m+ 1)
3π2mn

,

∆RS,− = 2−
2

2−µ

�

(µ− 1)2m−
4µ2 − 6µ+ 1

m

�η1

n
3d
= 2−

4(m− 2)(m+ 2)
3π2mn

,

∆SR,− = 2∆φ− +
µ(m− 1)(m+ 1)
(2−µ)m

η1

n
3d
= 1+

16(m− 1)(m+ 1)
3π2mn

,

∆RR,− = 2∆φ− −
µ

(2−µ)m
η1

n
3d
= 1+

4(m− 2)(m+ 2)
3π2mn

,

∆T T,− = 2∆φ− +
µ(m− 1)
(2−µ)m

η1

n
3d
= 1+

4(m− 1)(m+ 4)
3π2mn

,

∆AA,− = 2∆φ− −
µ(m+ 1)
(2−µ)m

η1

n
3d
= 1+

4(m− 4)(m+ 1)
3π2mn

. (44)

We have checked that the µ-dependent results are consistent with (35), (36) and (37) when
expanded in ϵ with µ= 2−ϵ/2. To our knowledge the large-n results presented here are new.

6 Numerical bootstrap results

We start this section by noting that in the various plots we will label bounds for U(m)×U(n) the-
ories by Um,n for brevity. We emphasize here that, since our bootstrap bounds are obtained with
the four-point function ofφ only, they apply to theories with U(m)×U(n), [U(m)×U(n)]/U(1),
and SU(m)×SU(n) global symmetry.17 For the case m= n we may treat the two U(n) factors
as distinguishable or indistinguishable and we will explicitly mention our choice in context.
With the latter choice those are bounds for theories with U(n)2⋊Z2 global symmetry, and we
will label these by bUn,n in the corresponding plots.18 Whenever squares and circles appear in

17[U(m)×U(n)]/U(1) bounds are necessarily weaker than corresponding U(m)×U(n) bounds, but the two may
also coincide.

18U(n) × U(n) bounds are necessarily weaker than corresponding U(n)2 ⋊ Z2 bounds, but the two may also
coincide.
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Figure 2: Upper bound on the dimension of the first scalar RS operator in the φ×φ
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories. The locations of the fixed points as predicted by the large-n
results (43) and (44) for n= 5,10, 20 are also given as squares and circles for the U+
and U− fixed points, respectively. (The lines between squares and circles are added
to illustrate that the corresponding fixed points have the same symmetry.)

the plots, these correspond to the location of the U+ and U− fixed points of the corresponding
Lagrangian theories, respectively, according to the large-n results (43) and (44). Straight lines
connecting squares and circles are added to illustrate that the connected fixed points corre-
spond to the same m, n. It is emphasized that the fixed points U± are added in plots without
examining the issue of their existence as unitary fixed points. The parameters used in the
numerics are discussed in Appendix C. The crossing equations are included in an ancillary file.

In Fig. 2 we present bounds for the dimension of the first scalar operator in the RS irrep as
a function of the dimension of φ. We work with U(2)× U(n) theories, but similar behavior is
seen in bounds at higher m. These bounds display sharp kinks at large n. Using our analytic
large-n results of the previous section, we see that the U− fixed points are responsible for these
kinks.19

An interesting question is whether there exists a kink in the U(2) × U(2) theory. The
corresponding∆RS bound is seen in Fig. 3. There we see that the∆RS bound for the U(2)×U(2)
theory is much stronger than the∆RS bound for the U(2)×U(3) theory. The difference is much
more significant than that between the U(3)× U(3) and U(3)× U(4) theories, which are also
shown in Fig. 3 for comparison. This indicates that the U(2) × U(3) theory is sensitive to a
potential fixed point which has no extension to the U(2)×U(2) theory. Indeed, a kink is clearly
forming in the U(2)×U(3) bound, while no kink at all is present in the U(2)×U(2) bound.20

Comparing with Fig. 2, it seems plausible that the kink in the U(2)× U(3) bound in Fig. 3 is
due to the corresponding U− fixed point. Note that [6] estimated n+(2) = 4.373(18) in d = 3,

19That being said, we observed that extracting the spectrum at e.g. the U(2)× U(20) kink, there was no sign of
the “φ4”-type singlet with dimension∆S = 2+O(1/n) expected from the large-n description. A similar observation
was made for the bound corresponding to the O(2)×O(10) anti-chiral fixed point in [19]. Let us also mention that
operators have been known to be missing from the extracted spectrum even in theories which are under very good
control in the numerical bootstrap, such as the Ising model. For example, in Figure 11 of [31], while the second
and fourth Z2-odd spin-0 operators are captured by the numerics and agree with perturbative estimates, the third
operator is not seen.

20We have obtained the U(2)× U(2) ∆RS bound up to ∆φ = 0.7 and no kink is seen.
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Figure 3: Upper bound on the dimension of the first scalar RS operator in the φ×φ
OPE as a function of the dimension of φ. Areas above the curves are excluded in
the corresponding theories. The U(2)× U(2) and U(3)× U(3) bounds are obtained
assuming the two factors of the global symmetry group are distinguishable. The
location of the fixed points U+ (square) and U− (circle) as predicted by the large-n
results (43) and (44) for the U(2)×U(3) theory are also shown. (The line in between
is added to illustrate that the corresponding fixed points have the same symmetry.)

which if correct would imply that both U(2)×U(4) and U(2)×U(3) kinks in Fig. 2 correspond
to non-unitary fixed points.

Our conclusion from the∆RS bounds is that the U(2)×U(2) theory does not have a unitary
U− fixed point. This is consistent with expectations from perturbative methods [5, 6]. We do
stress, however, that this does not in principle exclude some other fixed point of a different
type for this symmetry (e.g. a fixed point inaccessible through standard perturbation theory);
see [9], [7] and also our discussion below pertaining to Fig. 6.

In Fig. 4 we plot bounds for the dimension of the first scalar operator in the SR irrep as a
function of the dimension of φ, again for U(2)×U(n) theories for various values of n. Here we
do not see kinks as sharp as those of Fig. 2, but at large n we do observe changes in slope that
are saturated by the U+ fixed point. This is more clear for the U(2)× U(20) theory in Fig. 5,
where we plot bounds on the dimensions of the leading operators in all five scalar non-singlet
irreps that appear in the φ ×φ OPE. The blue circle in each plot in Fig. 5 corresponds to the
O(80) model, which saturates the ∆RR, ∆T T and ∆AA bounds. Note that the ∆T T bound in
Fig. 5 is saturated both by the O(80) model and U− for different values of ∆φ , without sharp
kinks in either case.

In Fig. 6 we plot bounds on the leading scalar non-singlet operators in the case of
U(2) × U(2) symmetry with the O(8) fixed point marked in blue. As we have already men-
tioned, the∆RS bound does not display a kink, which is interpreted as the absence of a unitary
U+ fixed point for m= n= 2. However, the∆AA bound displays a kink around∆φ = 0.53. This
kink was first observed in the O(2)×O(4) studies of [7,19] (see [7, Fig. 3] and [19, Fig. 3]).21

In Fig. 7 we plot bounds on the leading scalar non-singlet operators for 3D CFTs with

21The bounds in Fig. 6 are valid for 3D CFTs with either U(2) × U(2) or
[U(2) × U(2)]/U(1) ≃ SU(2) × SU(2) × U(1) ≃ SO(4) × SO(2) global symmetry. The fact that the ∆AA

bound in Fig. 6 coincides with a bound obtained for 3D CFTs with O(4)× O(2) global symmetry means that 3D
CFTs with U(2)× U(2) symmetry, should any exist, lie in the allowed region of the ∆AA bound.
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Figure 4: Upper bound on the dimension of the first scalar SR operator in the φ×φ
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories. The locations of the fixed points as predicted by the large-n
results (43) and (44) for n= 5,10, 20 are also given as squares and circles for the U+
and U− fixed points, respectively. (The lines between squares and circles are added
to illustrate that the corresponding fixed points have the same symmetry.)

U(3)×U(3) symmetry. The O(18) fixed point is marked in blue. Here we observe no kinks at
all, indicating that the U± fixed points of the ϵ expansion do not appear to survive as unitary
fixed points for m= n= 3.

From our results so far it appears that the U± fixed points of the ϵ expansion are not of
importance for the chiral phase transition of two- and three-flavor massless QCD. Using our
setup we can extend this question to QCD with (parametrically) many massless flavors. In
Fig. 8 we present bounds on the dimension of the leading scalar operator in the RSSR irrep,
where we assume m = n and that the two U(n) factors are indistinguishable. We have also
obtained ∆RS and ∆SR bounds assuming that the two U(n) factors are distinguishable, which
are identical between themselves and differ slightly from the ones shown in Fig. 8 only for
n = 2,3. For large n the ∆RS , ∆SR bounds coincide with the corresponding ∆RSSR bound of
Fig. 8. As we observe, despite the absence of a kink for low n a kink is clearly seen at large
n.22 From Fig. 9 we expect this kink to be due to the U− fixed point.

We note that the m= n= 100 bound in Fig. 8 is essentially identical to the one in [33, Fig.
12]. This explains the origin of the kink seen in that bound. Note that the operator Zab

i j in that
work is equivalent (when a, b = 1,2) to a bifundamental operator φi j of O(n)×O(n) in the
case where the O(n) factors are indistinguishable. Then, following our discussion at the end
of section 4, it becomes clear why these bounds can coincide at large n.

The bU1000,1000 kink in Fig. 9 (which is identical to the ∆RS kink in Fig. 10) is also relevant
for the possible existence of a U(m)× U(n) 3D CFT at m, n large with m/n fixed and close to
1. As we discussed at the bottom of section 4, when m, n are both large but m/n is sufficiently
small, the U± fixed points are unitary. Since the kink in Fig. 9 survives as we increase the
ratio m/n towards 1, we may conclude that either the U± fixed points survive as unitary fixed
points in that case, or the possible non-unitarities are too small to stop the kink from forming.

22A similar situation has been encountered in the bootstrap of four-point functions of scalar adjoint operators in
3D CFTs with SU(N) global symmetry [32, Fig. 2].
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Figure 5: Upper bounds on the dimensions of the first scalar operators in the var-
ious irreps that appear in the φ × φ OPE as functions of the dimension of φ for
U(2)×U(20) global symmetry. The blue circle marks the location of the O(80) fixed
point, which for all plots in the vertical axis is given by the dimension of the leading
scalar two-index traceless symmetric operator in that theory. The U± fixed points are
also shown as green circles (U−) and squares (U+), connected by a thin line to indi-
cate that they have the same global symmetry. Areas above the curves are excluded.

Therefore, QCD23 with 1000 massless flavors may undergo a (near) second order chiral phase
transition due to the presence of the U+ fixed point. It would be interesting to compute the
value of n+(1000) in the ϵ expansion using the results of [6] and see which of the two pic-
tures it corroborates. If the fixed point is indeed non-unitary this could give us a quantitative
measure24 of the sensitivity to non-unitarities in the bootstrap.

Let us comment on Fig. 10. We have already discussed the kink in the ∆RS bound. We
additionally observe that the ∆RR,∆T T ,∆AA bounds essentially coincide. This coincidence is
also seen in the large-n results (43) and (44) when we take m large and equal to n, although
taking m large in those results is not justified. We have also compared with the large-m, n
O(m)×O(n) results of [19] and we find the same set of scaling dimensions.

In Fig. 11 we show the RS exclusion bound for m = 3 fixed and increasing n. At large n
these bounds have kinks that are saturated by the corresponding U+ fixed points. For n= 3, 4
no kinks are found up to∆φ = 0.54, and so we expect n+(3)> 4. Nevertheless, the U(3)×U(3)

23Or, more appropriately, Yang–Mills theory with a sufficiently large number of colors if one wants it to be
confining.

24Since one may tune the size of the non-unitarity by tuning 1/n.
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Figure 6: Upper bounds on the dimensions of the first scalar operators in the various
irreps that appear in theφ×φ OPE as functions of the dimension ofφ for U(2)×U(2)
global symmetry, where the two U(2) factors are considered distinguishable. The
blue circle marks the location of the O(8) fixed point, which for all plots in the vertical
axis is given by the dimension of the leading scalar two-index traceless symmetric
operator in that theory. Areas above the curves are excluded. The ∆SR bound is
identical to the ∆RS one.

0.5 0.51 0.52 0.53
1

1.2

1.4

∆ϕ

∆RS

0.5 0.51 0.52 0.53
1

1.05

1.1

1.15

∆ϕ

∆RR

0.5 0.51 0.52 0.53
1

1.05

1.1

1.15

∆ϕ

∆TT

0.5 0.51 0.52 0.53
1

1.05

1.1

1.15

1.2

∆ϕ

∆AA

Figure 7: Upper bounds on the dimensions of the first scalar operators in the var-
ious irreps that appear in the φ × φ OPE as functions of the dimension of φ for
U(3)×U(3) global symmetry, where the two U(3) factors are considered distinguish-
able. The blue circle marks the location of the O(18) fixed point, which for all plots
in the vertical axis is given by the dimension of the leading scalar two-index traceless
symmetric operator in that theory. Areas above the curves are excluded. The ∆SR
bound is identical to the ∆RS one.
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Figure 8: Upper bound on the dimension of the first scalar RSSR operator in theφ×φ
OPE as a function of the dimension of φ. The global symmetry group for the various
bounds here is U(n)2⋊Z2. Areas above the curves are excluded in the corresponding
theories.
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Figure 9: Upper bound on the dimension of the first scalar RS operator in the φ×φ
OPE as a function of the dimension of φ. The U1000,1000 bound has been obtained
treating the two U(1000) factors as distinguishable; however, it is identical to the
bU1000,1000 bound in Fig. 8. Areas above the curves are excluded in the corresponding
theories. The location of the U(100)× U(1000) U− fixed point as predicted by the
large-n results (44) theory is also shown. The U(100)×U(1000) U+ fixed point is at
the same location.
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Figure 10: Upper bounds on the dimensions of the first scalar operators in the var-
ious irreps that appear in the φ × φ OPE as functions of the dimension of φ for
U(1000)×U(1000) global symmetry, where the two U(1000) factors are considered
distinguishable. Areas above the curves are excluded. The ∆SR bound is identical to
the ∆RS one.

bound does have a kink as we see in Fig. 12. This kink appears to be unrelated to the U+ fixed
point of the ϵ expansion. As we see from Fig. 13 this kink disappears as we increase n with
m = 3 fixed. Its relevance for the nature of the chiral phase transition of QCD remains to be
seen, but its existence opens the possibility that it may be second order. We stress, however,
that this fixed point need not necessarily be due to a multi-scalar theory, but may also be due
to a gauge theory or a Gross–Neveu–Yukawa (GNY) theory.25

Before concluding, let us discuss a few more plots that present features which may be of
interest to the bootstrap in general. In Fig. 14 we present bounds on operators in various
representations of the global symmetry for the U(3) × U(20) CFTs. There are a couple of
features that stand out. Firstly, the exclusion bound for the l = 1 RR operator is almost exactly
saturated by the U− fixed point, even though the plot is essentially a straight line, absent of
even the mildest feature. Secondly, the bound on the l = 0 T T operator is also saturated very
well by the U+ fixed point, albeit in this case it does have a very minor feature (a very minor
change of slope). In fact, throughout this work, we found that the T T bound was always
saturated very well by the analytic predictions despite only having a very weak feature. These
examples show that a lot of mundane looking bootstrap plots may actually be much richer
than initially thought. To reiterate, we saw explicitly that the T T bound is saturated by not
just one, but two fixed points. Lastly, in Fig. 15 we plot the TA exclusion bound as a function
of increasing spin. For l = 1 we see that the bound is saturated by the U− fixed point. Then,
at l = 3 the bound is almost saturated by three distinct fixed points, again despite having no
feature. As the spin is further increased the agreement becomes progressively worse, which
may be due to loss of constraining power.

25As it is located at values of∆φ larger than the typical ones expected for multi-scalar theories (0.5+corrections).
We remind the reader that, for example in GNY theories, one obtains a correction to the anomalous dimension of
φ an order earlier in perturbation theory (at one loop instead of two loops as in a pure scalar field theory).
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Figure 11: Upper bound on the dimension of the first scalar RS operator in the φ×φ
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories. The locations of the fixed points as predicted by the large-n
results (43) and (44) for n = 3,4, 10,20 are also given as squares and circles for
the U+ and U− fixed points, respectively. The lines between squares and circles (for
n= 10, 20) are added to illustrate that the corresponding fixed points have the same
symmetry. These plots were run with parameters “D” in Appendix C.
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Figure 12: Upper bound on the dimension of the first scalar RS operator in the φ×φ
OPE as a function of the dimension of φ. The area above the curves is excluded.
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Figure 13: Upper bound on the dimension of the first scalar RS operator in the φ×φ
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories.

7 Discussion and future directions

In the present work we performed a comprehensive study of U(m) × U(n) symmetric CFTs.
This included perturbative computations in the ϵ = 4 − d and large-n expansions, and non-
perturbative computations with the numerical conformal bootstrap in d = 3. When m= n we
analyzed the cases where the two U(n) factors in U(n)× U(n) are considered distinguishable
or indistinguishable. Our study was motivated both by phenomenological applications to the
chiral phase transition of massless QCD, as well as purely field theoretical considerations.

For the phenomenologically interesting values of m = n = 2 for two-flavor massless QCD,
we found that as n is lowered from n= 3 to n= 2 with m= 2 fixed (see Fig. 3), there is a large
change in the corresponding bootstrap bound. More specifically, the bound becomes much
stronger (i.e. it excludes much more of parameter space) and lacks a kink that existed for larger
values of n (see Fig. 2). This could be explained by the disappearance of a unitary fixed point
as we lower the value of n, such that the bootstrap may then exclude the region in parameter
space originally occupied by that fixed point. If so, whatever fixed point was responsible for
the feature in the U(2) × U(n) exclusion bounds for large n, cannot exist for U(2) × U(2).
We stress, though, that this does not exclude the possibility of some other U(2)× U(2) fixed
point. For example, novel fixed points with O(n) × O(2) symmetry were reported in [34]
(remember that O(4)×O(2) ∼ SU(2)× SU(2)× U(1)). Indeed a kink is observed in the ∆AA
bound of Fig. 6, which may be attributed to a unitary CFT unrelated to the fixed points found
in the ϵ expansion. The ∆AA bound of Fig. 6 is identical to a bound obtained for 3D CFTs with
O(4) × O(2) global symmetry [7, 8, 19]. We note that recently [10] found the O(4) × O(2)
transition to be first order.

For m= n= 3, a case relevant for the chiral phase transition of three-flavor massless QCD,
we also observe a pronounced kink in our bootstrap bound; see Fig. 12. Therefore, our work
produces evidence that this transition may be second order.

On the field theoretical side, we observed that computations in the large-n limit provided
very accurate predictions for the scaling dimensions of numerous operators; see e.g. Fig. 5. Ad-
ditionally, we found that large-n results saturated bootstrap bounds, even in the complete ab-
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Figure 14: Upper bound on the dimension of various operators in the φ ×φ OPE as
a function of the dimension of φ for m = 3 and n = 20. The spin of each operator
is labeled by a superscript. Areas above the curves are excluded in the correspond-
ing theories. The locations of the fixed points as predicted by the large-n results
(43) and (44) are also given as squares and circles for the U+ and U− fixed points,
respectively. The lines between squares and circles are added to illustrate that the
corresponding fixed points have the same symmetry. The blue circle marks the loca-
tion of the O(120) fixed point. The first two plots were run with parameters “B” and
the rest with parameters “C” in Appendix C.

sence of kinks. Another interesting observation is that in Fig. 9 the unitary m= 100, n= 1000
fixed point seems to evolve into the m = n = 1000 fixed point as m is increased. One inter-
pretation of this is that for large m, n a unitary U(m)× U(n) CFT exists even when m/n→ 1.
An alternative interpretation is that in the limit m/n → 1 with n → ∞ the non-unitarities
become suppressed enough for the bootstrap bound to display a kink. Note that the double
scaling limit reported in this work also exists in the results of [19].

Given our results, it would be interesting to extend the existing perturbative data available
for these theories. More precise perturbative predictions could allow us to follow theories from
infinitesimal values of the control parameter to the physically interesting values (e.g. ϵ = 1 or
m = n = 2,3). For example, in [31] in the case of the Ising model within the context of the ϵ
expansion, the perturbative data was found, a posteriori, to be a very accurate description of
the full non-perturbative theory (at least in the absence of operator mixing). The extension of
results for U(m)×U(n) theories in the ϵ expansion to higher order in perturbation theory and

24

https://scipost.org
https://scipost.org/SciPostPhys.15.2.075


SciPost Phys. 15, 075 (2023)

0.5 0.505 0.51 0.515 0.52
2

2.02

2.04

2.06

∆ϕ

∆l=1
AT

0.5 0.505 0.51 0.515 0.52
4

4.02

4.04

∆ϕ

∆l=3
AT

0.5 0.505 0.51 0.515 0.52
12

12.02

12.04

∆ϕ

∆l=11
AT

0.5 0.505 0.51 0.515 0.52
18

18.1

18.2

18.3

∆ϕ

∆l=17
AT

Figure 15: Upper bound on the dimension of AT operators of various spins in the
φ ×φ OPE as a function of the dimension of φ for m = 3 and n = 20. The spin of
each operator is labeled by a superscript. Areas above the curves are excluded in the
corresponding theories. The locations of the fixed points as predicted by the large-n
results (43) and (44) are also given as squares and circles for the U+ and U− fixed
points, respectively. The lines between squares and circles are added to illustrate
that the corresponding fixed points have the same symmetry. The blue circle marks
the location of the O(120) fixed point. These plots were run with parameters “B” in
Appendix C.

more operators is possible with the results of [24]. Extension of our large n results to higher
orders would also be desirable, especially seeing the usefulness of even leading order results,
when used in conjunction with the numerical bootstrap. On the numerical side, we would like
to be able to precisely pinpoint the values of m and n which separate the different regimes of
fixed points (which we discussed in section 2).
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A Kronecker tensor structures for complex fields

In this appendix we demonstrate how a product of two operators can be decomposed onto
irreps of U(m) × U(n) in the picture where we work with complex fields. For simplicity we
will start with just U(n). The generalization to U(m) × U(n) is trivial. The main utility of
working with complex fields is that the projectors take their simplest form possible, namely
as combinations of Kronecker deltas with the least number of indices possible. The real field
picture can also have its projectors expressed in terms of Kronecker deltas, albeit at the cost of
more indices. We hope that presenting our projectors in three different pictures will make our
work more intuitive. In order to capture all irreps that can appear in the real field notation,
and hence not miss any information in the bootstrap algorithm, we need to consider two OPEs,
namely Φ†

i ×Φ j and Φi ×Φ j . Below we show how they may be decomposed onto irreps:

Φ†
i ×Φ j ∼
�

Φ†
iΦ j −

1
n
δi jΦ

†
kΦk

�

+
1
n
δi jΦ

†
kΦk ,

Φi ×Φ j ∼ (ΦiΦ j +Φ jΦi) + (ΦiΦ j −Φ jΦi) .
(A.1)

The first line in (A.1) shows the decomposition into the adjoint (R) and singlet (S) repre-
sentations, where as the second line shows the decomposition into the symmetric (T) and
antisymmetric representations (A). To read off the projectors from (A.1) it is useful to remem-
ber

OX
i j ∼ PX

i jklΦkΦl , OX
i j ∼ PX

i jklΦ
†
kΦl , (A.2)

where OX is the exchanged field in some irrep, e.g. OT
12 ∼ Φ1Φ2 + Φ2Φ1. The first relation in

(A.2) can be used to read off the T and A projectors, whereas the second can be used for S
and R. Notice that we have implicitly assumed that fields are inserted at different positions in
order for antisymmetric irreps to not vanish identically. The projectors can be read off as26

PS
i jkl =

1
n
δi jδkl , PR

i jkl = δikδ jl −
1
n
δi jδkl , (A.3)

PT
i jkl =

1
2
(δikδ jl +δilδ jk) , PA

i jkl =
1
2
(δikδ jl −δilδ jk) . (A.4)

The dimensions of the corresponding irreps are (1, (n − 1)(n + 1), 1
2 n(n + 1), 1

2 n(n − 1)). As
the reader may have observed from the main text, or the next appendix, when going from
the complex field picture to the real field picture the above dimensions get multiplied by a
factor of 2. For example n(n+1)

2 becomes n(n + 1). This is because each of the initial n(n+1)
2

complex elements contains two real elements. The last step now is to write down the projectors
for U(m) × U(n). This is trivial, in the sense that they are just products of U(m) with U(n)
projectors. We have

PS
i jklmnop = PS

i jkl P
S
mnop , PRS

i jklmnop = PR
i jkl P

S
mnop , PSR

i jklmnop = PS
i jkl P

R
mnop ,

PRR
i jklmnop = PR

i jkl P
R
mnop , PT T

i jklmnop = PT
i jkl P

T
mnop , PTA

i jklmnop = PT
i jkl P

A
mnop ,

PAT
i jklmnop = PA

i jkl P
T
mnop , PAA

i jklmnop = PA
i jkl P

A
mnop .

(A.5)

The sum rules that can be derived with the above projectors can be checked to be completely
equivalent to those derived from the projectors of real fields outlined in the main text. Another
observation is that, compared to real fields, we do not need separate projectors for even and
odd spins.

26Note that we take the correlator to be 〈Φ†
iΦ jΦkΦ

†
l 〉 which is why the projector of the adjoint representation is

equal to PR
i jkl = δikδ jl −

1
nδi jδkl instead of PR

i jkl = δilδ jk −
1
nδi jδkl .

26

https://scipost.org
https://scipost.org/SciPostPhys.15.2.075


SciPost Phys. 15, 075 (2023)

B Kronecker tensor structures for real fields

The projectors that correspond to a four-point function of real fields can be intuitively pre-
sented in terms of Kronecker deltas if we add an additional index. This form is useful since
one may directly extract the form of exchanged operators, as we will show. The form of ex-
changed operators is useful to know since it can guide us with respect to assumptions we may
impose. Also, we expect it to be easier to work with in a mixed correlator system. We start by
labeling the real and complex parts of an operator Φi with an index (we start with U(n) for
simplicity)

Φi = φ
1
i + iφ2

i , (B.1)

where the upper case Φ denotes the complex operator and the lower case φ denote real fields.
We must now simply plug in (B.1) to the expressions for the representations of the previous
appendix. For simplicity we will do this for the singlet representation, and then quote the
results for rest of the representations. Note that implicitly we consider the two external fields
of the OPE at different positions, for otherwise the antisymmetric combinations would vanish
identically. We have

Φ†
iΦi = (φ

1
i φ

1
i +φ

2
i φ

2
i ) + i(φ1

i φ
2
i −φ

2
i φ

1
i ) , (B.2)

where the first parenthesis corresponds to what was called Seven in the main text, and the
second parenthesis corresponds to what was called Sodd. As expected Sodd vanishes identically
if we don’t insert powers of derivatives between the operators. The projectors are now very
straightforward to write down by recalling the relation

OX
i j;ab = PX

i jkl;abcdφ
a
i φ

b
j , (B.3)

where X stands for some specific irrep and indices from the beginning of the latin alphabet
take the values 1, 2. Notice that (B.3) is simply the statement that projectors must project
products of operators onto irreps. We have

PSeven
i jkl;abcd =

1
2n
δabδcdδi jδkl ,

PSodd
i jkl;abcd =

1
2n
(δacδbd −δadδbc)δi jδkl .

(B.4)

Indeed, one may confirm that, for example,

OSeven
11;11 ∼ (φ

1
i φ

1
i +φ

2
i φ

2
i )∼ PSeven

11kl;11cdφ
c
kφ

d
l . (B.5)

This procedure can be repeated for the rest of the irreps. The resulting projectors are

PSeven
i jkl;abcd =

1
2n
δabδcdδi jδkl ,

PSodd
i jkl;abcd =

1
2n
(δacδbd −δadδbc)δi jδkl ,

PReven
i jkl;abcd =

1
2δabδcd

�

δikδ jl −
1
n
δi jδkl

�

,

PRodd
i jkl;abcd =

1
2(δacδbd −δadδbc)

�

δikδ jl −
1
n
δi jδkl

�

,

PTeven
i jkl;abcd =

1
4(δacδbd +δadδbc −δabδcd)(δikδ jl +δilδ jl) ,

PAodd
i jkl;abcd =

1
4(δacδbd +δadδbc −δabδcd)(δikδ jl −δilδ jl) .

(B.6)

The dimensions of the corresponding irreps are (1, 1, (n− 1)(n+ 1), (n− 1)(n+ 1), n(n+ 1), n(n− 1)).
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Using the above expressions, it is now trivial to write down the U(m)× U(n) projectors:

PSeven
i jklmnop;abcde f gh = PSeven

i jkl;abcd PSeven
mnop;e f gh + PSodd

i jkl;abcd PSodd
mnop;e f gh ,

PSodd
i jklmnop;abcde f gh = PSeven

i jkl;abcd PSodd
mnop;e f gh + PSodd

i jkl;abcd PSeven
mnop;e f gh ,

PRSeven
i jklmnop;abcde f gh = PReven

i jkl;abcd PSeven
mnop;e f gh + PRodd

i jkl;abcd PSodd
mnop;e f gh ,

PRSodd
i jklmnop;abcde f gh = PReven

i jkl;abcd PSodd
mnop;e f gh + PRodd

i jkl;abcd PSeven
mnop;e f gh ,

PSReven
i jklmnop;abcde f gh = PSeven

i jkl;abcd PReven
mnop;e f gh + PSodd

i jkl;abcd PRodd
mnop;e f gh ,

PSRodd
i jklmnop;abcde f gh = PSeven

i jkl;abcd PRodd
mnop;e f gh + PSodd

i jkl;abcd PReven
mnop;e f gh ,

PRReven
i jklmnop;abcde f gh = PReven

i jkl;abcd PReven
mnop;e f gh + PRodd

i jkl;abcd PRodd
mnop;e f gh ,

PRRodd
i jklmnop;abcde f gh = PReven

i jkl;abcd PRodd
mnop;e f gh + PRodd

i jkl;abcd PReven
mnop;e f gh ,

PT Teven
i jklmnop;abcde f gh = PTeven

i jkl;abcd PTeven
mnop;e f gh ,

PTAodd
i jklmnop;abcde f gh = PTeven

i jkl;abcd PAodd
mnop;e f gh ,

PATodd
i jklmnop;abcde f gh = PAodd

i jkl;abcd PTeven
mnop;e f gh ,

PAAeven
i jklmnop;abcde f gh = PAodd

i jkl;abcd PAodd
mnop;e f gh . (B.7)

From these expressions we can also see explicitly that when m = n, if we choose to consider
the two U(n) symmetries as indistinguishable (which we remind the reader is not strictly
necessary), the RS irreps become the same as the SR irreps. The same also happens for TA
and AT .

C Numerical parameters

For most of our plots, the bounds are obtained with the use of PyCFTBoot [30] and SDPB [38].
We use the numerical parameters m_max = 6,n_max = 9,k_max = 36 in PyCFTBoot, and
we include spins up to l_max = 26. The binary precision for the produced xml files is 896
digits. SDPB is run with the options --precision=896, --detectPrimalFeasibleJump,
--detectDualFeasibleJump and default values for other parameters. We refer to this set
of parameters as “A”. Unless otherwise stated, our plots are run with parameters “A”.

For some of the plots we used m_max = 5,n_max = 7,l_max = 36,k_max = 42 and
m_max = 6,n_max = 9,l_max = 36,k_max = 42, referred to as “B” and “C” respec-
tively. Lastly, we also used qboot [39], with Λ = 15, n_max = 500, ν_max = 25 and
l = {0–49, 55,56, 59,60,64, 65,69, 70,74, 75,
79, 80,84, 85,89, 90} referred to as “D”.
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