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Quantum oscillations in an impurity-band Anderson insulator
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Abstract

We show that for a system of localized electrons in an impurity band, which form an
Anderson insulating state at zero temperature, there can appear quantum oscillations of
the magnetization, i.e. the Anderson insulator can exhibit the de Haas–van Alphen ef-
fect. This is possible when the electronic band from which the localized states are formed
has an extremum that traces out a nonzero area in reciprocal space. Our work extends
existing theories for clean band insulators of this form to the situation where they host
an impurity band. We show that the energies of these impurity levels oscillate with mag-
netic field, and compute the conditions under which these oscillations can dominate the
de Haas–van Alphen effect. We discuss our results in connection with experimental mea-
surements of quantum oscillations in Kondo insulators, and propose other experimental
systems where the impurity band contribution can be dominant.
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1 Introduction

One of the most striking signatures of the Fermi surface of a metal is the appearance of quan-
tum oscillations [1]: the periodic modulation of physical observables with the inverse magnetic
field. Whether seen in the magnetization (the de Haas–van Alphen effect) or in the conduc-
tivity (the Shubnikov–de Haas effect), quantum oscillations in a metal arise from the Landau
quantization of the quasiparticle states close to the Fermi surface. They can be used as a highly
sensitive way to measure Fermi surface properties, including the Fermi surface geometry, and
the quasiparticle effective masses and scattering rates. Indeed, the requirement of small quasi-
particle scattering rate for the appearance of quantum oscillations has led to their observation
being taken as indicative of the existence of a Fermi liquid phase.

In recent years, this association has been called into question, in light of remarkable ex-
perimental discoveries of quantum oscillations in insulators. Quantum oscillations have been
observed in the Kondo insulators SmB6 [2–5] and YbB12 [6–9], and in insulating InAs/GaSb
quantum well devices [10–12]. More recently there have been reports of oscillatory behaviour
in WTe2 [13] and for the insulating spin-liquid α-RuCl2 [14,15], though these may be of differ-
ent origin [16–18]. These discoveries have initiated a re-examination of the long-established
theoretical understanding of quantum oscillations [1,19] to models that may represent these
insulating materials.

One class of theories explores the effects of Landau quantization on the electronic states
in band insulators. It is now understood that even very simple band insulators can give rise
to de Haas–van Alphen (dHvA) oscillations [20–22]. These can arise in a class of narrow-gap
insulators that have the feature that their gap minimum traces out a closed area in reciprocal
space. That quantum oscillations can appear in insulators – i.e. systems without a Fermi
surface – is not in conflict with standard theory for metals [1]. The amplitude of oscillations in
the band insulators falls as exp(−B0/B) as the magnetic field B goes to zero, with a field scale
B0 that is set by the insulating gap [23]. For Fermi liquids such damping is an extrinsic effect
that arises only as a result of impurities [1], so a nonzero B0 in a pristine system indicates that
it cannot be a metal.

Bandstructures that allow quantum oscillations in band insulators [20–22] are expected
in mean-field theories of Kondo insulators [24], and are also characteristic of topological in-
sulators [25] and two-dimensional (2D) semiconductor materials. The prevalence of these
new classes of materials in modern physics makes it important to understand theories for their
quantum oscillations. Recent theory has explored quantum oscillations in pristine band insula-
tors [26–31], the roles of topological bands [21] and of impurity scattering [32,33], oscillations
of the conductivity [34,35] and density of states [33], the effects of interactions [23,36–41],
and the consequences of quantum spin liquids [42] and of Kondo breakdown [43]. Experi-
mental measurements of the above Kondo insulators also show other anomalous features. The
large low-temperature heat capacity has inspired theories that suggest the role of excitons [44]
or impurity states [45,46].

Separate lines of theory, which can account also for the anomalous low-temperature ther-
mal conductivity observed in Kondo insulators [4, 7], postulate the existence of new phases
of matter, which host Fermi surfaces for neutral fermions that can give quantum oscillations
without electrical conductivity [47–53]. This remains an active and intriguing field of research,
and the origin of oscillations in these materials continues to be debated.

In this paper, we extend the reach of these recent theoretical explorations by considering
not a band insulator, for which the insulating behaviour is tied to the existence of an energy
gap at the Fermi level, but an Anderson insulator, for which there need be no energy gap and
the insulating behaviour arises from the states being spatially localized by disorder. We argue
that Anderson insulators can also show quantum oscillations of the magnetization. We focus

2

https://scipost.org
https://scipost.org/SciPostPhys.15.3.118


SciPost Phys. 15, 118 (2023)

on the magnetization, and not the conductivity, for two reasons. Firstly the magnetization is
an equilibrium quantity and therefore simpler to evaluate than the response function for the
conductivity. Secondly, oscillations of the magnetization can persist down to zero temperature
where the system is truly insulating, whereas oscillations in the conductivity can only be con-
sidered at non-zero temperature [34, 35] where the system is no longer strictly an insulator.
The model that we study starts from a narrow-gap band insulator of the form discussed previ-
ously [20], but introduces an impurity band which can host an Anderson insulating phase. Our
study goes beyond previous theories of impurity scattering in narrow-gap insulators [32,33],
which treat the impurities phenomenologically through scattering rates, and which lead to a
non-zero conductivity even for zero temperature. We provide a complete calculation of the
energetics for a simple model of an electron bound to an impurity site. As we argue below, in
the regimes in which the electrons in the impurity band form an Anderson insulator, the ener-
getics of the impurity band system are dominated by those of the individual impurity levels.
We calculate the quantum oscillations of these impurity levels, and determine the conditions
under which the quantum oscillations of the impurity band can dominate those from the back-
ground band insulator. The detailed analysis is restricted to the case of dilute impurities, for
which the overlap of the impurity levels can be neglected and the electrons in the impurity
band are restricted to states of order the size of the bound state a0. This is the limiting case
of the Anderson insulator where the localization length is a0. Nevertheless, it is sufficient to
study this case to establish the existence of quantum oscillations in Anderson insulators. We
comment below on the expected modifications in regimes in which the overlap of the impurity
bound states leads to electronic states that are less strongly localized.

The paper is organized as follows. In Sec. 2 we introduce the model that we study. We then
determine the properties of (shallow) bound states on impurities, in Sec. 3, and their response
to external magnetic field B. We show that the resulting oscillations of the magnetisation
are also suppressed at small magnetic fields, but now as exp(−Bimp

0 /B) with a new field scale

Bimp
0 for which we determine an analytic expression for our model. In Sec. 4 we discuss the

experimental consequences of our results, also in connection with experimental observations
of Kondo insulators. Finally in Sec. 5 we summarize our results and provide an outlook for
where they are most readily observed experimentally.

2 Model

We consider a model of a band insulator in two dimensions formed from the hybridization
of overlapping bands of spinless electrons. For simplicity of presentation the insulator that
we study is non-topological. However, the features that we shall focus on – regarding the
properties of impurity levels – would appear also for a topological insulator. The unhybridised
bands have masses m1 and m2, and their energy offset leads them to cross on the circle |p|= p∗,
with single-particle Hamiltonian

Ĥ =

�

(|p̂|2 − p2
∗)/(2m1) γ/2
γ/2 −(|p̂|2 − p2

∗)/(2m2)

�

. (1)

The hybridisation γ opens a gap close to p∗, which we shall assume to be small compared to
the characteristic kinetic energy scales p2

∗/(2m1,2). The resulting upper/lower bands E±(p)
then have a band minimum/maximum at energies E±∗ located at the momenta

(p±∗ )
2 = p2

∗ ± γ
p

m1m2

�

m1 −m2

m1 +m2

�

, (2)

which are close to p∗. See Fig. 1. The Fermi level is taken to lie in the gap, such that at zero
temperature the lower band is filled and the upper band empty.
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p∗

γ

p−∗

p+∗

|p|
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Figure 1: Overview of insulating bandstructure at zero field. The unhybridised bands
(dashed lines) cross at momentum |p| = p∗. The hybridisation gap γ leads to two
bands, E±(p), which have their minimum / maximum at p±∗ .

Consider now the application of a perpendicular magnetic field B, which couples
to the orbital motion of the electrons. Landau quantization leads to the replacements
|p̂|2/(2mi) → ħhωi(n + 1/2) for each band i = 1,2, where n = 0,1, 2 . . . is the Landau level
index and ωi = eB/mi are the cyclotron frequencies. Since the hybridisation is spatially inde-
pendent, the Hamiltonian is diagonal in the Landau level index

Hn =

�

ħhω1(n− n∗) γ/2
γ/2 −ħhω2(n− n∗)

�

, (3)

where

n∗ =
p2
∗

2eBħh
− 1/2 . (4)

Each state has a degeneracy of nφA where nφ = eB/h is the flux density and A is the total area
of the 2D system. The energy eigenvalues are

E±n =
1
2

�

ħh(ω1 −ω2)(n− n∗)±
Æ

[ħh(ω1 +ω2)(n− n∗)]2 + γ2
�

, (5)

and we denote the eigenstates by

|Ψ+n 〉=
�

αn
βn

�

, |Ψ−n 〉=
�

−βn
αn

�

, (6)

with αn = γ/
Æ

γ2 + (2E−n )2 and βn =
Æ

1−α2
n.

In the absence of hybridization, γ= 0, the system is a metal. In a magnetic field, the value
n∗ controls the precise properties of this metal close to the band touching point. For integer n∗
the two bands touch, with an exact degeneracy of the Landau level at n= n∗. For non-integer
n∗, there is a residual gap between the two bands of magnitude ≲ ħh(ω1+ω2). This gap opens
and closes each time that n∗ changes by 1, that is with fundamental period

∆(1/B) =
2eħh
p2
∗
=

2πe
ħhS∗

, (7)

4

https://scipost.org
https://scipost.org/SciPostPhys.15.3.118


SciPost Phys. 15, 118 (2023)

where S∗ ≡ π(p∗/ħh)2 is the area traced out by the gap-closing point in reciprocal space. Con-
comitant with the gap oscillation, at temperatures that are not much larger than ħh(ω1 +ω2),
there is an oscillation in the total energy of the system (given by the occupied energy levels).
This oscillation of the total energy gives rise to the dHvA effect of the metal [1].

For a non-zero hybridisation γ, the system is an insulator. There is then always a gap close
to n∗ for any value of the magnetic field. However, provided the hybridisation gap γ remains
small compared to the oscillations of the gap in the metal, i.e.

ħh(ω1 +ω2)≳ γ , (8)

then the total energy of the occupied states of the insulator will oscillate in a similar manner
to the total energy of the metal, so one expects there still to be a dHvA effect in the insulator.
In essence this is the content of the theories for quantum oscillations of the magnetization in
band insulators [20–22, 33]. A full calculation for this model shows that the oscillatory part
of the energy is [23]

EBI
osc =

p

γħh(ω1 +ω2)
2

nφ
∑

k>0

cos(2πkn∗)
k3/2

exp
�

−
2πγk

ħh(ω1 +ω2)

�

, (9)

where the integer k defines the harmonic of the fundamental period (7). The suppression as
B→ 0 resembles the functional form of “Dingle damping” of quantum oscillations in a metal
due to impurity scattering, with EBI

osc ∼ exp(−BBI
0 /B). Here the fundamental oscillation period

(k = 1) sets the characteristic field scale

BBI
0 =

2π

(m−1
1 +m−1

2 )
γ

eħh
. (10)

For the band insulator this suppression is not due to impurities, but is an intrinsic effect that is
tied to the nonzero hybridization gap. Note that the manner in which the hybridization gap γ
determines the non-zero BBI

0 is very much model-dependent. Eqn. (10) is valid for the model
studied here (of two parabolic bands). Other models – with three bands, or with non-parabolic
band dispersion – can give very different sizes of BBI

0 for the same γ [54].

3 Impurity states

To model impurity states in a simple manner, we introduce an attractive delta-function poten-
tial of strength V0

V̂ = −V0δ
2(r )1 , (11)

where the 1 refers to the matrix structure in (1) such that the potential acts equivalently on
the two bands. This potential should be viewed as a caricature of the potential of an ionized
donor impurity atom, which is expected to be largely Coulombic though with short-distance
corrections [55].

A full solution of the problem of boundstates of the Landau quantized levels (3) on the
contact potential (11) is provided in Appendix A. Here we focus on shallow bound states
which lie just below the band edge of the upper band, E+n , with a binding energy EB that is
small compared to the hybridzation gap γ. To describe these, it is sufficient to consider the
energy levels close to the energy minimum of E+n , which is located at

n+∗ =
(p+∗ )

2

2eBħh
−

1
2

, (12)
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ϵ∝ B2/γ

n+∗

n

E+n

EB

Figure 2: Close-up of the Landau-quantized energy levels close to the conduction
band minimum in the parabolic approximation (13). The characteristic energy spac-
ing is set by ϵ, Eqn (15). As the magnetic field varies, the Landau levels pass through
the minimum n+∗ with fundamental period ∆(1/B) = 2πe/(ħhS+∗ ). An impurity state,
with binding energy EB, is denoted by the dashed line.

and close to which the energies can be approximated by

E+n ≃ E+∗ +
1
2
ϵ(n− n+∗ )

2 , (13)

E+∗ ≡
γ
p

m1m2

(m1 +m2)
, (14)

ϵ ≡
4ħh2(ω1ω2)3/2

γ(ω1 +ω2)
. (15)

Using this quadratic form (13) and taking the wavefunctions αn,βn to be independent of n, the
condition for a state of energy E = E+∗ − EB (i.e. with binding energy EB below the minimum
energy E+∗ of the upper band) is

1
V0
=

1

2πℓ2
B

∞
∑

n=−∞

1
EB + (ϵ/2)(n− n+∗ )2

, (16)

where ℓB =
p

ħh/eB is the magnetic length. Note that the limit of the sum has been extended,
consistent with the dominance of terms close to n+∗ . In fact, the full theory for the delta-
function potential (11) described in Appendix A requires a short-distance cut-off, such as the
lattice constant. In the regimes we consider, of a shallow boundstate, the cut-off dependence
is small and can be safely ignored for the quantities of primary interest here.

The analysis of equation (16) leads to the key results of this paper.

3.1 Bound state for B= 0

Consider first the case of vanishing magnetic field, for which we denote the binding energy of
the impurity level by E0

B. In the limit B→ 0 the sum over n can be replaced by an integral and
Eqn (16) becomes

1
V0
=

1

ℓ2
B

√

√

√

1

2ϵE0
B

. (17)
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The magnetic field B drops out to leave

E0
B =

V 2
0 γ

8ħh4 (m1m2)
1/2(m1 +m2) . (18)

The corresponding boundstate wavefunction has an interesting spatial structure which
combines features of one and two dimensions [46, 56]. The one-dimensional features arise
from the fact that the dispersion E+(p) has a ring-like minimum at |p|= p+∗ , so depends only
on the radial momentum as E+(p)≃ E+∗ +(|p|−p+∗ )

2/(2m+∗ ) giving a one-dimensional density
of states at the band edge, characterized by the effective mass

m+∗ = γ
p

m1m2(m1 +m2)/(2p+∗ )
2 . (19)

The bound state wavefunction in momentum space takes the form
ψp ∝ [1 + a2

0(|p| − p+∗ )
2/ħh2)]−1, with the lengthscale a0 = ħh/

q

2m+∗ E0
B. The overall 2D

spatial wavefunction takes the form [46]

ψ(r )≃ J0(p
+
∗ r/ħh)exp(−r/a0) , (20)

which combines exponential decay on the scale a0 with oscillations on the scale λ+∗ ≡ 2πħh/p+∗ ,
the characteristic wavelength at the band minimum. Since we are considering regimes of small
binding energy E0

B≪ (p
+
∗ )

2/(2m+∗ ), this wavelength is small compared to the boundstate size,
λ+∗ ≪ a0, giving a highly oscillatory boundstate wavefunction.

3.2 Quantum oscillations of the bound state, B ̸= 0

For non-zero B there are corrections to the energy of the impurity level that oscillate with
inverse magnetic field. In the limit that the binding energy goes to zero, the energy of the
impurity level is tied to that of the band edge, so these corrections to the energy will simply
reflect the oscillations of the free-particle states near the band edge (13). However, for nonzero
binding energy, the oscillations are reduced. We compute the corrections to the energy of the
impurity for non-zero binding energy using the Poisson summation formula, writing Eq. (16)
as

2πℓ2
B

V0
=

∫ ∞

−∞
dnf (n− n+∗ ) + Iosc(n

+
∗ ) , (21)

where f (n)≡ 1/[EB + (ϵ/2)n2], and the part that oscillates with n+∗ is

Iosc(n
+
∗ ) =
∑

k ̸=0

e−i2πkn+∗

∫ ∞

−∞
dn′ f (n′)e−i2πkn′ , (22)

with k integer. We treat Iosc as small, and write the binding energy as EB = E0
B−Eimp

osc where E0
B is

the B = 0 binding energy and Eimp
osc is the B-dependent correction to the energy of the impurity

level. Computing Eimp
osc to first order in Iosc, and using (17), the condition (21) becomes

Eimp
osc = −4E0

B

∑

k>0

cos(2πkn+∗ )exp
�

−2π|k|
q

2E0
B/ϵ
�

. (23)

Reintroducing the expression for the energy scale ϵ (15) leads to

Eimp
osc = −4E0

B

∑

k>0

cos(2πkn+∗ )exp



−
π|k|(ω1 +ω2)1/2

q

2γE0
B

ħh(ω1ω2)3/4



 . (24)
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Equation (24) is a key result of this work. It shows that the localised states are subject to
quantum oscillations in their energies.

These oscillations have several notable features:
(i) The oscillatory contributions arise as n+∗ , Eqn (12), increases by an integer divided by k.

This leads to periods in 1/B of

∆(1/B) =
1
k

2πe
ħhS+∗

, (25)

where S+∗ ≡ π(p
+
∗ /ħh)

2 is the area in reciprocal space associated with the band minimum of the
upper band, E+∗ . The oscillatory energy of the bound state reflects the oscillatory structure of
the quantized energy levels in the vicinity of the band extremum. Had we focused on states
close to the top of the lower band, the relevant area would have been S−∗ ≡ π(p

−
∗ /ħh)

2.
(ii) The oscillations of the impurity energy level are exponentially suppressed at small B

through the dependence of the form exp(−Bimp
0 /B), with the characteristic field scale

Bimp
0 = π(m1m2)

1/4(m1 +m2)
1/2

q

2γE0
B

eħh
, (26)

set by the fundamental oscillation period (k = 1). This has a rather different form from the
field scale for quantum oscillations of the band insulator (10). Consequently, the suppression
can be larger or smaller than that in the band insulator (10), depending on details of parame-
ters. For m1 = m2, we have Bimp

0 /BBI
0 = 2
q

E0
B/γwhich is typically small for the shallow bound

states we consider, E0
B ≪ γ. Then, the oscillations of the energy of the boundstate will persist

to lower fields than those of the energy of the bulk insulator.
A simple understanding of the characteristic magnetic field scale (26) can be obtained by

a comparison of the binding energy E0
B with the energy dispersion of the upper band, E+n ,

in the vicinity of its minimum. The dominant contributions to the bound state wavefunction
come from free-particle states of energies up to ∼ E0

B above this energy minimum. Within
the quadratic approximation (13), these free-particle states span a number of Landau levels
(∆n) ∼
p

EB/ϵ. When this number is large ∆n ≫ 1, one expects a weak dependence on
the magnetic field. Conversely, when this number is of order unity, ∆n ≲ 1, one expects
the bound state to depend strongly on magnetic field, acquiring the periodic oscillations of the
single particle energies at this band minimum. The condition∆n≲ 1 leads to the condition for
visibility of the oscillations to be B ≳ Bimp

0 with Bimp
0 given by (26) up to an overall numerical

factor. While the detailed calculation leading to (26) was performed for a contact potential
(11), the reasoning just given indicates that the same general scaling, giving the condition
q

E0
B/ϵ ≲ 1 for visibility of oscillations, should hold also for more general potentials.
Recalling that the boundstate wavefunction is characterised by its overall size a0 and

short-range modulations on the scale λ+∗ (the wavelength at the band minimum), the field-
dependent damping factor determining the visibility of the quantum oscillations of the bound-
state energy, exp(−Bimp

0 /B), can also be written

exp

�

−
2π

nφa0λ+∗

�

. (27)

Thus, of order one flux quantum (or more) should thread through an area a0λ
+
∗ to effect

sizeable oscillations of the energy of the impurity level. The bound state wavefunction (20)
is rotationally symmetric, with an overall extent a0 and with an amplitude that alternates
in sign on a length scale of λ+∗ /2. The area a0λ

+
∗ can be viewed as the typical area over

which the wavefunction is of constant sign: a ring of circumference ∼ a0 and width ∼ λ+∗ .
Perhaps more helpful is to interpret the condition in terms of the free-particle states. Within
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the semiclassical description of the motion of the electron in a magnetic field, the typical spatial
extent of the unbound Landau-quantized state in the vicinity of the energy minimum p+∗ is set
by the cyclotron radius Rc = ℓ2

B p+∗ /ħh = 2πℓ2
B/λ

+
∗ . Using this, the field-dependent damping

factor (27) can therefore also be written

exp
�

−
2πRc

a0

�

. (28)

This gives the very intuitive criterion that the quantum oscillations will be sizeable provided
the cyclotron orbit fits within the overall spatial extent of the boundstate, Rc ≲ a0. It can
also be helpful to interpret how this condition arises in reciprocal space. In a disorder-free
2D system with a perpendicular magnetic field B, the semiclassical orbits in momentum space
are closed loops with areas that increase by 2πħh2/ℓ2

B from one state to the next [19]. Here
the relevant states (close to the band edge) are circles of radius close to p+∗ , so their radii
increase in steps of ∆p set by (∆p)2πp+∗ = 2πħh2/ℓ2

B , i.e. ∆p = ħh/Rc . Localisation to a
lengthscale a0 leads to an uncertainty of radial momentum of ∼ ħh/a0. Thus, for ħh/a0 ≳ ħh/Rc
the semiclassical quantization condition is washed out, and one expects suppression of the
quantum oscillations, which reproduces the same criterion.

4 Experimental consequences

We have studied the properties of a single impurity level, showing that it exhibits quantum
oscillations that are inherited from the structure of the underlying energy bands. For a system
with a small nonzero density of such impurity levels, nimp, with random locations, one expects
that the many-electron groundstate will be an Anderson insulator. The groundstate will have
electrons bound to the impurity sites, with wavefunctions that decay exponentially in space.
In this regime, the zero temperature limit of the conductivity will vanish. However, given that
each impurity level oscillates according to (23), one expects an oscillation of the energy per
unit area of the impurity band of Eimp−B

osc = nimpEimp
osc . For sufficiently dilute impurities the

inter-site hybridisation will be small compared to the binding energy of the impurity level,
and this oscillation of the single-impurity level will dominate the energetics of the electrons in
the impurity band. (As we discuss below, for the model we study the hybridisation between
impurity levels is expected to be strongly suppressed even for overlapping impurities [55].)
Taking (minus) the derivative of this with respect to magnetic field gives oscillations in the
magnetization per unit area of magnitude

M imp−B
osc =

4πE0
B(p

+
∗ )

2

eħhB2
nimp exp
�

−Bimp
0 /B
�

, (29)

where we have taken the fundamental period (k = 1). We note in passing that the same argu-
ment leads to the expectation that the energetics of a Mott insulator formed in this impurity
band1 will be dominated by the impurity energy level, and that the Mott insulator will also
exhibit a dHvA effect given by (29).

By comparison, using (9) the magnitude of the k = 1 oscillations in the magnetization per
unit area due to the background band insulator is

MBI
osc =

πp2
∗
p

γħh(ω1 +ω2)

2eB2ħh
nφ exp
�

−BBI
0 /B
�

. (30)

1A Mott insulator would arise in our model if we were to allow the impurity levels to host two spin states, and
consider a half-filled impurity band with strong short-range electron-electron repulsion.
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In the Anderson insulator there are contributions from both the impurity band (29) and from
the filled band insulator (30). Depending on parameters, either one of these contributions
can dominate. However, for mass ratios m2/m1 ∼ 1 and shallow bound states E0

B ≲ γ the
contributions from the impurity band are typically the larger at small fields, B→ 0.

Similar energetic modulations of an impurity band are captured by theories which model
the effects of impurities through phenomenological scattering rates for the bands [32, 33].
This also leads to a Dingle-damping-like suppression of oscillations at small B, with a factor B0
now controlled by these scattering rates. However, such theories, which model the impurity
band by a finite electron lifetime, cannot capture Anderson localisation, since they lead to a
non-zero value of the conductivity even in the limit of zero temperature [33].

For very small impurity concentration, and in an otherwise pristine band insulator, the
localized electronic levels in the impurity band are separated by a clean gap E0

B from the ex-
tended states of the E+ band. One therefore expects that, for small non-zero temperatures,
kB T ≪ E0

B, the electron occupation of the impurity band will be reduced in an activated form.
However, the thermally excited electrons can themselves show quantum oscillations, owing to
the nonzero spacing ϵ separating the Landau levels in the upper band [33,34]. At the lowest
temperatures these thermally excited electrons add to the oscillation amplitude, before becom-
ing suppressed for kB T ≫ ϵ. Fig. 3 provides an illustration of the temperature dependence of
the magnetization arising from the impurity band and thermal excitation into unbound levels.
(See Appendix B for more details.) As a more realistic model of the impurity band, suitable for
impurity states that are strongly hybridised or subject to long-range Coulomb interactions, one
should introduce a nonzero width to the impurity band, and thus average over a range of bind-
ing energies EB

0 . A large broadening of the impurity band can remove the gap in the density
of states between the impurity band and the continuum of unbound states in the upper band,
without destroying Anderson localization. In this case, the dHvA effect of the unbound states
may persist down to zero temperature, removing the dip seen in Fig. 3 at low temperatures.
In effect, this would be similar to pinning the chemical potential in the upper band, which
can lead to a low-temperature enhancement of the dHvA effect coming from the unbound
states [20].

At large impurity density nimp the wavefunctions on different impurity levels will overlap
and lead to hybridisation of the electronic wavefunctions. Since we study a system in two
dimensions, for a disordered configuration of impurities, this hybridisation will not lead to
delocalization: the electrons in the impurity band will remain Anderson-localized [57]. In
three dimensional settings, there can be a transition to a delocalized phase. In conventional
materials, with a simple band minimum at one point in the Brillouin zone and accounting for
the fact that electrons interact through Coulomb interactions, the transition to the metal occurs
at the Mott criterion [58] n3D

imp ≳ 0.26/a3
0 where a0 is the characteristic size of the localized

level. However, Skinner [55] has argued that for materials of the form we study, in which
the band minimum is on a surface |p| = p∗, the insulating state can remain robust despite an
apparent violation of the Mott criterion. This form of band structure leads to the additional
oscillatory structure of the hydrogenic bound states, as in (20) for 2D, which significantly
reduces the hybridisation of the impurity levels: the hybridisation remains small compared to
the single-impurity binding energy, and the system can remain an Anderson insulator, even for
strongly overlapping orbitals, up to n3D

imp ≃ (p∗/ħh)
3. The results that we present here show that

this special form of the bandstructure also guarantees the existence of quantum oscillations of
the magnetization in such an Anderson insulator. For overlapping impurities the localization
length of the electronic states can be extend beyond a0. In this regime, the form of the field
damping will not necessarily follow that of the dilute impurity case that we have presented.
Rather, drawing on the discussions following (28), we expect that the quantum oscillations will
be suppressed when the free-particle cyclotron radius Rc = ℓ2

B p+∗ /ħh is larger than the mean free
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Figure 3: Temperature dependence of the impurity band contribution to the dHvA
effect in an Anderson insulator, showing the amplitude of the oscillation at the fun-
damental period, ∆(1/B) = 2πe/(ħhS+∗ ). The parameters are nφ = 2nimp and ϵ = E0

B,
and the chemical potential is varied to keep the electron number fixed at nimp. (See
Appendix B for details.) At zero temperature all electrons are bound to impurities
and the oscillation amplitude of the magnetization is M(0) = M imp−B

osc , Eqn (29). At
non-zero temperatures, electrons are thermally excited to unbound states in the up-
per band. The oscillation amplitude is at first enhanced by thermal excitation, as the
states in the upper band also contribute to the dHvA effect via the quantum oscilla-
tions of their energies (13). The contributions of the unbound states are suppressed
for kB T ≫ ϵ, and the impurity is eventually unpopulated for kB T ≫ E0

B.

path ℓmfp which one can interpret as setting the uncertainty in the momentum of the electron
to∼ ħh/ℓmfp. That is, the oscillations are suppressed for Rc ≳ ℓmfp in place of Rc ≳ a0 from (28),
increasing the field range under which they can contribute if ℓmfp > a0. Note that the mean
free path is shorter than the localization length, and indeed it typically remains finite even in a
metallic phase where the localization length diverges. In that regime, the condition Rc ≳ ℓmfp
will account for the disorder damping of quantum oscillations in this metallic phase. A full
calculation of the dependence of the mean free path on impurity concentration for the model
of a non-parabolic band with an energy minimum at p+∗ is beyond the scope of the present
paper.

One of the conclusions of Ref. [55] was that a model of an impurity-band insulator, formed
from a density n3D

imp of impurities, could account for the anomalously large low-temperature
heat capacities of the Kondo insulators SmB6 and YbB12. These heat capacities have been
measured to be linear in T at low temperatures, rather than having the activated form expected
for pristine band insulators. Our results show that this Anderson insulator will also exhibit
oscillations of the magnetisation, and allow us to estimate the sizes of the contributions to
this dHvA effect. It is difficult to make accurate quantitative comparisons between our theory
and experiment given uncertainties in the microscopic parameters for the Kondo insulators.
The model studied here is also likely too simple to capture all quantitative features of these
strongly interacting materials. That said, proceeding cautiously, we note that the mean-field
theory for a Kondo insulator leads to a theory of the form that we have studied, with the band
masses m1 and m2 arising from the d and f bands. Thus, the mass ratio is expected to be very
large m2/m1 ≳ 30, and consequently Bimp

0 is typically large compared to BBI
0 . This comparison

suggests that, for the parameters of the impurity-band insulator discussed in Ref. [55], the
T = 0 dHvA effect at weak magnetic fields would likely be dominated by the contributions
from the band insulator (30) with the contributions from the impurity band (29) being more
strongly suppressed since Bimp

0 > BBI
0 . Note that recent work [41] has shown that for insulators
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in which the hybridization γ is driven by interactions (as for Kondo insulators) there can be
very significant contributions to the dHvA effect of the band insulator from beyond-mean-field
effects associated with quantum fluctuations of the gap, which can very greatly enhance the
size of the effect (9). In the situation where the T = 0 dHvA effect at weak magnetic fields
is dominated by the contributions from the band insulator, a theory that takes these quantum
fluctuations into account will surely be required to give a suitable quantitative estimate of size
of the dHvA effect in Kondo insulators.2

Further exploration of the role of the impurity band beyond what we have studied in this
paper would be worthwhile. We recall that we expect significant changes to our results if the
impurity band is sufficiently broadened to close the gap in the density of states. Furthermore,
the bulk parameters we have used above [55] do not take into account any possible suppression
of the hybridisation gap in the vicinity of the impurity, which could significantly change the
quantitative description of the impurity boundstate [59]. For now, using the estimates from
Ref. [59] of cyclotron radius Rc ≃ 100nm and of the size of the boundstates around impurities,
∼ 3nm, our result (28) would predict a significant suppression of the quantum oscillations
from the individual impurity levels.

5 Summary and Outlook

We have shown that an Anderson insulator can give rise to quantum oscillations of the magne-
tization. This occurs in situations where the electronic band from which the localized states are
constructed has a special form: with a band minimum that traces out a closed area in recipro-
cal space. The quantum oscillations of the impurity levels are controlled by this characteristic
area in reciprocal space, S+∗ = π(p

+
∗ /ħh)

2, even though they arise in a disordered setting where
the contributing electronic states are strongly localized, and therefore are unable to conduct.
This area remains physically relevant provided the size of the bound state – i.e. the local-
ization length a0 – is large compared to the characteristic wavelength λ+∗ ≡ 2πħh/p+∗ of the
underlying bandstructure. Our results show the appearance of quantum oscillations of the
impurity boundstate energy when the cyclotron radius Rc = 2πℓ2

B/λ
+
∗ fits within the size of

the boundstate a0.
The contributions of the impurity levels to the dHvA effect is damped exponentially at weak

field, with a characteristic field (26) that differs from that for the band insulator (10). The
dHvA effect in an Anderson insulator has contributions from both, and either one or the other
can dominate depending on parameters. We discussed the temperature dependence of the
oscillation, which can lead to a non-monotonic dependence. Making a comparison to models
for the Kondo insulators, we found that use of the bulk parameters in the simple two-band
model studied here is likely to preclude the relevance of a narrow impurity band to the dHvA
effect.

To observe a dHvA effect in an Anderson insulator that is dominated by the impurity band
contribution it is most useful to study experimental systems where the mass ratio m2/m1 is
of order one. Suitable systems naturally arise in band insulators of InAs/GaSb quantum well
structures [29], or in bilayer graphene in a perpendicular electric field [46,60]. These systems
have light masses, allowing large cyclotron frequencies at moderate magnetic fields, and the
band overlap (setting p∗) and the hybridisation (γ) can readily be tuned experimentally. Os-
cillations of the in-gap conductance have been reported in InAs/GaSb systems [10–12], but
so far we are unaware of experimental measurements of the oscillation of the magnetisation.
Our results show that it can take a rich form, with distinct contributions arising both the bulk
bands of the pristine insulators and from impurity levels.

2From the nature of that theory [41] we do not expect similar corrections to the impurity levels.
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A General bound state condition

To study the bound state of the contact interaction (11) in the presence of a magnetic field it is
helpful to consider the position representation of the Landau level states. We use the symmetric
gauge for which the angular momentum m is a good quantum number. The contact interaction
acts only on states with angular momentum m= 0, for which the Landau level wavefunctions
may be taken to be

ψn,m=0(r ) =
1
q

2πℓ2
B

e−r2/4ℓ2
B Ln(r

2/2ℓ2
B) , (A.1)

with Ln(z) the Laguerre polynomials and ℓB =
p

ħh/eB the magnetic length. We expand the
Schrödinger equation for a state of energy E in the presence of the delta-function potential in
this basis, as

|Ψ〉=
∑

n

φ+n |Ψ
+
n 〉+φ

−
n |Ψ
−
n 〉 . (A.2)

The relevant matrix elements of the contact interaction (11) are
�

〈Ψ+n′ |V̂ |Ψ
+
n 〉 〈Ψ

+
n′ |V̂ |Ψ

−
n 〉

〈Ψ−n′ |V̂ |Ψ
+
n 〉 〈Ψ

−
n′ |V̂ |Ψ

−
n 〉

�

= −
V0

2πℓ2
B

�

αn′αn + βn′βn −αn′βn + βn′αn
−βn′αn +αn′βn αn′αn + βn′βn

�

. (A.3)

Defining the quantities M± ≡
∑

nφ
±
n αn and N± ≡
∑

nφ
±
n βn one finds

M± = −
V0

2πℓ2
B

�

S±ααM± + S±αβN± ∓ S±αβM∓ ± S±ααN∓
�

, (A.4)

N± = −
V0

2πℓ2
B

�

S±αβM± + S±ββN± ∓ S±ββM∓ ± S±αβN∓
�

, (A.5)

where

S±αα(E) =
nmax
∑

n=0

α2
n

E − E±n
, S±αβ(E) =

nmax
∑

n=0

αnβn

E − E±n
, S±ββ(E) =

nmax
∑

n=0

β2
n

E − E±n
. (A.6)

Hence, for a normalizable eigenstate at energy E, one requires

det















S+αα(E) +
2πℓ2

B
V0

S+
αβ
(E) −S+

αβ
(E) S+αα(E)

S+
αβ
(E) S+

ββ
(E) +

2πℓ2
B

V0
−S+

ββ
(E) S+

αβ
(E)

S−
αβ
(E) −S−αα(E) S−αα(E) +

2πℓ2
B

V0
S−
αβ
(E)

S−
ββ
(E) −S−

αβ
(E) S−

αβ
(E) S−

ββ
(E) +

2πℓ2
B

V0















= 0 . (A.7)

We have introduced a limit nmax in the sums in (A.6) to regularize a divergence that arises
for the pure delta-function potential. For large n, using the forms of the energies E±n and
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Exact Energy Analytic Approximation
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Figure 4: Quantum oscillations of the energy of an impurity level, close to the upper
band, with magnetic field, ħhω1/γ∝ B. Black points: Exact result from the numerical
solution of (A.7). Solid blue line: analytic result obtained from the analysis of (A.8),
which leads to E = E+∗ − E0

B + Eimp
osc from Eqns. (14, 18, 23). The discrepancy reflects

the correction introduced to the binding energy from the high-energy part of the
spectrum, which is ignored in deriving (16). The parameters used are m1 = m2,
V0m1/ħh2 = 0.25, nmaxħhω1 = 20γ and p2

∗/(2m1) = 8γ.

wavefunction coefficients αn and βn, one finds that S±
ββ

acquire logarithmic divergences with
the maximum Landau level index included, i.e. S±

ββ
∼ ∓[1/(ħhω1,2)] log nmax. This cut-off

sets a minimum lengthscale for the potential, ∼ ℓB/
p

nmax, which physically is set by the
microscopics of the system. For example a natural scale is the lattice constant λ0, in terms of
which we take nmax = ℓ2

B/λ
2
0.

Eqn.(A.7) may be efficiently solved numerically to find the in-gap boundstate and its de-
pendence on magnetic field. In Fig. 4 we show the magnetic field dependence of a bound state
close to the upper band.

In the main text we study a shallow boundstate close to the minimum of E+n , i.e. with
Landau level index n close to n+∗ . Then we may restrict attention to the functions S+µν(E), use
the quadratic expansion (13) and take αn ≃ αn+∗ and βn ≃ βn+∗ . The functions S+µν(E) then
differ only by prefactors and the condition (A.7) reduces to

2πℓ2
B

V0
=
∞
∑

n=−∞

1
EB + (ϵ/2)(n− n+∗ )2

, (A.8)

where we have introduced the binding energy EB ≡ E+∗ − E. Note that the limits of the sum
have been extended consistent with the dominance of terms close to n= n+∗ .

The effect of the cut-off nmax can be judged by using the exact dispersion relation E+n in
place of the quadratic approximation in the denominator of the right hand side of (A.8). This
causes the sum over n to diverge logarithmically with the upper limit, leading to a divergent
term ∼ log(Emax/γ)/(ħhω1) where Emax ≡ nmaxħhω1. The effect of this term is weak provided
V0m1/(2πħh2) ≲ 1/log(Emax/γ), or equivalently, using (18), provided E0

B/γ ≲
p

m2/m1(1 +
m2/m1)/[log(Emax/γ)]2. Thus, for typical situations, in which the logarithm will be of order
one, it is sufficient to study (A.8) to understand the properties of shallow bound states with
energies E0

B≪ γ.
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B Non-zero temperatures

We provide here further details of the calculations leading to the results presented in Fig. 3.
We consider a set of spinless electrons in a system of total area A. These can occupy a set of
Nimp = nimp×A boundstates on the impurities, each at the energy Eimp = E+∗ − EB, and a set of
unbound Landau level states, with energies En and each with degeneracy Nφ = nφ × A where
nφ = eB/h. Thus the grand potential per unit area is

Ω= −kB T nimpln
�

1+ e−β(Eimp−µ)
�

− kB T nφ

∞
∑

n=0

ln
�

1+ e−β(En−µ)
�

, (B.1)

where µ is the chemical potential and β = 1/(kB T ) at temperature T . We fix the chemical
potential µ by the condition that there is one electron per impurity site −∂Ω/∂ µ = nimp, to
determine µ as a function of temperature.

We compute the magnetization per unit area, M = −(∂Ω/∂ B)µ,T , using the expressions
for the oscillatory part of the impurity energy (23), and taking the energies of the unbound
states E+n within the quadratic approximation (13), suitable for states close to the band edge.
Focusing on the dominant contribution to the component that oscillates at the fundamental
period, one obtains

M ≃
§

−nimp
1

1+ eβ(Eimp−µ)
8πE0

B sin(2πn+∗ )e
−2π
q

2E0
B/ε

+ nφ

∞
∑

n=−∞

ϵ(n− n+∗ )

1+ eβ[E+∗ +(1/2)ϵ(n−n+∗ )2−µ]

«

dn+∗
dB

.
(B.2)

The magnetization oscillates with n+∗ (12), vanishing for n+∗ integer or half-integer. The am-
plitudes of the contributions from bound impurity levels and from the unbound states are

∆Mimp = nimp
1

1+ eβ(Eimp−µ)
8πE0

Be−2π
q

2E0
B/ε
(p+∗ )

2

2eB2ħh
, (B.3)

∆Munbound = nφ

∞
∑

n=−∞

ϵ(n+ 1/4)
1+ eβ[E+∗ +(1/2)ϵ(n−1/4)2−µ]

(p+∗ )
2

2eB2ħh
, (B.4)

where we have used dn+∗ /dB = −(p+∗ )
2/(2eB2ħh).

These quantities are plotted in Fig. 3, both separately and as their sum, for illustrative
parameters ϵ = E0

B and nφ = 2nimp. At fixed nimp this latter condition only holds exactly at a
specific value of the magnetic field, whereas the field must be varied in order to see quantum
oscillations. However, the fractional change of field ∆B/B = 2eB/(p+∗ )

2 = 1/n+∗ that leads
to a full period of oscillation of the magnetization, ∆n+∗ = 1, is typically small in the regime
of interest for quantum oscillations, where the Landau level index at the extremum is large,
n+∗ ≫ 1. Thus, the condition nφ = 2nimp should be interpreted in the sense that it is applied
within the narrow range of fields ∆B/B ∼ 1/n+∗ required to observe a few oscillations.
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