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Abstract

Motivated by the recent proposal of giant Kerr rotation in WSMs, we investigate the Kerr
and Faraday rotations in time-reversal broken multi-Weyl semimetals (mWSMs) in the
absence of an external magnetic field. Using the framework of Kubo response theory,
we find that both the longitudinal and transverse components of the optical conductiv-
ity in mWSMs are modified by the topological charge (n). Engendered by the optical
Hall conductivity, we show in the thin film limit that, while the giant Kerr rotation and
corresponding ellipticity are independent of n, the Faraday rotation and its ellipticity an-
gle scale as n and n2, respectively. In contrast, the polarization rotation in semi-infinite
mWSMs is dominated by the axion field showing n dependence. In particular, the magni-
tude of Kerr (Faraday) angle decreases (increases) with increasing n in Faraday geome-
try, whereas in Voigt geometry, it depicts different n-dependencies in different frequency
regimes. The obtained results on the behavior of polarization rotations in mWSMs could
be used in experiments as a probe to distinguish single, double, and triple WSMs, as well
as discriminate the surfaces of mWSMs with and without hosting Fermi arcs.
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1 Introduction

The three-dimensional (3D) Dirac and Weyl semimetals have attracted tremendous attention
to both theorists and experimentalists due to their unique band topology of late. The Weyl
semimetals (WSMs) appear as topologically nontrivial conductors containing gapless chiral
quasiparticles, known as Weyl fermions, near the touching of a pair of non-degenerate bands,
also called “Weyl nodes” [1–8]. The nontrivial topological properties of WSMs are encapsu-
lated by the Weyl nodes, which can act as a source or sink of the Abelian Berry curvature,
an analog of the magnetic field but defined in the momentum space with quantized Berry
flux. Each Weyl node is associated with a chirality quantum number, known as the topological
charge, whose strength is related to the Chern number and is quantized in integer values [9].
According to the no-go theorem, in the case of a WSM, the Weyl nodes always come in pairs
of positive and negative monopole charges and the total monopole charge summed over all
the Weyl nodes in the Brillouin zone vanishes [10,11].

Recently the materials such as TaAs, MoTe2, WTe2 etc., where WSM-phase has been re-
alized experimentally, the topological charge (n) associated with the Weyl nodes are equal
to ±1 [12–17]. Interestingly, WSMs containing Weyl nodes with higher topological charge
n > 1, namely, the multi-Weyl semimetals (mWSMs), have been proposed to realize in con-
densed matter systems [7, 18–20]. Compared to the single WSM, whose energy dispersion is
linear along all momentum directions (i.e., isotropic dispersion), the mWSMs (n > 1) show
natural anisotropy in dispersion. In particular, both the double WSM (n= 2) and triple WSM
(n= 3) depict linear dispersion along one symmetry direction; however, they exhibit quadratic
and cubic energy dispersion, respectively, for the other two directions. Using the density func-
tional theory (DFT) calculations, it has also been proposed that the double WSM phase can be
realized in HgCr2Se4 and SrSi2 [7, 18, 19], whereas A(MoX)3 (with A = Rb, TI; X = Te) can
accommodate triple-Weyl points [21]. It is to be noted that, the topological charge associated
with Weyl nodes in real materials cannot be greater than 3 (n ≤ 3) due to restriction arising
from discrete rotational symmetry on a lattice [18, 20]. Moreover, the single WSM can be
viewed as a 3D-analog of graphene, whereas the double WSM and triple WSM can be repre-
sented as 3D counterparts of bilayer and ABC-stacked trilayer graphene, respectively [22–24].

Topological semimetals exhibit a plethora of intriguing optical phenomena due to their
unique band topology in the presence as well as in absence of external fields [17, 25–37].
The electrodynamic response of a WSM with broken time-reversal symmetry (TRS) has been
a prime topic of interest to both theorists and experimentalists due to its connection to the
axion field, which modifies the Maxwell’s equations [38–40]. It has been shown in recent
studies that giant Kerr rotation [41,42], magneto-optical Kerr effect [43,44], tunable perfect
absorption [45] can occur in a single WSM. On the other hand, the electrodynamic response,
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particularly the Kerr and Faraday rotations in the presence of higher monopole charge n, i.e.,
in mWSMs, has not been explored yet.

In this work, we study the Kerr and Faraday rotations (ΦK/F) in type-I TRS broken mWSMs
in the absence of an external magnetic field to explore the effect of higher monopole charge
(n > 1) on the polarization rotation. Using the Kubo response formula, we first analytically
obtain the optical conductivity tensor for mWSMs. Our analytical expressions show that both
the longitudinal and transverse components of the conductivity tensor are modified by the
topological charge n. Specifically, the longitudinal components (σx x ,σy y) perpendicular to
the Weyl node separation (Qẑ) as well as the transverse component (σx y) are proportional
to n, whereas the other longitudinal component (σzz), which is along the node separation,
shows nonlinear dependence on n. Using the obtained optical conductivity, we then study po-
larization rotation for two cases: (i) thin film limit of mWSMs and (ii) semi-infinite mWSMs.
In the thin film limit of mWSMs, we show the Kerr rotation and corresponding ellipticity angle
are independent of n and vanish in the Pauli blocked regime. In contrast, the Faraday rotation
and ellipticity angle of the transmitted light survive even in the Pauli blocked regime. Inter-
estingly, we find that they are dependent on the topological charge and scale as n and n2,
respectively. In addition, the polarization rotation angle turns out to be very large compared
to other materials.

In the case of semi-infinite mWSM, we investigate the polarization rotation for two config-
urations: (i) Faraday geometry and (ii) Voigt Geometry. Our analysis demonstrates that, unlike
the case of thin film mWSMs, the axion electrodynamics comes into play and dominates (which
modifies Maxwell’s equations), giving rise to finite polarization rotations in both cases, even
in the Pauli-blocked regime. We show that polarization rotation is a linear (quadratic) func-
tion of Q in Faraday (Voigt) geometry. The magnitude of the Kerr (Faraday) angle decreases
(increases) with increasing n in Faraday geometry, whereas in Voigt geometry, it has different
n-dependencies in different frequency regimes. Furthermore, we identify that in the Fara-
day (Voigt) geometry, circular (linear) birefringence and circular (linear) dichroism increase
with n.

2 Model Hamiltonian

The low-energy effective Hamiltonian describing a Weyl node with topological charge n and
chirality s can be written as [46–49]

Hs
n (k) = sħh

�

αnkn
⊥

�

cos (nφk)σx + sin (nφk)σy

�

+ vks
zσz

	

+ Csħhvks
z − sQ0 , (1)

where k⊥ =
q

k2
x + k2

y , ks
z = (kz − sQ), φk = tan−1(ky/kx), and σi ’s

�

σx ,σy ,σz

�

denote the
Pauli matrices representing the pseudo-spin indices. The Weyl nodes of opposite chirality are
shifted both in momentum space and energy space by 2Q (along the z-direction) and ±Q0
due to broken TRS and inversion symmetry (IS), respectively. Here, αn = v⊥/k

n−1
0 with v⊥

being the effective velocity of the quasiparticles in the plane perpendicular to the z axis and
k0 represents a material-dependent parameter having the dimension of momentum. Also, we
consider both the velocity (v) and tilt parameter (Cs) along the z-direction. Note that, in this
work we restrict ourselves to a type-I multi-Weyl node, i.e., |Cs| < 1, which indicates that the
Fermi surface is point-like at the Weyl node. The energy dispersion of the multi-Weyl node
associated with chirality s is given by ε±k,s = Csħhv(kz − sQ)− ħhsQ0 ± ħh

q

α2
nk2n
⊥ + v2(kz − sQ)2,

where ± represent conduction and valence bands, respectively. It is now clear that for v = v⊥,
the dispersion around a Weyl node with n= 1 is isotropic in all momentum directions. On the
other hand, for n> 1, we find that the dispersion around a double (triple) Weyl node becomes
quadratic (cubic) along both kx and ky directions whereas varies linearly with kz .
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3 Optical conductivity in mWSMs

In this section, we analytically derive the optical conductivity tensor to investigate the Kerr and
Faraday rotations in mWSMs. In doing so, we first review the light field induced interband
optical transition probabilities. It is well known that the light field can couple to the electron
of a system via i) orbital coupling (momentum k is replaced by k−eA due to minimal coupling,
with A being vector potential due to the light field) and ii) Zeeman coupling. Therefore, the
total Hamiltonian of light-electron interaction can be written as

Hle = −
e

mec
vk.A + gµB(∇ × A) ·σ , (2)

where e is the charge of electron, me is the mass of the electron, g is the Lande-g factor, µB is
the Bohr magneton and vk =

1
ħh∂H/∂ k with H representing the non-interacting Hamiltonian of

the considered system. Here, the first term of the above equation gives rise to orbital coupling
while the second term (∝∇× A) leads to Zeeman coupling. Also, the term associated with
orbital coupling gives rise to the Berry-curvature-dependent interband transition. Moreover,
we would like to point out that in this work, we neglect the Zeeman coupling with the light
field.

In view of this, the interband optical conductivity [σmn(ω)] for multi-Weyl semimetal in
the linear response regime using the Kubo formula can be written as

σs
mn(ω) = − lim

γ→0
ie2

∫

[dk]
f eq
k

ε+k,s − ε
−
k,s

∑

α,β ,α̸=β

Pαβm (k)⊗P
βα
n (k)

ω+ 1
ħh

�

εαk,s − ε
β

k,s

�

+ iγ
, (3)

where [dk] = d3k/(2π)3, ω is the optical frequency, and γ represents the phenomenological
damping term for the interband coherence. Here, f eq

k = f (ε+k,s,µ)− f (ε−k,s,µ) is the equilibrium
population difference between the conduction band and the valance band with µ being the
chemical potential. Now the optical transition matrix element [Pαβ(k)] (α and β denote the
band indices), which gives rise to vertical transition between valence and conduction bands,
can be written as P−+(k) = 〈ψ−|vk |ψ+〉, where ψ− and ψ+ are respectively the Bloch wave-
functions of valence and conduction bands. The factor Pαβm (k)⊗P

βα
n (k) is related to the Berry

curvature [Ωmn(k)] of the mWSM, where m, n= x , y, z and ⊗ represents the outer product of
the optical matrix elements.

Using the wavefunctions of the conduction and valence bands, the different components of
the optical matrix element for the multi-Weyl Hamiltonian given in Eq. (1) can be obtained as

P s,−+ =













sΓn cosφk − iΛn sinφk

sΓn sinφk + iΛn cosφk

−sΓn
k⊥
nks

z













, (4)

where Γn = nαnkn−1
⊥ ks

z v/
q

α2
nk2n
⊥ + v2(ks

z)2 and Λn = nαnkn−1
⊥ . One can notice that the optical

matrix is independent of tilt velocity Cs and linearly proportional to n. Substituting these
optical matrix elements into Eq. (3), we can calculate both the diagonal and off-diagonal
components of the optical conductivity tensor σs

mn(ω). Considering the optical conductivity
as σmn = σ′mn + iσ′′mn, where σ′mn and σ′′mn are the real and imaginary part of it, we first
calculate the diagonal components of conductivity tensor in the following subsection.

We would like to emphasize that, in this paper, we consider a TRS broken mWSM contain-
ing two multi-Weyl nodes with opposite chirality (s) separated in the momentum space by 2Q.

4

https://scipost.org
https://scipost.org/SciPostPhys.15.4.133


SciPost Phys. 15, 133 (2023)

This is due to the fact that the Hall conductivity (σx y) in the linear response regime vanishes
in the TRS invariant system. As a result, the Kerr and Faraday rotations, which are linearly
proportional to σx y , vanish. Furthermore, we assume two different tilt configurations of the
Weyl nodes: i) chiral-tilt (i.e., C+ = −C−) and ii) achiral-tilt (i.e., C+ = C−).

3.1 Diagonal components of optical conductivity

The components of the optical conductivity tensor of tilted mWSMs described by the model
Hamiltonian [Eq. (1)] are calculated assuming the zero-temperature regime, where Heaviside
step functions replace the corresponding Fermi-Dirac distribution functions. We calculate the
real part of the diagonal or longitudinal components of the optical conductivity tensor for
mWSM systems by evaluating the integral equation [Eq. (3)] with the help of principal value
(P) equation of the Dirac identity: limγ→0 1/(z + iγ) = P

∫∞
−∞(1/z)− iπδ(z), which takes the

following form:

Re[σmm] = −
1

(2π)3

∫ 2π

0

dφk

∫ ∞

0

k⊥dk⊥

∫ kc

−kc

dkz

f eq
k

ħh
q

α2
nk2n
⊥ + v2k2

z

|(P−+)m|2πδ(ω−ωk) . (5)

Note that, to avoid the principal term P of the Dirac identity, we first calculate the Re[σmm],
and the Im[σmm] is subsequently calculated using Kramers-Kronig relation. The chirality index
s in Eq. (5) is omitted by calculating the optical conductivity for the s = 1 node [this leads to
ks

z → kz and Cs=1 = C (say)], which is identical for both nodes and thus multiplied by a factor
of 2 that cancels with the factor 2 appearing in the denominator due to energy difference. In
addition, f eq

k = Θ(µ− ħhε+k )−Θ(µ− ħhε
−
k ), ħhωk = ε+k − ε

−
k , and we set Q0 = 0 for simplicity.

The term (P−+)m denotes the m-th component of the optical matrix element given in Eq. (4)
and is the only term that depends on φk.

To calculate the x-component of the conductivity Re[σx x], we provide a very brief descrip-
tion of the process by which we arrive at the closed-form expressions. The procedure is the
same for y and z components, and due to rotational symmetry in the x − y plane, we will
end up having σx x = σy y . To begin, we evaluate the φk integral with |(P−+)m|2 term from

Eq. (4). Then, with the change of variables: (i) k⊥ = k⊥α
−1/n
n , kz = kz/v; (ii) k⊥ = k1/n

⊥ , and
with ħhωk = 2ħhk, the integral equation transforms as:

Re[σx x(ω)] = −
e2n

8πħhv

∫ ∞

0

k⊥dk⊥

∫ kc/v

−kc/v
dkz
Θ− −Θ+

k

�

k2
z

k2
+ 1

�

δ(ω− 2k) , (6)

where Θ± = Θ [µ−ħh|C |kz ±ħhk]. Now, evaluating the k integration with δ-function for a fixed
kz (i.e., k2 = k2

⊥+ k2
z → k dk = k⊥dk⊥), and thereafter substituting kz = vkz , the Re[σx x] can

be expressed as

Re[σx x(ω)] = Gx x

∫ 1

−1

d x
�

1+ x2
� �

Θx+ −Θx−
�

, (7)

where Gx x = e2nω/(32πħh v) and Θx± = Θ [(2µ/ħhω|C |)± (1/|C |)− x] with x = 2vkz/ω. In
a similar way, one can calculate the Re[σzz] component as

Re[σzz(ω)] = Gzz

∫ 1

−1

d x
�

1− x2
�1/n �

Θx+ −Θx−
�

, (8)

where Gzz = e2vωα−2/n
n (ω/2)2(1−n)/n /(16πħhn).
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After evaluating the above integrals [Eqs. (7)-(8)], the real parts of the diagonal compo-
nents of the conductivity of the type-I WSM for different frequency regimes are calculated as

Re[σx x(ω)] =











0 , for 0<ω<ω1 ,

σn
ω

�1
2 − κd

�

, for ω1 <ω<ω2 ,

σn
ω , for ω>ω2 ,

(9)

where κd =
�

2µ
ħhω − 1

�
h

3
8|C | +

1
8|C |3

�

2µ
ħhω − 1

�2i

,σn
ω = e2nω/(12πħh v), and ħhω1,2 = 2µ/(1±|C |)

are the two photon energy bounds in the mWSM. It is clear from the Eq. (9) that in the region
ω < ω1, vertical transition is completely Pauli blocked (Re[σx x] = 0), while in the interme-
diate region ω1 <ω<ω2 and the region toward right ω>ω2, vertical transition is partially
Pauli blocked and completely unblocked, respectively. In addition, when compared to single
Weyl case (n = 1) [41], the Re[σx x] in mWSM increases linearly with n. In the limit C → 0,
we have ħhω1 → ħhω2 → 2µ. As a result, the range of Pauli blocked region broadens and the
intermediate region disappears. In this case, Re[σx x(ω)] becomes finite for ħhω > 2µ only.
In contrast, when C → 1, we have ħhω1 → µ and ħhω2 →∞, implying that the intermediate
region extends to a very high energy.

0 1 2 3 4 5
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0

2

Ω

σ
x
x

C
 =

 0
.4

Ω1 Ω2

Re[σxx]
Im[σxx]

(a)

n = 1
n = 2
n = 3
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20

Ω

σ
z
z
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n = 3Ω1

C
 =

 0
.4

(b)
Re[σzz]
Im[σzz]

Figure 1: (a) Real (solid curves) and imaginary (dashed curves) parts of the σx x as a
function of rescaled frequency Ω (= ħhω/µ) of type-I (C = 0.4) mWSMs (n= 1, 2,3).
(b) Represents the same for σzz . Here, the vertical dashed lines represent the
two photon frequency bounds Ω1,2 = ħhω1,2/µ. The conductivities are rescaled
by e2Q/(πh), and the values of other parameters are taken as: Q ≈ 5 × 108m−1,
v = 106m/s, µ= 0.1eV , k0 = 0.8−1, α2 = 1.25× 10−4m2/s, α3 = 1.56× 10−14m3/s,
and ħhωc/µ= 70.

The imaginary part of the σx x is followed from the Kramers-Kronig relation and takes the
form:

Im[σx x(ω)] = −
σn
ω

4π

�

ξ ln

�

�

�

�

�

�

ω2
2 −ω

2
�

�

ω2
1 −ω2

�

�

�

�

�

�

+
8
|C |2

� µ

ħhω

�2

−
� µ

ħhω

�3
ζ(|C |,ω,µ) ln

�

�

�

�

(ω2 −ω) (ω1 +ω)
(ω1 −ω) (ω2 +ω)

�

�

�

�

+
6
|C |3

� µ

ħhω

�2
ln

�

�

�

�

�

�

ω2
2 −ω

2
�

ω2
1

�

ω2
1 −ω2

�

ω2
2

�

�

�

�

�

+ 4 ln

�

�

�

�

�

ω2
c −ω

2

ω2
2 −ω2

�

�

�

�

�

�

, (10)

where ξ = (2 + 3
2|C | +

1
2|C |3 ), ζ(|C |,ω,µ) = 4

|C |3 + 3
�

ħhω
µ

�2 � 1
|C |3 +

1
|C |

�

, and ωc = vkc is the
cut-off frequency with kc being the ultraviolet momentum cut-off along the kz-direction. We
have chosen the momentum cutoff along the kz direction kc ∼ π/a with kc >Q where a is the
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lattice constant. It is clear from the above equation that, like the real part, the imaginary part
of σx x also scales with n in mWSMs. Since Eq. (10) is a complicated function of ω, its exact
behavior can be retrieved using numerics. The real and imaginary parts of σx x from Eqs. (9)
and (10) are plotted in Fig. 1(a), where the two frequencies ω1,2 are directly influenced by
the tilt parameter C , which controls the region of vertical transitions. The amplitude of the
vertical transitions here is directly proportional to the topological charge n, and it increases as
one progresses from single WSMs to mWSMs, as can be seen directly from Eq. 9. It is worth
noting that, while the low-energy model of the mWSM can accurately capture the real part
of the conductivity for ωc >> ω (for example, Re[σx x], which is cut-off independent), the
imaginary part of the conductivity becomes cut-off dependent that can be avoided by using a
lattice regularization [42].

From Eq. (8), the Re[σzz(ω)] is evaluated as

Re[σzz(ω)] =















0 , for 0<ω<ω1 ,

Gzz

hp
π Γ (1+ 1

n )
2Γ ( 3

2+
1
n )
− x−2F1(1/2,−1/n, 3/2, x2

−)
i

, for ω1 <ω<ω2 ,

Gzz

hp
π Γ (1+ 1

n )
Γ ( 3

2+
1
n )

i

, for ω>ω2 ,

(11)

where x− = 2µ/ħhω|C |−1/|C | and 2F1(a, b, c, z) is a hypergeometric function. Unlike Re[σx x],
here it is difficult to derive the explicit and generalized n dependence of the Re[σzz]. With
the help of numerics, we plot the real part of the σzz in Fig. 1(b), for n = 1, 2, 3. Interest-
ingly, we find that unlike single WSM (n = 1) case, for double WSM (n = 2), the Re[σzz]
becomes frequency independent in the regionω>ω2, whereas for triple WSM, it decays with
increasing ω . In particular, there exists a power law dependence in ω in this region, given
by Re[σzz]∝ ω2/n−1 [36, 50]. Furthermore, for WSMs with n > 1, Re[σzz] increases more
rapidly in the region ω1 < ω < ω2. It is worth noting that the chiral or achiral tilt configu-
ration has no effect on the diagonal components of the conductivity tensor, as confirmed by
Eqs. (9)-(11).

We emphasize that determining an exact analytical expression of the Im[σzz] is cumber-
some. The numerical integration of the following equation would help determine the imagi-
nary part of the conductivity

Im[σzz(ω)] = −
2ω
π

∫ ωc

0

Re[σzz(ω′)−σzz(0)]dω′

ω′2 −ω2
, (12)

which we plot for n= 1, 2, 3 in Fig. 1(b) (dotted curves). The figure shows that the magnitude
of Im[σzz] for a single WSM is a nearly linear decreasing function of ω, with a slight change
in curvature at two photon bound frequencies. For n = 2 and 3, the magnitude of Im[σzz]
enhances compared to n = 1 case. In addition, the nature of Im[σzz] in mWSMs is nonlinear
with ω, which shows a dip within the region ω1 <ω<ω2.

3.2 Off-diagonal components of optical conductivity

The off-diagonal or transverse components of the optical conductivity tensor are derived here.
It is clear from the Dirac identity that in order to avoid the principal term P, one has to calculate
first the imaginary part, which takes the form

Im[σmn] =
∑

s=±1

s
1

(2π)3

∫ 2π

0

dφk

∫ ∞

0

k⊥dk⊥

∫ kc

−kc

dkz

×
�

Re[(P−+)m]Im[(P−+)n]− Im[(P−+)m]Re[(P−+)n]
	

×
f eq
k

2ħh
q

α2
nk2n
⊥ + v2k2

z

πδ(ω−ωk) . (13)
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Note that, unlike the diagonal case where we calculated the conductivity for one node and
summed it up for two, here we treat them individually. Now, proceeding with the φk integra-
tion (which leads to Im[σyz] = 0 = Im[σxz]) and applying the above mentioned change of
variables to evaluate k⊥ integration, we finally end up with the expression of Im[σx y] of a
mWSM containing two Weyl nodes with chiral tilt (i.e., C+ = −C−) of the form

Im[σx y] =
e2nµ2

8πħh3ωv

 

∑

s=±1

s

∫ ħhω/2µ

−ħhω/2µ
x d x

∑

p=±1

pΘ
�

1− sC x − p
ħhω
2µ

�

!

, (14)

which, upon simplification, gives closed analytical expressions for three frequency regions of
type-I mWSMs as

Im[σx y(ω)] =















0 , for 0<ω<ω1 ,

Gzz

hp
π Γ (1+ 1

n )
2Γ ( 3

2+
1
n )
− x−2F1(1/2,−1/n, 3/2, x2

−)
i

, for ω1 <ω<ω2 ,

Gzz

hp
π Γ (1+ 1

n )
Γ ( 3

2+
1
n )

i

, for ω>ω2 ,

(15)

where κo =
1
|C |2

�

µ2

2ħh2ω2 −
µ

2ħhω +
1
8

�

− 1
8 . Clearly, the imaginary part results from real optical

transitions that are asymmetrically Pauli-blocked, which only exists in the frequency interval
ω1 < ω < ω2. In addition, it scales linearly with n within the two photon energy bound
frequencies (ω1,2). In Fig. 2(a), we depict the frequency-dependent behavior of Im[σx y] for
two relative orientations of the Weyl nodes (C = ±0.4), exhibiting negative and positive values
(mirror image with respect to frequency-axis), respectively. It is clear from the figure that the
magnitude of Im[σx y] enhances with n, as also evident from Eq. (15).
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Figure 2: (a) Imaginary part of theσx y as a function of rescaled frequencyΩ of type-I
mWSMs (n = 1,2, 3) for C = 0.4 (solid cuves) and C = −0.4 (dashed curves). (b)
Represents the same for real part of σx y . Here, the vertical dashed lines represent
the two photon frequency bounds. The conductivities are rescaled by e2Q/(πh), and
the values of other parameters are the same as in Fig. 1. Here positive C refers to the
case: Cs = s|C |; and negative C refers to the case: Cs = −s|C |.

We would like to point out that the real part of the Hall conductivity has two parts: i) ac
or frequency dependent part (Re[σac

x y]) and ii) dc or frequency independent part (Re[σdc
x y]),

so that Re[σx y] = Re[σac
x y] + Re[σdc

x y] [32]. The real part of the conductivity is derived from
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the Kramers-Kronig relation as

Re[σx y] =
2
π

P

∫ ωc

0

ω′Im[σx y(ω′)]dω′

(ω′2 −ω2)

= sgn(C)σn
µ

�

1
|C |
−

1
2|C |2

ln

�

�

�

�

�

�

ω2
2 −ω

2
�

�

ω2
1 −ω2

�

�

�

�

�

�

+
�

µ

2ħhω|C |2
+
ħhω

8µ|C |2
−
ħhω
8µ

�

ln

�

�

�

�

(ω2 −ω)(ω1 +ω)
(ω2 +ω)(ω1 −ω)

�

�

�

�

�

, (16)

where σn
µ = e2µn/(h2 v).

It is important to note that, σdc
x y(ω = 0) (since the dc part is always real) has two con-

tributions: i) intrinsic or ‘universal’ contribution σ(in)x y and ii) free carrier contribution σ(free)
x y .

The σ(free)
x y can be extracted by taking the ω → 0 limit of the Eq. (16). On the other hand,

the intrinsic part, arising from the separation between the Weyl nodes, can be written as
e2nQ/(πh) [51]. Therefore, the total dc contribution of σx y is given by

σdc
x y(ω= 0) =

e2µn
h2v

�

2
C
+

1
C2

ln
�

1− C
1+ C

��

+
e2nQ
πh

= σ(free)
x y +σ(in)x y . (17)

We would like to point out that the total σdc
x y(ω = 0) given in Eq. (17) can also be obtained

by substituting ω = 0 in Eq. (3). Here, we have neglected the frequency dependent part of
the intrinsic contribution. It is clear from the above expression that the σ(in)x y is ‘universal’ in
the sense that it only depends on the separation Q between the opposite chirality Weyl nodes
and is independent of µ and the tilt parameter C . The contribution σ(free)

x y , on the other hand,
comes from the free carriers present near the multi-Weyl nodes and is thus µ-dependent. For
mWSMs, these contributions are linearly proportional to n. In Fig. 2(b), we plot the total
real part of the Hall conductivity Re[σx y] as a function of frequency for different n, which is
positive across frequencies and possesses two discontinuities at two frequency bounds (ω1,2).
Here, although Re[σac

x y] changes its sign, the total Re[σx y] remains positive due to the dc
contribution.

4 Kerr and Faraday rotations from thin film of mWSMs

Since having calculated both the diagonal and off-diagonal conductivity tensors, we find a
nonzero ac Hall conductivity. Here, we investigate the Kerr and Faraday rotations of an ul-
trathin film of a type-I mWSM with a thickness (d) satisfying a << d << λ, where λ is the
wavelength of light. We now consider the case where the linearly polarized light incident on
the mWSM surface and propagates along the separation between the Weyl nodes, i.e., along
the z-direction as mentioned in Eq. (1), so that the polarization vector of the light lies on the
x y plane. Considering the interface of air and mWSM thin film at the z = 0 plane, the com-
ponents of the incident (EI), reflected (ER) and transmitted (ET) electric fields can be written
as

EI =(E
s
I , Ep

I cosθI ,−Ep
I sinθI)e

i(qi·r−ωi t) ,

ER =(E
s
R, Ep

R cosθR, Ep
R sinθR)e

i(qr·r−ωr t) , (18)

ET =(E
s
T , Ep

T cosθT ,−Ep
T sinθT )e

i(qt·r−ωt t) ,
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where θI , θR, and θT are the angles, and qi , qr , and qt are the wave vectors of the incident,
reflected, and transmitted electric fields, respectively. The superscripts s and p denote the s-
polarization and p-polarization of the light, respectively. The corresponding magnetic fields
can be obtained as B= (nri/c)(k̂×E), where nri is the refractive index of the medium. Consid-
ering that the medium on either side of the mWSM thin film is air, the electric and magnetic
fields at the interface must satisfy the following boundary conditions:

(i) E∥1 − E∥2 = 0 , (ii) B⊥1 − B⊥2 = 0 , (19)

(iii) B∥1 −B∥2 = µ0Ksh × q̂ , (iv) ε1E⊥1 − ε2E⊥2 = σ f ,

where q̂ (i.e.,−ẑ) is the unit vector normal to the interface pointing from medium-2 to medium-
1, σ f is the free charge density, and Ksh is the sheet or surface current. In this case, E1 and E2
(B1 and B2) represent the total electric (magnetic) fields in regions 1 and 2, respectively. In par-
ticular, E1 = EI + ER and E2 = ET. The surface current density can be expressed as Ksh

i = σ
d
i j E j ,

where σd
i j is the surface conductivity matrix. It is worth noting that the surface conductivity of

the mWSM thin film is related to its bulk conductivity (σi j) via the expressionσd
i j = dσi j [42].

After solving the above-mentioned boundary conditions, the different reflection and transmis-

sion coefficients
�

(r/t)ps,ss,sp,pp =
�

Ep,s,s,p
R/T

Es,s,p,p
I

�

at Ep,p,s,s
I = 0

�

can be obtained as

rps =
cosθT

cosθI
tps = 2nI Sσd

y x cosθI cosθT ,

rss = tss − 1= −2nI Sσd
2 cosθI − 1 ,

rsp = tsp = 2nI Sσd
x y cosθI cosθT ,

rpp =
cosθT

cosθI
tpp − 1= −2nI Sσd

1 cosθT − 1 , (20)

where S−1 = cµI(σ
d
y xσ

d
x y cosθI cosθT −σd

1σ
d
2) with σd

1 = σ
d
x x + nI cosθI/(cµI) + nT cosθT/(cµT ),

σd
2 = σ

d
y y cosθI cosθT + nI cosθT/(cµI) + nT cosθI/(cµT ). Here, nI and nT are the refractive

indices and µI and µT are the permeability of the incident and transmitted medium, respec-
tively. It is to be noted that in our case, we find σd

x y = −σ
d
y x .

Using the above reflection and transmission coefficients, we can now calculate the Kerr
and Faraday angles for the polarization rotation of the reflected and transmitted beams, re-
spectively, due to the s and p-polarized incident lights as [52]

Φ
s/p
M = 1

2 tan−1
�

2Re[χs/p
M ]

1−|χs/p
M |2

�

,

Ψ
s/p
M = 1

2 sin−1
�

2Im[χs/p
M ]

1+|χs/p
M |2

�

, (21)

where M = K , F stand for Kerr and Faraday rotation and χM is a complex dimensionless
quantity that can be expressed as: χ s

K =
rps
rss

, χ p
K = −

rsp
rpp

, χ s
F =

tps
tss

, and χ p
F = −

tsp
tpp

. The el-
lipticity angle ΨM related to polarization rotation that measures the major-minor axis ratio of
the polarization ellipse. The above expressions clearly show that the optical Hall conductivity
(σd

x y/σ
d
y x) is solely responsible for the polarization rotation of both the reflected and trans-

mitted light. This is due to the fact that the reflection coefficient rsp (rps) and transmission
coefficient tsp (tps) are proportional to σd

x y (σ
d
y x) and thus the χM , which is ∝ rsp/rps for

Kerr rotation and∝ tsp/tps for Faraday rotation. As a result, the Kerr and Faraday rotations
vanish in a TR-symmetric mWSM since the optical Hall conductivity is zero due to the presence
of TRS. In addition, in the case of achiral-tilted mWSM (i.e., C+ = C− = C), the transverse
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conductivity vanishes as can be seen from Eq. (14), resulting in the disappearance of Kerr and
Faraday rotations. It is important to note that, due to the finite thickness d, two boundaries
of the film can act as a Fabry-Perot cavity, where scattering from both the interfaces can lead
to an interference effect, which in turn can modify Kerr rotation. The maxima and minima
conditions for this interference effect are d = lλ/2 and d = (2l +1)λ/4, where l is an integer.
In this work, since λ≫ d, the phase difference is negligible, resulting in minimal impact on
the Kerr rotation.

From Eq. (21), we find that the Kerr rotation and corresponding ellipticity in thin film
mWSMs are independent of topological charge for any angle of incidence. This is because all
of the reflection coefficients (r) are nearly proportional to n, and the χK , which is defined by
the ratio of r, becomes n-independent for n = 1, 2,3. Interestingly, the polarization rotation
of the transmitted light, i.e., the Faraday rotation and corresponding ellipticity angle, is found
to be n-dependent. In particular, ΦF enhance with increasing n. The reason for this is the
following: the magnitude of rss and rpp are very small i.e., rss, rpp << 1, causing tss and tpp
to be independent of n since they are related by tss = 1+ rss and tpp = 1+ rpp, respectively.
As a result, the χF , which is defined by the ratio of t, becomes linearly proportional to n for
n = 1,2, 3. Interestingly, the corresponding ellipticity scales with n2 i.e., ΨmWSM

F = n2Ψn=1
F in

the regions ω < ω1 and ω > ω2, however it deviates from the n2 scaling in the intermediate
frequencies.

To get an estimate of ΦK and ΦF , we consider normal incidence (θI = θT = 0), which forces
rss = rpp as well as tss = tpp. In this case, χ s/p

K in thin mWSM (d << λ) is mainly determined
by the ratio σd

x y/σ
d
x x . Since σd

x y ∝ nQ (lowest order in Q) and σd
x x ∝ n (Q independent),

χ
s/p
K is proportional to Q. Therefore, Kerr rotation is found to be very large (∼ of the order

of radians) for typical parameters of a WSM we use here. In contrast, ΦK in ferromagnetic
systems and topological insulators has been found to be of the order of microradians [53,54].
The Faraday angle, on the other hand, is of the order of a few degrees that is still very large
compared to the case of topological insulators [53, 54], where ΦF has been found to be < 1
degree. We would like to point out that, the Kerr rotation is nearly independent of d [41,42],
to the contrary, in the case of Faraday rotation, the complex dimensionless quantity χ p/s

F for

normal incidence can be written as χ p/s
F =

σd
x y

σd
1
∝ dσx y

(1+ dσx x
2cε0

)
∼ dσx y for d << λ, implying that

the Faraday rotation is proportional to d. In this work, we consider d = 10− 50 nm and the
wavelength of light λ is varied till near infrared wavelength range which satisfies the criteria
a ≪ d ≪ λ. For instance, we choose Ω(= ħhω/µ) = 5 so that ħhω = 1 eV and λ ∼ 1200 nm.
However, the polarization rotation angles can also be enhanced significantly by adjusting the
parameters Q, and µ in mWSMs.

In Fig. 3(a), we plot ΦK due to normal incidence as a function of ω and the correspond-
ing ellipticity is depicted in Fig. 3(b) for three different tilt parameters. These plots reveal
that, although ΦK abruptly changes sign within the intermediate bound frequencies, ΨK al-
ways remains negative. Furthermore, these two quantities are independent of n and polariza-
tion states (s/p). The Faraday rotation and corresponding ellipticity are plotted in Figs. 3(c)
and 3(d) respectively. Unlike the Kerr rotation, which disappears in the Pauli-blocked region,
the Faraday rotation has a nonzero value that increases linearly with n and always remains
positive. In particular, it increases first in the partially Pauli-blocked region (intermediate fre-
quency range), decreases in the upper region, and finally saturates for small d. It is clear from
this figure that Φk is dominated by the Re[σx y]. Conversely, the ellipticity angle is oppressed
by the Im[σx y] and shows n2 dependence in the lower and upper-frequency regions. The
middle region, on the other hand, exhibits highly nonlinear behavior.

It is worth noting that when linearly polarized light incidents on the mWSM surface and
propagates perpendicular to the separation between the Weyl nodes (i.e.,⊥ to z-axis), the Kerr
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Figure 3: (a) Kerr angle and corresponding (b) ellipticity angle as a function of the
rescaled optical frequency Ω for normal incidence for different strength of tilt param-
eters in thin film of mWSMs with d = 10nm and µ = 0.1eV . (c) and (d) show the
same for Faraday rotation with d = 50nm and µ= 0.2eV . Here, all the other parame-
ters are the same as in Fig. 1. Note that, in this case, Φp

K = Φ
s
K=ΦK and Φp

F = Φ
s
F=ΦF .

Interestingly, the figures show that although the Kerr rotation is n-independent, the
Faraday angle increases linearly with n.

(Faraday) rotation vanishes because as the off-diagonal component of the conductivity tensor
giving rise to reflection (transmission) coefficient becomes zero. This fact can help distinguish
the surfaces of mWSMs with and without hosting Fermi arcs in experiments.

5 Kerr and Faraday rotations from the semi-infinite mWSMs

We now turn on the other limit d >> λ representing semi-infinite mWSM to investigate the
polarization rotations. In this limit, Maxwell’s equations get modified in the bulk due to E.B
coupling arising from topological properties [40,42,55]. This is a consequence of an additional
axionic term in electromagnetic Lagrangian, δLϕ = ncε0αfsϕE.B/π, where αfs is the fine
structure constant and ϕ is the axionic field. Owing to the breaking of inversion and TRS, the
axionic field ϕ has a nontrivial space dependence, which is given by ϕ = 2Q.r− 2Q0 t.

Here we restrict ourselves to the inversion-symmetric case, i.e., Q0 = 0, and the axionic
field ϕ takes the integer multiple of π due to its topological property. Using the modified
electric and magnetic field in the bulk due to the new term in the Lagrangian, we obtain a
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wave equation for a TRS broken mWSMs given by

∇× (∇× E) =−µpσ
∂ E
∂ t
− εpµp

∂ 2E
∂ t2
−

2ncε0µpαfs

π
Q×

∂ E
∂ t

, (22)

where µp is the permeability in the medium considered to be unchanged and εp = ε0εb is
the permittivity, with εb representing the relative permittivity from the bound charge. The last
term in Eq. (22), which is proportional to Q, is crucial for polarization rotation in bulk mWSMs.
Here, depending on the light propagation direction, two distinct situations arise. In one case,
the incident light propagates along the Fermi arc (q̂ ∥ Q, say ∥ ẑ), i.e., onto the surface without
Fermi arc. In the other case, the light is incident (q̂ ⊥ Q, say ∥ x̂) onto the surface containing
Fermi arc. These two configurations correspond to Faraday and Voigt geometry, which we
discuss in the following.

5.1 Faraday geometry

Let us consider the light incident on a surface without Fermi arcs, i.e., q̂ ∥ Qẑ. The axionic
bound charge density vanishes in this case because of Q.B = 0. Since Q behaves as the ef-
fective magnetization, this geometry corresponds to the Faraday configuration, which shows
magneto-optic polar Kerr effects in magnetic systems. Starting with the incident electric field,
EI = E0 ei(k.r−ωt) x̂ , with k = (nIω/c)ẑ, the wave equation in the presence of the axion field
[given in Eq. (22)] for the bulk mWSMs takes the following matrix form:

n2
riE1 =





ε′x x ε′x y 0
−ε′x y ε

′
y y 0

0 0 ε′zz



E2 , (23)

where nri is the complex refractive index and E1 = (Ex , Ey , 0), E2 = (Ex , Ey , Ez). The dielectric
tensor ε′i j , which is composed of optical conductivities and internode separation Q, can be
written as

ε′x x = ε
′
y y = εb +

i
ωε0

σx x , ε′zz = εb +
i
ωε0

σzz ,

ε′x y =
i
ωε0

σx y +
2inαfsc
π

Q
ω
=

i
ωε0

(σx y +σ
(in)
x y ) . (24)

The aforementioned equation [Eq. (24)] shows that, in contrast to diagonal components, the
off-diagonal element Im[ε′x y] contains the axionic contribution proportional to Q together
with the transverse conductivity. Additionally, the Im[ε′x y] has a diverging feature for smallω
regions (ω→ 0), resulting in anomalous optical activities in the Pauli-blocked regime.

The solution of Eq. (23) leads to two eigenmodes as

n2
+ = ε

′
x x + iε′x y , and n2

− = ε
′
x x − iε′x y , (25)

where n+ and n− represent the refractive indices for the left and right circularly polarized
eigenmodes in mWSMs, respectively. The electric fields corresponding to these transmitted
modes can be expressed as E+ = t+E0( x̂ + i ŷ)eiω(t∓n+z/c)/

p
2, E− = t−E0( x̂ − i ŷ)eiω(t∓n−z/c)/

p
2,

where t+ and t− are the transmission coefficients in the respective polarization directions.
The reflected eigenmode in this configuration is given by Er = E0(rx x̂ + iry ŷ)eiω(t+nI z/c),
where rx and ry are the reflection coefficients for the respective polarization directions. Using
the boundary conditions given in Eqs. (19), we obtain [43]:

rx =
1− n−n+

1+ n− + n+ + n−n+
,

ry =
i(n− − n+)

1+ n− + n+ + n−n+
. (26)
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Figure 4: (a) Kerr angle and (b) corresponding ellipticity as a function of Ω in the
Faraday configuration for a semi-infinite mWSM with µ = 0.1eV and εb = 1. (c)
and (d) show the variation of the real and imaginary parts of (n+ − n−), which,
respectively give rise to circular birefringence and circular dichroism. Here, all the
other parameters are the same as in Fig. 1.

Defining the dimensionless quantity corresponding to Kerr (χ F
K ) as

χF
K =

ry

rx
= i

n+ − n−
n+n− − 1

= i

q

ε′x x + iε′x y −
q

ε′x x − iε′x y
q

ε′x x + iε′x y

q

ε′x x − iε′x y − 1
, (27)

one can obtain the Kerr angle from Eq. (21). It is clear from the Eq. (27) that, contrary to the
case of thin film mWSMs, here, the polarization rotation depends on the axionic contribution as
it appears in ε′x y . Interestingly, χF

K has linear-Q dependence to the lowest order. Consequently,
the polarization rotation manifests odd-Q dependence, which is similar to the magneto-optic
polar Kerr effect (odd in magnetization). In Fig. 4(a), we plot ΦFar

K as a function of ω and
the corresponding ellipticity ΨFar

K is depicted in Fig. 4(b) for single, double and triple WSMs.
Interestingly, in contrast to thin film case, ΦFar

K and ΨFar
K survive in the Pauli-blocked regime due

to axionic contribution and their magnitude is suppressed with increasing n for all frequency
regimes as can be seen from Fig. 4.

In this geometry, the difference between the refractive indices of transmitted eigenmodes
can give rise to circular birefringence and circular dichroism. Especially, Re[n+−n−] produces
circular birefringence while Im[n+−n−] gives rise to circular dichroism in mWSMs. It is clear
from Eq. (25) that both circular birefringence and circular dichroism increase with increasing
n compared to a single WSM. Interestingly, n+ − n− is nonvanishing only for ε′x y ̸= 0, and
thus has the linear-Q dependence to the lowest order. The Re[n+ − n−] and Im[n+ − n−]
are depicted in Figs. 4(c) and 4(d), respectively. Since the circular birefringence and circular
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dichroism are directly linked to the Faraday rotation angle and corresponding ellipticity by the
following relations [56,57] φFar

F = ΦFar
F + iΨFar

F ; ΦFar
F = πd

λ Re[∆n] ΨFar
F = πd

λ Im[∆n] (φFar
F

is the complex Faraday rotation), one can easily verify our results on polarization rotation of
transmitted light in an experiment by considering a bulk mWSM with thickness d that meets
the d >> λ criteria. Consequently, the Faraday rotation and ellipticity increase as n increases.

It is worth mentioning that, although we have chosen εb = 1 for the current work, it is a
material-dependent parameter and can have higher values in WSMs, for example, εb = 6.2
in TaAs [58]. However, for a large value of εb, both χF

K and ∆n become very small in optical
regime (χF

K, ∆n→ 0) because of ε′x x >> ε
′
x y as can be easily seen from Eq. (27), leading to

tiny ΦFar
K and ΦFar

F respectively.

5.2 Voigt geometry

In this geometry, light is assumed to be incident on the surface containing Fermi arc states.
Specifically, for our model, the light is incident on the y−z plane and propagates along the x-
direction, which is perpendicular to the Weyl-node separation Q (i.e., Qẑ). To achieve non-zero
polarization rotation, we choose the polarization of the incident light to be along ( ŷ + ẑ)/

p
2.

Now solving the light propagation equations in this geometry, we obtain two linearly po-
larized modes as

n2
⊥ = ε

′
y y −

ε′2x y

ε′x x
, and n2

∥ = ε
′
zz , (28)

where n∥ and n⊥ are the refractive indices of the two polarized modes propagating along and
perpendicular to Q within the mWSMs. It is clear from Eq. (28) that the refractive index n2

∥ is

almost independent of Q, whereas n2
⊥ is an even function of Q. The electric fields correspond-

ing to these modes are given by E∥ = t∥E0eiω(t∓n∥x/c)ẑ and E⊥ = t⊥E0(ε
′
x y/ε

′
x x x̂ + ŷ)eiω(t∓n⊥x/c),

respectively, where E0 is the amplitude of the electric field, t⊥ and t∥ are the transmission co-
efficients in the respective polarization directions. Similarly, the electric field of the reflected
mode can be expressed as Er = E0(r∥ ẑ+ ir⊥ ŷ)eiω(t+nI x/c), where r⊥ and r∥ are the reflection
coefficients in the respective polarization directions.

Using the boundary conditions given in Eqs. (19), we finally obtain the reflection and
transmission coefficients as

r∥ =
1− n∥
p

2(1+ n∥)
, and r⊥ =

1− n⊥p
2(1+ n⊥)

. (29)

Now defining the dimensionless quantities corresponding to the Kerr rotation as

χV
K =

r∥
r⊥
=

�

1−
Æ

ε′zz

�

�

1+
È

ε′y y −
ε′2x y
ε′x x

�

�

1+
Æ

ε′zz

�

�

1−
È

ε′y y −
ε′2x y
ε′x x

�
, (30)

the Kerr rotation angle, as well as corresponding ellipticity angle, can be obtained from
Eq. (21). Although, similar to the Faraday geometry, χV

K here depends on the axionic con-
tribution, however, it depicts quadratic-Q dependence in lowest order which is in contrast to
Faraday geometry. Consequently, the polarization rotation also becomes even function of Q,
which is analogous to the Voigt effect. It is clear from the Eq. (28) that this configuration
gives rise to linear birefringence and linear dichroism, defined as Re[n∥−n⊥] and Im[n∥−n⊥]
respectively, increase with n in mWSMs.

As the incident light is polarized by an initial angle Φ0 (here Φ0 = π/4), the measurement
angle should be subtracted by Φ0. It is important to note that if the incident light is polarized
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Figure 5: (a) Kerr angle and (b) corresponding ellipticity as a function of Ω in the
Voigt configuration for a semi-infinite mWSM with µ= 0.1eV and εb = 1. (c) and (d)
show the variation of the real and imaginary part of (n∥ − n⊥), which, respectively
give rise to linear birefringence and linear dichroism. Here, Φ0 = π/4 and all the
other parameters are the same as in Fig. 1.

along either the ŷ or ẑ directions, the boundary conditions will lead r⊥ or r∥ to become zero,
resulting in zero polarization rotations. Hence, an incident polarization angle with the ŷ and
ẑ axes is necessary.

In Figs. 5(a) and 5(b), we depict the Kerr angle δΦVoi
K (= ΦVoi

K − Φ0) and corresponding
ellipticity ΨVoi

K as a function of ω for single, double and triple WSMs. The real and imaginary
parts of (n∥ − n⊥), which generate linear birefringence and linear dichroism, are shown in
Figs. 5(c) and 5(d), respectively. Contrary to Faraday geometry, while δΦVoi

K and Re[∆n]Voi

are finite in the Pauli-blocked regime, the ellipticity ΨVoi
K and Im[∆n]Voi vanish. In the Pauli-

blocked region, the magnitude of δΦVoi
K decreases, while Re[∆n]Voi increases as we go higher

n. In the other two frequency regions, δΦVoi
K shows the opposite variation with n. The linear

birefringence and linear dichroism lead to a polarization rotation (so called “Voigt rotation”)
of the transmitted light followed by the relation [59, 60]: φVoi

F ≈
πd
iλ (n∥ − n⊥), which can

be measured in experiment for a bulk mWSM of thickness d. Moreover, these plots show
the distinctive nature of mWSMs from a single WSM, which can be exploited to differentiate
between them.

6 Discussion and Conclusion

We investigate the Kerr and Faraday rotations in type-I TRS broken mWSMs (n > 1) in the
absence of an external magnetic field for two cases: (i) thin film limit (a << d << λ) and
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(ii) semi-infinite limit (d >> λ), which we compare for a conventional WSM (n = 1). To
put into perspective the fundamental qualitative difference between a conventional WSM and
mWSM is that in a WSM, the dispersion around a Weyl node is isotropic in all momentum
directions. While, for mWSMs, the dispersion around a double (triple) Weyl node becomes
quadratic (cubic) along both kx and ky directions, with a linear variation along kz . Using the
low-energy model of mWSM, we analytically obtain the optical conductivity tensor including
the impact of internode separation and finite µ within the framework of Kubo response theory.
From our analytical calculations, we find that both the longitudinal and transverse components
of the optical conductivity tensor are renormalized by the topological charge n. In particular,
the longitudinal components (σx x ,σy y) perpendicular to the Weyl node separation (Qẑ) as
well as the transverse component (σx y) are linearly proportional to n, while the component
σzz , which is along the node separation, follows nontrivial dependence on n.

Using the obtained optical conductivity, in the case of thin film limit, we show that the
Kerr rotation is mainly determined by the optical Hall conductivity and is proportional to the
separation between the Weyl nodes of opposite chirality in a TRS broken mWSM. We also
show that the polarization rotation of the reflected light is independent of topological charge
n and vanishes in Pauli-blocked region. In contrast, the Faraday rotation, oppressed by the
Re[σx y], is finite in Pauli-blocked region and it depends on n. Remarkably, we find that ΦF and
corresponding ellipticity angle scale as n and n2 respectively in mWSM, which could possibly
be employed to differentiate a conventional WSM from mWSM. In addition, we estimate the
magnitude of both the Kerr and Faraday rotations turns out to be very large compared to other
materials [53,54].

On the other hand, in the case of semi-infinite mWSM, we explore the polarization rotation
for two cases (1) Faraday geometry and (2) Voigt Geometry. Our analysis reveals that, in con-
trast to the thin film mWSMs, the polarization rotation in both cases is finite even in the Pauli-
blocked regime and is dominated by the axion electrodynamics, which modifies Maxwell’s
equations. We show that polarization rotation is an odd function of Q in Faraday geometry
while showing even-Q dependence in Voigt geometry. We further show that the magnitude
of the Kerr angle in Faraday geometry decreases as n increases. However, in the Voigt ge-
ometry, the magnitude of δΦVoi

K decreases with increasing n in the Pauli-blocked region while
in other two frequency regions, δΦVoi

K shows the opposite variation. In addition, the circular
(linear) birefringence and circular (linear) dichroism in Faraday (Voigt) geometry enhance
with the topological charge. Therefore, the polarization rotations could be used as a probe
to distinguish single, double, and triple WSMs from each other in experiments. Furthermore,
polarization rotation could help to discriminate the surfaces of mWSMs with and without host-
ing Fermi arcs. Note that, the trivial bands can also appear at the Fermi level in realistic Weyl
materials. However, the presence of a trivial band at the Fermi level would not change the
proposed results qualitatively since the transverse conductivity due to it is minimal compared
to the nontrivial bands of mWSM in the absence of an external magnetic field. The mag-
netic WSM Co3Sn2S2 [61,62], double WSM HgCr2Se4 [7,18] as well as cubic Dirac semimetal
A(MoX)3 [21] (with A= Rb, TI; X = Te) can be the possible candidates to show the proposed
results on Kerr and Faraday rotations.

We would like to point out that contrary to the low-energy model used in this work, a
real mWSM may consist of Weyl nodes with different tilts with respect to one another, and
the number of pair of nodes can be greater than one. Besides, in the case of type-II mWSMs,
the optical conductivity tensor calculated using the low-energy model becomes momentum
cutoff-dependent. Since, it is well known that a lattice model of Weyl fermions with lattice
regularization provides a natural ultraviolet cutoff to the low-energy Dirac spectrum, which is
why, one needs to study a mWSM Hamiltonian using DFT or a lattice Hamiltonian to predict
the quantitatively correct experimental behavior of polarization rotation in mWSMs. This is
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an interesting question which we leave for future study. In addition, investigating the Kerr and
Faraday rotations beyond Weyl systems [63,64] such as triple component fermions, multi-fold
fermions would also be a fascinating question to look into.

Note added: —Recently, we noticed one preprint [65] appeared in parallel with our work
on Kerr rotation in multi-Weyl semimetals.
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