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Abstract

As a joint explanation for the dark matter (DM) problem and the muon (g −2) anomaly,
we propose a simplified model of lepton-flavoured complex scalar DM with couplings to
both the left- and right-handed leptons of the Standard Model (SM). Both interactions
are governed by the same new flavour-violating coupling matrix λ, however we allow for
a relative scaling of the coupling strength. The SM is further extended by two fermion
representations, transforming as an SU(2)L doublet and singlet, respectively, and medi-
ating these interactions. The fermions additionally couple to the SM Higgs doublet via
a new Yukawa coupling. To study the model’s phenomenology we first investigate con-
straints from collider searches, flavour experiments, precision tests of the SM, the DM
relic density, and direct as well as indirect detection experiments individually. We then
perform a combined analysis by demanding that all mentioned constraints are satisfied
simultaneously. We use the results of this combined analysis and examine if the model is
capable of accommodating the (g −2)µ anomaly within its viable parameter space with-
out introducing fine-tuned lepton masses. For all benchmark scenarios we consider, we
find that the central value of ∆aexp

µ can be reached without generating too large correc-
tions to the lepton masses. We hence conclude that this model qualifies as a viable and
attractive lepton-flavoured DM model that at the same time solves the (g −2)µ anomaly.
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1 Introduction

Within the wide range of different DM candidates [1], those predicted by models which are
capable of addressing other problems, puzzles or anomalies of physics appear particularly ap-
pealing. Among the latter, the discrepancy between experimental measurements [2] and state
of the art SM predictions [3] of the muon anomalous magnetic dipole moment aµ currently
constitutes one of the most significant hints at new physics (NP) and is referred to as the muon
(g − 2) anomaly. In order to reconcile solutions to these two problems, models of DM cou-
pling to the leptonic sector of the SM are worth investigating. In fact, flavoured dark matter
(FDM) models, coupling to either SM quarks or leptons, have proven to generally exhibit a
rich phenomenology and have been the subject of many previous studies [4–13].

In FDM models the DM field – as the name already suggests – carries flavour and thus
comes in multiple (usually three) generations. As this potentially also allows for strongly
constrained new sources of flavour violation, early studies of such models have been restricted
to the Minimal Flavour Violation (MFV) framework [14–19] in which all new flavour violating
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interactions are expressed in terms of the SM Yukawa couplings. As this approach yields a
highly constrained flavour structure for the coupling matrix λ that governs the interactions
between DM and the SM, more general studies [20–26] have been performed within the Dark
Minimal Flavour Violation (DMFV) framework presented in [20]. This framework allows for
a generic flavour structure of λ by proposing that it constitutes the only new source of flavour
violation besides the SM Yukawa couplings.

Within the context of the muon (g−2) anomaly, lepton-flavoured DM models [27–30] are
of particular interest, since they assume the DM field to couple to leptons and can therefore
generate potentially sizable contributions to (g − 2)µ. Thus, the main subject of the present
study is a lepton-flavoured DM model which extends the model presented in our previous pa-
per [26]. There we had studied a lepton-flavoured complex scalar DM model within the DMFV
framework in which DM coupled to the right-handed charged leptons through the exchange
of a charged vector-like fermion. While that model has a rich and interesting phenomenology,
due to the chiral structure of the model, we found the new contributions to the muon anoma-
lous magnetic moment to be negligible. Hence, in this paper we extend the model from [26]
by an additional mediator field and its interactions: the field content is extended by a vec-
torlike fermionic SU(2)L doublet containing one neutral and one charged state which couple
DM to the SM left-handed lepton doublets. We further couple this new fermionic doublet
and the charged fermion singlet mediating the DM interactions with the right-handed charged
leptons to the SM Higgs doublet through a new Yukawa coupling yψ.1 This model does not
belong to the DMFV class as its coupling structure is inconsistent with the DMFV flavour sym-
metry assumptions, due to the additional left-handed interactions. Yet, in order to keep the
number of new coupling parameters manageable, we assume the interaction between DM and
left-handed leptons to be governed by the same coupling matrix λ as the right-handed inter-
actions. However, we allow for a scaling of this coupling in terms of a parameter ξ in order to
overcome the ad-hoc nature of choosing the couplings of right- and left-handed interactions
to be equal.

We start our analysis by introducing the details of the model described above and especially
presenting its mass spectrum. We then study its phenomenology by subsequently analysing
constraints from collider searches, flavour experiments, precision tests of the SM, the DM relic
density, and direct as well as indirect DM detection experiments. Subsequently, we perform
a combined analysis in which we demand that all constraints are satisfied simultaneously in
order to determine the viable parameter space of the model. Finally we examine if this model
can generate sizeable contributions to the muon anomalous magnetic moment aµ, keeping
an eye on potentially large accompanying corrections to the muon mass that could introduce
fine-tuning and hereby render this solution to the (g − 2)µ anomaly unattractive.

2 Model setup

We use this section to present our simplified lepton-flavoured DM model coupling to both left-
and right-handed leptons, pointing out important differences to DMFV models and discussing
its mass spectrum in particular.

2.1 Lepton-flavoured DM with left- and right-handed couplings

We propose a simplified model which extends the SM by three complex scalar fields and
two fermion representations. The scalar fields are contained in the dark flavour triplet

1A solution to the (g − 2)µ anomaly with similar field content, but without the flavour structure and DM inter-
pretation, has previously been investigated in [31,32].
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Table 1: NP fields and their definitions as well as their representations under the SM
gauge group.

Field Definition SU(3)C SU(2)L U(1)Y Spin

φ (φ1,φ2,φ3)T 1 1 0 0

Ψ (ψ0,ψ′1)
T 1 2 −1/2 1/2

ψ′2 – 1 1 −1 1/2

φ = (φ1,φ2,φ3)T and have quantum numbers (1,1, 0)0, where we use the short-hand nota-
tion (SU(3)c , SU(2)L , U(1)Y )spin. They couple to the SM’s left- and right-handed lepton fields
through the doublet Ψ = (ψ0,ψ′1)

T with quantum numbers (1,2,−1/2)1/2 and the singlet ψ′2
which transforms as (1,1,−1)1/2, respectively. The two new fermion fields are additionally
Yukawa-coupled to the SM Higgs doublet H. We assume that the lightest generation of φ
constitutes the observed DM in the universe. An overview of the NP fields and their represen-
tations under the SM gauge group is given in Table 1. We further assume the new fields φ, Ψ
and ψ′2 to be charged under a discrete Z2 symmetry. The Lagrangian of this model reads

L=LSM + Ψ̄(i /D−mΨ)Ψ + ψ̄′2(i /D−mψ)ψ
′
2 + (∂µφ)

†(∂ µφ)−φ†M2
φφ

− (λR
i j ℓ̄Riψ

′
2φ j +λ

L
i j L̄iΨφ j + yψ Ψ̄ψ

′
2 H + h.c.)

+λHφφ
†φ H†H +λφφ
�

φ†φ
�2

. (1)

Here, the couplings λR/L are complex 3×3 matrices. In order to keep the total number of free
parameters manageable, we assume that the left-handed coupling λL is related to λR through

λL = ξλR = ξλ , (2)

i.e. left- and right-handed couplings are equal up to a scaling parameter ξ. In this way we
ensure that the NP couplings to the SM lepton sector are governed by a single new flavour-
violating matrix λ. We note that, while similar to the DMFV Ansatz, this simplifying assump-
tion can not be traced back to a new flavour symmetry. To overcome its rather ad-hoc nature
and to ensure that the entirety of the model’s phenomenology is captured in our analysis, we
allow ξ to be a complex number such that effects due to a relative phase between λR and
λL can still be present. Note that the scaling parameter ξ is particularly relevant in Section 4,
where we discuss constraints from lepton flavour violating (LFV) decays, as large contributions
from diagrams with a chirality flip in the loop can be suppressed through ξ. At the same time
ξ should not suppress left-handed interactions too strongly, as equivalent chirality-flipping
contributions to the muon anomalous magnetic moment aµ are needed in order to generate
sizeable NP effects within the mass ranges allowed by collider searches. We provide a detailed
discussion of this interplay of different constraints and their impact on the scaling parameter
ξ in our phenomenological analysis.

The mass parameters mΨ and mψ as well as the mass matrix Mφ are discussed in detail in
Section 2.2. While the coupling λφφ is only given for completeness here and has no impact
on our analysis, the Higgs portal coupling λHφ actually bears relevance that we comment on
whenever necessary.

Contrary to the models studied in [20–25] and especially in [26], where the DM triplet had
purely right-handed interactions with the SM fermion sector, in the present model, there is no
flavour symmetry that the DM flavour triplet φ can be associated with, due to its couplings
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to both left- and right-handed leptons in eq. (1). Thus, all parameters of the matrix λ remain
physical, and we write it in terms of nine real parameters and nine complex phases, i.e.

λi j = |λi j| eiδi j . (3)

This yields a total number of 18 physical parameters that the coupling matrix λ depends on,
which together with the mass parameters mΨ , mψ and the three mφi

as well as the Yukawa
coupling yψ and the scaling parameter ξ amounts to a total number of 26 free parameters. To
ensure perturbativity and avoid a double-counting of the parameter space we will scan over
the ranges

|λi j| ∈ [0, 2] , δi j ∈ [0,2π) , yψ ∈ [0, 2] , |ξ| ∈ (0,1] , δξ ∈ [0,2π) , (4)

in our phenomenological analysis. Note that the Yukawa coupling yψ can be taken real and
non-negative without loss of generality. We restrict the absolute value of ξ to be smaller than
one, since we consider this model as an extension of the one studied in Reference [26] to re-
produce the experimental value of the muon anomalous magnetic moment (g−2)µ. Therefore
we assume the right-handed lepton coupling to be dominant, i.e. |ξ| ≤ 1.

2.2 Mass spectrum and DM stability

The Yukawa interaction between Ψ,ψ′2 and the Higgs doublet H in eq. (1) introduces a mixing
of the charged fermions ψ′1 and ψ′2 with the corresponding mass matrix

Mψ =

�

mΨ
v yψp

2v yψp
2

mψ

�

, (5)

where v = 246 GeV is the vacuum expectation value of the Higgs field. Using the Ansatz
�

ψ′1
ψ′2

�

=

�

cosθψ − sinθψ
sinθψ cosθψ

��

ψ1
ψ2

�

, (6)

we diagonalize this mass matrix to find the eigenvalues

mψ1
=

1
2

�

mΨ +mψ +
r

(mΨ −mψ)2 + 2 y2
ψ

v2
�

, (7)

mψ2
=

1
2

�

mΨ +mψ −
r

(mΨ −mψ)2 + 2 y2
ψ

v2
�

, (8)

with the corresponding mixing angle

θψ =
1
2

arccos





(mΨ −mψ)
Ç

(mΨ −mψ)2 + 2 y2
ψ

v2



 . (9)

We can then write the Lagrangian from eq. (1) in terms of the mass eigenstates ψ1 and ψ2
and find

L=LSM + ψ̄0(i /D−mψ0
)ψ0 + ψ̄1(i /D−mψ1

)ψ1 + ψ̄2(i /D−mψ2
)ψ2 + (∂µφ)

†(∂ µφ)

−φ†M2
φφ +λHφφ

†φ H†H +λφφ
�

φ†φ
�2 −
¦

ξλi jν̄i PRψ0φ j + h.c.
©

−
¦

λi j ℓ̄i

��

cosθψPL − ξ sinθψPR

�

ψ2 +
�

sinθψPL + ξ cosθψPR

�

ψ1

�

φ j + h.c.
©

−
yψ
p

2

¦

sin2θψ
�

ψ̄1ψ1 − ψ̄2ψ2

�

h+ cos 2θψ
�

ψ̄1ψ2 + ψ̄2ψ1

�

h
©

, (10)
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where we additionally defined mψ0
= mΨ . The absence of a global flavour symmetry also has

implications for the DM mass matrix M2
φ

, as it cannot be parametrized by λ through the usual

DMFV spurion expansion [20]. We thus choose M2
φ

to be diagonal by writing

M2
φ = diag(m2

φ1
, m2

φ2
, m2

φ3
) , (11)

which we complement by the conventional hierarchy mφ1
> mφ2

> mφ3
.2 Note that in contrast

to the models presented in [20–26], here the masses mφi
are free parameters3 which in turn

means that the mass splittings between different dark flavours are not restricted. However, to
keep the results of our analysis comparable to the studies performed in [20–26] we restrict
them to a maximum of 30%. To ensure that the lightest state φ3 is stable we additionally
impose a Z2 symmetry under which only the new fields φi and ψα

4 are charged, such that
their decays into SM-only final states are forbidden. This guarantees thatφ3 is stable as long as
it constitutes the lightest NP state. We further choose to work with the convention mψ1

≥ mψ2
.

Since the mixing between the two charged mediators ψ1,2 implies that one of them is heavier
than the neutral state ψ0 while the other is lighter, we thus always have the hierarchy

mψ1
≥ mψ0

≥ mψ2
> mφ3

. (12)

Recall that ψ0 is neutral while ψ1,2 carry electric charge -1. We further work in the limit of
zero neutrino masses mνi

throughout this analysis, which holds to an excellent approximation.

3 Collider phenomenology

Collider searches place important constraints on the mass parameters of the new particles
ψα and φi . We use this section to discuss the implications of LHC searches for the parameter
space of our model. To reconcile our analysis with results from the LEP experiments [33,34]we
assume that the charged mediators are heavier than 100 GeV, i.e. we choose mψ1/2

> 100GeV.

3.1 Relevant LHC signatures

The annihilation of a quark and an antiquark from the initial state protons into an off-shell elec-
troweak boson or photon gives rise to the production of mediator pairs ψ̄αψβ with α,β∈{0,1,2}.
This is shown in Figure 1. Here the indices depend on the off-shell s-channel boson—mixed
pairs ofψ0 and eitherψ1 orψ2 can only be produced if the Drell-Yan process is mediated by a
W boson, while the production of mixed pairs of ψ1 and ψ2 is mediated by h or Z . Also, only
a Z boson can decay into the state with a ψ0 pair.

The subsequent decay of the fermions ψα shown in Figure 2 then gives rise to several
signatures depending on the constellation of the intermediate state explained above. While
the charged mediatorsψ1,2 decay into a charged lepton and a dark scalar, the neutral mediator
ψ0 decays into a neutrino and a dark scalar and leaves no trace in the detector. We thus
obtain mono- as well as di-lepton signatures in association with missing transverse energy.
Other possible signatures arise from cascade decays of the heavier mediators ψα into lighter
mediators ψβ and a W , Z or Higgs boson. The subsequent decay of the gauge boson into

2In general, M2
φ

receives a correction from the Higgs portal coupling λHφ after EW symmetry breaking. Since
we assume λHφ to be negligible throughout our analysis, we omit this term here.

3We assume the masses mφi
to include radiative corrections, i. e. we take them to be the renormalised on-shell

masses.
4We use Greek indices when generally referring to any of the mass eigenstates ψ0, ψ1 and ψ2 throughout this

analysis. This should not be confused with the usual convention of using Greek letters as spinor indices.
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qj

qi ψα

ψβ

γ, Z,W

g

g ψα

ψβ

h

t

t

t

Figure 1: Feynman diagrams for the production of ψ̄αψβ pairs through a Drell-Yan
process mediated by electroweak gauge bosons or by a Higgs boson produced by
gluon fusion.

leptons and the lighter mediator’s decay into a lepton and a dark scalar then give rise to
signatures with three or more charged leptons and missing energy. Collecting all these decay
channels, we find the following relevant processes for LHC searches:

pp → ψ̄0ψα → ν̄iℓ jφ
†
kφl ,

pp → ψ̄αψβ → ℓi ℓ̄ jφ
†
kφl ,

pp → ψ̄0ψ1 → ν̄i ℓ̄ jℓ jℓkφ
†
l φm ,

pp → ψ̄0ψ2 → ℓ̄ jν̄iℓiℓkφ
†
l φm , (13)

where α,β ∈ {1, 2} and i, j, k, l and m are flavour indices. Here we have omitted charge
conjugated processes and final states with more than three leptons for brevity. In total these
processes yield the signatures ℓi + /ET , ℓi ℓ̄ j + /ET , ℓ̄iℓiℓ j + /ET and ℓ̄iℓ jℓk + /ET .

Since existing searches for the mono-lepton signature [35,36] consider NP cases with dif-
ferent kinematics, a proper recasting would be in place in order to derive meaningful con-
straints on our model’s parameter space. Additionally, the mono-lepton signature suffers from
a large SM background stemming from s-channel W production with subsequent decay into a
charged lepton and a neutrino. We thus expect this signature to yield subleading constraints
and therefore ignore it in our analysis. The signatures ℓ̄iℓiℓ j + /ET and ℓ̄iℓ jℓk + /ET only differ
by the case with i ̸= j ̸= k, i.e. the case with an electron, a muon and a tau in the final state.
The latter final states are correlated with the strongly constrained LFV decays in many mod-
els, such as supersymmetry, and therefore no dedicated LHC searches are available. Existing
searches for the signature ℓ̄iℓiℓ j + /ET again exhibit different final state kinematics [37], such
that a thorough recasting is necessary in order to derive applicable constraints for our model,
which we leave for future work. We thus focus on the di-lepton+/ET signature in this work.

Lastly, we neglect mixed-flavour final states with i ̸= j in this analysis although, in contrast
to non-flavoured DM models, these signatures do not require flavour violation in the coupling
matrix that governs the interaction between DM and the SM in our model. In doing so, we
follow the results of our analysis in [26] stating that searches in same-flavour final states
already exclude the region of the parameter space in which the mixed-flavour final states
yield rates comparable to the SM background. This leaves us with the signatures eē + /ET ,
µµ̄+ /ET and ττ̄+ /ET . As we showed in [26], searches for final states with a pair of taus [38]
can be neglected as well, since they yield significantly weaker limits than searches for final
states with light leptons. Those final states are constrained by searches for supersymmetric
scalar leptons (sleptons) of the first and second generation, which in SUSY models are pair-
produced and subsequently decay into a neutralino and a charged lepton. This leads to the
relevant signature ℓℓ̄+ /ET with ℓ= e,µ, where in the experimental analyses µ− e universality
is commonly assumed.
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�j, νj

φi

ψα

ψβ

W,Z

ψα

Figure 2: Feynman diagrams for the decay of ψα into leptons and dark matter (left)
and gauge bosons and lighter mediators ψβ with mψβ < mψα (right). For the latter
we only show decays into electroweak gauge bosons and ψβ while decays into a
Higgs boson and ψβ are possible as well.

3.2 Recast of LHC limits

Amongst several experimental searches for sleptons in final states with two charged leptons
and missing transverse energy [39–42] the CMS search in [39] places the strongest constraints
on the parameter space of our model. This search uses the full run 2 data set with an inte-
grated luminosity of 137 fb−1. In order to properly recast the bounds from [39] which we
obtained from the SModelS [43] database, we implement the Lagrangian from eq. (1) in
FeynRules [44]. Using this implementation we generate a UFO file [45] and calculate the
leading-order signal cross section of the relevant process in MadGraph 5 [46]. To constrain
the parameter space of our model we then compare the signal cross section to the experimen-
tal upper limit obtained from the above mentioned searches. In doing this, we neglect the
impact of the potentially different final-state kinematics due to the different spin-statistics in
our model relative to the SUSY case.

In our numerical analysis of the LHC constraints we follow [20–26] and ignore possible
mass splittings between the different dark flavours mφi

discussed in Section 2.2, as small
splittings only lead to additional soft and therefore difficult-to-detect decay products. We
further neglect flavour-violating effects and consider a diagonal coupling matrix λ. Allowing
for flavour-violating effects, i.e. off-diagonal elements in λ would reduce the branching ratio
of a given flavour-conserving final state and therefore reduce its signal cross section. This in
turn weakens the exclusion in the mψ1,2

− mφ plane, which we are primarily interested in.
Finally, we set |λe1| = |λµ2| = |λℓℓ| as required by the assumption of µ− e universality in the
CMS analysis.

Note that the value of the scaling parameter ξ defined in eq. (2) has no impact on the
signal cross section, as the relative size of left- and right-handed couplings does not change
the hierarchy between the couplings |λii| to different lepton flavours. This in turn means that
the branching ratios of the charged mediators are independent of ξ. We furthermore assume
the mixing between the charged mediators ψ1 and ψ2 to be maximal with θψ = π/4 which
corresponds to the case of equal gauge eigenstate mass parameters mΨ = mψ.

Also note that due to the existence of two charged mediators ψ1,2 in our model the limits
from the search mentioned above cannot be straightforwardly applied to our case. As a leading
order estimate we calculate the signal cross sections of the two processes pp→ψ1ψ̄1→ ℓℓ̄+ /ET

and pp→ψ2ψ̄2→ ℓℓ̄+ /ET and compare each signal with the experimental upper limits from
Reference [39] to draw exclusion contours in both the mψ1

−mφ and the mψ2
−mφ plane.5

In doing so we neglect the contribution from the other mediator’s pair production as well as
the off-diagonal production of ψ1ψ2 pairs, which we expect all to only marginally increase
the exclusion in the above mentioned NP mass planes.

5Remember that for a maximum mixing angle θψ = π/4 the masses mψ1
and mψ2

are linearly connected through
mψ1

= mψ2
+
p

2yψv.
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Figure 3: Constraints on the final state ℓℓ̄+ /ET for several values of yψ, |λℓℓ| = 2.0
and maximum mixing with mΨ = mψ and θψ = π/4. The areas under the curves are
excluded.

The results are shown in Figure 3. Here we overlay the exclusion in the mψ1
−mφ as well

as the mψ2
−mφ plane in a single graph by using the linear connection between the masses of

both charged mediators. In all four figures the excluded region shrinks for growing values of
|λτ3| as this increases the branching ratio of the charged mediators’ decay into a tau-antitau
pair and missing energy. The concomitant decrease of the decay rate into light lepton final
states yields a smaller exclusion. While increasing the value of the Yukawa coupling yψ has
no impact on the maximum extension of the exclusion contour, it has significant implications
for the exclusion of DM near the equal-mass threshold mφ ≈ mψ2

. The former behaviour
indicates that the contributions to the signal cross section from Higgs mediated Drell-Yan pro-
cesses are negligible. The exclusion in the soft final state region is due to contributions from
the heavier charged mediator ψ1. Due to the mass splitting between ψ1 and ψ2 given as
∆mψ = mψ1

−mψ2
=
p

2yψv, the final state leptons are not produced softly if they stem from
the decay of the heavier mediator ψ1. In this part of the parameter space, we find that the ex-
clusion grows for increasing Yukawa couplings up to yψ ≃ 0.50, where the strongest exclusion
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is obtained, as can be seen in Figure 3b. We further see in Figure 3b, Figure 3c and Figure 3d
that the exclusions in the near-degenerate region reach their maximum for 0.50 ≲ yψ ≲ 1.00
and extend up to mφ ≈ mψ2

≃ 400 GeV. Even larger values yψ ≳ 1.00 tend to reduce the
exclusion in this region, since they at the same time increase the mass splitting ∆mψ between
ψ1 and ψ2. This means that for such large values of yψ even if mψ2

is small the mass mψ1

grows sufficiently large to suppress the ψ̄1ψ1 pair production cross section below the excluded
range. Away from the equal mass threshold, we find that constraints from ℓℓ̄+ /ET searches
reach up to mediator masses mψ2

≃ 750GeV, or mψ2
≃ 400 GeV if mφ ≳ 400GeV.

4 Flavour physics phenomenology

Constraints from flavour physics experiments generally have a significant impact on the pa-
rameter space of flavoured DM models [20–26]. For the case of lepton-flavoured DM these
constraints come from LFV decays, in particular ℓi → ℓ jγ, and have proven to be even stronger
[21, 26] than constraints from neutral meson mixing, which are relevant for quark flavoured
DM [20,22–25]. As in our model the DM triplet couples to both right- and left-handed leptons,
the NP contribution to these decays gets enhanced by contributions with a chirality flip inside
the loop. In this section we carefully analyse the constraints and determine which part of our
model’s parameter space is consistent with experimental limits.

4.1 Lepton flavour violating decays

In our analysis in Reference [26] we discussed the decay rates for the LFV process shown in
Figure 4 based on References [47,48] for a generic interaction Lagrangian of the form

Lint = cR
i j ℓ̄Riψφ j + cL

i j ℓ̄Liψφ j + h.c. , (14)

where ψ is a Dirac fermion with electric charge Qψ = −1 and the fields φi are scalars. For the
relevant branching ratios we found

BR(ℓi → ℓ jγ) =
e2

64π

mℓi

Γℓi

�

|aR
ℓiℓ jγ
|2 + |aL

ℓiℓ jγ
|2
�

, (15)

with the coefficients6

aR
ℓiℓ jγ

=
mℓi

16π2

∑

k

�

mℓi

12m2
φk

cR∗
ik cR

jkF(xk) +
mψ

3m2
φk

cL∗
ik cR

jkG(xk)

�

, (16)

aL
ℓiℓ jγ

=
mℓi

16π2

∑

k

�

mℓi

12m2
φk

cL∗
ik cL

jkF(xk) +
mψ

3m2
φk

cR∗
ik cL

jkG(xk)

�

, (17)

where xk = m2
ψ
/m2

φk
. The loop functions F(x) and G(x) are defined in [47,48] and can also

be found in [26]. Since our model contains two charged mediators, we obtain a total of four
coefficients, which read

aR,1
ℓiℓ jγ

=
mℓi

16π2

∑

k

�

mℓi
sin2 θψ

12m2
φk

λ∗ikλ jkF(xk,1) +
mψ1

ξ∗ sinθψ cosθψ
3m2

φk

λ∗ikλ jkG(xk,1)

�

, (18)

aR,2
ℓiℓ jγ

=
mℓi

16π2

∑

k

�

mℓi
cos2 θψ

12m2
φk

λ∗ikλ jkF(xk,2)−
mψ2

ξ∗ sinθψ cosθψ
3m2

φk

λ∗ikλ jkG(xk,2)

�

, (19)

6Note that we use the convention in which the superscript refers to the chirality of the final state.
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�i �j

γ
ψα

φk

Figure 4: Feynman diagram for the LFV decay ℓi → ℓ jγ. The index α here only
refers to the charged mediators, i.e. α ∈ {1, 2} while the indices i, j and k are flavour
indices. The contribution from the photon coupling to one of the SM leptons is not
shown.

aL,1
ℓiℓ jγ

=
mℓi

16π2

∑

k

�

mℓi
|ξ|2 cos2 θψ

12m2
φk

λ∗ikλ jkF(xk,1) +
mψ1

ξ sinθψ cosθψ
3m2

φk

λ∗ikλ jkG(xk,1)

�

, (20)

aL,2
ℓiℓ jγ

=
mℓi

16π2

∑

k

�

mℓi
|ξ|2 sin2 θψ

12m2
φk

λ∗ikλ jkF(xk,2)−
mψ2

ξ sinθψ cosθψ
3m2

φk

λ∗ikλ jkG(xk,2)

�

, (21)

where xk,α = m2
ψα
/m2

φk
. The relevant branching ratio is given in this notation as

BR(ℓi → ℓ jγ) =
e2

64π

mℓi

Γℓi

�

|aR,1
ℓiℓ jγ
+ aR,2

ℓiℓ jγ
|2 + |aL,1

ℓiℓ jγ
+ aL,2

ℓiℓ jγ
|2
�

. (22)

We use these expressions to constrain the parameter space of our model in the following sec-
tion.

4.2 Constraints from LFV decays

For the numerical analysis of constraints from LFV decays we calculate the relevant branching
ratios using eq. (22) and compare them with the respective experimental bounds. The latter
exist in form of 90% C.L. upper limits on the LFV branching ratios and read [49–51]

BR(µ→ eγ)max = 4.2× 10−13 , (23)

BR(τ→ eγ)max = 3.3× 10−8 , (24)

BR(τ→ µγ)max = 4.2× 10−8 . (25)

The values for lepton masses and decay widths are taken from [52].
To obtain a rough estimate of the size of the contributions from diagrams with a chirality

flip in the loop, we expand eq. (22) for mψ1,2
≫ mφ while at the same time ignoring contribu-

tions from chirality preserving decays by setting the first summand in eqs. (18)–(21) to zero.
We further assume maximum mixing between ψ1 and ψ2, i.e. we set θψ = π/4. In this limit
the experimental bound on the decay µ→ eγ reduces to the condition

q

(λλ†)µe ≲
1

2200TeV

√

√

√

mψ1
mψ2

yψ|ξ|
, (26)

which for a NP scale mψ1
of order O(1TeV) together with an order O(1) Yukawa coupling yψ

yields an upper limit on the couplings of

q

(λλ†)µe ≲ 3.7×
10−4

p

|ξ|
. (27)

While this estimate gives us a decent understanding of the strength of the LFV constraint, in
our subsequent numerical analysis we use the full quantitative expression of Section 4.1.
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(a) µ→ eγ.
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(b) τ→ eγ.
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(c) τ→ µγ.

Figure 5: Constraints from LFV decays on the coupling matrix λ. In all three plots
maximum mixing with θψ = π/4 is assumed. We further set mφ = 200GeV,
mψ2

= 1300 GeV and the value of mψ1
varies according to the value of yψ.

To get a more thorough insight on how strongly the LFV decays constrain the coupling
matrix λ, in the contour plots of Figure 5 we show the maximum possible couplings |λℓi|
for varying values of yψ and |ξ| by comparing the full expression from eq. (22) with the
respective experimental upper limit quoted above. To this end we assume universal couplings
|λℓi| of all DM flavours i = 1, 2,3. Concerning the mass spectrum, we take the mixing to be
maximal, θψ = π/4, and set mψ2

= 1300GeV as well as mφ = 200GeV in all three figures.
Depending on the value of yψ, this leads to a maximal mass of the heavier mediator ψ1 of
roughly mψ1

= 2000GeV.
In Figure 5a we have set the DM–muon couplings to |λµi| = 1 to not suppress NP effects

in (g − 2)µ. Thus, Figure 5a shows the largest possible values for the DM–electron couplings
|λei| which can be reconciled with the experimental upper bound on the strongly constrained
LFV decay µ → eγ. As expected and as our rough estimate from eq. (26) already suggests,
the upper limit on |λei| carries a strong dependence on |ξ| while the yψ dependence is rather
mild for values of |ξ| ∼ O(10−4 − 100) in which the chirality flipped contributions dominate.
This is due to our fixing of the light charged mediator mass to mψ2

= 1300 GeV. Growing
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values of yψ increase the mass splitting ∆mψ = mψ1
−mψ2

since they increase the value of
mψ1

. As the branching ratio from eq. (22) is roughly proportional to this mass splitting, this
leads to a growth of the branching ratio, while the growing value of mψ1

at the same time
suppresses the contributions coming from diagrams with ψ1 in the loop. In combination we
find that growing values of yψ still lead to a mild overall growth of BR(µ→ eγ). For values
|ξ| ≲ 0.5 × 10−4 the right-handed chirality-preserving contributions, i.e. the first summands
of eq. (18) and eq. (19) are dominant, as all other contributions are suppressed by the small
value of |ξ|. In this region increasing values of yψ allow for larger couplings |λei| as mψ1

grows
with yψ, which in turn suppresses the chirality preserving contribution aR,1

µeγ through the loop
function F . Figure 5a also shows that depending on the choice of yψ and |ξ| the DM–electron
couplings vary between values |λei| ∼ O

�

10−4 − 10−1
�

. As smaller mediator masses demand
even smaller values of |λei|, we will restrict the range of these couplings to |λei| ∈ [10−6, 10−1]
when scanning over the parameter space of our model in the remainder of our analysis.

Figure 5b displays the constraints that the LFV decay τ → eγ places on the parameter
space of our model. Here we set the DM–electron couplings to |λei|= 0.1 in order to quantify
how strongly this decay constrains the DM–tau couplings. The yψ and |ξ| dependence are
qualitatively the same as in Figure 5a with the only difference that the chirality-preserving
contribution starts to dominate for values |ξ| ≲ 10−3 in this case. This is due to the fact that
the latter is proportional to m2

ℓi
while the muon mass is roughly a factor of 17 smaller than the

tau mass. The white dashed line in Figure 5b indicates in which part of the |ξ| − yψ plane we
expect constraints on |λτi| from the decay τ→ eγ, as we have generally limited the couplings
to |λi j| ∈ [0,2] in Section 2. We find that this LFV decay only constrains the DM–tau couplings
for values |ξ| ≳ 5× 10−2.

The constraints from the LFV decayτ→ µγ are shown in Figure 5c. In order to not suppress
NP effects in (g − 2)µ we have once more set |λµi| = 1. Again the yψ and |ξ| dependence is
the same as for the previous cases. We find that in spite of its comparably weak upper limit
this decay restricts the DM–tau couplings to the range |λτi| ∼O(10−1 − 100).

5 Precision measurements

An important feature of lepton-flavoured DM models is that they are subject to limits from
precision measurements of leptonic electric dipole moments (EDM) dℓ and anomalous mag-
netic dipole moments (MDM) aℓ. We found in [26] that for purely right-handed interactions
between the SM and DM these constraints are not relevant for masses allowed by collider
searches due to the lack of a chirality flip enhancement. In contrast, in the present study the
DM triplet is coupled to both right- and left-handed leptons, so that NP contributions to dℓ and
aℓ can become sizeable even for large mediator masses allowed by collider searches. While
this opens the possibility to explain the discrepancy between theory and experiment in aµ, it
also constrains the parameter space of the model through the EDM and MDM of the electron.
We use this section to discuss the latter, while NP effects in aµ will be treated separately in
Section 9. We start with a general discussion of the possible NP contributions to both dℓ and
aℓ and then present a numerical analysis specific to our model.

5.1 Lepton EDM and MDM

The Feynman diagram inducing one-loop contributions to the EDM dℓ and MDM aℓ is obtained
when setting i = j in the radiative process ℓi → ℓ jγ illustrated in Figure 4. Following our
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notation from the previous section and [53] we can write for its amplitude

Mℓiℓiγ
=

e
2mℓi

ε∗αūℓi

�

iσβαqβ
�

aR
ℓiℓiγ

PL + aL
ℓiℓiγ

PR

��

uℓi
+ εµ∗ūℓi

�

σνµγ5qνdℓi

�

uℓi
, (28)

where σβα = i[γα,γβ]/2, ε is the photon polarization vector, q is the photon momentum and
PR/L = (1± γ5)/2 are projection operators. For the generic Lagrangian introduced in eq. (14)
the NP contribution∆aℓi

to the MDM aℓi
and the EDM dℓi

7 of the lepton ℓi then read [53,56]

∆aℓi
= aR

ℓiℓiγ
+ aL

ℓiℓiγ

=
mℓi

16π2

∑

k

�

mℓi

12m2
φk

(|cR
ik|

2 + |cL
ik|

2)F(xk) +
2mψ
3m2

φk

Re
�

cL∗
ik cR

ik

�

G(xk)

�

, (29)

and
dℓi
= −

e
16π2

∑

k

mψ
3m2

φk

Im
�

cR
ikcL∗

ik

�

G(xk) . (30)

Here, the coefficients aR/L
ℓiℓiγ

as well as the loop functions F and G are the same as in eq. (16)
and eq. (17). Note that an EDM dℓi

is only induced if the couplings defined in eq. (14) satisfy

Im
�

cRcL∗� ̸= 0 , (31)

i.e. if the Lagrangian Lint from eq. (14) violates CP symmetry [57].
As there are two charged mediatorsψ1 andψ2 in our model, we define the two coefficients

∆a1
ℓi
= aR,1

ℓiℓiγ
+ aL,1

ℓiℓiγ
, (32)

∆a2
ℓi
= aR,2

ℓiℓiγ
+ aL,2

ℓiℓiγ
, (33)

which when mapping the expressions from above to our model read

∆a1
ℓi
=

mℓi

16π2

∑

k

�

mℓi
|λik|2

12m2
φk

(s2
θ + |ξ|

2c2
θ )F(xk,1) +

2mψ1
cθ sθ |λik|2

3m2
φk

ReξG(xk,1)

�

, (34)

∆a2
ℓi
=

mℓi

16π2

∑

k

�

mℓi
|λik|2

12m2
φk

(c2
θ + |ξ|

2s2
θ )F(xk,2)−

2mψ2
cθ sθ |λik|2

3m2
φk

ReξG(xk,2)

�

. (35)

Here we have used sθ = sinθψ and cθ = cosθψ for brevity of notation. The total NP contribu-
tion to aℓi

is then defined as
∆aℓi

=∆a1
ℓi
+∆a2

ℓi
. (36)

Similarly, in our model the EDMs dℓi
can be defined as dℓi

= d1
ℓi
+ d2

ℓi
, with

dℓi
= −

e
16π2

∑

k

cθ sθ |λik|2

3m2
φk

Imξ
�

mψ2
G(xk,2)−mψ1

G(xk,1)
�

. (37)

Note that a negative scaling parameter ξ implies positive contributions to both the lepton
MDMs and EDMs. As we are ultimately interested in solving the (g − 2)µ anomaly which re-
quires sizeable positive NP contributions to aµ, we only consider the case ξ < 0 throughout the
rest of this analysis. In the following we use the expressions provided above to determine the
constraints that precision measurements of the electron EDM and MDM place on our model’s
parameter space.

7Note that since leptonic EDMs arise at the four-loop level [54] in the SM, estimates [55] provide an upper limit
of dSM

e < 10−38e cm. We hence ignore SM contributions to the lepton EDMs dℓi
.
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Figure 6: Constraints from precision measurements on the coupling matrix λ. In both
panels maximum mixing with θψ = π/4 is assumed. We further set mφ = 200GeV,
mψ2

= 1300 GeV and the value of mψ1
varies according to the value of yψ. The white

dashed line in the left figure shows the contour with |λei|= 2.0.

5.2 Constraints from dipole moments

The most stringent constraints from precision tests of the SM exist for the electron EDM de
and MDM ae. Constraints on the muon EDM dµ [58] and tau EDM dτ [59] are ten orders
of magnitude weaker than the current 90% C.L. upper limit on the electron EDM de, which
reads [60]

dmax
e = 1.1× 10−29e cm . (38)

Concerning MDMs, the tau MDM aτ has not been measured precisely enough yet [52,61,62]
to provide a meaningful constraint on NP contributions. In spite of having been measured at
a very high precision [63], the electron anomalous magnetic moment ae on the other hand is
subject to a tension caused by disagreeing measurements of the fine-structure constant αem.
Predicting aSM

e based on a measurement [64] of αem using 133Cs atoms yields a difference
of [65]

∆aexp
e (Cs) = (−8.8± 3.6)× 10−13 , (39)

which corresponds to a deviation of 2.4σ between theory and experiment. However, predicting
aSM

e based on a measurement [66] of αem in 87Rb atoms yields [67]

∆aexp
e (Rb) = (4.8± 3.0)× 10−13 , (40)

corresponding to a deviation of 1.6σ in the opposite direction. Due to our choice ξ < 0, the
NP contributions to ae are positive in our model. Hence, as a conservative approach we use the
limit from eq. (40) based on the measurement of αem using 87Rb atoms in order to constrain
the DM–electron couplings further.

For the numerical analysis of constraints from electron dipole moments we use the same
approach as for the flavour constraints in Section 4. To study the bounds that the electron
MDM ae and EDM de place on the DM–electron couplings, we have set them to a universal
value |λei| and generated the contour plots shown in Figure 6. In both figures we have again
set mφ = 200GeV, mψ2

= 1300GeV and use maximum mixing with θψ = π/4. The mass mψ1

varies according to the value of yψ.
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In Figure 6a the contours show which values of |λei| are maximally allowed to stay in the
2σ-band of ∆aexp

e in the |ξ| − yψ plane. The white dashed line again shows the contour with
the maximally allowed value of 2.0 for |λei|. We find that in comparison to the LFV constraints,
restrictions on |λei| from measurements of the electron anomalous magnetic moment are less
severe. Satisfying the constraints from LFV decays while allowing for order O(1) DM–muon
couplings already forces the DM–electron couplings to be so small that restrictions on |λei|
from ae are rendered irrelevant.

The constraints from measurements of the electron EDM de are shown in Figure 6b. Here,
the contours show the maximum possible values for |λei| to still reconcile with the experimen-
tal upper limit dexp in the |Imξ|− yψ plane. Since a non-zero EDM requires the violation of CP
symmetry, we here show the absolute value of the imaginary part of the scaling parameter ξ
instead of the absolute value of ξ itself. We find that a relative phase between the DM triplet’s
coupling to right-handed and left-handed leptons, which is generated by Imξ is strongly con-
strained by the electron EDM de. For values |λei| ∼O(10−4−10−1)which are necessary to fulfil
the flavour constraints it allows for |Imξ| ∼ O(10−4 − 100). We conclude that in spite of the
strength of the EDM constraint, it still allows for a relative CP phase between the left-handed
and right-handed couplings to leptons provided that the absolute strength of the coupling to
electrons, |λei|, is sufficiently suppressed.

5.3 Electroweak precision observables

Before concluding this section we want to also comment on possible constraints on the param-
eter space of our model coming from electroweak precision observables.

Firstly, the new particles contribute to the oblique parameters S and T , with the largest
contribution from the electroweak doublet Ψ [68,69]. However, as our model does not violate
custodial symmetry, the latter are small. The contributions to S are moderate as well, since the
electroweak interactions of Ψ are vectorlike. In conjunction with the NP scale well above the
electroweak scale, as found in our global analysis (see Section 8), we estimate the currently
available constraints to not be competitive.

Secondly, the new interactions with the Higgs may lead to virtual corrections to Higgs
boson couplings. Like throughout the rest of our analysis, we neglect the impact of the Higgs
portal coupling λHφ here and focus on the new Yukawa coupling yψ. In Reference [68], a
very similar model setup with a fermionic doublet and singlet was studied. In that analysis
the respective Yukawa coupling y was found to be unconstrained by current data in the region
y ≤ 3. With our choice of parameter range yψ ≤ 2, see Equation (4), our model is thus safe
from current Higgs data.

Finally, the leptonic NP interactions of our model can induce vertex corrections to the
couplings of leptons to electroweak gauge bosons at the one-loop level. These corrections in
turn have an impact on the Fermi constant GF as well as the Z boson couplings to leptons
which potentially poses a problem for the global electroweak fit. However, we estimate these
contributions to be safely small since they are suppressed by a loop factor as well as the NP
scale mNP ∼O(1TeV).

We note that due to the significant improvements expected in Higgs and electroweak preci-
sion data from future hadron and lepton colliders, these observables might become a powerful
tool to test our model. A detailed study of the reach of future colliders is beyond the scope of
our work and we refer the reader to [68,69] for results within similar models.
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6 DM relic density

As we are not only proposing the model presented in Section 2 as a solution to the (g − 2)µ
anomaly but also as a viable DM model, its parameter space is also subject to constraints from
cosmological determinations of the DM relic density [70]

Ωch
2 = 0.120± 0.001 . (41)

In this section we discuss the impact of the required DM relic density on the parameter space
of our model.

6.1 DM thermal freeze-out

For the analysis of the relic density constraints we assume a thermal freeze-out of DM at
T f ≈ mφ3

/20. At this time in the early universe the DM production and annihilation rates
approach zero, leading to a decoupling of the dark species from thermal equilibrium. Hence,
the co-moving number density of DM resulting from this freeze-out process depends on the
effective annihilation rate of DM 〈σv〉eff.

As the splittings between the masses8 mφi
determine the relative number density of the

different dark flavours φi at T f , their contributions to the freeze-out also depends on the
mentioned splittings. The most generic dynamics of flavoured DM freeze-out is rather involved
and is the subject of a separate ongoing study [71]. In this work we are interested in the
main phenomenological features of the model which can be captured by the study of two
simplifying benchmark scenarios, following the approach in [20–26]. This also allows for a
direct comparison of our results with the ones for lepton-flavoured scalar DM coupling only
to right-handed leptons [26]. We hence restrict our study to the following two benchmark
scenarios for the freeze-out.

• We call the scenario with a near-degenerate mass spectrum mφi
the Quasi-Degenerate

Freeze-Out (QDF). As the splittings between the two heavier states and the lightest state
are assumed to be very small in this scenario, the co-moving number densities of all three
dark flavours are roughly equal at the time T f such that all of them equally contribute
to the freeze-out. As the mass splittings between the heavy states φ1,2 and the lightest
state φ3 are not zero, the heavy states eventually decay into the lightest state at lower
temperatures after the freeze-out. Note that these decays still happen at a sufficient
rate to not affect big bang nucleosynthesis or yield energy injections into the cosmic
microwave background [20].

• We further consider a benchmark scenario in which the masses of the lightest and the
heavier states are significantly split. In this scenario, which we refer to as the Single-
Flavour Freeze-Out (SFF) scenario, the lifetime of the heavy states φ1 and φ2 is short in
comparison to the time of the freeze-out. As the rate of flavour changing scattering pro-
cesses are much larger than the Hubble rate,9 a relative equilibrium between different
dark species is maintained, but the number density of the heavy states is strongly sup-
pressed by a Boltzmann factor with the respective mass splitting as its argument. Thus,
only the lightest state φ3 contributes to the freeze-out in this scenario.

8In order to avoid ambiguities, the mass parameterss mφi
include potential loop corrections, i. e. they are renor-

malised on-shell masses.
9We have checked the accuracy of this approximation in an ongoing analysis [71] by numerically solving the

coupled three-flavour Boltzmann equations.
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Numerically we define the two scenarios through the mass splittings

∆mi3 =
mφi

mφ3

− 1 , (42)

between the heavier states with i ∈ {1, 2} and the lightest state φ3. In the QDF scenario ∆mi3
may not be larger than 1%, while we demand 10%<∆mi3 < 30% for the SFF scenario, where
the upper limit is applied in order to keep our results comparable to previous studies in the
DMFV framework, see Section 2.2. Remember that as discussed in Section 2.2 in contrast to
the studies performed in [20–26] the splittings∆mi3 are not parametrized through the DMFV
spurion expansion in our model, due to the absence of a flavour symmetry. Thus, they are
independent of the coupling λ.

In Figure 7 we gather possible tree-level annihilations of the NP fields into SM fields. Only
if the virtual particle in Figure 7a is ψ0, the DM pair φiφ j annihilates into a pair of neutrinos
ν̄kνl . In the coannihilation diagram of Figure 7b a neutrino in the final state is only produced
for β = 0 together with a W boson for α ∈ {1, 2} or a Z for α = 0. The cases α = 1, β = 2
and vice versa produce either of the final states ℓ j Z or ℓ jh, while the case α = β ∈ {1, 2} can
additionally produce the final state ℓ jγ. The annihilation between ψα and ψβ can produce
final states with either two charged leptons, two neutrinos or one neutrino and one charged
lepton.

Note that the coannihilation channels shown in Figure 7b suffer from a Boltzmann sup-
pression by the factor

kα = e
−

mψα−mφ3
Tf ≃ e

−20
mψα−mφ3

mφ3 , (43)

while the annihilations of Figure 7c receive an even stronger suppression by kαkβ . These
processes are thus irrelevant outside of the highly fine-tuned parameter region mφ3

≃ mψ2

which we omit in our analysis. Also note that there exist additional annihilation processes
that we do not show in Figure 7, related to the Higgs portal coupling λHφ . The annihilation of
DM into a pair of Higgs bosons is governed by this quartic coupling and is proportional to λ2

Hφ .
It also gives rise to the annihilation of a pair of dark scalars into a virtual Higgs boson in the s-
channel which subsequently decays into SM fermions. Annihilations into a top–antitop pair in
this channel are thus proportional to λ2

Hφ y2
t and can generally become sizable, due to the large

top Yukawa coupling. We follow our arguments from [26] and assume the (renormalised)
coupling λHφ to be sufficiently small such that these diagrams can be neglected. Recall that
in our analysis we are primarily interested in the structure of the flavour-violating coupling
matrix λ.

We are thus left with the t-channel annihilation processes shown in Figure 7a. Its total
flavour-averaged squared amplitude reads

|M |2 = |M0|2 + |M1|2 + |M2|2 + 2Re
�

M12

�

, (44)

where the index corresponds to the index of the mediatorψα exchanged in the t-channel. The
expressions for the individual contributions Mα and the interference term M12 are given as

|M0|2 =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

(t −m2
ψ0
)2

f 0
i j , (45)

|M1|2 =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

(t −m2
ψ1
)2

f 1
i jkl , (46)

|M2|2 =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

(t −m2
ψ2
)2

f 2
i jkl , (47)
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φj

φi

ψα

�k, νk

�l, νl

(a) φiφ j annihilation.

φi

ψα

ψβ

V

�j, νj

(b) φiψα coannihilation.

ψβ

ψα

φi

�j, νj

�k, νk

(c) ψαψβ annihilation.

Figure 7: Representative Feynman diagrams for annihilations of the new particles
into SM matter. Here, V represents any of the SM electroweak bosons γ, W, Z and h
(we use a wiggly line as most of them are vector bosons).

M12 =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

(t −m2
ψ1
)(t −m2

ψ2
)

f 12
i jkl , (48)

with the functions f α defined as

f 0
i j = |ξ|

4
�

�

m2
φ j
− t
�

�

t −m2
φi

�

− ts
�

, (49)

f 1
i jkl = Ai jkl (s

4
θ
+ |ξ|4c4

θ
) + c2

θ s2
θ (2|ξ|

2Ckl +m2
ψ1

Dkl)

+ 2cθ sθ mψ1
ReBi jkl (s

2
θ + |ξ|

2c2
θ ) , (50)

f 2
i jkl = Ai jkl (c

4
θ
+ |ξ|4s4

θ
) + c2

θ s2
θ (2|ξ|

2Ckl +m2
ψ2

Dkl)

− 2cθ sθ mψ2
ReBi jkl (c

2
θ + |ξ|

2s2
θ ) , (51)

f 12
i jkl = s2

θ c2
θ

�

Ai jkl(1+ |ξ|4)−mψ1
mψ2

Dkl

�

+ Ckl |ξ|2 (c4
θ
+ s4

θ
)

+ cθ sθ
�

Bi jkl c
2
θ

�

mψ1
− |ξ|2mψ2

�

− B∗i jkls
2
θ

�

mψ2
− |ξ|2mψ1

�

�

. (52)

Here we have again used sθ = sinθψ and cθ = cosθψ for brevity of notation, and the indices
i, j, k and l are flavour indices. The functions Ai jkl , Bi jkl , Ckl and Dkl depend on the masses
mφi

, mφ j
, mℓk

and mℓl
as well as the Mandelstam variables s = (p1 + p2)2 and t = (p1 − p3)2.

Their full expressions can be found in Appendix A.
In order to constrain our model based on the observed DM relic density, we compute the

low-velocity expansion [72,73] of the effective thermally averaged annihilation cross section

〈σv〉eff =
1
2
〈σv〉=

1
2

�

a+ b〈v2〉+O(〈v4〉)
�

, (53)

with 〈v2〉= 6T f /mφ3
≃ 0.3. The factor of two for the conversion between 〈σv〉eff and 〈σv〉 is

due to φ being a complex scalar. The coefficients a and b are calculated for equal initial and
distinct final state masses using the techniques provided in [73, 74]. Note that using equal
initial state masses mφi

= mφ j
is justified in both freeze-out scenarios we consider, as the QDF

scenario is defined through near-degenerate masses mφi
≈ mφ j

of different dark flavours,
and since the only flavour contributing to the freeze-out in the SFF scenario is φ3. Thus, in
the latter case, the mass parameters mφi

and mφ j
in the functions Ai jkl and Bi jkl need to be

replaced with mφ3
and the sum over initial state flavours as well as the averaging factor of 1/9
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need to be omitted. In what follows we therefore use mφ3
whenever we refer to the DM mass

in both freeze-out scenarios. In spite of the fact that setting the masses of charged leptons to
zero is a very good approximation, we use the expressions for a and b with the full final state
mass dependence in our numerical analysis.

In contrast to our findings in [26], the annihilation rate is no longer p-wave suppressed
in this model for equal initial and zero final state masses. The mentioned p-wave suppression
in the model of [26] is due to a chirality suppression [75], and thus adding couplings to left-
handed leptons trivially lifts this suppression [76]. The leading contribution is then given by
the s-wave term and reads

a =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

16πm2
φ3

(µ2 −µ1)
2 (µ1µ2 − 1)2 |ξ|2 sin2 2θψ
�

1+µ2
1

�2 �
1+µ2

2

�2 , (54)

which due to eq. (2) depends on the scaling parameter ξ. Here we have used µα = mψα/mφ3
.

The p-wave contribution for a non-vanishing ξ can be found in Appendix A. If the left-handed
coupling is suppressed, i.e. if ξ approaches zero, we re-encounter the aforementioned p-wave
suppression of the annihilation rate. In this case the coefficients read

a = 0 , (55)

b =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

32πm2
φ3

�

2+µ2
1 +µ

2
2 +
�

µ2
1 −µ

2
2

�

cos 2θψ
�2

�

1+µ2
1

�2 �
1+µ2

2

�2 , (56)

which in the limit of equal charged mediator masses mψ1
= mψ2

, i.e. in the limit yψ = 0,
reduces to the expressions found in our analysis in [26].10

6.2 Constraints from the DM relic density

In order to determine the bounds from the observed DM relic density on the DM–lepton cou-
pling λ, we calculate the effective thermally averaged annihilation cross section through the
partial wave expansion in eq. (53) and compare with the experimental limit on 〈σv〉eff. The
latter is derived based on the DM relic density from eq. (41). It is roughly constant for DM
masses mφ3

> 10 GeV and reads [77,78]

〈σv〉exp
eff = 2.2× 10−26 cm3 s−1 . (57)

In the numerical analysis we calculate the annihilation rate for random points of the pa-
rameter space. When generating random points we restrict the DM–electron couplings to
|λei| ∈ [10−6, 10−1] in order to comply with the flavour constraints without precluding a
solution to the (g − 2)µ anomaly. We further demand that the annihilation rate equals the
experimental value from above within a 10% tolerance region. The lepton masses are again
adopted from [52]. In terms of the scaling parameter ξwe restrict the analysis to the two cases
|ξ| = 0.01 and |ξ| = 1.00, i.e. to the two limiting cases of a significant suppression and no
suppression of left-handed interactions between DM and leptons. The value of yψ is randomly
generated within the range yψ ∈ [0, 2].

The results are shown in Figure 8 and Figure 9, where in the former we have assumed maxi-
mum mixing, i.e. we have set mΨ = mψ and θψ = π/4. The DM mass is fixed to mφ3

= 600Gev
and the mass parameters mΨ = mψ vary. In the limit mφ3

≫ mℓi
, the bound from the relic

density constraint in the SFF scenario reduces to the spherical condition

|λe3|2 + |λµ3|2 + |λτ3|2 ≈ const. (58)

10Note the different definitions of the mass ratio µ, which in Reference [26] is defined as the inverse squared of
the definition we use in this work.
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(a) |ξ|= 1.00. (b) |ξ|= 0.01.

Figure 8: Constraints on |λµ3| and |λτ3| from the observed DM relic density in the SFF
scenario for maximum mixing with θψ = π/4. The DM mass is set to mφ3

= 600 GeV
and the mass parameters mΨ = mψ vary.

This explains the outer edge of the bands that can be seen in Figure 8. The inner edge is
due to the flavour constraints, which force the DM–electron coupling |λe3| to be small. We
further find that larger couplings |λµ3| and |λτ3| are necessary in order to comply with the
relic density constraint for the case |ξ|= 0.01 shown in Figure 8b. This is due to the chirality
suppression explained above, which for the case of non-suppressed left-handed interactions
shown in Figure 8a is lifted. Thus, in this case the viable couplings are smaller than in the
case of suppressed left-handed interactions. Note that the additional annihilation channel
into a pair of neutrinos, which does not exist for the model analyzed in [26], only yields sub-
dominant contributions to the annihilation rate for both choices of |ξ|. As this annihilation
channel is purely governed by left-handed interactions, it is still chirality-suppressed and only
contributes to the p-wave. Hence, for |ξ|= 1.00 this contribution is sub-leading to the s-wave
contribution of annihilations into a pair of charged leptons given in eq. (54). If on the other
hand left-handed interactions are suppressed, i.e. we set |ξ| = 0.01, the additional annihila-
tion channel into a pair of neutrinos suffers from a |ξ|4 suppression as it is proportional to the
left-handed coupling of DM to leptons. As for the mass dependence with respect to mψ or mΨ ,
respectively, we find that larger masses require larger couplings for both choices of |ξ|, which
is due to the 1/m2

ψα
suppression of the s-wave contribution a and the 1/m4

ψα
suppression of

the p-wave contribution b to the annihilation rate. Moving away from maximum mixing, i.e.
allowing for different values mΨ ̸= mψ has no qualitative impact on the results. For the case
of suppressed left-handed interactions the restrictions in the |λµ3| − |λτ3| plane trivially only
depend on the parameter mψ, which is the mass parameter of the gauge eigenstate ψ′2 that
couples the DM triplet to right-handed leptons. If on the other hand left-handed interactions
are not suppressed, choosing different values for mΨ and mψ increases the mass difference
∆mψ = mψ1

− mψ2
which the s-wave contribution a depends on, while also increasing the

1/m2
ψα

suppression of a. We find that these concurring effects only lead to a very small shift

of the contours from Figure 8a to larger couplings, i.e. the increased 1/m2
ψα

suppression dom-
inates over the growth in ∆mψ when choosing mΨ ̸= mψ.

We do not show the results of the QDF scenario here as the relevant parameter space in
this case is nine-dimensional and the resulting constraints are less apparent. Here, the relic
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(a) QDF scenario. (b) SFF scenario.

Figure 9: Allowed masses mψ2
and mφ3

for both freeze-out scenarios. The red points
correspond to the case of a significant suppression of left-handed interactions and
the blue points correspond to the case of no suppression.

density limit reduces for negligible lepton masses to the condition
∑

i j

|λi j|2 ≈ const. , (59)

which corresponds to the shell of a nine-dimensional sphere. Thus, the outer edge of the
contours that can be seen in Figure 8 is also present in the QDF scenario, while there is no
inner edge due to the sum over initial state flavours. However, the QDF scenario generally
requires larger couplings than the SFF scenario in order to satisfy the constraint, since in this
case the DM annihilation rate is smaller than in the SFF case due to the flavour-averaging
factor in eqs. (45) –(48).

This can also be seen in Figure 9, where we show the allowed masses mψ2
and mφ3

for
both freeze-out scenarios. For the case of suppressed left-handed interactions between DM
and leptons the lower limit on mφ3

for a given value of mψ2
is larger in the QDF scenario than

in the SFF scenario. This is illustrated by the red points in Figure 9a for the QDF scenario and
Figure 9b for the SFF scenario. The leading contribution to the annihilation rate in this case
is given by the p-wave from eq. (56). For masses mℓ≪ mφ3

≪ mψ2
it behaves like

b =
1
9

∑

i j

∑

kl

|λik|2|λ jl |2

16π

m2
φ3

m2
ψ1

m2
ψ2

. (60)

As the overall annihilation rate suffers from the above mentioned p-wave suppression in this
case, growing values for mψ2

require growing values for mφ3
in order to not yield a too small

annihilation rate or too large relic density, respectively. This explains the lower edge that can
be seen for the case |ξ| = 0.01 in Figure 9 for both freeze-out scenarios. This lower limit on
mφ3

is larger for the QDF scenario than for the SFF scenario because as mentioned above the
overall annihilation rate is smaller in the QDF scenario due to the flavour-average. Hence,
in the QDF scenario even larger values of mφ3

are required in order to yield the correct relic
density for a fixed value of mψ2

. For non-suppressed left-handed interactions between DM and
leptons the annihilation rate is no longer chirality-suppressed and thus there is no lower limit
on mφ3

in this case. This is shown by the blue points in Figure 9a and Figure 9b and we find
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that in this case even very large values for mψ2
allow for any DM mass mφ3

< mψ2
. Note that

we only show the mψ2
−mφ3

plane in Figure 9 as the largest contributions to the annihilation
rate come from processes where the light charged mediator ψ2 is exchanged in the t-channel.
Diagrams with aψ1-exchange suffer from an additional suppression by a larger NP scale since
we conventionally choose mψ1

> mψ2
.

7 DM detection experiments

DM detection and especially direct detection experiments have generally proven to yield strong
constraints on flavoured DM models [20–26]. While for lepton-flavoured DM contributions to
DM–nucleon scattering are only generated at the one-loop level, in [26] we still found that
restrictions coming from direct detection experiments rank among the strongest constraints.
There, we had studied a version of this model with purely right-handed interactions between
DM and leptons, i.e. the case ξ = yψ = 0. While indirect detection constraints were found
to have a significantly smaller impact on the parameter space of that model, we expect them
to gain relevance in this analysis due to our findings from Section 6. As the annihilation
rate of DM into SM particles does not necessarily suffer from a chirality suppression in this
analysis, relevant contributions to the production rate of electron-positron pairs and photons
can become sizeable. We thus use this section to discuss constraints coming from direct and
indirect detection experiments.

7.1 Direct detection

For the discussion of direct detection constraints we follow the procedure in [26], adopted
from [79], and ignore constraints from DM–atom, inelastic DM–electron as well as elastic DM–
electron scattering. The former two can be neglected as in these cases DM needs to scatter
off bound electrons with a non-negligible momentum of order pe ∼ O(1MeV) in order to
generate a sizeable signal. Thus, both processes suffer from a wave-function suppression and
can be neglected. The constraints on elastic DM–electron scattering on the other hand, are
only relevant for sub-MeV DM [80] that we do not consider in this analysis.

Thus, we are left with DM–nucleon scattering. Relevant contributions to the scattering
rate between DM and nucleons arise through the one-loop penguins shown in Figure 10. The
process shown in Figure 10a can only be mediated by a photon γ if α = β ∈ {1,2}, while
the case with two neutral mediators in the loop α = β = 0 is mediated by a Z boson and
has a neutrino νi in the loop. Additional diagrams exist for the Z boson mediated case for
α,β ∈ {1,2}. Since the Z penguin contribution is proportional to the external momentum, its
contribution to DM-nucleon scattering can safely be neglected. In the diagram of Figure 10b
the indices are restricted to α,β ∈ {1,2}. While the diagram where the Higgs boson h is
emitted from two charged leptons in the loop is proportional to yℓi

yN |λi3|2 and can thus be
neglected, the diagram with two charged mediators in the loop is proportional to yψ yN |λi3|2,
which can generally become large. Here, yN ≃ 0.3 is the Higgs-nucleon coupling [81]. In fact
we find that the latter diagram’s amplitude is divergent and contributes to the renormalization
of the Higgs-portal coupling λHφ . This coupling gives rise to a tree-level scattering process
proportional to yNλHφ where DM scatters off a nucleon through a t-channel Higgs exchange.11

We follow the same arguments as in Section 6 and in [25,26] and use the freedom to choose
λHφ such that the tree-level and one-loop contributions cancel.

This leaves the photon-mediated one-loop penguin from Figure 10a as the only relevant

11For large parts of the parameter space this contribution is comparable to the photon penguin for λHφ ∼O(1)
couplings, see Appendix B for details.
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φ3

φ3 N

N

�i, νi

ψβ

ψα

γ, Z

(a) one-loop DM–nucleon scattering me-
diated by γ or Z .

φ3

φ3 N

N

�i

ψβ

ψα

h

(b) one-loop DM–nucleon scattering me-
diated by h.

Figure 10: Representative Feynman diagrams of relevant interactions for direct de-
tection signals. Note that for both penguins there is also a diagram with two leptons
and one mediator in the loop where the bosons are emitted from the two leptons.

contribution to DM–nucleon scattering, which is induced by the charge-radius operator

Oγ = ∂ µφ ∂ νφ†Fµν . (61)

In the limit of small lepton masses the matched Wilson coefficients fγ,α of the contribution
with the charged mediator ψα in the loop read [27]

fγ,1 = −
∑

i

e |λi3|2
�

s2
θ
+ |ξ|2c2

θ

�

16π2 m2
ψ1

�

1+
2
3

ln

�

m2
ℓi

m2
ψ1

��

, (62)

fγ,2 = −
∑

i

e |λi3|2
�

c2
θ
+ |ξ|2s2

θ

�

16π2 m2
ψ2

�

1+
2
3

ln

�

m2
ℓi

m2
ψ2

��

. (63)

Here we have neglected contributions to fγ,α with a chirality flip on the lepton line, as these
are suppressed by the negligible lepton masses. In the expressions above the mass me needs to
be replaced by the momentum transfer |q⃗| =O(3− 10)MeV for i = 1, i.e. for first generation
leptons in the loop [27], as the electron mass is smaller than |q⃗|.

Using the expressions from above we write for the spin-independent averaged DM–nucleon
scattering cross section

σN
SI =

Z2 e2µ2

8πA2
| fγ,1 + fγ,2|2 , (64)

where Z and A are the atomic and mass number of the nucleon while µ is the reduced mass
of the DM–nucleon system defined as µ = mN mφ3

/(mN + mφ3
). In the numerical analysis

we use limits obtained from the XENON1T experiment [82] and again use the lepton masses
from [52]. The momentum transfer mentioned above is set to |q⃗|= 10 MeV and for the atomic
and mass numbers of Xenon we use Z = 54 and A= 131, i.e. we ignore the impact of Xenon
isotopes as their effect on the overall DM–nucleon scattering cross section was found to be
small in [22]. Recall that due to the absence of a flavour symmetry in this model, the mass
splittings between the different dark scalars do not depend on the coupling matrix λ. Hence,
the direct detection constraints carry no dependence on the freeze-out scenario.

The results are shown in Figure 11 for maximum mixing between the charged mediators
ψ1 and ψ2. The value of the mass parameters mΨ = mψ varies and the DM mass is fixed
to mφ3

= 200 GeV. Note that while σN
SI does not depend on the DM mass, the XENON1T

upper limit on the DM–nucleon scattering cross section reaches its minimum at mφ3
≃ 30 GeV

and increases for increasing values of mφ3
. Hence, increasing DM masses generally allow for

larger couplings. The same behaviour holds true for increasing values of the charged mediator
masses mψ,α, as the amplitudes fγ,α are suppressed by 1/m2

ψα
. This can be seen in Figure 11
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(a) |ξ|= 1.00. (b) |ξ|= 0.01.

Figure 11: Allowed couplings |λµ3| and |λτ3| for both choices of |ξ| and various
values for mΨ = mψ, while assuming maximum mixing with θψ = π/4. The DM
mass is fixed to mφ3

= 200 GeV. The value of yψ in randomly generated within the
interval yψ ∈ [0,2].

where we show the distribution of allowed points in the |λµ3| − |λτ3| plane. For both choices
of |ξ| growing mediator masses mψα allow for larger couplings. Trivially, the case of non-
suppressed left-handed interactions shown in Figure 11a requires smaller couplings than the
suppression case with |ξ| = 0.01 shown in Figure 11b, due to additional contributions from
left-handed leptons in the loop. In terms of the sizes of |λµ3| and |λτ3| we find that the DM–
tau coupling may grow larger than the DM–muon coupling. This is due to the logarithm of
the lepton mass mℓi

in eqs. (62) and (63). Smaller masses mℓi
lead to an enhancement of

the scattering amplitude fγ,α and hence the DM–muon coupling suffers from stronger limits
than the DM–tau couplings, due to mµ being much smaller than mτ. We do not show the
DM–electron coupling here as we assumed it to be small in order to fulfil the stringent flavour
constraints discussed in Section 4.

7.2 Indirect detection

We now turn to the discussion of constraints from indirect DM detection experiments. While
in our model DM couples to both left- and right-handed leptons, in the case of suppressed left-
handed couplings, |ξ| = 0.01, the annihilation rate of DM into SM matter still suffers from a
chirality suppression. We hence follow our analysis from [26] and include additional diagrams
to its calculation in order to lift this suppression. This is necessary in order to properly analyse
the indirect detection constraints since the p-wave contribution to the annihilation rate suffers
from a severe velocity suppression as the DM halo velocity in the Milky Way today is roughly
〈v2〉 ≃ 10−6.

The additional diagrams that we consider are shown in Figure 12. The annihilation of two
dark scalarsφ3 into a pair of leptons and an additional photon from Figure 12a is referred to as
internal bremsstrahlung and lifts the chirality suppression of the annihilation rate in the chiral
limit mℓ → 0 [75]. It is proportional to αem/π ∼ 10−3 while the box diagram of Figure 12b
is even further suppressed by α2

em/(4π)
2 ∼ 10−7, but gives comparable contributions to the

overall annihilation rate in parts of the parameter space. Note that both diagrams are not
relevant for the thermal freeze-out, as the DM halo velocity at T f reads 〈v2〉 ≃ 0.3 and hence
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(a) t-channel annihilation to ℓℓ̄γ.
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(b) one-loop annihilation to γγ.

Figure 12: Representative Feynman diagrams for relevant higher-order annihilation
processes. The index only refers to charged mediators, i.e. α ∈ {1,2}.

the p-wave annihilation into ℓ̄iℓ j is much less suppressed than today.
The annihilation rate for the process of Figure 12b reads

〈σv〉γγ = 〈σv〉1γγ + 〈σv〉2γγ + 2〈σv〉12
γγ , (65)

where the superscript denotes the contributions from diagrams where either ψ1 or ψ2 is ex-
changed in the loop as well as the interference term. For the same reason as for the one-loop
photon penguin in Figure 10a the contributions with a chirality flip on a lepton line vanish in
the chiral limit mℓ→ 0 [83]. In this limit, the expressions from eq. (65) are given by [83]

〈σv〉1γγ =
α2

em

�

s2
θ
+ |ξ|2c2

θ

�2

64π3m2
φ3

�

∑

i

|λi3|2
�2

|B(µ1)|2 , (66)

〈σv〉2γγ =
α2

em

�

c2
θ
+ |ξ|2s2

θ

�2

64π3m2
φ3

�

∑

i

|λi3|2
�2

|B(µ2)|2 , (67)

〈σv〉12
γγ =

α2
em

�

c2
θ
+ |ξ|2s2

θ

� �

s2
θ
+ |ξ|2c2

θ

�

64π3m2
φ3

�

∑

i

|λi3|2
�2

|B(pµ1µ2)|2 . (68)

The loop function B is defined as

B(µα) = 2− 2 log
�

1−
1
µα

�

− 2µα arcsin

�

1
p
µα

�2

, (69)

where µα =ψ2
α/m

2
φ3

.
Similarly, we decompose the annihilation rate into the three-body final state of Figure 12a

and write
〈σv〉ℓℓ̄γ = 〈σv〉1

ℓℓ̄γ
+ 〈σv〉2

ℓℓ̄γ
+ 2〈σv〉12

ℓℓ̄γ
. (70)

For this process, the contributions with a chirality flip on any of the external fermion lines
vanish in the limit of zero lepton masses. On the other hand, diagrams with a chirality flip on
the virtual mediator in the t-channel only lead to p-wave suppressed and therefore negligible
contributions.12 However, the calculation of the interference term between the two diagrams
with either a ψ1 or a ψ2 in the t-channel is less trivial than for 〈σv〉γγ due to the three-body
phase space. Following the procedure presented in [86,87]we have obtained an expression for
〈σv〉12

ℓℓ̄γ
that can be found in Appendix C and was tested to yield the correct total annihilation

rate 〈σv〉ℓℓ̄γ in the limit |ξ|= yψ = 0. The other two contributions read [75,88]

〈σv〉1
ℓℓ̄γ
=
αem

�

s2
θ
+ |ξ|2c2

θ

�2

32π2m2
φ3

∑

i j

|λi3|2|λ j3|2A(µ1) , (71)

12This p-wave suppression is due to the conservation of the total angular momentum, since the annihilation of
two scalars in the s-wave implies J = 0 while the photon only has two polarizations with Jz ∈ {−1, 1}. Note that the
same finding also holds true for the annihilation of neutralinos into a pair of fermions and a photon, see [84,85].
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〈σv〉2
ℓℓ̄γ
=
αem

�

c2
θ
+ |ξ|2s2

θ

�2

32π2m2
φ3

∑

i j

|λi3|2|λ j3|2A(µ2) , (72)

and the phase space function A(µα) is defined according to

A(µα) = (µα + 1)

�

π2

6
− log2
�

µα + 1
2µα

�

− 2Li2

�

µα + 1
2µα

�

�

+
4µα + 3
µα + 1

+
4µ2
α − 3µα − 1

2µα
log
�

µα − 1
µα + 1

�

. (73)

Here, Li2(z) is the dilogarithm and we have again used µα = m2
ψα
/m2

φ3
.

Last but not least, the tree-level rate of DM annihilating into a pair of leptons ℓ̄iℓ j is given
by the expression for the SFF scenario’s thermal annihilation rate from Section 6.

To study the indirect detection constraints numerically we use limits obtained from the
AMS experiment [89] and from measurements by the Fermi-LAT satellite [90] as well as the
H.E.S.S. telescope [91]. Reference [92] calculated an upper limit 〈σv〉max

ē on the annihilation
rate of Majorana DM into an electron-positron pair with a branching fraction of 100% based
on AMS-02 measurements of the positron flux. While this signal generally includes prompt
as well as secondary positrons stemming from decays of heavy charged leptons, the energy
spectrum of the latter is shifted towards lower energies compared to prompt positrons. Further,
secondary positrons additionally suffer from a smeared momentum distribution so that the
AMS-02 limit 〈σv〉max

ē mainly constrains prompt positrons. We thus sum over the annihilation
rates of all processes with a positron in the final state and compare with the experimental
upper limit. Here we follow our analysis in [26] and also include the radiative corrections
shown in Figure 12a, i.e. we compare the sum

〈σv〉ē =
∑

ℓ

〈σv〉ℓē + 〈σv〉ℓēγ , (74)

with the upper limit 〈σv〉max
ē . In doing so we ignore the shift in the mφ3

dependence of the
three-body final state with comparison to the two-body final state, as we assume it to be small.

Using measurements of the γ-ray continuum spectrum by Fermi-LAT, Reference [93] pro-
vides an equivalent limit 〈σv〉max

τ on the annihilation of Majorana DM into a tau-antitau pair.
Just as the constraints from the positron flux are most sensitive to prompt signals, this up-
per limit is dominated by annihilations into taus, as such final states produce more photons
through subsequent decays than final states with muons or electrons. Hence we only focus on
final states with at least one tau or antitau and compare the total annihilation rate with the
experimental upper limit 〈σv〉max

τ . To this end we define

〈σv〉τ = 〈σv〉ττ̄ + 〈σv〉ττ̄γ +
1
2

∑

ℓ=e,µ

�

〈σv〉ℓτ̄ + 〈σv〉ℓ̄τ + 〈σv〉ℓτ̄γ + 〈σv〉ℓ̄τγ
�

, (75)

which in total gives five annihilation channels with a tau or antitau in the final state and five
radiative corrections, respectively. Here we have included a factor of 1/2 for final states with
a single tau or antitau, since 〈σv〉max

τ was derived for the final state consisting of a tau-antitau
pair.

Finally, we also consider indirect detection limits obtained by Fermi-LAT and H.E.S.S. mea-
surements of the γ-ray line spectrum. The energy spectrum of γ-rays produced by the process
shown in the box diagram of Figure 12b trivially peaks at the energy Eγ = mφ3

due to energy-
momentum conservation. The internal bremsstrahlung process on the other hand is dominated
by hard photons [94] with Eγ ≈ mφ3

emitted by the charged mediator ψα. This process is re-
ferred to as virtual internal bremsstrahlung and exhibits a line-like γ-ray energy spectrum with
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(a) constraints from the positron flux.
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(b) constraints from the γ continuum spec-
trum.
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(c) constraints from the γ line spectrum.

Figure 13: Restrictions on the model parameters from indirect detection experiments
for non-suppressed left-handed interactions. In all three plots we assume a maximum
mixing with θψ = π/4. The area included by the white dashed line, the horizontal
axis and the equal mass diagonal indicates in which mass regime the constraints are
relevant.

a sharp peak at energies slightly below the DM mass [90,94]. Reference [94] provided a limit
〈σv〉max

γ based on searches for such lines in the γ-ray spectrum performed by the Fermi-LAT
satellite and the H.E.S.S. telescope which is derived for the annihilation rate

〈σv〉γ =
∑

ℓ

〈σv〉ℓℓ̄γ + 2〈σv〉γγ . (76)

We use these expressions in our numerical analysis of indirect detection constraints to further
restrict the parameter space of our model.

In order to identify the mass region in the mψ2
− mφ3

plane in which indirect detection
constraints are relevant, we set the DM–lepton couplings to a universal value |λi3| = |λℓ3|
and check how large it may maximally grow. To this end we allow the annihilation rates
〈σv〉ē, 〈σv〉τ and 〈σv〉γ to grow as large as the respective experimental upper limit. The
resulting contours are shown in Figure 13 for all three constrained annihilation rates. We
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show the case of non-suppressed left-handed interactions between DM and leptons and
maximum mixing between ψ1 and ψ2. The annihilation rates 〈σv〉ē and 〈σv〉τ are domi-
nated by the s-wave annihilation from eq. (54), which is proportional to the mass difference
∆mψ = mψ1

−mψl2 =
p

2yψv. Hence, we set yψ = 2.0 in Figure 13a and 13b to determine
the largest possible constraints. The annihilation rate 〈σv〉γ on the other hand, does not de-
pend on ∆mψ and grows for decreasing values of yψ and a fixed mediator mass mψ2

, since
decreasing Yukawa couplings yψ reduce the mass mψ1

. This leads to larger contributions to
〈σv〉γ from the diagrams of Figure 12 with ψ1 in the t-channel or loop, respectively. In all
three figures the white dashed line indicates where the respective constraint forces the DM–
lepton coupling to be |λℓ3| ≤ 2.0, i.e. constraints are only relevant in the areas included by the
horizontal axis, the equal mass threshold and this line. We find that the indirect detection con-
straints are dominated by limits obtained from measurements of the γ-ray spectrum shown in
Figure 13b and Figure 13c. The former limits are relevant for DM masses mφ3

≲ 600GeV and
over the complete range of mψ2

, while searches for line features of the γ-ray spectrum gener-
ally become relevant close to the equal mass threshold. For mediator masses mψ2

≲ 1200GeV
this limit can also become relevant for larger mass splittings between mψ2

and mφ3
. We do

not show the case of suppressed left-handed interactions with |ξ| = 0.01 here but relegate it
to Appendix C, since this case yields exactly the same contours as for the purely right-handed
version of this model studied by us in [26]. There we found the constraints from the positron
flux as well as the continuum γ-ray spectrum to be much weaker, due to the chirality suppres-
sion of the annihilation rate into ℓi ℓ̄ j mentioned above. In total we conclude that in spite of
yielding much stronger restrictions on the parameter space for the case of unsuppressed left-
handed couplings, |ξ| = 1.00, the indirect detection constraints are weaker than limits from
direct detection, LFV or the DM relic density.

8 Combined analysis

In order to obtain a global picture of the viable parameter space of our model we use this
section to perform a combined analysis of all constraints discussed in the previous sections.
To do so, we generate random points in the parameter space and demand that all constraints
are simultaneously fulfilled. The results of this combined numerical analysis are gathered in
Figure 14, Figure 15 and Figure 16.

Figure 14 shows the viable parameter space in the mψ2
− mφ3

plane for both freeze-out
scenarios and both cases of |ξ|. We further show the largest possible exclusion13 in this plane
stemming from the LHC searches discussed in Section 3 and find that for both choices of |ξ|
they only lead to an additional exclusion for the QDF scenario. For the SFF scenario we find
that the allowed masses are roughly the same for both choices of |ξ| and are mainly determined
by the interplay of the relic density and direct detection constraints. While the annihilation
rate for the case |ξ| = 1.00 is not chirality suppressed, it still suffers from a suppression by
∆m2

ψ
/(mψ1

mψ2
) with ∆mψ = mψ1

−mψ2
=
Ç

(mΨ −mψ)2 + 2y2
ψ

v2. Thus, either large cou-
plings or large DM masses are needed in order to push the annihilation rate high enough to not
yield over-abundant DM. At the same time, large couplings are subject to strong constraints
from direct detection experiments and thus both constraints can only be fulfilled for masses
mψ2

≳ 800 GeV and mφ3
≳ 600GeV. In these ranges, either the DM annihilation rate is suf-

ficiently enhanced by the DM mass mφ3
, such that couplings small enough to pass the direct

13Note that strictly speaking these limits do not straightforwardly apply here, since they assume e−µ universality
while we have fixed the DM–electron couplings to |λei | ∈ [10−6, 10−1] in the combined analysis. We hence expect
the actual exclusion from LHC searches to be smaller than the curve shown in Figure 14 and only include it here
for illustration purposes.
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(a) |ξ|= 1.00. (b) |ξ|= 0.01.

Figure 14: Allowed masses mψ2
and mφ3

while satisfying all constraints. We show
both freeze-out scenarios and both cases of |ξ|. The grey area shows the largest pos-
sible exclusion from LHC searches for same-flavour final states ℓℓ̄+ /ET with ℓ= e,µ
discussed in Section 3 and corresponds to the case |λℓ3|= 2, |λτ3|= 0 and yψ = 0.25.

detection constraint are viable, or the DM–nucleon scattering rate is sufficiently suppressed
by the mediator mass mψ2

such that large couplings necessary for the correct relic density are
allowed. In the QDF scenario the relic density constraint can in principle be fulfilled by annihi-
lations of the heavier dark species φ1 and φ2 alone, while the direct detection constraints only
restrict the couplings of the lightest state φ3. Hence, small mediator masses mψ2

≲ 800 GeV
also become viable for this freeze-out scenario. However, we still encounter a lower limit
on mφ3

for both cases of |ξ|. For non-suppressed left-handed interactions this limit is due to
the suppression of the s-wave annihilation proportional to v2/(mψ1

mψ2
). Growing values of

mψα further suppress the annihilation rate and thus one needs correspondingly growing DM
masses mφ3

in order to compensate for this suppression. Such a lower limit does not arise
from the relic density constraint alone, as the direct detection constraints force the couplings
of φ3 to the SM to be small and therefore significantly reduce the overall annihilation rate. For
|ξ| = 0.01 on the other hand, we re-encounter the lower limit on mφ3

from Figure 9, which
was due to the chirality suppression of the annihilation rate and the accompanying velocity
suppression of the p-wave. This again gives rise to a lower limit on mφ3

in order to compensate
for this suppression. Note that for both freeze-out scenarios and both choices of |ξ|, growing
values of mφ3

do not only enhance the annihilation rate but also reduce the relevance of the
direct detection constraint as the XENON1T upper limit grows for increasing DM masses.

Figure 15 shows the implications of our combined analysis for the couplings |λτ3| and
|λµ3| in the SFF scenario, for both choices of |ξ|. The overall picture is dominated by the relic
density, flavour and direct detection constraints. Since, in order to suppress the LFV constraints
studied in Section 4, we chose the DM–electron coupling |λe3| to be small, the couplings |λτ3|
and |λµ3| have to be large according to the spherical condition

|λe3|2 + |λµ3|2 + |λτ3|2 ≈ const. , (77)

which needs to be satisfied in order to yield the correct relic density. Thus, the interplay of
these two constraints leads to the bands of Figure 15, where the flavour constraints cause
their inner edge due to the suppressed DM–electron coupling. The outer edge of the bands
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(a) |ξ|= 1.00. (b) |ξ|= 0.01.

Figure 15: Allowed couplings |λτ3| and |λµ3| while satisfying all constraints in the
SFF scenario for both cases of |ξ|. We assume maximum mixing with θψ = π/4. The
DM mass is fixed to mφ3

= 700GeV and the mass parameters mΨ = mψ vary.

on the other hand, is mainly determined by the relic density constraint for sufficiently small
couplings |λµ3|. Once an mψ2

-dependent threshold is exceeded with respect to the value of
|λµ3|, the direct detection constraint starts to dominate over the relic density limit, giving rise
to the spikes at the upper end of the bands. The direct detection constraint only dominates
for large |λµ3| as it is more stringent for light leptons in the loop. This is due to the logarithm
of the mass mℓi

in eqs. (62) and (63). In terms of the scaling parameter |ξ| we find that the
case of suppressed left-handed interactions shown in Figure 15b allows for larger couplings
|λτ3| and |λµ3|. This is due to softened restrictions from direct detection together with the
above-mentioned chirality suppression of the annihilation rate in this case and has important
implications for the flavour ofφ3. For the case |ξ|= 0.01 we find that µ-flavoured DM is viable
for masses mψ ≳ 1000GeV. DM with a predominant coupling to the muon is even equally
favoured as τ-flavoured DM for masses mψ ≳ 1400GeV. If left-handed interactions between
DM and leptons are not suppressed, on the other hand, we find that large parts of the viable
parameter space correspond to τ-flavoured DM. Here, µ-flavoured DM only becomes viable
in a tiny part of the parameter space for masses mψ ≳ 1300GeV. In both cases e-flavoured
DM is excluded by our choice to accomodate the strong flavour constraints by suppressing the
DM–electron coupling. The latter is necessary in order to be able to obtain a large contribution
to the anomalous magnetic moment of the muon and thereby solve the (g − 2) anomaly.

The effects of the combined analysis on the |λτ3| − |λµ3| plane for the QDF scenario are
shown in Figure 16. Here, the direct detection constraint dominates for large parts of the
parameter space, as the correct relic density can generally also be obtained through annihila-
tions of the heavier states φ1 and φ2 alone. This is especially the case for |ξ| = 1.00 which
we show in Figure 16a and where the direct detection constraint dominates for each choice
of mΨ = mψ. While this also holds true for large parts of the parameter space for the case of
suppressed left-handed interactions shown in Figure 16b, we here find that for large mediator
masses mψ ≳ 1600GeV the relic density constraint yields a lower limit on the couplings |λτ3|
and |λµ3|. As for the flavour of φ3, we find that the QDF scenario allows for both µ- and τ-
flavoured DM. Here, the latter case is slightly favoured over the former, due to stronger direct
detection constraints for DM coupling predominantly to muons.
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(a) |ξ|= 1.00. (b) |ξ|= 0.01.

Figure 16: Allowed couplings |λτ3| and |λµ3| while satisfying all constraints in the
QDF scenario for both cases of |ξ|. We assume maximum mixing with θψ = π/4.
The DM mass is fixed to mφ3

= 700GeV and the mass parameters mΨ = mψ vary.

9 Muon anomalous magnetic moment

As already mentioned in the introduction we propose this model as a joint solution for the
DM problem and the long-standing discrepancy between experimental measurements and the
theory prediction of the muon anomalous magnetic moment aµ. After having identified viable
regions of the parameter space of our model, we are now prepared to determine if sizeable NP
contributions to aµ can be generated.

9.1 Theoretical approach

Precision measurements of the muon anomalous magnetic moment [2, 95, 96] yield a world
average of

aexp
µ = (116592059± 22)× 10−11 , (78)

while state-of-the-art SM calculations [97–116] predict the value [3]

aSM
µ = (116591810± 43)× 10−11 . (79)

The difference between the theory prediction and measurement reads

∆aexp
µ = aexp

µ − aSM
µ = (2.49± 0.48)× 10−9 , (80)

and corresponds to a significance of 5.1σ.14 We interpret this tension between theory and
experiment as a NP contribution potentially originating from our model.

Such contributions ∆aµ are generated through the diagram shown in Figure 4 with
ℓi = ℓ j = µ and they read

∆aµ =∆a1
µ +∆a2

µ , (81)

14Using recent lattice determinations of the hadronic vacuum polarisation significantly softens the tension be-
tween data and the SM [117–120]. However, in that case, a tension emerges in low-energy σ(e+e− → hadrons)
data [121–123] that requires further investigation. In the present paper, we hence disregard the lattice results and
consider the discrepancy as given in eq. (80).
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where the expressions for ∆aαµ are given in eqs. (34) and (35). Due to the chirality-flipping
nature of the anomalous magnetic moment, NP contributions with a chirality flip inside the
loop can receive a strong enhancement. In our model, its source is the Yukawa coupling yψ,
which couples the fields Ψ and ψ′2 to the SM Higgs doublet and induces a mixing between the
two charged mediators. Thus, in the limit of approximately equal mediator mass parameters
mΨ ≈ mψ, the scale of the relevant NP giving rise to the chirality flip is given by the mass
splitting

∆mψ = mψ1
−mψ2

=
p

2yψv , (82)

and satisfies ∆mψ≫ mµ if yψ ≳ 10−3.
Neglecting hence the first terms of eqs. (34) and (35) and writing

∆aµ =
mµ

16π2

∑

k

sin 2θψ |λµk|2

3m2
φk

Reξ
�

mψ1
G(xk,1)−mψ2

G(xk,2)
�

, (83)

gives a very good approximation of the NP contributions to aµ. Note that θψ as defined in
eq. (9) lies within 0≤ θψ ≤ π/4 such that sin 2θψ > 0 in the equation above. As we addition-
ally have

mψ2
G(xk,2)> mψ1

G(xk,1) , (84)

a positive NP contribution ∆aµ requires a negative scaling parameter, ξ < 0.
At the same time the Yukawa coupling yψ also generates potentially sizeable NP contri-

butions ∆mµ to the muon mass through the processes depicted in Figure 17. The total muon
mass is given by the relation

mµ =
yµv
p

2
+∆mµ , (85)

inducing a potential fine-tuning problem. A general parametric estimate of the NP contribu-
tions to aµ and mµ gives [124,125]

∆aµ = CNP

m2
µ

m2
NP

, (86)

∆mµ =O (CNP)mµ , (87)

where the factor CNP depends on the details of the model. These expressions can be used in
order to derive an upper limit on the NP scale mNP up to which the experimental value ∆aexp

µ

can be accommodated without introducing fine-tuning. To this end, we follow the convention
from [124] and consider scenarios in which corrections to the muon mass are larger than the
physical muon mass as fine-tuned, which yields an upper limit of [124]

mNP ≲ 2100 GeV . (88)

μR μL

ψα

φkμL

v

(a) chirality flip on external muon line.

μL

ψα

φkμR

v

(b) chirality flip in the loop.

Figure 17: Representative Feynman diagrams for NP contributions∆mµ to the muon
mass.
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(a) SFF scenario. (b) QDF scenario.

Figure 18: Viable points in the |ξ| − yψ plane while demanding that ∆aµ lies within
the 2σ band of ∆aexp

µ .

To complement this general estimate we also check numerically which parts of our model’s
viable parameter space correspond to fine-tuned scenarios by calculating ∆mµ through [125]

∆mµ = −
sin 2θψReξ

16π2

∑

k

|λµk|2
�

mψ1
B0(0, mψ1

, mφk
)−mψ2

B0(0, mψ2
, mφk

)
�

, (89)

where the function B0(p2, m1, m2) is a standard Passarino–Veltman two-point function renor-
malised according to the MS scheme. Here we only consider contributions to ∆mµ from the
process with a chirality flip in the loop depicted in Figure 17b. The process with a chirality flip
on an external muon line shown in Figure 17a is proportional to mµ and can hence be safely
neglected.

In passing we note that one-loop contributions to the lepton Yukawa couplings are gen-
erated by diagrams analogous to Figure 17. The leading contribution, however, affects the
lepton mass and the respective Yukawa coupling equally and therefore does not modify the
Higgs decay rates to leptons. Corrections to the latter receive an additional v2/m2

ψα
suppres-

sion factor and are hence smaller than the LHC sensitivity. These conclusions agree with the
findings of [32].

9.2 Results

In order to determine the size of our model’s contributions to aµ, we calculate ∆aµ in the
regions of its parameter space that we have identified as viable in the combined analysis of
Section 8. For the calculation of ∆aµ we use the full expression from eq. (81) including
diagrams with chirality flips on external muon lines. The NP contributions to the muon mass
are calculated through eq. (89). The results are gathered in Figure 18–20. In all plots we
assume maximum mixing with θψ = π/4.

Figure 18 shows which values of the Yukawa coupling yψ and the scaling parameter |ξ|
can solve the (g − 2)µ anomaly in the two freeze-out scenarios. We find that for the case
|ξ| = 1.00 one needs small Yukawa couplings yψ ≲ 10−1 in order to stay within the 2σ band
of ∆aexp

µ , while suppressed left-handed interactions with |ξ| = 0.01 require yψ ≳ 0.3, with
values as large as yψ = 2.0 possible. Comparing the two freeze-out scenarios, we find that
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(a) SFF scenario with |ξ|= 1.00. (b) SFF scenario with |ξ|= 0.01.

(c) QDF scenario with |ξ|= 1.00. (d) QDF scenario with |ξ|= 0.01.

Figure 19: Dependence of the NP contributions ∆aµ on the Yukawa coupling yψ for
both freeze-out scenarios and both choices of |ξ|. The red dashed line shows the
mean value of ∆aexp

µ and the orange and yellow areas show the 1σ and 2σ bands,
respectively.

the allowed points are slightly shifted to smaller values of |ξ| for the QDF scenario, due to the
slightly larger couplings allowed in this case. Increasing the value of mΨ = mψ shrinks the
area in the |ξ|− yψ plane for which the experimental 2σ band can be reached. As large values
mΨ = mψ generally lead to larger couplings |λµi| the upper edge of the area of allowed points
is shifted towards smaller values of both yψ and |ξ|, as growing couplings |λµi| need either
decreasing values of yψ or |ξ| in order to not yield a too large∆aµ. Since increasing mediator
masses also suppress ∆aµ, the lower edge is shifted towards larger values of yψ and |ξ|.

The dependence of ∆aµ on the Yukawa coupling yψ is shown for the SFF scenario in
Figure 19a and Figure 19b. Here, the central value of∆aexp

µ can be reproduced for both choices
of |ξ|. For |ξ|= 0.01 and masses mψ = 1100GeV this minimally requires yψ ≃ 0.6 while larger
masses mψ = 1700GeV require yψ ≃ 0.8. If left-handed interactions are non-suppressed on
the other hand, yψ needs to be much smaller and we find yψ ≃ 0.006 for mψ = 1100GeV while
one needs yψ ≃ 0.008 for mψ = 1700 GeV. This can be seen in Figure 19a. We further find
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that large values of mΨ = mψ shrink the area of possible values for ∆aµ, while for |ξ| = 0.01
and a given value of yψ it even leads to a lower limit on ∆aµ. This limit arises because large
mediator masses mψ ≳ 1500GeV demand large DM–muon couplings |λµ3| ≳ 1.0, as can be
seen in Figure 15b. Such a lower bound is not present for |ξ|= 1.00 as in this case even large
mediator masses allow for small couplings |λµ3|, as can be seen in Figure 15a. Since growing
mediator masses at the same time suppress ∆aµ, the upper edge of accessible values shrinks
for both cases of |ξ| for increasing mediator masses.

We find the same behaviour also for the QDF scenario shown in Figure 19c and Figure 19d.
Here, for |ξ|= 0.01 the central value of∆aexp

µ can be reproduced for minimal values yψ ≃ 0.5
and masses mψ = 1100GeV, while we find yψ ≃ 0.7 for mψ = 1700 GeV. In the non-
suppressed case we find yψ ≃ 0.008 for mψ = 1100 GeV and yψ ≃ 0.01 for mψ = 1700 GeV.
We further find that for |ξ| = 0.01 and mψ = 1700GeV the lower limit on ∆aµ is larger than
for the SFF scenario, while the upper limit is smaller. The larger lower limit can be explained
through the relic density constraint which requires all couplings |λµi| to be large, in order to
compensate for the flavour-averaging factor and not yield over-abundant dark matter. The re-
duced upper limit, on the other hand, is due to the fact that even for comparably small masses
mψ = 1100GeV the QDF scenario allows for close-to-maximal couplings |λµ3| ≃ 1.7. Hence,
the increased suppression of ∆aµ for increased values of mψ is less compensated by growing
couplings |λµ3| as they can maximally grow as large as |λµ3|= 2.0.

Finally, we also examine the correlation between NP contributions to aµ and mµ in Fig-
ure 20. To this end we show how large the corrections ∆aµ are for a given value of |∆mµ|
normalized to the physical muon mass mµ. We find that for both choices of |ξ| the central value
of ∆aexp

µ can be reached for corrections |∆mµ|/mµ < 1 in the SFF scenario, i.e. without intro-
ducing a fine-tuned muon mass. This also holds true for both choices of mψ that are shown
in Figure 20a and Figure 20b. We further find that non-suppressed left-handed interactions
generally lead to larger corrections |∆mµ| for sizeable NP effects in aµ. In this case most of the
viable parameter points found by the combined analysis lie in the rage yψ ∼O(10−4− 10−1).
As small values of yψ increase the mass of the lightest charged mediator mψ2

, this suppresses
both ∆aµ as well as ∆mµ. However, since the function

mψ1

m2
φk

G(xk,1)−
mψ2

m2
φk

G(xk,2) , (90)

responsible for the suppression of ∆aµ is steeper than

mψ2
B0(0, mψ2

, mφk
)−mψ1

B0(0, mψ1
, mφk

) , (91)

which causes the suppression of |∆mµ|, the slope of the distribution is steeper in Figure 20b
than in Figure 20a. For the same reason we find an equivalent behaviour for increasing medi-
ator masses, i.e. they again lead to larger contributions to |∆mµ| for a given value of ∆aµ.

The correlation between ∆aµ and |∆mµ| is shown for the QDF scenario in Figure 20c and
Figure 20d. Again, for both choices of |ξ| the central value of ∆aexp

µ can be reached without
exceeding the threshold |∆mµ|> mµ, i.e. without introducing a fine-tuned muon mass. While
the correlation between ∆aµ and |∆mµ| qualitatively shows the same behaviour as in the SFF
scenario, we find that in the QDF scenario the allowed values lie on a thin band for the case
of non-suppressed left-handed interactions shown in Figure 20c. This is due to the very small
range of yψ values that allow for sizeable ∆aµ in this case, as can be seen in Figure 19c. In
that range the ratio ∆aµ/|∆mµ| is roughly constant in this freeze-out scenario, leading to the
thin strips of Figure 20c. Note that we also checked if sizeable contributions to the electron
or tau mass are generated and found those effects to be negligibly small. Hence, we conclude
that in both scenarios and for both cases of |ξ| our model is capable of accommodating ∆aexp

µ

without introducing fine-tuned lepton masses and a fine-tuned muon mass in particular.
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(a) SFF scenario with |ξ|= 1.00. (b) SFF scenario with |ξ|= 0.01.

(c) QDF scenario with |ξ|= 1.00. (d) QDF scenario with |ξ|= 0.01.

Figure 20: Correlation between ∆aµ and |∆mµ| in both freeze-out scenarios and for
both choices of |ξ|. The greyed-out area indicates the region with |∆mµ|/mµ > 1
which we consider fine-tuned. The red dashed line shows the mean value of ∆aexp

µ

and the orange and yellow areas show the 1σ and 2σ bands, respectively.

10 Summary and Outlook

In this work we studied a simplified model of lepton-flavoured DM, in which a complex scalar
DM flavour triplet couples to both right- and left-handed leptons. The interactions between DM
and right-handed leptons are mediated by a vector-like charged Dirac fermion and governed
by the 3×3 complex coupling matrix λ. Interactions between DM and left-handed leptons, on
the other hand, are mediated by an SU(2)L doublet containing one charged and one neutral
vector-like Dirac fermion. We assumed the coupling matrix of these interactions to be given
by the same flavour-violating matrix λ times a scaling parameter ξ. The presence of both left-
and right-handed interactions between DM and the SM was found to lead to the absence of
a dark flavour symmetry, implying that it does not fall into the DMFV class [20–26]. In turn,
the DMFV connection between the coupling matrix λ and the DM mass spectrum is lifted in
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this model. Further, the two mediator fields interact with the SM Higgs doublet through the
Yukawa coupling yψ.

To examine the structure of the coupling matrix λ, determine the model’s viable param-
eter space and subsequently examine whether it is capable of generating sizeable effects in
the muon anomalous magnetic moment aµ, we studied limits from collider searches, flavour
experiments, precision tests of the SM, the DM relic density as well as DM detection experi-
ments.

In Section 3 we explored constraints from LHC searches for sleptons in the same-flavour
final state ℓℓ̄ + /ET with ℓ = e,µ. We found that the interplay between contributions from
processes with the two charged mediators leads to an exclusion of DM masses close to the equal
mass threshold mφ3

≈ mψ2
for values 0.5 ≲ yψ ≲ 1.00, while this near-threshold exclusion

tends to decrease with increasing values yψ ≳ 1.00. We obtained the largest exclusion in the
mψ2
−mφ3

plane for vanishing couplings |λτ3| and maximum couplings to electrons and muons
|λℓ3| = 2.0. In this case the LHC constraints exclude mediator masses up to mψ2

≃ 750 GeV
and DM masses up to mφ3

≃ 400GeV.
To determine the flavour structure of λwe then studied limits from LFV decays in Section 4.

Due to the contribution with a chirality flip in the loop governed by the Yukawa coupling yψ,
the LFV decays ℓi → ℓ jγ yield stringent bounds. The strongest limit is placed on the model by
the decay µ→ eγ and we estimated the resulting constraint on the coupling matrix. Motivated
by our goal to solve the (g − 2)µ anomaly, we satisfied this constraint by suppressing the
DM–electron couplings and choosing |λei| ∼ O(10−6 − 10−1). Other LFV decays less severely
constrain the coupling matrix λ due to weaker experimental limits.

We continued to restrict the coupling matrix λ in Section 5 by using constraints from pre-
cision tests of the SM. Here we particularly discussed the electron electric dipole moment de as
well as the electron magnetic dipole moment ae, with NP contributions to the latter having the
same sign in our model as the NP effects in aµ. We found that once the DM–electron couplings
are suppressed according to the LFV constraints, the EDM constraint allows for O(1) imaginary
parts of the scaling parameter ξ. Moreover, for accordingly suppressed DM–electron couplings
the constraints on the electron MDM ae are automatically fulfilled.

In Section 6 we studied in which part of our model’s parameter space the observed DM
relic density can be reproduced. We investigated two benchmark scenarios for the thermal
freeze-out: the QDF scenario in which negligible mass splittings lead to the presence of all
dark flavours during freeze-out, and the SFF scenario where due to a significant mass splitting
between the DM flavours only the lightest state contributes to the freeze-out. For both sce-
narios, we studied the two cases of suppressed and non-suppressed left-handed interactions
between DM and the SM with |ξ| = 0.01 and |ξ| = 1.00, respectively. For small left-handed
couplings the DM annihilation rate is p-wave suppressed while for sizeable left-handed inter-
actions this suppression is lifted. Still the relic density constraint allows for large couplings
|λi j| ∼O(1) in both freeze-out scenarios and both cases for ξ.

The direct detection phenomenology of our model was studied in Section 7.1, where we
used XENON1T data to constrain the coupling matrix λ. As the photon penguin that domi-
nates DM–nucleon scattering is proportional to the logarithm of the mass of the lepton in the
loop, the restrictions on λ were found to increase for decreasing lepton masses. The largest
constraints were thus found for the DM–muon coupling, since the DM–electron coupling is
already suppressed due to the flavour constraints.

Section 7.2 was dedicated to the limits from indirect detection experiments. Here we fo-
cussed on limits from AMS measurements of the positron flux as well as measurements of the
γ-ray line and continuum spectrum performed by the Fermi-LAT satellite and the H.E.S.S. tele-
scope. For non-suppressed left-handed interactions the constraints from measurements of the
positron flux and the γ-ray continuum spectrum are restrictive for DM masses mφ3

≲ 500 GeV
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and mφ3
≲ 700 GeV, respectively. The γ-ray line spectrum generally leads to relevant con-

straints in the near-degeneracy region mφ3
≈ mψ2

. In total, constraints from indirect detection
were still found to be weak in comparison to other limits.

To obtain our model’s viable parameter space we then performed a combined analysis in
Section 8 by demanding that all constraints are simultaneously fulfilled at the 2σ level. The
global picture is mainly determined by flavour, relic density and direct detection constraints.
For the SFF scenario the combination of flavour and relic density constraints forces the allowed
points to lie in a band in the |λτ3|−|λµ3| plane, while the direct detection constraint dominates
in a small part of the parameter space over the relic density constraint. In these regions, the
outer edge of the mentioned bands shrinks toward the inner band for growing values of |λµ3|.
For the QDF scenario we found that for large parts of the parameter space the direct detection
constraint dominates over the relic density constraint. Consequently the combined analysis
also allows for simultaneously small values of |λτ3| and |λµ3|, since the relic density constraint
in this case can also be fulfilled through annihilations of the heavier states φ1 and φ2 alone,
provided that the mediator mass is sufficiently small, mψ2

≲ 1500GeV. Generally the case of
non-suppressed left-handed interactions with |ξ|= 1.00 allows for smaller couplings |λτ3| and
|λµ3| than the case with |ξ|= 0.01.

Finally, we used our results from Section 8 to examine in Section 9 if our model is able to
account for the discrepancy between the SM and experiment in the muon anomalous magnetic
moment aµ. To this end we calculated ∆aµ in the regions identified as viable in the combined
analysis and compared it with the experimental value. We further evaluated accompanying
corrections∆mµ to the muon mass and checked if sizeable effects in aµ introduce a fine-tuned
muon mass. We found that in both freeze-out scenarios the central value of ∆aexp

µ can be
reached within the region of parameter space that we regard as non-fine-tuned for both cases
of ξ, requiring different values for the mediator-Higgs coupling yψ. Noteworthy, for non-
suppressed left-handed interactions larger corrections to the muon mass are generated for a
given value of ∆aµ than for |ξ|= 0.01.

We conclude that lepton-flavoured DM with couplings to both left- and right-handed lep-
tons accompanied by Higgs portal interactions of the corresponding mediators elegantly con-
nects the current most convincing hints at NP: the DM problem and the muon (g−2) anomaly.
In spite of exhibiting a very rich phenomenology spanning over several branches of particle
physics and thus being subject to many constraints, this model still allows for a joint explana-
tion of both. Hence, it qualifies as an attractive DM candidate waiting to be further probed
with increased sensitivity by future experiments.
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A Relic density

The functions Ai jkl , Bi jkl , Ckl and Dkl from eqs. (49) –(52) read

Ai jkl = (m
2
φ j
−m2

ℓl
− t)(t +m2

ℓk
−m2

φi
)− t(s−m2

ℓk
−+m2

ℓl
) , (A.1)

Bi jkl = ξ
∗mℓl
(m2

φi
−m2

ℓk
− t) + ξmℓk

(m2
φ j
−m2

ℓl
− t) , (A.2)

Ckl = −2mℓk
mℓl

t , (A.3)

Dkl = 2|ξ|2(s−m2
ℓk
−m2

ℓl
)− 2mℓk

mℓl

�

ξ∗2 + ξ2
�

. (A.4)

The p-wave contribution to the thermally averaged annihilation cross section from eq. (53)
for ξ ̸= 0 is given by
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, (A.5)

in the limit of equal initial state masses and vanishing final state masses. Here we have used
µα = mψα/mφ3

.

B Direct detection

The DM–nucleon cross section for t-channel scatterings through the Higgs portal reads [81]

σ
N ,Hφ
SI =

λ2
Hφ y2

N

4π

µ2m2
N

m4
H m2

φ3

, (B.1)

where mN is the nucleon mass and µ = mφ3
mN/(mφ3

+mN ) is the reduced mass of the DM–
nucleon system. In order to estimate in which parts of the parameter space these contributions
grow larger than the photon one-loop penguin from Figure 11a that we consider in the nu-
merical analysis, we set the couplings to |λi3| = 2 and |ξ| = 1 as well as yψ = 0 in eq. (64)
for maximum mixing with θψ = π/4. Comparing with eq. (B.1) then gives the maximum al-
lowed value of the Higgs portal coupling λHφ for at most equal scattering cross sections. This
illustrated by the contours shown in Figure 21.
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Figure 21: Maximum allowed values of λHφ in order to give at most equal contribu-
tions to the DM–nucleon scattering cross section as the photon penguin diagram.

C Indirect detection

The expression for the interference term ofψ1 andψ2 for the internal bremsstrahlung process
of Figure 12a is given by

〈σv〉12
ℓℓ̄γ
=
∑

i j

−αem|λi3|2|λ j3|2
�
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θ
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�

128m2
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2
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2
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+ p7(µ2 +µ1)(2+µ2(2+µ2) +µ1(2+µ1))

− p8(µ2 +µ1)(2+µ2(2+µ2) +µ1(2+µ1)) +µ
3
2(4l2

1 − l2l3 + l3l4 − 3l5 − l3l5
+ l4l5 + 4l5l6 + l1(3+ l2 + l3 − 2l4 − 4l5 − 4l6 − l8) + l5l8) +µ

2
2(8l2

1 − 2l2(1+ l3)

+ 2l4(1+ l3 + l5)− 2l5(l3 − 4l6) + 2l1(l2 + l3 − 2(l4 + 2(l5 + l6)))− l1l9 + l5l9
+ (−l2(−2+ l3) + l1(−1+ l2 + l3 − 2l4) + (−2+ l3)l4 + (1− l3 + l4)l5)µ1)

+µ2(4l2
1 − l2(3+ 2l3) + 2l3l4 − 2l3l5 + 2l4l5 + 3(l4 + l5) + 4l5l6

+ l1(−3+ 2l2 + 2l3 − 4l4 − 4l5 − 4l6 − l8) + l5l8 +µ1(2(l2 − 2l2l3
+ l1(−1+ 2l2 + 2l3 − 4l4)− l4 + 2l3l4 + l5 − 2l3l5 + 2l4l5)

+ (l2 − l2l3 + l1(−2+ l2 + l3 − 2l4) + (−1+ l3)l4 + (2− l3 + l4)l5)µ1))

+µ1(l1(3+ 2l2 + 2l3 − 4l4) + 2l3l4 + 4l2
4 − 2l3l5 + 2l4l5 − 3(l4 + l5)− 4l4l7 − l4l8

+ l2(3− 2l3 − 4l4 + 4l7 + l8) +µ1(2l1(1+ l2 + l3 − 2l4)

− 2(l5 + l3(−l4 + l5) + l2(l3 + 4l4 − 4l7)− l4(4l4 + l5 − 4l7)) + (l2 − l4)l9
+ (l1(l3 − 2l4) + 3l4 + l3l4 + 4l2

4 − l3l5 + l4l5 − 4l4l7 − l4l8

+ l2(−3+ l1 − l3 − 4l4 + 4l7 + l8))µ1))

�

, (C.1)

with the logarithms li and polylogarithms pi defined as

l1 = log(1+µ2) , l2 = log(µ1 − 1) , l3 = log(µ2 +µ1) ,
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l4 = log(1+µ1) , l5 = log(µ2 − 1) , l6 = log(µ2) ,

l7 = log(µ1) , l8 = log(16) , l9 = log(256) , (C.2)

and
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. (C.3)

The constraint coming from indirect detection experiments for the case of suppressed left-
handed interactions is shown in Figure 22.
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(b) constraints from the γ continuum spec-
trum.
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(c) constraints from the γ line spectrum.

Figure 22: Restrictions on the model parameters from indirect detection experiments
for suppressed left-handed interactions. In all three plots we have assumed maximum
mixing with θψ = π/4. The area included by the white dashed line and the equal
mass diagonal indicates in which mass regime the constraints are relevant.
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