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Abstract

We show that the three-dimensional asymptotically linear dilaton background that arises
in the near-horizon decoupling region of NS5-branes compactified on T4 admits bound-
ary conditions that lead to an infinite set of symmetries. The associated conserved
charges, which implement field-dependent coordinate transformations, are found to be
identical to the corresponding generators in a symmetric product orbifold of T T̄ - de-
formed CFTs. Their algebra is a non-linear modification of the Virasoro× Virasoro alge-
bra, which precisely coincides with the algebra of the “unrescaled” symmetry generators
in T T̄ -deformed CFTs. This further strengthens a previously proposed link between the
single-trace T T̄ deformation and compactified little string theory.
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1 Introduction

One of the most important open problems in quantum gravity is to generalize the highly suc-
cessful AdS/CFT correspondence [1] to other spacetimes, such as the more realistic asymp-
totically flat ones. While a fascinating link [2, 3] has been recently uncovered between the
rich asymptotic structure of Minkowski spacetimes [4, 5] and properties of flat space scatter-
ing amplitudes [6] - culminating in the celestial holography program [7–10] - the underlying
quantum-field-theoretical structure of the holographic dual to flat space has yet to be un-
derstood. Basic considerations based on e.g., the behaviour of black hole and entanglement
entropy [11], as well as the structure of correlation functions [12], suggest the corresponding
QFT is non-local.

Part of the difficulty lies in the lack of tractable string-theoretical examples of flat hologra-
phy. In this article, we will concentrate on the asymptotically linear dilaton spacetime in string
theory [13], where the metric is asymptotically flat, but the dilaton has a non-trivial asymp-
totic profile. This spacetime is obtained from a decoupling limit of the geometry created by
NS5-branes and can be viewed as intermediary between the well-understood anti-de Sitter
case and the challenging asymptotically flat one; for example, the growth of the black hole
entropy with energy is Hagedorn, which is intermediary between the sub-Hagedorn growth
in AdS and the super-Hagedorn one in flat space. The conjectured holographic dual to string
theory in this background is known as little string theory (LST) [14–17]: a non-local, non-
gravitational theory containing strings, which arises in the low-energy decoupling limit of the
NS5-branes.

The behaviour of observables in LST has traditionally been inferrred from its holographi-
cally dual spacetime. However, more recently [18] put forth a very interesting alternate QFT
definition of little string theory, at least when compactified on T4, in terms of a solvable irrel-
evant deformation of a two-dimensional CFT known as the T T̄ deformation.

The T T̄ deformation [19,20] is a universal deformation of two-dimensional QFTs by an op-
erator that is bilinear in the stress tensor components. Remarkably, this deformation appears
well-defined - despite its irrelevant nature - and leads to a theory that is UV complete [21], al-
beit non-local at the scale set by the dimensionful deformation parameter. Moreover, many ob-
servables in the deformed theory, such as the finite-size spectrum and the deformed S-matrix,
are entirely determined by their counterparts in the original QFT [19,20,22,23]. For the case
of a T T̄ - deformed CFT, the deformed spectrum is known in closed form and can be used to
determine the density of states, eS , as a function of the energy

S(E) = 2π

√

√ cER
3
+
µc
6π

E2 , (1)
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where c is the central charge of the undeformed CFT and µ is the T T̄ parameter. This expres-
sion interpolates between a Cardy regime at low energies and Hagedorn behaviour at high
energies, which is suggestive of a connection to strings.

The original T T̄ deformation put forth by Smirnov and Zamolodchikov is “double-trace”
from the perspective of AdS/CFT. As a result, its holographic interpretation is to simply change
the boundary conditions on the dual AdS3 metric from Dirichlet to mixed [24], without affect-
ing the local curvature. In order for the irrelevant deformation to locally modify the geometry
of the dual spacetime, one needs to consider instead the so-called “single-trace” T T̄ deforma-
tion [18], which is possible when the undeformed CFT is a symmetric product orbifold (SPO)
of some seed CFT. This deformation takes the form

p
∑

i=1

Ti T̄i , (2)

where p is the number of copies in the SPO, and produces a symmetric product orbifold of
T T̄ - deformed CFTs, many of whose properties are universally determined by the original
seed [25].

The connection between single-trace T T̄ and LST arises from considering the NS5-F1 sys-
tem instead of just NS5 [26]. In this case, the decoupled background geometry interpolates
between AdS3 in the IR and a three-dimensional linear dilaton spacetime in the UV. Worldsheet
string theory is well understood in this entire background [27]; in particular, the IR AdS3 re-
gion is described by an SL(2,R)WZW model [28]. Holographically, it is expected [29] that at
least the long string sector of this theory should be described by a symmetric product orbifold
with respect to the number of F1 strings, p, of a seed CFT of central charge c = 6k, where k is
the number of NS5 branes. In [18], it has been argued that turning on the single-trace T T̄ de-
formation (2) in this theory corresponds precisely to the deformation of the dual background
from AdS3 to asymptotically linear dilaton. The T T̄ coupling is proportional to the inverse
string tension, α′.

If correct, this proposal provides an alternate QFT definition of compactified LST in terms
of an essentially solvable theory. This proposal has passed several non-trivial checks, such as
the fact that black hole entropy precisely follows the T T̄ relation (1) between entropy and en-
ergy [18,30], and that the spectrum of long strings in the deformed massless BTZ background
precisely matches the single-trace T T̄ - deformed spectrum [31]. It has also made some inter-
esting predictions [32,33] for the behaviour of entanglement entropy in T T̄ - deformed CFTs.
Its ultimate status is, however, somewhat unclear, due to the fact that the full CFT dual to the
IR AdS3 is not a symmetric product orbifold (see [34] for a recently proposed dual). More
work is thus needed before the full picture emerges.

In this article, we further strengthen the link between the single-trace T T̄ deformation and
compactified LST by showing that the asymptotically linear dilaton background dual to the
latter possesses an infinite set of symmetries, whose form and algebra precisely match those of
a single-trace T T̄ - deformed CFT [25]. These symmetries are a straightforward generalization
of the infinite symmetries of standard T T̄ - deformed CFTs, which have been first predicted by
the holographic analysis of [24], then studied at classical level in [35], proven to exist at full
quantum level in [36], and are further explored in [37].

More specifically, [24] showed that the asymptotic symmetry algebra of the spacetime dual
to T T̄ -deformed CFTs - namely, AdS3 with mixed boundary conditions - is Virasoro × Virasoro
with the same central extension as that of the undeformed CFT. The asymptotic symmetry
generators are parametrised by two arbitrary functions of certain “field-dependent coordi-
nates”, u, v, whose radii depend on the left- and right-moving energies of the background as
Ru,v = R + µHR,L/π, where R is the radius of the circle on which the theory is defined. The
Virasoro generators Lm, L̄m correspond to the natural Fourier basis of functions multiplied by
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the field-dependent radii. Writing Lm = RuQm, L̄m = RvQ̄m, the algebra of the “unrescaled”
generators Qm, Q̄m is a non-linear modification of the Virasoro × Virasoro algebra

i{Qm,Qn}=
1
Ru
(m− n)Qm+n +

µ2HR

π2RRHRu
(m− n)QmQn +

c
12

m3

R2
u
δm+n ,

i{Qm, Q̄n}= −
µ(m− n)
πRRH

QmQ̄n , (3)

where RH = R + µH/π; a similar bracket holds for {Q̄m, Q̄n}. Even though this algebra is
more complicated and likely receives quantum corrections to all orders in ħh, the “unrescaled”
basis of generators: i) is very natural to consider, being just the Fourier basis; in particular, the
left/right-moving energies simply correspond to Q0, Q̄0 and ii) may be preferred for defining
pseudo-local observables in the theory, in analogy to the case of J1 ∧ J2 and J T̄ - deformed
CFTs.1 It is not hard to argue [25] that for single-trace T T̄ - deformed CFTs, the algebra of the
corresponding “unrescaled” generators is still given by the above, but with the replacement
µ→ µ/p.

The main technical result of this article is to show that the asymptotic symmetry algebra
of asymptotically linear dilaton spacetimes is precisely (3) with µ → πα′/p. To capture the
field-dependence of the asymptotic symmetry generators, we perform the asymptotic analysis
around non-trivial black hole solutions in these spacetimes. Due to the strong background
dependence of the asymptotic diffeomorphisms, we can only compute the charge algebra per-
turbatively around the black hole backgrounds, where the perturbation corresponds to adding
boundary gravitons. The terms we compute are however sufficient to see the entire structure
of (3) emerge.

This article is organised as follows. In section 2, we review the black hole backgrounds
we study, present a consistent truncation to three dimensions that captures them, and recall
the relationship between their thermodynamics and that of single-trace T T̄ . In section 3, we
classify the general linearized perturbations of these backgrounds and use their symplectic
product to motivate a set of boundary conditions that lead to an infinite set of asymptotic
symmetries. We also show that the associated conserved charges take an identical form to
those in T T̄ . In section 4, we present the perturbative computation of the charge algebra
around the black hole backgrounds. Finally, in appendix A we revisit the calculation of the
asymptotic symmetry algebra for the spacetimes dual to double-trace T T̄ - deformed CFTs,
explaining how to reproduce both the algebra (3) and the originally found Virasoro using
covariant phase space methods.

2 Setup

In this section, we review the construction of the asymptotically linear dilaton back hole back-
grounds from a decoupling limit of string theory, and present a consistent truncation to three
dimensions that captures their essential properties. We then review the link between the ther-
modynamics of these black holes and that of T T̄ - deformed CFTs.

1The Virasoro generators of T T̄ - deformed CFTs are obtained at full quantum level by transporting the ones of
the seed CFT along the T T̄ flow [36]. The same procedure yields flowed generators in J1 ∧ J2 and J T̄ - deformed
CFTs, whose algebra is Virasoro by construction, but which are explicitly different from the Virasoro generators
of conformal symmetries in these theories. The interplay between physical and flowed generators is essential for
defining analogues of primary operators in the non-local J T̄ -deformed CFTs and for computing their correlation
functions [38].
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2.1 The backgrounds

We start by considering the non-extremal NS5 - F1 string frame solution of type IIB string
theory, with n units of momentum along the common S1 [30,39]

ds2 =
1
f1

�

dσ2 − d t2 +
r2
0

r2
(coshαnd t + sinhαndσ)2

�

+ f5

�

dr2

f
+ r2dΩ2

3

�

+
4
∑

i=1

d x2
i ,

H =
g2

s α
′p

v
dσ∧ d t ∧ d
�

1
f1r2

�

+ 2α′kωS3 , e2φ = g2
s

f5
f1

, (4)

where dΩ2
3 and ωS3 are the metric and, respectively, the volume form of the unit S3, and the

various harmonic functions are given by

f = 1−
r2
0

r2
, f1,5,n = 1+

r2
0 sinh2α1,5,n

r2
, (5)

with

sinh2α1 =
2g2

s α
′p

vr2
0

, sinh 2α5 =
2α′k

r2
0

, sinh 2αn =
2g2

s α
′2n

R2vr2
0

. (6)

Here, p and k are the number of F1 strings and, respectively, NS5 branes supporting the so-
lution, gs is the ten-dimensional string coupling, R is the radius of the S1 parametrized by σ
and v is the volume of the T4 in string units, VT4 = (2π)4α′2v. This way of writing the metric
makes manifest the boost that generated the momentum of the solution.

We now take the standard NS5-brane decoupling limit, where the asymptotic string cou-
pling gs→ 0, with

r̂0 ≡
r0

gs
, r̂ ≡

r
gs

, (7)

held fixed. We also introduce the null coordinates U , V = σ± t, which are identified mod 2πR.
In this limit, the six dimensional string frame decoupled geometry becomes

ds2 =
1
f1

�

dUdV +
r̂2
0

4r̂2
(eαn dU − e−αn dV )2

�

+α′k

�

d r̂2

r̂2 − r̂2
0

+ dΩ2
3

�

, e2φ =
kα′

f1 r̂2
, (8)

and

H =
2p e2φ

v
p
α′k3

ω3 + 2kα′ωS3 , (9)

where ω3 is the volume form on the non-compact part of the space-time. This background
interpolates between AdS3 as r̂ → 0 and an asymptotically flat spacetime with a linear dilaton
as r̂ → ∞. The AdS3 geometry in the IR can also be obtained from the standard α′ → 0
decoupling limit. As such, it is useful to work in coordinates in which this limit is smooth, by
letting

r̂ = α′ρ , r̂0 = α
′ρ0 . (10)

Since the metric only depends on the ratio r̂0/r̂ = ρ0/ρ, it will take exactly the same form in
terms of the new variables, and so will ω3; only e2φ will pick up a factor of (α′)−2, as will the
first term in H. Finally, it is useful to introduce a new coordinate r (different from the previous
one) and notation

ρ = r +
ρ2

0

4r
, Lu ≡

ρ2
0 e2αn

4
, Lv ≡

ρ2
0 e−2αn

4
, (11)
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in terms of which the decoupled metric and dilaton become

ds2 =
r2

r4 + β r2/(α′v) + Lu Lv

�

r2dUdV + LudU2 + LvdV 2 +
Lu Lv

r2
dUdV
�

+α′k

�

dr2

r2
+ dΩ2

3

�

,

e2φ =
kr2

α′(r4 + β r2/(vα′) + Lu Lv)
, (12)

where the quantity β is defined as

β

α′v
≡ ρ2

0

�

sinh2α1 +
1
2

�

=
ρ2

0

2

√

√

√

�

2p

vρ2
0α
′

�2

+ 1=
1
α′v

Æ

p2 + 4α′2v2 Lu Lv . (13)

The reason for pulling out a factor of α′v is that we would like β to have a finite limit as
α′ → 0. In the second step, we used the definition of α1, sinh 2α1 =

2p
vρ2

0α
′ , to solve for α1 in

terms of ρ0 and the relation ρ4
0 = 16Lu Lv to write β in terms of these variables.

The energy and momentum of these solutions are given by [30]

E =
Rvρ2

0

2
(e−2α1 + cosh2αn) = Rv

�

Lu + Lv +

√

√
� p

vα′

�2
+ 4Lu Lv −

p
vα′

�

,

P =
n
R
= Rv(Lu − Lv) , (14)

where we measure the energy with respect to deformed massless BTZ. One last useful manip-
ulation is to absorb the factor of v above into a redefinition of the radial coordinate and of
Lu, Lv . More precisely, we let

r2→
r ′2

v
, Lu→

L′u
v

, Lv →
L′v
v

, (15)

and then drop the primes. This will simply amount to dropping the factors of v from the metric
and from the formulae for the energy and momentum. To remove this factor also from the
dilaton, one can simply define

e2φ′ =
1
v

e2φ . (16)

The decoupling limit α′ → 0 can now be straightforwardly taken, taking into account the
fact that the metric scales with an overall factor of α′, as usual. The six-dimensional string
coupling reduces to a constant, g2

6 = k/p, which can be made as small as desired by taking the
number of F1 strings to be large. To further study these solutions, it is convenient to introduce
a consistent truncation to three dimensions that captures all of their essential properties.

2.2 Consistent truncation to three dimensions

The six-dimensional string frame action is

S =
1

2κ2
6

∫

d6 x
p

g e−2φ
�

R+ 4∂µφ∂
µφ −

1
12

H2
�

,
1

2κ2
6

=
(2π)4vα′2

2κ2
10

=
v

(2π)3α′2
,

(17)
and the associated equations of motion read

RMN+2∇M∇Nφ−
1
4

HMABHN
AB = 0 , □φ−2(∂ φ)2 = −

1
12

H2 , d(e−2φ⋆H) = 0 . (18)
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We would like to perform a consistent truncation to three dimensions on S3 using the following
simple Ansatz, inspired by the family of solutions we described

ds2 = ds2
3 + ℓ

2ds2
S3

, H = 2ℓ2ωS3 + b e2φω3 , (19)

where ℓ, b are constants and φ is assumed to be a function of only the three-dimensional
non-compact coordinates, xµ. Comparing with the background H-field (9), we find

ℓ=
p

α′k , b =
2p
p
α′k3

=
2p
kℓ

. (20)

Note there should be an additional factor of v in the denominator of b; we have removed it by
rescaling eφ as in (16). This rescaling also removes the factor of v from the six-dimensional
Newton’s constant. However, it does not affect the string equations of motion (18), since φ
itself only shifts by a constant.

Thus, ℓ and b are fixed parameters, depending only on the number of branes and α′, but
not on the state-dependent properties of the black hole solutions. Performing the truncation
is trivial: the Ansatz for the H-field automatically solves the last equation in (18), while the
middle equation reads

□3φ − 2(∂ φ)2 = −
1
2
(a2 − b2e4φ) , (21)

where we have introduced the shorthand a ≡ 2/ℓ. The sphere components of the Einstein
equations set (3)Rab =

2
ℓ2

gab, and

(3)Rµν + 2∇µ∇νφ +
1
2

b2e4φ gµν = 0 . (22)

One can easily check that the black hole solutions satisfy these equations. To derive them from
an action, we can introduce g̃µν = e−4φ gµν, which obeys

R̃µν +

�

a2e4φ −
b2

2
e8φ

�

g̃µν − 4∂µφ∂νφ = 0 , □̃φ = −
1
2

e4φ(a2 − b2e4φ) . (23)

These equations can be derived from the action

S =
1

16πG3

∫

d3 x
p

g̃

�

R̃− 4(∂̃ φ)2 +

�

a2 −
b2

2
e4φ

�

e4φ

�

=
1

16πG3

∫

d3 x
p

g e−2φ

�

R+ 4(∂ φ)2 + a2 −
b2

2
e4φ

�

, (24)

where 16πG3 = 4π
p
α′k−3. One may drop the factors of

p
α′ from a (or ℓ), b and G3 by

rescaling the metric by α′, as we will do in the next section.

2.3 Relationship to T T̄ - deformed CFTs

As mentioned in the introduction, the finite-size spectrum of a T T̄ - deformed CFT is en-
tirely determined by that of the original CFT. The relationship between the undeformed and
deformed energies takes the simple form

E(0)L = EL

�

1+
µER

πR

�

, E(0)R = ER

�

1+
µEL

πR

�

, (25)

where EL,R = (E ± P)/2 and E(0)L,R are their undeformed counterparts. This relationship can
be used to compute the entropy in T T̄ - deformed CFTs, using the fact that the number of

7
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energy levels does not change with the deformation. Consequently, the entropy is still given
by Cardy’s formula

SCard y = 2π

√

√

√ c E(0)L R

6
+ 2π

√

√

√ c E(0)R R

6
, (26)

when written in terms of E(0)L,R. To obtain the entropy as a function of the physical energies
EL,R, one simply needs to plug in the expression (25) into the formula above, obtaining

ST T̄ = 2π

√

√ cEL(R+µER/π)
6

+ 2π

√

√ cER(R+µEL/π)
6

. (27)

This analysis holds for the standard, double-trace T T̄ deformation. The “single-trace” T T̄
deformation relevant to our case corresponds to a symmetric product orbifold, Sp, of T T̄ -
deformed CFTs, and its (untwisted sector) entropy is obtained by equipartitioning the energy
between the p copies [18]

ST T̄/Sp
= 2π

√

√ cEL(R p+µER/π)
6

+ 2π

√

√ cER(R p+µEL/π)
6

, (28)

where c is the central charge of the seed CFT.
One of the interesting observations of [18] was that the relationship between the entropy

and the energy of the asymptotically linear dilaton black holes reviewed in the previous sec-
tion takes precisely this form, where p is given by the number of F1 strings supporting the
background and the central charge of the seed CFT is c = 6k. Concretely, the entropy of the
decoupled black holes is

S = 2πRvℓs
p

kρ2
0 coshα1 coshαn . (29)

To compare with the T T̄ formula, we first compute the single-trace analogue of the relation
(25) between the undeformed and deformed energies,2 using µ= πα′

E(0)L,R ≡ EL,R +
α′

R p
EL ER =

Rp cosh2(α1 ±αn)

α′ sinh2 2α1
, (30)

and the explicit expression (14) for the deformed energies. Thus, the entropy can be written
as

S = 2π
Æ

pkELR+α′kEL ER + 2π
Æ

pkERR+α′kEL ER , (31)

exactly matching that of a symmetric product orbifold3 of p T T̄ - deformed CFTs, with µ= πα′

and cseed = 6k. This entropy interpolates between a Cardy regime at low energies and a
Hagedorn one at high energies. Note the number of F1 strings drops out from the high-energy
entropy, as expected from the fact that this regime (for which EL,Rα

′ >> pR) is controlled by
the physics of the NS5-branes alone.

Given this interesting connection to T T̄ , it is useful to translate the parameters we have
used to describe the black hole solutions to a notation that may be more natural from the
T T̄ perspective. This parametrization, which has been extensively used and explored in [24,

2If the T T̄ interpretation of these backgrounds holds, then the quantity E(0)L,R should be fixed as the T T̄ coupling,
α′, is turned on. Note this is different from turning on the α1 parameter of the solution via a TsT transformation,
as then ρ0 would be fixed instead. This can be easily seen by writing E(0)L,R as

E(0)L,R =
Rvρ2

0

2
cosh2(α1 ±αn)

sinh2α1
, with sinh2α1 =

2p
vα′ρ2

0

.

3Note this does not mean the dual is necessarily a symmetric product orbifold - indeed, the seed CFT we started
from is not, so neither should be its deformation.
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35], relies on the observation that the stress tensor of a T T̄ - deformed CFT only has two
independent components off-shell, which can be conveniently written in terms of two functions
of the coordinates, L and L̄, as in (A.4). For the black hole backgrounds, these functions are
simply constant. The energy and momentum of the solutions are given in terms of them by [24]

E = πR p
L+ L̄+ 2µLL̄

1−µ2LL̄
, P = πR p

L− L̄
1−µ2LL̄

, (32)

where, as explained in the appendix, L, L̄ and µ are rescaled versions of those in [24] and
the factor of p is related to the symmetric orbifold. Comparing these expressions with (14)
written in terms of the rescaled Lu,v , namely

E = R(Lu + Lv) +
R
α′

�
Æ

p2 + 4α′2 Lu Lv − p
�

, P = R(Lu − Lv) , (33)

we find the relation between the parameters to be

Lu =
πpL

1−µ2LL̄
, Lv =

πp L̄
1−µ2LL̄

, α′ =
µ

π
. (34)

The inverse relations read

L=
2Lu

π(β + p)
, L̄=

2Lv

π(β + p)
, µ2LL̄=

β − p
β + p

, β =
Æ

p2 + 4α′2 Lu Lv . (35)

In the following, we will continue to use the Lu,v ,α′ notation for the analysis of the perturba-
tions of the black hole backgrounds. Then, we will switch to the more natural T T̄ notation
L, L̄,µ when computing the conserved charges and making the link to single-trace T T̄ .

3 Asymptotic analysis of the black hole backgrounds

In the previous section, we have shown that the asymptotically linear dilaton backgrounds of
interest can be captured by a consistent truncation of the type IIB action to three dimensions,
which we now quickly summarize. The truncated theory consists of three-dimensional gravity
non-trivially coupled to the dilaton, for a total of one propagating degree of freedom. The
equations of motion read

(3)Rµν + 2∇µ∇νφ +
2p2

k3
e4φ gµν = 0 , □3φ − 2(∂ φ)2 = −

2
k

�

1−
p2

k2
e4φ

�

, (36)

where, as noted at the end of subsection (2.2), we have pulled out an explicit factor of α′ from
the metric. As a consequence, now G3 = (4k3/2)−1. The black hole solutions are given by

ds̄2 =
r2

α′r4 + β r2 +α′Lu Lv

�

r2dUdV + LudU2 + LvdV 2 +
Lu Lv

r2
dUdV
�

+ k
dr2

r2
,

e2φ̄ =
kr2

α′r4 + β r2 +α′Lu Lv
, β =
Æ

p2 + 4α′2 Lu Lv , (37)

where the overbars denote the fact that these are the background values of the fields. The
goal of this section is to understand the boundary conditions that linearized perturbations
of these backgrounds satisfy. Of particular interest are the perturbations generated by large
diffeomorphisms, as these correspond to the asymptotic symmetries of the system. Our choice
of boundary conditions will be guided by the asymptotic vanishing of the symplectic form
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evaluated on these solutions, computed using the covariant phase space formalism [40, 41],
which in turn ensures the conservation and finiteness of the corresponding charges.

We start with a thorough characterization of the linearized solutions above the black hole
backgrounds (37). We then compute the symplectic form in the covariant phase space formal-
ism and use it to select a set of boundary conditions. We subsequently compute the asymptotic
conserved charges and compare them to the conserved charges in T T̄ - deformed CFTs.

3.1 The linearized solutions

We consider linearized perturbations of the backgrounds (37)

gµν = ḡµν + εhµν , φ = φ̄ + εδφ , (38)

where ε is a small parameter. We expand these perturbations in Fourier modes, fixing radial
gauge for the string frame metric. In components, we have

hµν = e−iωU+iκV





f1(r) f2(r) 0
f2(r) f3(r) 0

0 0 0



 , δφ = e−iωU+iκV f (r) . (39)

The linearized equations of motion couple these four functions in a non-trivial way. Below, we
briefly explain their structure and how the solutions are obtained. We assume that Lu,v ̸= 0; a
separate analysis would be needed otherwise. We then classify the solutions into modes gener-
ated by diffeomorphisms and propagating ones; the mode counting turns out to be analogous
to that in AdS3 and is summarized in table 1.

Solving the linearized equations of motion

To disentangle the equations of motion, we first note that the scalar equation only mixes δφ
with the trace of the metric perturbation, which is proportional to

h(r)≡ (r4 + Lu Lv) f2 − Lur2 f3 − Lv r2 f1 . (40)

The scalar equation then only contains f , h and their derivatives up to f ′′ and, respectively, h′.
Another simplifying observation is that a linear combination of the Einstein equations (more
precisely, Lv Euu − LuEvv , where Eab denotes the ab component of the Einstein equation) only
depends on the following linear combination of the functions

g(r)≡ Lu f3 − Lv f1 , (41)

and its derivatives up to g ′′ and4 f . Thus, h and g are in principle determined by f . Trading
f2,3 for h, g, one can then solve the remaining Einstein equations5 for f1 and f . One finds that
f obeys a third order differential equation, which is decoupled from all the other functions.

4The coefficient of f in this equation is proportional to (Luκ
2− Lvω

2), so g decouples from f at zero frequency.
5For completeness, we list herein the steps leading to the solution, which were carefully chosen so as to not

have to divide by the frequency at any point. After replacing f2,3 by g, h, we solve the r r Einstein equation for
f ′1 (as a function of f1, h and up to third derivatives of f and up to the first derivative of g). Plugging the result
back into Einstein equations one finds that a particular linear combination of the uu and uv components is purely
a fourth order differential equation for f . Subtracting this equation from the uv component so that the f ′′′′ term
cancels yields an expression that involves f and its derivatives up to f ′′′ , plus some terms linear in f1, h (and
g), with coefficients that vanish in the zero frequency limit. It turns out this is exactly the form of the ur and vr
Einstein equations (which additionally have factors of g ′), so we can add them to the previous equation in such a
way that the f1, h terms cancel. We are left with a third order differential equation for f only, the g and g ′ terms
having cancelled out by themselves. One can explicitly check that the previous fourth order equation for f is a
linear combination of the third order one and its derivative, so we can just concentrate on the latter.
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The asymptotic large r expansion of the coefficients of this equation (multiplied just by −4)
reads
�

ωκr7

4Lu Lv
+
(κ2 Lu +ω2 Lv + βωκ/α′)r5

4Lu Lv
+

1
α′k

�

1+
kβκ2

4Lv
+

kβω2

4Lu
+ kα′ωκ

�

r3 +O(r)
�

f ′′

+

�

5ωκr6

4Lu Lv
+
(7κ2 Lu + 7ω2 Lv + 5βωκ/α′)r4

4Lu Lv

+
1
α′k

�

9+
7kβκ2

4Lv
+

7kβω2

4Lu
+ 8kα′ωκ

�

r2 +O(r0)

�

f ′′

+

�

ωκ(3+ 4kα′ωκ)r5

4Lu Lv
+
(5κ2 Lu + 5ω2 Lv +ωκ ·α1(ω,κ))r3

4Lu Lv

+
1
α′k

�

15+α2(ω,κ)
�

r +O(r−1)
�

f

+

�

−
2kβω2κ2r2

Lu Lv
+

2(βκ2 Lu + βω2 Lv +ωκ ·α3(ω,κ))
α′Lu Lv

+O(r−2)

�

f = 0 , (42)

where αi(ω,κ) are known polynomials in the given arguments and the background parame-
ters, whose particular form is not very illuminating for the general structure of this equation.

The three independent solutions of this equation behave asymptotically as r−s, where the
power s is determined by the asymptotic behaviour of the coefficients of f and of its derivatives.
Interestingly, the asymptotic behaviour of the solutions changes discontinuously as one or both
of the (null) frequencies is set to zero. Concretely, we find

ω,κ ̸= 0 : s = 1±
p

1− 4kα′ωκ , 0 ,

ω= 0 , or κ= 0 : s = 0, 4, 0 ,

ω= κ= 0 : s = 2, 4, 0 . (43)

Thus, except for one solution with s = 0 that we will discuss shortly, the ω,κ→ 0 limit of the
remaining weights is not smooth, which is a rather puzzling behaviour from the point of view
of the dual holographic interpretation. The form of the asymptotic expansion above makes it
clear why this happens at a technical level: the r →∞ andω,κ→ 0 limits of the equation do
not commute. One can easily check this does not represent the generic behaviour of the wave
equation upon these backgrounds; if we studied a probe scalar, for example, or simply ignored
the coupling between the dilaton and the background metric, we would find the equation
of motion has a standard expansion near infinity, with a smooth zero frequency limit. We
conclude that it is the particular couplings of the dilaton to the background - as dictated by
string theory - and the inclusion of backreaction that conspire to produce a linearized equation
of motion with this curious property.

Another interesting observation is that the black hole energies parametrized by Lu,v do
not enter the asymptotic formula for the weights, but only appear at subleading order in the
asymptotic solution.6 This property is not a priori guaranteed; indeed, previous analyses of the

6Asymptotically, the equation for f (normalized so that the coefficient of f ′′′ is r3) takes the form

r3 f ′′′ +
�

5r2 +
2
ωκ
(Luκ

2 + Lvω
2) +O(r−2)
�

f ′′ +
�

(3+ 4kα′ωκ)r +
4β(1+ kα′ωκ)

α′r

+
2(1+ 2α′kωκ)

ωκr
(Luκ

2 + Lvω
2) +O(r−3)
�

f ′ −
�

8kβωκ
r2

+O(r−4)
�

f = 0 .

We can thus write the (propagating) solution asymptotically as

f (r)∼ r−s

�

1−
2
�

α′s(2kα′ωκ− s)(Luκ
2 + Lvω

2) + 2ωκβ (s+ (s+ 2)kα′ωκ)
�

r2ωκα′(s+ 2) (4κkα′ω+ s2 + 2s)
+O(r−4)

�

, s ∈ {s+, s−} .
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SL(2,R) spectrum of warped AdS3 backgrounds in string theory have found that the weights
did generically depend on the black hole temperature [42].

Given the solution for f (parametrized by three arbitrary integration constants), one can
easily solve for the remaining functions (namely g, h and f1), for which f and its various
derivatives act as an inhomogenous source term. As mentioned above, the equation for g is
second order, which will lead to two more integration constants. The equations that one ob-
tains for h, f1 depend on whether one works at zero or non-zero frequency. In the former case,
f1, h satisfy first-order differential equations, which lead to two more integration constants; in
the latter case, they are entirely determined7 by the solutions for f and g.

Analysis of the solutions

As is well known, three-dimensional gravity does not have any propagating degrees of free-
dom; the only propagating field in the consistent truncation is the dilaton. We thus expect to
have two asymptotically independent propagating solutions to the equations of motion (one
normalizable and one non-normalizable) and a number of pure large diffeomorphism modes,
corresponding to the asymptotic data of the boundary gravitons.

It is easy to check that the two propagating modes we expect correspond to two of the
three solutions to the equation for the scalar perturbation, f . These solutions are most easily
identified for generic ω,κ, where they correspond to the first two values of s in (43). Since
the weights, denoted s±, sum to 2= d, their most natural holographic interpretation is as the
source and the expectation value for a scalar operator of a momentum-dependent dimension

∆= 1+
p

1− 4kα′ωκ . (44)

Such a behaviour is characteristic of irrelevant deformations. The combination ωκ is Lorentz
invariant, and an anomalous dimension that is a function of α′ωκ is precisely what one expects
from the broken scale invariance of the system [43]. Note, however, that the α′ → 0 limit
of (44) is 2, so the dual operator does not appear to correspond - as one would have naïvely
expected - to the continuation of the “single-trace T T̄” operator defined in the IR theory, which
has dimension 4. This behaviour continues to hold for perturbations around the asymptotically
linear dilaton vacuum, to which the arguments of [43] truly apply; at a technical level, it is
due to the fact that the r →∞ and α′ → 0 limits of the dilaton equation do not commute.
This does not happen for probe fields [44–46] or if one ignores the backreaction of the metric
on the dilaton. A more thorough analysis of holography in this spacetime is clearly needed
to shed light on this issue, as well as on the discontinuous behaviour of the weights (43) in a
black hole background.

Note that the conformal dimension (44) becomes imaginary at large frequencies, and the
associated oscillatory behaviour at infinity is precisely the one expected for fields in asymptot-
ically flat spacetimes. This regime would again deserve a more in-depth study. However, in
this article we restrict toωκ < 1/(4kα′) so that the weights are real (in particular, 1≤ s+ < 2)
and thus we only need to consider Dirichlet boundary conditions at infinity for these modes.

7The difference comes from solving the remaining ur and vr components of the Einstein equations, which were
not discussed in the previous footnote. If the frequencies are zero, then these equations vanish identically, so the
previously obtained equations for h′, f ′1 are the ones that determine them, yielding two additional integration
constants. If the frequencies are non-zero, ω,κ ̸= 0, then the ur and vr Einstein equations yield a solution for f1

and h, which can be shown to be compatible with the previously discussed first order differential equation. Thus,
in this case one no new integration constants are generated.
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The solution for f that corresponds to the s = 0 asymptotic behaviour can be induced by
a diffeomorphism ξ = rFr∂r , which acts as δφ = ξr∂rφ̄. This solution can be worked out
explicitly

f (s=0)(r) = −
α′ (r4 − Lu Lv)

α′r4 +α′Lu Lv + r2β
· Fr , (45)

and this knowledge can be used to reduce the third order differential equation for f to a second
order one for the propagating modes only.8 It can be explicitly checked that the additional
homogenous solutions to the remaining equations can be induced by a (string frame) radial
gauge-preserving diffeomorphism, which takes the form

ξ
st r ing
rad =

�

FU(U , V ) + k
(r2β + 2α′Lu Lv)∂VFr − Lv(β + 2r2α′)∂UFr

r4 − Lu Lv
− 2kα′ ∂VFr ln r

�

∂U

+
�

FV (U , V ) + k
(r2β + 2α′Lu Lv)∂UFr − Lu(β + 2r2α′)∂VFr

r4 − Lu Lv
− 2kα′ ∂UFr ln r

�

∂V + rFr(U , V )∂r .

(46)

The action of this diffeomorphism on the asymptotic metric yields

hi j =r→∞

�

1
α′

�

∂U FV
∂U FU+∂V FV

2
∂U FU+∂V FV

2 ∂V FU

�

− 2k ln r

�

∂ 2
U Fr ∂U∂V Fr

∂U∂V Fr ∂ 2
V Fr

��

, (47)

where the log term comes from solving the non-homogenous differential equation for h. Both
parantheses receive corrections at O(r−2) and we have ommitted the radial components of
the metric perturbation, which are zero in this gauge.

From a holographic point of view, it is more natural to parametrize the solutions in terms
of the components of the asymptotic metric that they induce, namely ∂U FV and ∂V FU . Note
that, unlike in AdS3, here the UV component of the boundary metric is not independent of
the other two for generic functions FU ,V . Indeed, if we act with the α′ → 0 limit of (46) on
the BTZ black hole (as they are are just the radial-gauge-preserving diffeomorphisms of that
background), we find that their action on the diagonal component of the boundary metric is
instead

δg(0)
UV
= Fr +

∂U FU + ∂V FV

2
, (48)

in the standard Fefferman-Graham notation. Thus, the UV component of the boundary metric
can be considered as an independent piece of boundary data, which is not the case for asymp-
totically flat spacetimes.9 This additional factor of Fr is important in off-setting the effect of
boundary conformal transformations in AdS. Due to the different structure of (47), this does
not happen in the asymptotically flat case where, apart from the log term, Fr only appears at
subleading order in the metric.

Zero-frequency perturbations

We have so far analysed the general solutions to the equations of motion. Let us now concen-
trate on the case of zero-frequency perturbations (ω = κ = 0) which, as we already noted,
cannot be treated as a subcase of the general case.

8For this, one writes f (r) = f (s=0)(r)
∫ r

dr ′ f̂ (r ′) and finds that f̂ (r) satisfies a second order differential equa-
tion, whose leading coefficients are the same as those given above for f ′′′, f ′′ and f ′ (the subleading coefficients
are different).

9To obtain a behaviour more similar to AdS, one may consider the Einstein frame metric g̃µν = e−4φ gµν,
or e−2φ gµν.
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Let us start with the f equation, whose solution can now be found explicitly also for the
propagating modes, and reads

f (r) =−
α′ Cr

�

r4 − Lu Lv

�

α′Lu Lv +α′r4 + β r2
+

φ(2)
�

β + 2α′r2
�

2(α′Lu Lv +α′r4 + β r2)

+
φ(4)

�

β + 2r2α′ +
�

r4β
Lu Lv
+ β + 4α′r2
�

�

r2

2
p

Lu Lv
ln

r2+
p

Lu Lv

r2−
p

Lu Lv
− 1
��

2r2(α′Lu Lv +α′r4 + β r2)
. (49)

There are three integration constants: Cr - the constant mode of Fr - and the propagating
modesφ(2) andφ(4), which we have labeled according to their leading large r behaviour. Note
this behaviour does not match the zero frequency limit of the general one (43), which would
have predicted modes behaving as r0 and r−2 at infinity. Since their asymptotic weights do not
satisfy the holographic pairing relation (nor are they paired inside the symplectic form, as we
will soon show) the modesφ(2) andφ(4) cannot be interpreted holographically as a source and,
respectively, expectation value for some operator, despite being the only propagating modes
at zero frequency.

Having solved for f , we can find the solutions for the remaining functions. Whenever
possible, we label the integration constants by the components of the asymptotic metric that
they induce

f1 =
Cuu(r4 + Lu Lv +

r2β
2α′ ) + 2Cuv r2 Lu + (Lu LvCb −

βCvv Lu
α′ )

r2

2Lv

α′Lu Lv +α′r4 + β r2
−

2α′Cr Lur2(r4 − Lu Lv)
(α′Lu Lv +α′r4 + β r2)2

−
r4p2 −α′r2β Lu Lv + r6βα′

2α′Lv(α′Lu Lv +α′r4 + β r2)2
φ(2) +
�

2
α′Lv r2

+O(r−4)
�

φ(4) ,

f2 =
Cuv(r4 + Lu Lv) + Cuu Lv r2 + Cvv Lur2

α′Lu Lv +α′r4 + β r2
+

r2
�

α′(r4 + Lu Lv)−
β2

2α′

�

φ(2) + Cr r2β(r4 − Lu Lv)

(α′Lu Lv +α′r4 + β r2)2

+O(r−4)φ(4) ,

f3 =
Cvv(r4 + Lu Lv +

r2β
2α′ ) + 2Cuv r2 Lv − (Lu LvCb +

βCuu Lv
α′ )

r2

2Lu

α′Lu Lv +α′r4 + β r2
−

2α′Cr Lv r2(r4 − Lu Lv)
(α′Lu Lv +α′r4 + β r2)2

−
r4p2 −α′r2β Lu Lv + r6βα′

2α′Lu(α′Lu Lv +α′r4 + β r2)2
φ(2) +
�

2
α′Lur2

+O(r−4)
�

φ(4) . (50)

Note that since Cr = const, no log terms are induced. It is easy to see that the Ci j , Cr and Cb
modes can be generated by acting on the black hole background with the diffeomorphism

ξ
st r ing,c t
rad =
�

CvvV + (Cuv + γ)U
�

∂U +
�

CuuU + (Cuv − γ)V
�

∂V + Cr r∂r ,

γ=
Cb

4
+
β

α′

�

Cuu

4Lu
−

Cvv

4Lv

�

. (51)

From here, it is easy to identify the significance of each diffeomorphism-induced mode: Cr is
a simple rescaling of the radius, Cb is a boost, Cuv is a rescaling of space and time, etc.10 Note
that this form of the diffeomorphism breaks down in the vacuum.

10By comparison, the diffeomorphism used to generate constant perturbations of the BTZ black hole is

ξBT Z
rad =

�

CAdS
vv V +

cAdS
uu U

2Lu

�

∂U +

�

CAdS
uu U +

cAdS
vv V

2Lv

�

∂V +

�

CAdS
uv −

cAdS
uu

4Lu
−

cAdS
vv

4Lv

�

r∂r ,

where CAdS
i j parametrize the AdS boundary metric and cAdS

i j , the change in the stress tensor expectation value.
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We are ultimately interested in classifying these diffeomorphisms as allowed (normaliz-
able), disallowed (non-normalizable) and trivial (no effect on physical observables), where
normalizability is measured by the symplectic norm of the induced metric perturbations. This
is the goal of the next section. In the mean time, a simple diagnostic that may shed light
on this question is to study how their coefficients respond to varying the parameters of the
background. Since the perturbations are in string frame radial gauge, the identification is
straightforward

δα′ : Cr = −Cuv =
δα′

2α′
, φ(2) =−

2Lu Lvδα
′

β
, Cuu = Cvv = Cb = φ(4) = 0 ,

δLu : φ(2) = −
α′LvδLu

β
, Cb =

δLu

Lu
, Cuu = Cvv = Cuv = Cr = φ(4) = 0 ,

δLv : φ(2) = −
α′LuδLv

β
, Cb =−

δLv

Lv
, Cuu = Cvv = Cuv = Cr = φ(4) = 0 .

(52)

Since variations of Lu,v should definitely be part of the phase space, we conclude that the
modes φ(2) and Cb should be allowed by the boundary conditions. It is interesting to note
that, contrary to the AdS3 case, changes in the energy and momentum are not generated by
diffeomorphisms only, but one also needs the propagating mode φ(2). Since the modes Cr and
Cuv vary as the (irrelevant) coupling constant of the theory is changed, we would expect them
to be fixed. Note that α′φ(2) corresponds precisely to the variations of −β/2.

Another useful exercise is to compute the left and right-moving energies (i.e., the charges
associated to the isometries ∂U ,∂−V ) carried by these modes

EL = 2R

�

β

4α′
Cuu + LuCvv

�

1−
β

4α′Lv

�

+ LuCuv +
LuCb

4
−

1
4

�

2+
β

α′Lv

�

φ(2) +
φ(4)

Lv

�

,

ER = 2R

�

β

4α′
Cvv + LvCuu

�

1−
β

4α′Lu

�

+ LvCuv −
LvCb

4
−

1
4

�

2+
β

α′Lu

�

φ(2) +
φ(4)

Lu

�

. (53)

The charges are finite for all the modes, as the only potential quadratic divergence (propor-
tional to Cr) cancels between the Einstein (84) and the scalar (85) contribution to the con-
served charges. Thus, the energies do not provide information regarding normalizability of the
modes. Moreover, one notes that all modes but Cr carry non-trivial energy and momentum,
indicating that they are all physical, with the possible exception of Cr .

The table below summarizes the most general solution to the linearized equations of mo-
tion and its parametrization
Note that for the non-zero frequency solutions, the propagating modes must be described in
momentum space, whereas the ones generated by diffeomorphisms are more naturally anal-
ysed in position space.

3.2 Choice of boundary conditions

Having characterized all the linearized perturbations of the geometries, the next step is to un-
derstand the boundary conditions that these perturbations obey. As we saw, a simple analysis

Table 1: Classification of the solutions to the linearized equations of motion.

frequency ω= κ= 0 ω,κ ̸= 0
propagating φ(2),φ(4) φ(s+),φ(s−)

pure diffeomorphisms Cr , Cuu, Cuv , Cvv , Cb FU , FV , Fr
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of the asymptotic behaviour of the solutions is insufficient to answer this question, and a more
systematic approach is needed.

In general, in order for a theory to have a well-defined phase space, one requires that the
symplectic d − 1 form associated with any two allowed perturbations vanish asymptotically.
More precisely, in three dimensions one imposes that

ωab[Φ,δ1Φ,δ2Φ] = o(r0) , ωra[Φ,δ1Φ,δ2Φ] = o(r−1) , (54)

where a denotes the tangent indices to the boundary located at r →∞, Φ stands generically
for the fields in the theory, δΦ are arbitrary variations thereof and the notation o(r−c) signifies
that the fall-off must be faster than the indicated power of r. The first condition above ensures
that the symplectic flux is conserved, whereas the second leads to normalizability of the sym-
plectic form at infinity. The boundary conditions are chosen such that these requirements are
satisfied. Sinceω is only defined up to the addition of an exact form,ω→ω+dωY , whereωY
is antisymmetric in the variations, the boundary conditions only need to be satisfied for some
choice of this boundary term. Note that the analysis of the symplectic form will not necessarily
indicate all the modes that need to be fixed, but rather which modes shoud not be allowed
simultaneously.

When one of the perturbations is generated by a diffeomorphism, δφ = Lξφ, the sym-
plectic form can be related on-shell to a d − 2 form kξ

ω[Φ,δξΦ,δΦ] = dkξ[Φ,δΦ] , (55)

whose spatial integral at infinity yields the conserved charge difference (82) associated to the
corresponding diffeomorphism. The boundary conditions (54) then ensure that the charges
are conserved and, respectively, finite. The above-mentioned ambiguities in the construction
ofωmay contribute to the conserved charges (see e.g. [42]) and would, in principle, be related
to counterterms in the action.

The covariant phase space formalism constructs the symplectic form directly from the ac-
tion, in our case (24). The result for Einstein gravity coupled to a scalar with kinetic term
−c2 (∂ φ)

2 and an arbitrary potential is

ω=ωg +ωscal ≡
1

16πG3
ε̃µνρ(ω

µ
g +ω

µ

scal) d xν ∧ d xρ , (56)

with

ωµg[ g̃,δ1 g̃,δ2 g̃] =
1
2

�

(2∇̃λhµ1ρ − ∇̃
µh1
λρ)h

λρ
2 − ∇̃ρh1 hρµ2 + h1(∇̃ρhρµ2 − ∇̃

µh2)− (1↔ 2)
�

,

(57)
where g̃ is the Einstein frame metric and h1µν = δ1 g̃µν, h2µν = δ2 g̃µν. The scalar contribution
to the symplectic form is

ω
µ

scal = −δ1(c∇̃µφ)δ2φ −
c
2

h1∇̃µφδ2φ − (1↔ 2) . (58)

For the action (24), c = 8. Note ω is closed on-shell, dω = 0. In the following, we compute
the symplectic form for all the linearized perturbations of the black hole backgrounds that we
have presented. We will perform a separate treatment of the zero and non-zero frequency
modes.

Symplectic pairing of the zero-frequency modes

We start by considering two general zero-frequency perturbations, parametrized by two sets
of constants Ci j , Cr , Cb,φ(2) and φ(4), and compute their symplectic form. We find that all but
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the UV component of the two contributions to ω vanish. Since ω is closed on-shell, its UV
component must be r - independent. We indeed notice that a potential quadratic divergence
in r (proportional to Cuv∧Cr) cancels between the gravitational and scalar contributions. The
symplectic form reads, up to an overall factor of twice the radius

ωUV =
1
4
(Cuu Lv − Cvv Lu)∧ Cb + Cuv ∧ (Cuu Lv + Cvv Lu)

+φ(2) ∧
�

Cuv −
β

4α′Lu Lv
(Cuu Lv + Cvv Lu)

�

+φ(4) ∧
Cuu Lv + Cvv Lu

Lu Lv
, (59)

where the wedge notation stands for the antisymmetric product of the two modes
a ∧ b ≡ a(1)b(2) − a(2)b(1), with the superscript indicating which of the two perturbations
we are referring to. From a holographic perspective, this formula should provide us with the
symplectic pairing between sources and expectation values for the operators of the dual theory
that correspond to the fields of the consistent truncation [47].

As discussed previously, the modes Cb and φ(2) must be allowed on the phase space, since
they correspond to variations of the energy and momentum of the black hole solutions. We
conclude that their coefficient inside the symplectic form must be fixed. This yields the bound-
ary condition

Cuu =
2α′Lu

β
Cuv , Cvv =

2α′Lv

β
Cuv , (60)

which determines the two off-diagonal components of the asymptotic metric fluctuation in
terms of the diagonal piece. Upon making this choice, the second term on the first line of
(59) cancels due to the antisymmetry of the wedge product. We are nevertheless left with a
coupling

φ(4) ∧ Ĉuv , (61)

where the hat on the Cuv mode indicates it must be accompanied by Cuu and Cvv perturbations,
whose coefficients are fixed by the mixed boundary conditions (60). The diffeomorphism that
would generate the Ĉuv mode is

ξ[Ĉuv]= Ĉuv

��

U +
2α′Lv

β
V
�

∂U +
�

V +
2α′Lu

β
U
�

∂V

�

. (62)

Note this diffeomorphism changes the radius of the σ circle.
It is not entirely clear which one of the modes in (61) should be fixed. Both of them are

zero on the black hole backgrounds, which is consistent with either a source interpretation, or
with an expectation value that happens to vanish in thermal states. It would seem natural to
classify φ(4) as an allowed mode because it is asymptotically subleading to φ(2); however, we
note from the explicit solution (49) that the full solution is divergent on the black hole horizon
r = 4
p

Lu Lv . The fact that it is not the zero-frequency limit of any of the propagating modes also
does not aid in understanding its holographic interpretation. The Ĉuv mode could in principle
be allowed, since it carries finite energy; however, the fact that the energy of the black hole
backgrounds is entirely carried by the φ(2) mode, and not Ĉuv , is somewhat puzzling.11 As we
show in the next section, the presence of the latter mode is in fact required when perturbing the
black hole backgrounds, in order to offset the change in the radius induced by an asymptotic
symmetry generator.

As far as the asymptotic charges are concerned, the term (61) would result in the non-
conservation of the charge associated with the diffeomorphism (62) on a background where

11It is interesting to note that upon imposing the boundary conditions (60), the energies (53) only depend on
the combination φ(2) − 4α′Lu Lv Ĉuv/β .
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φ(4) is turned on. However, ξ[Ĉuv ] is not an allowed diffeomorphism upon the constant back-
grounds - as it would change the asymptotic radius of the σ circle - and thus we are not led
to any inconsistency from the point of view of the asymptotic symmetry group analysis. The
holographic interpretation of these modes as sources or expectation values of dual operators
deserves, nevertheless, a more in-depth analysis, which we leave to future work.

In conclusion, of the seven zero-frequency modes listed in table 1, we find that Cuu and
Cvv must be fixed in terms of Cuv as in (60), Cb and φ(2) must be allowed, whereas the in-
terpretation of the remaining modes Ĉuv ,φ(4) and Cr remains unclear. The fact that Cr does
not yet appear in the symplectic form, nor in the energies, suggests it could be a trivial gauge
mode; our subsequent analysis will nevertheless indicate that it is in fact a source mode, which
should be fixed. This interpretation is corroborated by the fact that from the point of view of
the IR AdS3, the Cr mode corresponds to the source for the dilaton.

Symplectic pairing of the zero and non-zero frequency modes

Let us now study the symplectic pairing between zero-frequency (ω = κ = 0) and non-zero
frequency (ω,κ ̸= 0) modes. The latter come in two types: i) those generated by a diffeomor-
phism of the form (46) and ii) those which are propagating, with asymptotic falloffs given in
(43). We first discuss the symplectic pairing of the zero frequency modes with the non-zero
frequency ones generated by a diffeomorphism.

Before we start, let us make some remarks about the choice of gauge. The zero-frequency
perturbations are naturally described in string frame radial gauge, since then their identifica-
tion with the change in the black hole parameters is very clear.12 On the other hand, the mode
generated by the non-zero frequency diffemorphism can be in any gauge that is compatible
with the boundary conditions, i.e. one that does not exclude physical large diffeomorphism
modes. As it turns out,13 it is better to consider diffeomorphisms that preserve the radial
components of the metric in Einstein frame, rather than string frame. To reach this frame,
one simply adds in a “correcting” diffeomorphism to (46) so that δ g̃r r = 0 in the final result,
where g̃µν = e−4φ gµν is the Einstein frame metric. Interestingly, this requirement completely
changes the asymptotic behaviour of ξr and cancels away the log terms present in (46), which
leads to important simplifications in the calculation of the symplectic form.

The most general diffeomorphism that preserves the radial metric in Einstein frame reads

ξEinst.
rad =

�

FU(U , V ) +
k(r2 ∂V Fr − Lv ∂U Fr)

r4 − Lu Lv

�

∂U +

�

FV (U , V ) +
k(r2 ∂U Fr − Lu ∂V Fr)

r4 − Lu Lv

�

∂V

+
r3Fr(U , V )

α′r4 + r2β +α′Lu Lv
∂r , (63)

where FU , FV and Fr are arbitrary at this stage. Note that the radial component of this dif-
feomorphism, as well as the associated perturbation of the dilaton it induces, is now more
subleading at large r than it was for the string frame radial gauge perturbations. This allows
for the possibility that it be an allowed mode while its string frame counterpart is not, as we

12This is due to the fact that in string frame, the black holes’ metric has gr r =
1
r2 . In Einstein frame, the radial

component depends on the black hole parameters, and thus their variation will not preserve g̃r r . While it is in
principle possible to redefine the radial coordinate so that the new radial metric component is independent of the
black hole parameters, in practice the resulting metric is very difficult to work with.

13If we work with a diffeomorphism in string frame, the symplectic form has log divergences that constrain Fr

to be at most linear in U , V . We also find r2 divergences that depend on the second derivatives of Fr , though they
vanish if Fr takes the form (72), Ci j satisfies (60) and Cr = 0. While fixing Fr = 0 in string frame would resolve
these issues, it would also impair our ability to find a central extension to the asymptotic symmetry algebra we
discuss in the next section.
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will soon argue is the case. From now on, Fr will exclusively denote the function labeling the
radial component of the diffeomorphism in Einstein frame (63), and not (46).

We thus compute the symplectic product between perturbations generated by the diffeo-
morphisms above and arbitrary zero-frequency modes. Unlike when the diffeomorphism was
in string frame radial gauge, now all the log terms in the symplectic form vanish. Moreover,
the potential quadratic divergence (∝ Cr) in the ωUV component now completely cancels be-
tween the metric and the scalar contribution. The finite part of ωUV has terms proportional to
all the parameters of the zero-frequency solution. Since Cb andφ(2) parametrize the black hole
backgrounds, we must require that their coefficients vanish independently, which constrains
the functions appearing in the diffeomorphism (63) as follows

Lu ∂V FU = Lv ∂U FV , ∂U FU + ∂V FV =
β

2α′Lu Lv
(Lv∂U FV + Lu∂V FU) . (64)

The most general solution to these equations is

FU = f (u) +
2α′Lv

p+ β
f̄ (v) + cU , FV = f̄ (v) +

2α′Lu

p+ β
f (u) + cV , (65)

where cU ,V are integration constants and the “field-dependent coordinates” u, v are defined as

u≡
(p+ β)U + 2α′LvV

2p
, v ≡

(p+ β)V + 2α′LuU
2p

, (66)

where their overall normalization has been chosen for later convenience. Note these coordi-
nates u, v have identifications

u∼ u+ 2πR ru , v ∼ v + 2πR rv , (67)

where

ru =
β + p+ 2α′Lv

2p
= 1+

α′HR

pR
, rv =

β + p+ 2α′Lu

2p
= 1+

α′HL

pR
, (68)

where we used (33). The reason for using the notation HL,R for the left/right-moving ener-
gies, rather than the previously used EL,R, is to emphasize the operatorial origin of the field-
dependent radius of these coordinates; the two quantities are identical as far as the classical
analysis of this article is concerned. Acting with these diffeomorphisms produces a change in
the components of the asymptotic metric that precisely obeys (60), as one can easily check,
where now Ci j is space-time dependent.

Note that for Fr = 0, these diffeomorphisms precisely coincide with the asymptotic sym-
metry generators (A.7) of the AdS3 background with mixed boundary conditions that is holo-
graphically dual to double-trace T T̄ - deformed CFTs, particularized to constant parameters
and with the radial component removed. This background and its associated asymptotic sym-
metries is reviewed in detail in appendix A. A perturbative expansion of these results, which is
more appropriate for comparison with the analysis of the asymptotically linear dilaton back-
grounds, is presented in appendix B.

Evaluated on this solution, the radial symplectic form contains a term

φ(4)
(Lu∂V FU + Lv∂U FV )

Lu Lv
, (69)

that is directly analogous to the term (61) encountered in the analysis of the constant modes.
Note that since φ(4) is constant, this term is a total σ derivative, so it will not immediately
affect the conservation of the charges associated with the allowed diffemorphisms (80) upon
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a background with φ(4) turned on, as one might worry. In any case, these charges vanish
except when f is a constant.

Next, we also find a coupling

2
�

k∂U∂V Fr −
2
α′

Fr

�

Cr . (70)

If Cr ̸= 0, then the vanishing of this term would constrain Fr to be a Bessel function with
argument UV , which is not the structure we expect. We thus set Cr = 0. Note that Cr = 0
does not imply that Fr = 0, because the former is the radial mode of a diffeomorphism in string
frame, whereas the latter is the radial mode of a diffeomorphism in Einstein frame, which has
a different radial dependence. In particular, its asymptotic behaviour is subleading by a factor
of r−2 with respect to that of Cr . Fixing the string frame constant radial mode Cr is also
consistent with keeping α′ - here interpreted as the coefficient of the irrelevant deformation -
fixed.

Finally, writing Cuu, Cvv in terms of Cuv using the boundary conditions (60) and plugging
in the solution for FU ,V , we find the term proportional to Ĉuv is

k
�

α′LuF (0,2)
r (U , V ) +α′Lv F (2,0)

r (U , V )− βF (1,1)
r (U , V )
�

β
Ĉuv . (71)

If Ĉuv ̸= 0, then the most general solution for Fr is a linear combination of two arbitrary
functions of the field-dependent coordinates (66)

Fr = fr(u) + f̄r(v) . (72)

As we shall see, this constraint also follows from the symplectic pairing of two diffeomor-
phisms.

Let us now analyse the tangent components,ωra, of the symplectic form, which should fall
off faster than 1/r in order to ensure finiteness of the conserved charges. We find that both
components diverge linearly with r, with divergent terms that are proportional with Cr and,
respectively, Ci j multiplied by various derivatives of FU and FV , and that they are both total ∂a
derivatives of the same scalar quantity. If we plug in the boundary condition (60) for Cuu, Cvv ,
the term proportional to Ĉuv vanishes on the solution (65) for FU , FV . As for the other term,
we must set Cr = 0 in order to have it vanish.

Moving on to the 1/r term, we find that it is not zero. However, it can be written as

ωra =
1
r
∂aY (1) + . . . , (73)

before imposing any constraint on the form of the diffeomorphism, and thus the finiteness of
the integrated charge is not affected. Such a term can be absorbed into a redefinition of the
symplectic form ω→ ω+ dωY , where the one-form ωY = r−1Y (1)dr and Y (1) is local. Such
a redefinition does not affect the leading behaviour of ωab, nor does it affect the conserved
charges.14

The components of the symplectic form for one zero-frequency mode and one non-zero
frequency propagating mode with asymptotic weight s ∈ {s+, s−} scale as

ωab ∼ r1−s , ωra ∼ r−s . (74)

For the range of frequencies we are considering, the asymptotic weights s± = 1±
p

1− 4kα′ωκ
satisfy s+ ∈ [1, 2) and s− ∈ (0,1] . We immediately conclude that s+ should be an allowed
mode, and s− should be disallowed. As previously mentioned, we do not consider the case
where s± become imaginary, where a different analysis is necessary.

14Writing ωY (Φ,δ1Φ,δ2Φ) = δ1Y (Φ,δ2Φ) − δ2Y (Φ,δ1Φ), the shift in the charge integrand is
kξ→ kξ +δY − ξ · dY .
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Symplectic pairing of non-zero frequency modes

Finally, we consider the symplectic pairing for two non-zero frequency modes, which can be
either generated by diffeomorphisms or be propagating modes.

We start with two pure diffeomorphism modes and evaluate the symplectic form on the
solution (65) for FU , FV , though leaving Fr arbitrary. The boundary condition on ωab leads to
the following constraint

∂u∂v Fr = 0 . (75)

Hence, the radial function must take the form (72). Note this is the same constraint as that
which emerged from (71), but without having to assume that Ĉuv ̸= 0. The ωra components
of the symplectic behave as 1

r asymptotically, but they again take the form (73) and thus can
be absorbed into a shift of ω by a total derivative.

Next, we compute the symplectic form for two propagating modes, denoted by their asymp-
totic behaviour s1,2, which can be either normalizable or non-normalizable. We find

ωab(s1, s2)∼ r2−s1−s2 , ωra(s1, s2)∼ r1−s1−s2 , (76)

which confirms our identification of s+ as a normalizable mode and s− as a non-normalizable
one. The symplectic pairing between one normalizable and one non-normalizable mode of
equal but opposite frequency (so that s1 = s+ and s2 = s−) is

ωab(s−, s+) = 2
p

1− 4kα′ωκ , ωra = 0 . (77)

This precisely agrees with the radial symplectic form for a scalar field in AdSd+1 [47]

Ωrad = (d − 2∆)

∫

δφvev ∧δφsource , (78)

with ∆ given in (44). Lastly, the symplectic form for one (normalizable) propagating mode
and one pure diffeomorphism reads

ωab(s+,ξ)∼ r2−s+ , ωra(s+,ξ)∼ r1−s+ . (79)

These falloffs violate the boundary conditions (54) for the s+ ∈ [1, 2) range we have been
considering. However, one can explicitly construct a 1-form ωY such that ω = dωY , when
evaluated on the modes above. Hence, these possibly problematic terms can be absorbed in
an exact form. It would of course be intersting to provide covariant expressions for all the
counterterms that we have added to the symplectic form.

To summarize, the symplectic form analysis fixes the components FU , FV of the Einstein
frame radial-gauge-preserving diffeomorphisms in terms of two arbitrary functions of the field-
dependent coordinates (66), which precisely match those in T T̄ - deformed CFTs. The radial
function Fr is also constrained to depend on these coordinates via (72). It is an interesting
question whether Fr should be completely determined by FU ,V , as it is in AdS. While we do
suspect this to be the case, our analysis - which is solely based on the symplectic form - is
unable to see such a constraint. The same situation occurs in AdS3, where the symplectic form
analysis does not fix the radial component of the allowed diffeomorphisms, which is instead
determined by a boundary condition on the asymptotic metric.

We additionally find that, generically, one of the propagating modes, φ(s−), should be fixed,
whereas the other, φ(s+), should be allowed to fluctuate, as is standard in holography. The
constant mode Cr should be fixed, whereas the boundary conditions on the remaining constant
modes Ĉuv and φ(4) are still unclear. These results are summarized in the following table
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3.3 Conserved charges

In the previous section, we have found that the symplectic form vanishes for perturbations
generated by Einstein frame radial-gauge-preserving diffeomorphisms of the form

ξ f , f̄ =

�

f (u) +
2α′Lv

p+ β
f̄ (v) +

k(r2 ∂V Fr − Lv ∂U Fr)
r4 − Lu Lv

+ cU

�

∂U +
�

f̄ (v) +
2α′Lu

p+ β
f (u)

+
k(r2 ∂U Fr − Lu ∂V Fr)

r4 − Lu Lv
+ cV

�

∂V +
r3Fr

α′r4 + r2β +α′Lu Lv
∂r , (80)

where f (u), f̄ (v) are arbitrary functions of the field-dependent coordinates (66) and

Fr = fr(u) + f̄r(v) , (81)

with fr , f̄r arbitrary so far. This indicates that the asymptotic charges associated with the above
diffeomorphisms should be conserved.

We would now like to compute these charges using the covariant phase space formalism,
in which the charge difference between two nearby on-shell backgrounds is given by

̸δQξ =

∮

kξ[δΦ,Φ] . (82)

Here, δΦ stands for an arbitrary variation of all the background fields and kξ is a d − 2 form
constructed algorithmically from the action, which depends on the background fields, their
variations and the diffeomorphism ξ. For the problem at hand, we have

kξ =
1
2
ε̃µνρKνρ

ξ
, Kνρ

ξ
=

1
8πG

(Kνρ
ξ,g + Kνρ

ξ,scal) , (83)

with

Kµνg =
�

ξν∇̃µh− ξν∇̃σhµσ + ξσ∇̃νhµσ +
1
2

h∇̃νξµ − hρν∇̃ρξµ
�

, (84)

Kµνscal = cξ
ν∇̃µφδφ , (85)

where c = 8 and the ˜ indicates that we are working in the Einstein frame. This charge
difference needs to be integrable in order for the charges to be well-defined, a property that
is not automatically guaranteed by the definition (82), but needs to be checked separately.
Assuming this is the case, the total conserved charge is obtained by integrating �δQξ along a
path in configuration space between the background of interest and a reference background.
We will alternatively be using the notation �δQ f , f̄ for the charge difference associated with a
diffeomorphism of the form (80) parametrized by the functions f (u), f̄ (v).

In our case, if we take δΦ to correspond to the difference between two nearby black hole
solutions, we find that all the charges vanish except for the energy and momentum. These
charge differences are given by

̸δQ f0, f̄0
= ( f0 +µL̄ f̄0 + cU)δHL − ( f̄0 +µL f0 + cV )δHR , (86)

Table 2: Classification of the linearized perturbations into allowed modes and fixed
ones.

frequency ω= κ= 0 ω,κ ̸= 0
mode φ(2), Cb Cuu, Cvv Cr φ(4), Ĉuv FU , FV Fr φ(s+) φ(s−)

status allowed
fixed in terms

fixed unclear
constrained constrained

allowed fixed
of Cuv (65) (72)
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where f0, f̄0 are the Fourier zero modes of the respective functions and we used (35) to write
the answer in terms of the natural T T̄ parametrization. Given that

L=
HL

πRp+µHR
, L̄=

HR

πRp+µHL
, (87)

we immediately note that the charges are not integrable for generic (field-independent) f0
and f̄0. A natural way to remedy this problem, which recovers the standard energies of the
background when f0 = 1 and f̄0 = −1, is to choose the constants cU ,V as

cU = −µL̄ f̄0 , cV = −µL f0 , (88)

case in which the charges become trivially integrable, and read

Q(0)f = f0HL =
1
2

∮

dσru pL f (u) , Q̄(0)
f̄
= − f̄0HR = −

1
2

∮

dσrv p L̄ f̄ (v) , (89)

where we have used (32) to write the charges in a notation that resembles the T T̄ one (A.11),
and we note that for constant perturbations ∂σu = ru, defined in (68). The (0) superscript
indicates that this is the only contribution to the conserved charges upon the constant back-
grounds.

To obtain conserved charges that are generically non-zero, we first need to perturb the
black hole background by an arbitrary allowed diffeomorphism η, which takes the form (80)
for some other functions h(u), h̄(v), hr(u), h̄r(v). We obtain the following expression for the
difference in the charge associated with a diffeomorphism ξ on the background generated by
η

δηQξ =
1

2π

∮

dσ
�

4pLuru

p+ β
f (u)h′(u)−

4pLv rv

p+ β
f̄ (v)h̄′(v) + kruh′′r (u) f (u)− krv h̄′′r (v) f̄ (v)

+
k
2
(ru f ′r (u)− rv f̄ ′r (v))

�

h′(u) + h̄′(v)
�

−
k
2
( fr(u) + f̄r(v))
�

ruh′′(u)− rv h̄′′(v)
�

�

.

(90)

Integrating by parts, the cross left-right terms cancel, and we are left with

δηQξ =
1

2π

∮

dσru

�

4pLu

p+ β
f (u)h′(u) + kh′′r (u) f (u)− k f ′′r (u)h(u)

�

+ RM

=
1
2

∮

dσru

�

2pL f h′ +
k
π

h′′r f −
k
π

f ′′r h
�

+ RM , (91)

where in the second line we have translated the result to the T T̄ parametrization (34).
Let us now compare this with the corresponding expression (A.47) for double-trace T T̄ -

deformed CFTs, specialized to L= const.

δηQ
double−t race
ξ =

1
2

∮

dσ∂σu
�

2L f h′ −
c

12π
f h′′′
�

, (92)

where we have used the fact that ℓ/8πG = c/(12π) in (A.47), where c is the central charge of
the undeformed CFT, and we dropped the winding term, which vanishes on the constant L, L̄
black hole backgrounds. The expressions (91) and (92) are almost the same, up to a factor of
p in the first term - which is related to the symmetric product orbifold - and the fact that the
L - independent terms in (91) depend on more functions than their T T̄ counterpart.
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As discussed at the end of the previous subsection, we would expect that the full set of
boundary conditions on the asymptotically linear dilaton backgrounds includes one that de-
termines the radial function Fr in terms of f , f̄ ; however, the symplectic form analysis that we
have performed is insensitive to this additional boundary condition. Requiring that the central
contribution to the charge in (91) match that in symmetric product orbifolds of T T̄ - deformed
CFTs, which is 6kp in our case, allows us to fix the radial function in terms of the other ones
as

fr(u) = −
p
4

f ′(u) , f̄r(v) = −
p
4

f̄ ′(v) . (93)

It would be very interesting if we could independently justify this form of Fr from an asymptotic
boundary condition on the fields.

Thus, we find that not only do the asymptotic symmetries of the asymptotically linear
dilaton background precisely match (for Fr = 0) those of the AdS3 backgrounds with mixed
boundary conditions that are dual to double-trace T T̄ - deformed CFTs, but also the conserved
charges match exactly for a particular choice (93) of the radial function Fr that is consistent
with the results of the symplectic form analysis, but could not be singled out by it. This co-
incidence is quite remarkable, given that the background metrics (37) and (A.2) are entirely
different, as are the boundary conditions that their fluctuations obey. Even more remarkably,
this identification continues to hold when the two backgrounds are perturbed, as we show in
the next section.

4 The charge algebra

In this section, we use the covariant phase space formalism to compute the algebra of the con-
served charges perturbatively above the asymptotically linear dilaton black hole backgrounds
and show the result is identical to the nonlinear T T̄ charge algebra (3) to the order we checked.
We start by reviewing a few generalities.

The standard definition of the charge algebra in the covariant phase space formalism is

{Qξ,Qχ} ≡ δχQξ =

∮

kξ(LχΦ,Φ) , (94)

where the last term corresponds to the difference in the charge associated with some diffeo-
morphism, ξ, between two backgrounds that differ by some other diffeomorphism, χ. This
definition relies on the representation theorem [40, 48], which relates the right-hand-side of
(94) to the charge associated to the Lie bracket [ξ,χ] of the two diffeomorphisms

δχQξ =Q[ξ,χ] , (95)

assuming the charges are integrable. This conclusion continues to hold when the diffeo-
morphisms are field-dependent, provided one replaces the Lie bracket with a modified Lie
bracket [49,50]

[ξ,χ]∗ ≡ [ξ,χ]L.B. −δξχ +δχξ , (96)

in the representation theorem. It is important to note that in this formalism the integrability
[51] of the conserved charges - which is not guaranteed by the definition (82), but needs to be
checked separately - plays a crucial role in obtaining the correct algebra, especially when the
diffeomorphisms are field-dependent. This fact is neatly exemplified in our analysis, presented
in appendix A, of the asymptotic symmetries of the spacetime dual to the double-trace T T̄
deformation, where integrability is essential for reproducing the correct charge algebra when
the generators are rescaled by a field-dependent factor.
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4.1 Perturbative calculation setup

The aim of this section is to set up the computation of the charge algebra for the asymptotically
linear dilaton black hole backgrounds. This is significantly more complicated than for the AdS3
spacetimes with mixed boundary conditions dual to double-trace T T̄ -deformed CFTs because
the allowed modes are only known perturbatively around these constant backgrounds, whereas
in the double-trace case the general, non-linear solution (A.2) for the allowed metrics is known.

A quick glance at (95) suffices to understand that the allowed diffeomorphisms we have
found so far are insufficient to determine the full algebra of the conserved charges. The limi-
tation stems from the fact that all the non-trivial charges (i.e., except the energy and momen-
tum) evaluate to zero on the constant black hole backgrounds, and thus Q[ξ,χ] can only receive
non-vanishing contributions from the zero mode of the Lie bracket of the two diffeomorphisms.
Working in a Fourier basis for the functions f , g that parametrize the two diffeomorphisms,
with f = eimu/Ru and g = einu/Ru , the computation of the algebra upon the constant back-
grounds will only be able to recover the contributions to the {Qm,Qn} commutator that have
m+ n= 0.

Let us briefly discuss this zeroth-order result before moving on to the more general con-
tributions. The computation of the charge variation δηQξ associated to two diffeomorphisms
ξ f and ηh upon the constant backgrounds has already been performed in (91), and now we
simply need to interpret it as the commutator {Qξ,Qη} of the two conserved charges. The re-
sult can be made more transparent by an integration by parts, which replaces the 2 f h′ factor
in the first term of (91) by f h′ − hf ′. We thus obtain

{Q f ,Qh}=Q(0)f h′− f ′h −
k
π

∮

dσru f ′′r h , (97)

where the superscript (0) indicates that the charge associated with the given diffeomorphism
should be evaluated on the constant black hole backgrounds, where only the zero mode of
the function contributes. This algebra is similar to a centrally-extended Witt algebra. Further
making the choice fr = −p f ′/4 that was discussed previously and working in the Fourier basis
for the generators, the charge algebra we obtain to this order is

{Qm,Qn}
�

�

�

�

m+n=0
=

2m
Ru

Q0 +
6kp
12
·

m3

R2
u

, (98)

where Q0 = HL and Ru = R ru, with ru given in (68). The factors of Ru are due to the fact that
the periodicity of the coordinate u that enters the diffeomorphisms is field-dependent; note
that they perfectly match the structure (3) expected from T T̄ - deformed CFTs. A similar result
holds for the right-movers. The central term has been chosen to match the prediction from a
symmetric product orbifold of T T̄ - deformed CFTs with c = 6kp. While it would have been far
more valuable to have derived this central extension by finding a natural boundary condition
that leads to (93), the fact that were were able to find some form of the radial function that
yields precisely this value is still a non-trivial result; for example, such a choice would not have
been available had we been working in string frame radial gauge.

Let us now discuss the computation of the charge algebra for generic m, n. For this, we
need to consider a perturbed background that generically has non-zero charges with respect
to arbitrary diffeomorphisms belonging to the asymptotic symmetry group. As in the previous
section, we can generate such a perturbed background by acting with an allowed diffeomor-
phism, η, on the constant background, ḡ

g = ḡ + εLη ḡ . (99)
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According to our discussion, the charges associated to allowed diffeomorphisms ξ f , f̄ of such
a background satisfy

Qξ f , f̄
[g] =

¨

O(1) , for f , f̄ = const. ,

O(ε) , for f , f̄ ̸= const.
(100)

To compute the charge algebra, we will subsequently act with another allowed diffeomor-
phism, χ, on this deformed background and then, according to the recipe (94), we will com-
pute the charge difference δχQξ associated to a third allowed diffeomorphism, ξ. The terms
in the algebra with m+ n ̸= 0 are visible at O(ε). Note, however, that the diffeomorphisms
ξ,χ themselves can receive corrections at O(ε), which will, in principle, contribute to the
charge algebra at the same order. Consequently, in order to find the full answer for the charge
algebra at O(ε), we do need to work out the corresponding correction to the diffeomorphisms.
From the point of view of the expected algebra (3), the O(ε) analysis reveals the generic linear
terms, as well as the non-linear terms with either m or n zero, whereas the generic non-linear
terms appear only at O(ε2).

The O(ε) correction to the diffeomorphisms (80) can again be determined using the sym-
plectic form, now evaluated on the perturbed backgrounds (99). This analysis does not, how-
ever, completely fix the correction, and complementary arguments need to be invoked. One
such argument is based on the representation theorem, which relates the O(ε) modification
to the vectors (which appears in the modified Lie bracket (96), but without the factor of ε)
to the charge algebra at O(1). Thus, knowing the latter, we can obtain further constraints on
the diffeomorphisms themselves. This argument still does not completely fix the vectors, and
a “minimal continuation” assumption on the functions that parametrize them is also needed.

The final solution for the asymptotic diffeomorphisms up to O(ε) precisely agrees with the
corresponding expression in double-trace T T̄ - deformed CFTs, particularized to perturbations
around a constant background, that we work out in appendix B. Finally equipped with the
solution for the vectors, we derive the charge algebra to O(ε) and find a perfect match to the
charge algebra in double-trace T T̄ - deformed CFTs, computed to the same order. Throughout
this section, we use the natural T T̄ parametrization (34) of the black hole backgrounds, in
order to facilitate the comparison with the double-trace results.

4.2 Allowed diffeomorphisms upon the perturbed backgrounds

As explained, we consider again the perturbed background obtained by acting with an allowed
diffeomorphism ηh,h̄, of the form (80) with cU ,V given by (88), on the black hole background
ḡ. For simplicity, we set the radial component of η to zero, since the symplectic form analysis
is not expected to constrain it very much, and keeping it would significantly complicate the
calculations. Thus, η is parametrized by two periodic functions, h(u) and h̄(v), of the field-
dependent coordinates (66) only. In terms of the T T̄ notation, it takes the form

η=
�

h(u)−µL̄(h̄(v)− h̄0)
�

∂U +
�

h̄(v)−µL(h(u)− h0)
�

∂V . (101)

The goal of this subsection is to determine the first-order correction to the allowed diffeomor-
phisms of the perturbed background (99).

As for the case of the black hole backgrounds, we expect the answer to be largely fixed
by requiring that the symplectic product of the diffeomorphism we search for with the pertur-
bation of the background that is generated by varying the black hole parameters Lu,v vanish
asymptotically. The result takes the form

ξ= ξ(0) + εξ(1) , (102)

26

https://scipost.org
https://scipost.org/SciPostPhys.16.1.006


SciPost Phys. 16, 006 (2024)

where ξ(0) was previously determined in (80), and ξ(1) is to be computed by imposing the
requirements (54). More concretely, this perturbative computation takes the form

ω ḡ+εLη ḡ

�

δ

δLi
( ḡ + εLη ḡ),Lξ(0)+εξ(1)( ḡ + εLη ḡ)

�

=ω ḡ+εLη ḡ

�

δ ḡ
δLi

,Lξ(0) ḡ
�

+ εω ḡ

�

δLη ḡ

δLi
,Lξ(0) ḡ
�

+ εω ḡ

�

δ ḡ
δLi

,Lξ(1) ḡ +Lξ(0)(Lη ḡ)
�

+O(ε2) ,

(103)

where for simplicity we have suppressed the factor of the dilaton from the background notation
and Li = Lu,v . One important remark is that our analysis determines the metric perturbation
only up to terms that have zero symplectic product with δLi

ḡ, such as the constant modes
Cb and Ĉuv discussed in the previous section. In principle, we have the freedom to add such
contributions to Lξ(1) ḡ without violating the requirements onω, as long as we do not generate
winding for the fixed coordinates U , V .

While we perform the computations on the string backgrounds, it is useful to transcribe the
results in terms of the natural T T̄ notation (35). The vanishing of the symplectic flux through
the boundary at O(ε) imposes the following constraints on the components of the correction
ξ(1) to the allowed diffeomorphisms

∂u

�

ξ(1)V −µLξ(1)U
�

= 2µLh′( f ′(u) + f̄ ′(v)) ,

∂v

�

ξ(1)U −µL̄ξ(1)V
�

= 2µL̄ h̄′( f ′(u) + f̄ ′(v)) , (104)

where u, v are the field-dependent coordinates (66) associated with the unperturbed back-
ground. The solution is given by

ξ(1)U=
1

1−µ2LL̄

�

Fh(u) +µL̄F̄h̄(v) + 2µ2LL̄
�∫ u

h′ f ′ + (h− h0) f̄
′
�

+ 2µL̄
�∫ v

h̄′ f̄ ′ + (h̄− h̄0) f
′
��

,

ξ(1)V=
1

1−µ2LL̄

�

F̄h̄(v) +µLFh(u) + 2µ2LL̄
�∫ v

h̄′ f̄ ′ + (h̄− h̄0) f
′
�

+ 2µL
�∫ u

h′ f ′ + (h− h0) f̄
′
��

,

(105)

where Fh, F̄h̄ are so far unfixed, background-dependent functions of the field-dependent coordi-
nates, which represent the continuation of theO(1) functions f , f̄ to the perturbed background
generated by h, h̄, and the primitives of h′ f ′ and h̄′ f̄ ′ are integrated over a corresponding
field-dependent variable ũ/ ṽ that we have ommitted in order to simplify the notation. These
primitives are defined to not contain any constant Fourier mode, and thus all the possible in-
tegration constants that arise are included in the functions Fh, F̄h̄; the zero modes of h, h̄ were
subtracted for further convenience. The most general solution for the vector field should also
include contributions from the zero-frequency modes Cb and Ĉuv with arbitrary coefficients,
since including them does not affect the symplectic form. While these terms will turn out to
be essential for obtaining the correct algebra, we can simply add them at the end, without
affecting the result of the discussion below.

It is interesting to compare the corrections (105) with the expansion of the allowed dif-
feomorphisms for the spacetime dual to double-trace T T̄ - deformed CFTs, a computation we
perform in appendix B. We find that the choice

Fh = 2µ2LL̄
�

∫ u

(h−h0) f
′′+(hf ′)zm

�

, F̄h̄ = 2µ2LL̄
�

∫ v

(h̄− h̄0) f̄
′′+(h̄ f̄ ′)zm

�

, (106)

where the subscript stands for the “zero mode” of the corresponding expression - precisely
reproduces the expansion (B.7) of the allowed diffeomorphisms in that theory up to O(ε)

27

https://scipost.org
https://scipost.org/SciPostPhys.16.1.006


SciPost Phys. 16, 006 (2024)

about the background of constant parameters, barring winding terms. However, from the
point of view of the asymptotic analysis of the charge algebra in asymptotically linear dilaton
backgrounds, this choice needs to be justified from first principles.

For this purpose, we use the representation theorem, which should be satisfied order by
order in the perturbation, provided we use the modified Lie bracket (96) that takes into account
the field-dependence of vector fields.15 To ascertain the necessity of this modified bracket, let
us consider the representation theorem at O(1). The correction to the usual Lie bracket is
given by the change in a vector field under the action of another, which precisely corresponds
to the O(ε) term in (102). For simplicity, we will focus on the “left” vector fields, obtained
by setting all the functions of v to zero in (101). The standard Lie bracket of two such O(1)
vector fields is

[ξ,χ]L.B =
1+µ2LL̄
1−µ2LL̄

( f g ′ − g f ′)(∂U +µL∂V ) +
µ2LL̄

1−µ2LL̄
(g0 f ′ − f0 g ′)(∂U +µL∂V ) . (107)

Its associated conserved charge on the constant backgrounds only receives contributions from
the first term, and one can easily check that it does not agree with the O(1) charge algebra
that we have already computed in (97). Thus, in order for the representation theorem to be
obeyed, the modification (96) to the Lie bracket is required to be

δξχ −δχξ=
2µ2LL̄

1−µ2LL̄
( f g ′ − g f ′)(∂U +µL∂V ) + . . . , (108)

where the . . . stand for terms that integrate to zero upon the constant backgrounds. It seems
natural that these terms should take the form

∑

n>0 cn( f0 g(n) − g0 f (n))(∂U + µL∂V ) for some
constants cn, as the correction needs to be bilinear in f , g, antisymmetric, and generically not
posess a zero mode.

At the same time, δξχ = χ(1) is the correction to χ on the background generated by ξ,
which is given in (105), and vice-versa. We therefore have

δξχ −δχξ=
1

1−µ2LL̄
�

G f − Fg)(∂U +µL∂V ) . (109)

Equating the last two expressions immediately yields a constraint on the difference G f −Fg . To
further narrow it, note that when, say, f = const, both G f and Fg need to vanish, irrespectively
of what g(u) is: G f vanishes because a constant coordinate shift is an isometry of the black
hole backgrounds, and thus the asymptotic symmetries cannot depend on it, while Fg vanishes
because ξ f is a background-independent diffeomorphism in this case. Taking this into account,
the O(ε) information from the Lie bracket fixes the difference to

G f − Fg = 2µ2LL̄( f g ′ − g f ′ + g0 f ′ − f0 g ′) . (110)

Applying the same reasoning for to the right-moving vector fields, we obtain

Ḡ f̄ − F̄ ḡ = 2µ2LL̄( f̄ ḡ ′ − ḡ f̄ ′ + ḡ0 f̄ ′ − f̄0 ḡ ′) . (111)

Thus, the zeroth order modified Lie bracket can partly fix the O(ε) correction to the allowed
diffeomorphisms. The fact that the representation theorem does not fully fix these functions is
not surprising. A comparison with the analogous computation in standard AdS3 with Brown-
Henneaux boundary conditions shows that an assumption that f be minimally continued to

15As noted in appendix A, the modified Lie bracket (96) needs to be further modified in order for the rep-
resentation theorem to hold for the spacetimes dual to double-trace T T̄ - deformed CFTs. These subtleties are
however linked to winding terms, and do not appear at the order in perturbation theory that we are discussing.
The representation theorem then (almost) takes its standard modified form, as we show in appendix (B.3).
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higher orders is also necessary. The difference is that for the asymptotically linear dilaton
backgrounds, the minimal continuation does require Fh to be non-zero.

Guided by our T T̄ intuition, and since u depends on the background parameters, the min-
imal continuation at O(ε) of f (u) should be due to a change in the argument of the function,
which implies that ξ(1)U = f ′δhu. Comparing this with the general solution (105) with all the
functions of v set to zero, we identify

1

1−µ2LL̄

�

Fg + 2µ2LL̄
∫ u

g ′ f ′
�

= f ′δgu . (112)

Using (110), it follows that

g ′δ f u− f ′δgu=
1

1−µ2LL̄
(G f − Fg) =

2µ2LL̄
1−µ2LL̄
�

f g ′ − g f ′ + g0 f ′ − f0 g ′
�

. (113)

From here we conclude that δ f u= 2µ2LL̄( f − f0)
1−µ2LL̄ + γ f ′, where γ can be any constant, reflecting

the possibility of adding terms that will drop out from the expression above because of anti-
symmetry. The minimal choice, which sets such terms to zero,16 plugged into (112), yields

Fg = 2µ2LL̄
�

f ′(g − g0)−
∫ u

f ′g ′
�

= 2µ2LL̄
�

∫ u

( f ′g)′ + ( f ′g)zm −
∫ u

f ′g ′ − g0 f ′
�

= 2µ2LL̄
�

∫ u

(g − g0) f
′′ + ( f ′g)zm

�

, (114)

where we are still using the convention that our primitives do not contain a zero mode. The
result precisely coincides with the value of this function in T T̄ - deformed CFTs, which is rather
remarkable, given that our analysis only used the O(1) representation theorem in the asymp-
totically linear dilaton backgrounds and the assumption that the O(1) vector fields should be
minimally continued at next order. The right-movers work in an analogous way.

The full solution for the correction to the vector field is17

ξ(1)U=
2µL̄(µL(h− h0) + h̄− h̄0)

1−µ2LL̄
f ′ +µL̄

2µL(h− h0 +µL̄(h̄− h̄0))
1−µ2LL̄

f̄ ′ + 2µL̄
∫ v

f̄ ′h̄′ + ξU[Ĉuv , Cb] ,

ξ(1)V=
2µL(µL̄(h̄− h̄0) + h− h0)

1−µ2LL̄
f̄ ′ +µL

2µL̄(h̄− h̄0 +µL(h− h0))
1−µ2LL̄

f ′ + 2µL
∫ u

f ′h′ + ξV [Ĉuv , Cb] ,

(115)

where, as promised, we have included back the terms proportional to Ĉuv and Cb that can be
freely added to the solution and read

ξU[Ĉuv , Cb] =
�

Ĉuv +
Cb

4

�

U +
2µL̄ Ĉuv

1+µ2LL̄
V , ξV [Ĉuv , Cb] =

2µL Ĉuv

1+µ2LL̄
U +
�

Ĉuv −
Cb

4

�

V .

(116)
Remember that upon the constant backgrounds, diffeomorphisms of this form were disallowed,
as they would change the identification of the compact coordinate, σ. Here, however, the part
of the correction to the allowed diffeomorphisms that is fixed by the symplectic form analysis
already has winding (due to the terms under the integral in (115)). This winding can be off-set

16In the next subsection, we show such terms do not contribute to the charge algebra.
17The leading behaviour of the ωra components of the symplectic form evaluated on this solution is given by

1/r terms that can be written as (73), and will thus be ignored.
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by choosing the constants Ĉuv , Cb that parametrize (116) in such a way that the periodicity of
the coordinates U , V is overall unaffected. This choice corresponds to

Ĉuv = −
µ(L̄
∮

dv f̄ ′h̄′ +L
∮

du f ′h′)(1+µ2LL̄)
2πR(1+µL)(1+µL̄)

,

Cb =
4µL(1+µ2LL̄+ 2µL̄)

∮

du f ′h′ − 4µL̄(1+µ2LL̄+ 2µL)
∮

dv f̄ ′h̄′

2πR(1+µL)(1+µL̄)
. (117)

With this choice, the diffeomorphisms (115) are identical to their double-trace counterparts
(B.8).

We will henceforth find it convenient to write the full allowed diffeomorphisms up to O(ε)
in the form

ξ= ξ(p) + ξ(w) , (118)

where ξ(p) corresponds to the part of the diffeomorphism that is fixed by the symplectic form
analysis and the representation theorem, while ξ(w) - which is given by (116) with the choice
(117) for the parameters - will be referred to as a “compensating” diffeomorphism, in the
sense that its presence is required to off-set the unphysical winding introduced by ξ(p). As
is clear from the solution above, ξ(p) receives contributions at both zeroth and first order in
the perturbation, whereas the expansion of ξ(w) starts at O(ε). It is interesting to rewrite
the compensating diffeomorphisms in terms of the field-dependent coordinates u, v, with the
result

ξU
w = w f u+µL̄w f̄ , ξV

w = w f̄ v +µLw f u , (119)

where

w f =
2µ2LL̄
∮

du f ′h′ − 2µL̄
∮

dvh̄′ f̄ ′

2πR(1+µL̄)
ε , w f̄ =

2µ2LL̄
∮

dv f̄ ′h̄′ − 2µL
∮

duh′ f ′

2πR(1+µL)
ε .

(120)
These expressions for the winding precisely coincide with the corresponding perturbative ex-
pansion (B.12) of the winding in double-trace T T̄ - deformed CFTs. They can alternatively be
rewritten in the form (A.39) by noting that εL

∮

du f ′h′ and ε L̄
∮

dv f̄ ′h̄′ are nothing but the
conserved charges Q f ′/p and, respectively, −Q̄ f̄ ′/p (91) upon the perturbed background.

Finally, we need to show, as promised, that adding these winding terms in the final step of
our computation does not affect the previous steps. Had they been included from the begin-
ning, they could have affected the expression (109) for δξχ−δχξ. However, from the explicit
form of the solution above, we see that Cb, Ĉuv are symmetric in f ↔ g, f̄ ↔ ḡ. Hence,
(109) is not affected by adding the compensating diffeomorphisms, and thus the arguments
presented in this section are unaffected.

4.3 Algebra of the conserved charges and match to T T̄

Armed with the knowledge of the allowed diffeomorphisms up to O(ε), we are now finally
ready to compute the algebra of conserved charges to the same order. For this, it is useful
to split the allowed diffeomorphisms as in (118) and to organise the computation into four
separate pieces that correspond, schematically, to

δχ(p)+χ(w)Qξ(p)+ξ(w) = δχ(p)Qξ(p) +δχ(w)Qξ(p) +δχ(p)Qξ(w) +δχ(w)Qξ(w) . (121)

Since the compensating diffeomorphisms are at least O(ε), the last term in (121) does not
contribute to the order we are interested in.

We first concentrate on the algebra of the “left-movers”, obtained by setting all the periodic
functions of v to zero. The diffeomorphism ξ is parametrized by the periodic function f , and
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χ by18 g. After various integrations by parts, the O(ε) contribution to the periodic-periodic
charge difference is

δχ(p)Qξ(p)

�

�

�

�

O(ε)
= pL
∮

dσru( f g ′ − g f ′)h′ +
µ2LL̄

1−µ2LL̄
pL
∮

dσru( f0 g ′h′ + g0 f ′h′)− 2πRupLw f g0

−
pL

2πR
2µ2LL̄

1−µ2LL̄

∮

dσru f ′h′
∮

dσug ′ , (122)

where we have introduced the field-dependent radius of the u coordinate, Ru = Rru, and
similarly Rv = Rrv . The first term above is precisely the O(ε) contribution to Q f g ′−g f ′ , which
agrees with the zeroth order result (97), but is now generically non-zero. Using (89), the
zero modes f0, g0 of the functions can be traded, at this order, for the zeroth order conserved
charges. The expression can be further simplified by writing it in terms of the the winding
(120), particularized to f̄ = 0. The final result is

δχ(p)Qξ(p) =Q f g ′−g f ′ +wgQ(0)f −w f Q(0)g − pLw f

∮

dσruug ′ . (123)

This precisely matches the analogous charge difference in the perturbative double-trace T T̄
case, which is computed in appendix (B.2).

The second term in (121) vanishes for the particular choice (88) of integration constants
in the O(1) vector fields that was required by integrability. The details are given in appendix
(B.2) for the double-trace T T̄ case, which works identically. Finally, the third term in (121)
cancels the integral of the non-periodic function in (123) with no finite contribution, leading
to the following final result for the algebra of the left-movers

{Q f ,Qg} ≡ δgQ f =Q f g ′−g f ′ +wgQ(0)f −w f Q(0)g , (124)

which holds up to O(ε). This can be rewritten in terms of the conserved charges as

{Q f ,Qg}=Q f g ′−g f ′ +
µ2HR

p2π2RRH

�

Qg ′Q
(0)
f −Q f ′Q

(0)
g

�

, (125)

where we defined RH = R(ru+rv−1) = R(1+µL)(1+µL̄)/(1−µ2LL̄). Using a Fourier basis for
f , g and taking into account the fact that f ′ = imf /Ru, we find precisely the algebra (3) with
µ→ µ/p that was advertised in the introduction. A similar result holds for the right-movers.

The commutation relations of the charges associated with one left-moving and one right-
moving diffeomorphism can be obtained by setting f̄ (v) = 0 in ξ and g(u) = 0 in χ. The
steps of the computation are explained in appendix (B.2) for the case of the double-trace
T T̄ deformation, which turn out to be identical to this order in perturbation theory to our
computation in the asymptotically linear dilaton background. The result is

{Q f , Q̄ ḡ}= wgQ(0)f −w f̄ Q̄(0)ḡ =
µ

πpRRH

�

RvQ̄ ḡ ′Q
(0)
f + RuQ f ′Q̄

(0)
ḡ

�

, (126)

where the windings are again given by (120), particularized to f̄ = g = 0.

18In principle, one may worry that the variation δχξ of the diffeomorphism between the two backgrounds could
contribute to the charge difference. One can nevertheless show (see e.g. [52]) that this is not the case.
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Hence, the charge algebra that we obtain at O(ε) is non-linear in the conserved charges
Q f , Q̄ f̄ . The source of non-linearity is the presence of charge-dependent parameters,19 namely
the windings which, as discussed in the previous subsection, are required for consistency of
the asymptotic coordinate transformations. This algebra precisely matches the algebra of the
“unrescaled” generators in single-trace T T̄ - deformed CFTs, where the factors of p are exactly
those required by the symmetric product orbifold [25]. We have thus succeeded to establish an
additional important link between asymptotically linear dilaton backgrounds and the single-
trace T T̄ deformation, by showing that the full doubly-infinite set of extended symmetries of
the two theories are identical to the order we checked.

We end this section with a few technical comments. First, we checked that the redefinition
δ f u 7→ δ f u+γ f ′ that adds a term γ f ′h′/(1−µ2LL̄) to Fh and could not be fixed by the argu-
ments of the previous section contributes to the charge difference (121) only a total derivative
term, which vanishes upon integration. We were therefore justified to neglect this term.

Second, it would be interesting to show that we obtain the charge algebra (A.49) for arbi-
trary functions f , g, rather than just when one of them is a constant. This requires computing
the O(ε2) corrections to the charge algebra. While, in principle, this computation can be per-
formed along the same lines of the O(ε) one, it nevertheless becomes extremely cumbersome.
One may however wonder whether the interesting non-linear terms in the algebra, which are
proportional to the windings, could not be recovered just from the O(ε) solution for the vector
fields, given that they are always multiplied by the winding, which starts at O(ε). This expecta-
tion turns out to be too naïve, for two reasons: first, the non-linear contributions include terms
where the charges are at O(1) and therefore the windings are at O(ε2); these “compensating”
windings cannot be computed without knowing the full O(ε2) correction to the ξ(p) part of the
vector fields that is determined from the symplectic form analysis. Second, as can be seen (B.8)
for the doube-trace T T̄ computation expanded up to O(ε2) around the constant backgrounds,
the ξ(p) piece of the vector fields receives O(ε2) contributions that depend on the windings at
O(ε) and enter the result of the charge algebra. Thus, the computation cannot be performed
without explicit knowledge of the O(ε2) corrections to the allowed diffeomorphisms.

Finally, it is natural to ask whether the algebra (125), (126) can be linearized by a redef-
inition of the generators. Guided by the T T̄ results, we expect that the rescaled generators
RuQ f and RvQ̄ f̄ will simply satisfy a Virasoro × Virasoro algebra. As explained at length in
appendix A, the effects of a field-dependent rescaling of the diffeomorphisms on the associated
charge algebra are somewhat non-trivially implemented in the covariant phase space formal-
ism via a different solution to the charge integrability constraints. Concretely, starting from
the O(1) expression (86) and temporarily setting f̄0 = 0 for simplicity, we can easily note that
the charges are again integrable for the field-dependent choice

f0 = Ru f̃0 =
�

R+
µHR

πp

�

f̃0 , cV = −µL f0 −
µHL

πp
f̃0 = −

2µHL

πp
f̃0 , (127)

where f̃0 is now field-independent, and we have used (68) and the fact that HL = πpLRu to
manipulate the expressions. A similar choice holds for the right movers. The charges (86)
associated to the diffeomorphisms f̃0Ru∂U and, respectively, − ˜̄f0Rv∂V become

�δQ f̃0Ru∂U
= f̃0RuδHL +

µHL

πp
f̃0δHR = δ( f̃0RuHL) ,

�δQ− ˜̄f0Rv∂V
= − ˜̄f0RvδHR −

µHR

πp
˜̄f0δHL = −δ( ˜̄f0RvHR) . (128)

19A similar mechanism for obtaining a non-linear charge algebra has recently appeared in [56, 57] for the case
of five-dimensional asymptotically flat spacetimes.
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The set of allowed vector fields that are associated with this new integrability constraint are,
to leading order

ξL = Ru

�

f̃ (u)∂U +µL( f̃ − 2 f̃0)∂V

�

, ξR = Rv(
˜̄f (v)∂V +µL̄( ˜̄f − 2 ˜̄f0)∂U) . (129)

One can straightforwardly repeat the steps of the previous section and compute the O(ε) cor-
rection to these vector fields. The constraints (104) are not affected and the correction takes
exactly the same form as before, depending on two functions analogous to Fh, F̄h̄. The argu-
ments that determine these functions still hold. However, fixing the constant field-dependent
piece of the O(ε) correction to ξ(p) (i.e., the O(ε) correction to cV in (127) above) is somewhat
more challenging in this case, as the full non-linear T T̄ answer (A.41) shows it is only fixed
by integrability - a property that we did not check beyond leading order in the asymptotically
linear dilaton background. Fortunately, this extra constant does not contribute to the charge
algebra at O(ε) - as can also be seen from (A.36), and the final result for the left-moving
algebra corresonding to this rescaled set of vector fields is

δχ(RuQξ) = RuQ f g ′−g f ′ , (130)

in perfect agreement with the single-trace T T̄ prediction [25]. A similar result holds for the
right-movers, with Ru replaced by Rv .

5 Discussion

The main result of this article was to show that the asymptotic symmetry algebra of asymp-
totically linear dilaton backgrounds in string theory precisely matches that of single-trace T T̄
- deformed CFTs, at least to the order in perturbation theory to which we have checked. This
further strengthens the connection proposed in [18] between compactified little string theory
and a symmetric product orbifold of T T̄ - deformed CFTs.

This asymptotic symmetry group analysis of the linear dilaton backgrounds was performed
in parallel to that of the spacetime dual to double-trace T T̄ - deformed CFTs - namely, AdS3
with mixed boundary conditions [24] - using the same formalism. Despite the entirely different
asymptotics of these two space-times and the different boundary conditions for the allowed
fluctuations, the asymptotic symmetry generators and conserved charges were found to be
virtually identical at each step of the calculation, up to a constant rescaling related to the sym-
metric product orbifold. The only quantity that our study of the asymptotically linear dilaton
background could not fix was the central extension of the asymptotic symmetry algebra, as the
symplectic form analysis we used can recover most, but not all, of the boundary conditions that
the perturbations obey. There does exist, however, a choice of boundary conditions leading to
(93), which yields precisely the central extension of single-trace T T̄ - deformed CFTs.

The algebra that we have recovered using the natural Fourier basis of generators is a non-
linear modification (125) - (126) of the Virasoro × Virasoro algebra. As a result, the algebra
itself depends on the background upon which we are evaluating it. This algebra can be lin-
earised via a simple rescaling of the generators by an energy-dependent function, case in which
one obtains two commuting copies of the Virasoro algebra, with the same central extension
as that of the original CFT. Note that in the covariant phase space formalism, the effect of
a field-dependent rescaling of the generators on their algebra can only be seen by carefully
taking into account the constraints imposed by charge integrability, as we show in great detail
in our holographic analysis of the double-trace T T̄ deformation.

For both the case of AdS3 with mixed boundary conditions and the asymptotically linear
dilaton backgrounds, the algebra of the rescaled generators agrees with that obtained by trans-
porting the original CFT generators along the double/single-trace T T̄ flow [25, 36]. It is not
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clear, however, which or whether one of these bases of generators is preferred: while the al-
gebra of the rescaled generators is certainly more standard, being also a Lie algebra, in the
closely-related J T̄ - deformed CFTs it was found that the natural “physical” symmetry gener-
ators - in the sense that the Ward identities for analogues of primary operators were defined
with respect to them - were the ones satisfying the non-linear algebra [38].

It would be very interesting to compare our results to the asymptotic symmetry group
analyses of three-dimensional asymptotically flat spacetimes [53]. Note that, besides the pres-
ence of a linear dilaton, our setup is rather different from the standard BMS3 one, in that the
asymptotic geometry is R1,1 × S1 rather than R1,2 - with the S1 playing an important role in
obtaining a non-linear algebra - and we perform our analysis at spatial - rather than null -
infinity, as it is natural for this spacetime [12]. Since our setup has a well-defined QFT dual
with a non-negligible set of observables that can be computed directly in field theory, finding a
link to asymptotically flat spacetimes could lead to interesting insights into their holographic
interpretation beyond the pure gravity regime [54, 55]. On a different note, let us mention
that asymptotic symmetry algebras that are non-linear due to a similar mechanism to that dis-
cussed herein have been recently discovered in five-dimensional asymptotically flat spacetimes
at spatial infinity [56,57]. One may naturally wonder whether such non-linear algebras could
play a larger role in non-AdS holography.

Another interesting direction would be to understand the implications of this work for the
properties of little string theory. According to the standard holographic dictionary, the asymp-
totic symmetries we have uncovered are nothing but the extended symmetries of compactified
LST. The question of which basis of symmetry generators to use could, however, become rele-
vant at this point. If we use the rescaled basis, where the symmetry algebra is simply Virasoro
with a central charge that is very likely 6kp, the symmetries of the UV theory would be in-
timately tied to those of the infrared CFT. This may seem slightly unnatural as, after all, the
IR CFT upon which the irrelevant deformation is built is a somewhat artificial construction,
designed to provide a tractable QFT interpretation of compactified LST, and we would expect
the UV physics to ultimately decouple from the IR one in the deep UV limit. This is indeed the
case for the thermodynamic entropy (31), from which the number of F1 strings drops out in
the high-energy limit E >> Rp/α′. On the other hand, the algebra of the unrescaled genera-
tors, which is dominated by the non-linear term in (125) in the high- energy limit mentioned
above, becomes p-independent, and may thus provide a more natural basis to use. It would
be interesting to better understand the significance of this algebra, both from the perspective
of the high- energy limit of T T̄ - deformed CFTs, and that of little string theory.

Apart from the symmetry analysis, our classification of all the linearized perturbations upon
the interpolating backgrounds may have interesting implications for the holographic dictionary
for these spacetimes. By taking into account the full coupling of the dilaton to the background
metric, we uncovered several unusual features of the wave equation, whose holographic in-
terpretation is not immediately obvious. Concretely, upon the black hole backgrounds, we
have found that the zero frequency and the r →∞ limits of the wave equation do not com-
mute, leading to a discontinuity in the asymptotic weights that one generally associates with
dual operator dimensions. Second, we have found that the r → ∞ and α′ → 0 limits of
this equation do not commute, with the result that the operator whose momentum-dependent
conformal dimension can be read off from the holographic analysis at infinity does not appear
to reduce to the single-trace T T̄ operator in the IR limit, as one would have naïvely expected.
These peculiar behaviours only arise upon considering the particular couplings of the dilaton
- as dictated by string theory - and fully including backreaction effects, and would not have
been visible in the probe approximation. It would therefore be quite interesting to perform a
more thorough analysis of this system using e.g. holographic renormalization and clarify these
issues.
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Finally, it would be worthwhile to better understand the reason that certain observables of
the three-dimensional asymptotically linear dilaton backgrounds match so well the predictions
from single-trace T T̄ - deformed CFTs, given that the CFT dual to the IR AdS3 that is being
deformed is not itself a symmetric product orbifold [34]. One possibility is that there exists
a universality class of “non-local CFTs” - in the sense of [36] - that includes the single-trace
T T̄ deformation, but whose members are not generically symmetric product orbifolds, where
universal quantities such as the entropy-energy relation and the symmetry algebra take the
same form as in single-trace T T̄ - deformed CFTs. It would be very interesting to further
invstigate this possibility, and understand how the appropriate generalizations of symmetric
product orbifolds of T T̄ - deformed CFTs should be defined.
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A Conserved charges in double-trace T T̄ -deformed CFTs

In this appendix, we revisit the construction of conserved charges in the standard T T̄ - de-
formed CFTs from a holographic perspective. We closely follow the original work [24], but
now use the covariant phase space formalism to compute the conserved charges. Special at-
tention is paid to the coordinate periodicities and to integrability, which turn out to be essential
for obtaining the correct charge algebra. A field-theoretical derivation of the same charges and
algebra is presented in [37].

A.1 Asymptotic symmetries of the dual gravitational background

As explained at length in [24], the double-trace T T̄ deformation of a holographic CFT corre-
sponds to turning on mixed boundary conditions for the metric of the dual AdS3 spacetime,
which take the form

γ
[µ]
αβ
= g(0)

αβ
−µ g(2)

αβ
+
µ2

4
g(2)αγ g(0)γδg(2)

δβ
= fixed , (A.1)

where g(n)
αβ

are the Fefferman-Graham coefficients in the asymptotic metric expansion and γ[µ]
αβ

is the metric of the T T̄ - deformed CFT. If we work in pure gravity, then the last term in (A.1)
becomes µ2 g(4) - the last non-zero term in the Fefferman-Graham expansion for this case [58]
- and thus the T T̄ metric coincides with the induced metric on a surface of constant radial
distance ρc = −µ from the AdS3 boundary, providing a link to the work of [59].

The phase space of the theory with a flat T T̄ metric corresponds to the most general grav-
itational solutions satisfying (A.1) with γ[µ]

αβ
= ηαβ . In [24], it was shown these are given

by

g(0)
αβ

d xαd xβ =
(dU +µL̄(v)dV )(dV +µL(u)dU)

(1−µ2L(u)L̄(v))2
≡ dudv ,
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g(2)
αβ

d xαd xβ =

�

1+µ2L(u)L̄(v)
�

(L(u) dU2 + L̄(v) dV 2) + 4µL(u)L̄(v) dUdV
�

1−µ2L(u)L̄(v)
�2 , (A.2)

where L, L̄ are arbitrary functions of the so-called field-dependent coordinates u, v, defined
via

U = u−µ
∫ v

L̄(v′) dv′ , V = v −µ
∫ u

L(u′) du′ , (A.3)

where U , V = σ ± t, as in the main text. Note our definition of L, L̄ differs by a factor of
4πGℓ from that of [24]. Also note that now L, L̄ can be arbitrary functions of their argument,
whereas in the main text the same notation denoted solely their zero modes. The function
L(u) is assumed to be periodic, and thus its primitive consists of a term linear in u that is
proportional to the zero mode of L, a set of non-zero Fourier modes, as well as a possible
constant term that will be denoted cL. The same applies to the primitive of L̄(v), where the
constant term is denoted cL̄.

The expectation value of the holographic stress tensor, computed using holographic renor-
malization in presence of the mixed boundary conditions, is given by

T [µ]
αβ

d xαd xβ =
L(u)dU2 + L̄(v)dV 2 − 2µL(u)L̄(v)dUdV

2(1−µ2L(u)L̄(v))
, (A.4)

and one can easily check it is conserved. One may use it to compute the left and right-moving
energies of the background, which are the conserved charges associated with the null transla-
tional symmetries of the T T̄ metric, generated by ∂U and ∂V

HL =
1
2

∮

dσ
L(1+µL̄)
1−µ2LL̄

=
1
2

∮

dσL∂σu , HR =
1
2

∮

dσ
L̄(1+µL)
1−µ2LL̄

=
1
2

∮

dσL̄∂σv .

(A.5)
It follows that the field-dependent coordinates (A.3) have energy-dependent periodicities

2πRu = 2πR+ 2µHR , 2πRv = 2πR+ 2µHL , (A.6)

where Ru,v are the field-dependent radii of u, v and R is the radius of the σ circle.
The asymptotic symmetries of the above set of backgrounds - which, by the standard holo-

graphic correspondence, are associated to the extended symmetries of the T T̄ -deformed CFTs
- are generated by the most general diffeomorphisms that preserve the boundary conditions
(A.1). Working in radial gauge, one finds

ξU = f (u) +µL̄ f̄ (v) +
ℓ(ρ +µ)(ρL̄ f ′′(u)− f̄ ′′(v))

8πG(1−ρ2LL̄)
,

ξV = f̄ (v) +µL f (u) +
ℓ(ρ +µ)(ρL f̄ ′′(v)− f ′′(u))

8πG(1−ρ2LL̄)
, ξρ = ρ( f ′(u) + f̄ ′(v)) , (A.7)

where f , f̄ are arbitrary functions of the field-dependent coordinates and L f , L̄ f̄ are defined
as

L f (u) =

∫ u

du′L(u′) f ′(u′) , L̄ f̄ (v) =

∫ v

dv′L̄(v′) f̄ ′(v′) . (A.8)

As before, these primitives are only defined up to an overall Fourier zero mode, which will be
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denoted as cL f
, cL̄ f̄

. Under these diffeomorphisms, the background values of L, L̄ change as

δ f , f̄ L= 2L f ′(u)−
ℓ

8πG
f ′′′(u) +

L′[ f (u) +µL̄ f̄ (v) +µL̄( f̄ +µL f )−
µℓ

8πG ( f̄
′′ +µL̄ f ′′)]

1−µ2LL̄
,

δ f , f̄ L̄= 2L̄ f̄ ′(v)−
ℓ

8πG
f̄ ′′′(v) +

L̄′[ f̄ (v) +µL f (u) +µL( f +µL̄ f̄ )−
µℓ

8πG ( f
′′ +µL f̄ ′′)]

1−µ2LL̄
.

(A.9)

Note that general variations of L, L̄ can be decomposed into an ‘intrinsic’ part, which only
depends on u and, respectively, v, and one induced by the change δu, δv in their arguments

δL(u) = δLint(u) +L′(u)δu , δL̄(v) = δL̄int(v) + L̄′(v)δv . (A.10)

Since the coordinates u, v depend on the field configuration, we need to pay special attention
to the quantities that are being held fixed in any given variation, i.e. whether it is the fields,
the coordinates, or both. For example, the values of δLint ,δu that correspond to (A.9) are ob-
tained by assuming that the field-independent T T̄ coordinates U , V are fixed in the variation;
the result is given in (A.42).

The conserved charges associated with these diffemorphisms were proposed in [24] to be

QL, f =
1
2

∮

dσ
f (u)L(u)(1+µL̄)

1−µ2LL̄
=

1
2

∮

dσ f (u)L(u)∂σu , (A.11)

and similarly for the right-movers, where f was assumed to be a periodic function of û≡ u/Ru,
as required by conservation. This proposal was based on the fact that the currents TUα f (u) are
conserved for arbitrary f (u), and thus the above amounted to a natural guess for the conserved
charges. In this appendix, we will instead derive a variant of this formula using the covariant
phase space formalism and show that, whereas the proposal of [24] is essentially correct, the
relation between the periodic function that appears in (A.11) and the function parametrizing
the asymptotic symmetry generators is slightly more involved.

A.2 Conserved charges from the covariant phase space formalism

In this section, we compute the charges associated to the diffeomorphisms (A.7) using the
covariant phase space formalism and show that they are finite, integrable and conserved. For
this, we need to first properly set up the problem.

Setup

We start with a few important remarks. First, note that since the physical T T̄ metric corre-
sponds, via (A.1), to the metric induced on the ρ = −µ surface (in the pure gravity picture),
from the point of view of the T T̄ coordinates U , V , the diffeomorphisms (A.7) act as

U → U + f (u) +µL̄ f̄ (v) , V → V + f̄ (v) +µL f (u) . (A.12)

We immediately observe that f , f̄ cannot be periodic functions of their arguments, lest the
periodicity of the coordinates U , V - which should be fixed - would be affected. We can thus
split f , f̄ into a periodic and a winding part, assumed to be simply linear in the field-dependent
coordinates

f (u) = fp(u) +w f u , f̄ (v) = f̄p(v) +w f̄ v . (A.13)
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This assumption is supported by the fact that the winding of f , f̄ around theσ circle is constant.
Using (A.5), we find that the windings satisfy

2πw f Ru+µ

∮

dvL̄ f̄ ′p(v)+2µw f̄ HR = 0 , 2πw f̄ Rv+µ

∮

duL f ′p(u)+2µw f HL = 0 , (A.14)

and so they are determined by the periodic part of the function and the given background.
The second remark concerns the periodicity properties of δLint , defined in (A.10). Re-

member that in the covariant formalism, one always computes the charge difference between
two nearby on-shell backgrounds. We thus consider two backgrounds of the form (A.2) that
differ in the intrinsic values of L and L̄ by δLint ,δL̄int ; the differences δu,δv in the associated
field-dependent coordinates simply follow from the definition (A.3), taking into account the
fact that the T T̄ coordinates U , V are fixed in this variation. Assuming that L(u) is a periodic
function of its argument, we can expand it in Fourier modes as

L(u) =
∑

n

Ln einu/Ru . (A.15)

Its varition reads

δL(u) =
∑

n

δLn einu/Ru +

�

δu
Ru
−

uδRu

R2
u

�

∑

n

inLneinu/Ru , (A.16)

where the variation of the field-dependent radius is generally non-zero, due to the fact that it is
proportional, via (A.6), to the difference in energy between the two backgrounds. Comparing
with (A.10), it follows that δLint consists of both a periodic and a winding part

δLint(u) = δL
p
int(u)−

uδRu

Ru
L′(u) . (A.17)

Changing the intrinsic value of L, L̄ also induces a change in the field-dependent coordinates,
which is determined by the requirement that the coordinates U , V be fixed

δU = δu−µL̄δv −µ
∫ v

δL̄int(v
′)dv′ = 0 , δV = δv −µLδu−µ

∫ u

δLint(u
′)du′ = 0 .

(A.18)
These equations are easily solved to determine the associated δu,δv. It is again interesting to
look into the windings of these coordinate differences. Plugging (A.17) into (A.18) and taking
the variation, we find that the windings satisfy

wδu −µL̄(v)wδv −µ
∮

δL̄p
int(v)dv +

µδRv

Rv
(2πRvL̄(v)−
∮

L̄(v)dv) = 0 ,

wδv −µL(u)wδu −µ
∮

δLp
int(u)du+

µδRu

Ru
(2πRuL(u)−
∮

L(u)du) = 0 . (A.19)

By requiring that the terms proportional to L(u), L̄(v) cancel separately, we find a natural
solution where the windings are constant, with

wδu = 2πδRu = 2µδHR , wδv = 2πδRv = 2µδHL , (A.20)

where we have used (A.6). Plugging these back into (A.19), we find the following constraint

2δHL =

∮

δLp
int(u)du+ 2HL

δRu

Ru
, 2δHR =

∮

δL̄p
int(v)dv + 2HR

δRv

Rv
, (A.21)
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which should better be satisfied by the variations of the left- and right-moving Hamiltonian
given in (A.5). One can check this is indeed the case, since

δHL =
1
2
δ

∮

dσ∂σuL(u) = 1
2

∮

dσ
�

δLp
int +L

δRu

Ru

�

∂σu+
1
2

∮

dσ∂σ

�

Lδu−
uδRu

Ru
L
�

,

(A.22)
and similarly for the right-moving Hamiltonian. Note that, thanks to (A.20), the term in the
second paranthesis has no winding, so the total derivative can be dropped. Thus, the consis-
tency requirements (A.21) are indeed satisfied.

The solution to (A.18) is found to be

δu=
µ
∫ v
δL̄p(v′)dv′ +µ2L̄

∫ u
δLp(u′)du′ −µL̄v̂δRv − ûδRu

1−µ2LL̄
+ ûδRu ,

δv =
µ
∫ u
δLp(u′)du′ +µ2L

∫ v
δL̄p(v′)dv′ −µLûδRu − v̂δRv

1−µ2LL̄
+ v̂δRv , (A.23)

where we have defined two new periodic functions

δLp ≡ δLp
int +L

δRu

Ru
, δL̄p ≡ δL̄p

int + L̄
δRv

Rv
, (A.24)

and we have introduced the normalized field-dependent coordinates û ≡ u/Ru, v̂ ≡ v/Rv ,
which have fixed periodicity 2π. Note that, according to this definition

δu= Ruδû+ ûδRu , δv = Rvδv̂ + v̂δRv , (A.25)

so the entire winding of δu,δv is concentrated in the last terms of (A.23), whereas the rest
can be identified with Ruδû and, respectively, Rvδv̂, both of which are periodic on the cylinder.
Note the primitives of δLp and δL̄p are still ambiguous up to a constant term that equals δcL
and, respectively, δcL̄, where we assumed that the constant ambiguity in (A.3) may depend
on the field configuration.

Computing the conserved charges

We are finally ready to compute the charges associated to the diffeomorphisms (A.7), using the
standard formula (84) in the covariant formalism. We find that the charge difference between
two backgrounds that differ by δLint ,δL̄int is given by

̸δQ f , f̄ =
1
2

∮

dσ( f ∂σuδLint − f̄ ∂σvδL̄int) +
1
2

∮

dσ∂σ

�

δu(L f −L f )−δv(L̄ f̄ − L̄ f̄ )

+
1
4
(∂uδu− ∂vδv)( f ′ + f̄ ′)

�

,

(A.26)

where δu, δv are determined by δLint via (A.23). In order for this expression to be well-
defined, it should be the integral of a periodic quantity. This is not obvious a priori, since the
integrand of the first term has winding - given in (A.17) - that needs to be carefully taken into
account, as do the terms under the total derivative.

Let us start by analysing the term on the second line of (A.26). Its only potentially non-
zero contribution to the charge comes from winding terms in δu and δv, whose form is given
in (A.25). It is then easy to see that their u, v derivatives will just produce a periodic function
under the total σ derivative, which can be dropped.
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Moving on to the first term in (A.26), we plug in the explicit form (A.13) of f and write it
as

1
2

∮

dσ( fp(u) +w f u)∂σuδLint(u) =
1
2

∮

dσ
�

fp∂σu
�

δLp
int +L

δRu

Ru

�

−
δRu

Ru
∂σ(uf (u)L)

+ u∂σu

�

w f δL
p
int +

δRu

Ru
L f ′p +

2w f δRu

Ru
L
��

, (A.27)

where we have integrated by parts all terms containing L′. Next, we write the contributions on
the second line by introducing the primitives of the terms in paranthesis, which are separated
into a periodic part and a purely winding part proportional to the zero mode of the function,
e.g.
∮

dσu∂σuδLp
int =

∮

dσu∂σ

�∫ u

δLp
int du−

u
2πRu

∮

δLp
int

�

+
1

2πRu

∮

δLp
int

∮

dσu∂σu .

(A.28)
Dropping the zero mode of the term in the first paranthesis, which does not contribute, and
integrating by parts, the first term yields a total derivative minus a term whose circle integral
vanishes. Applying such manipulations to all the terms, we find

1
2

∮

dσ f (u)∂σuδLint = δQ fp
+

1
2

∮

dσ∂σ

�

w f u

�∫ u

δLp
int −

û
2π

∮

δLp
int

�

��zm

+
δRu

Ru
u

�∫ u

L f ′p −
û

2π

∮

L f ′p

�

��zm
+

2δRuw f

Ru
u

�∫ u

L− û
2π

∮

L
�

��zm

+

�

w f

∮

δLp
int +

δRu

Ru

∮

L f ′p +
2δRuw f

Ru

∮

L
�

u2

4πRu
−
δRu

Ru
Luf (u)

�

,

(A.29)

where the subscript on the parantheses indicates the zero mode of the given quantity is not
present. We also introduced the trivially integrable quantity

δQ fp
≡ δ
�

1
2

∮

dσ fp(û)∂σuL
�

=
1
2

∮

dσ fp∂σu
�

δLp
int +L

δRu

Ru

�

+
1
2

∮

dσ∂σ( fpLRuδû)

=
1
2

∮

dσ fp(û)∂σuδLp . (A.30)

The total derivative term was dropped because δû has no winding and we have explicitly used
the fact that the periodic function fp only depends on u (and Ru) through the combination
û= u/Ru. Plugging (A.29) into (A.26) and dropping all the terms without winding, we find

̸δQ f , f̄ = δQ fp
+

1
2

∮

dσ∂σ

�

w f u

�∫ u

δLp

�

��zm
+

�

w f Lu−
∫ u

L( f ′p +w f )

�

Ruδû− u
δRu

Ru
cL f

−
u2

4πRu

�

w f

∮

δLp +
δRu

Ru

∮

L( f ′p +w f )

��

+ RM , (A.31)

where cL f
is the integration constant appearing in the definition (A.8) of L f and “RM” stands

for the right-moving counterpart of these terms, which is simply obtained via minus the re-
placement f ↔ f̄ ,L↔ L̄, etc. Note that we have a number of terms with double winding,
which render the integral inconsistent i.e., dependent on the starting point on the circle. In
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the following, we would like to show that they cancel. We start from (A.23), which implies
that

LRuδû+

∫ u

δLp =
δv
µ

, (A.32)

where we recall that the zero mode of
∫ u
δLp is δcL. Replacing the

∫ u L( f ′p + w f ) term by
û

2π

∮

L( f ′p+w f ) - as their difference is a periodic function that can be dropped from the integral,

including its zero mode - and using (A.14) to write
∮

L( f ′p +w f ) in terms of w f̄ , we find

̸δQ f , f̄ = δQ fp
+

1
2

∮

dσ∂σ

�

w f
uδv
µ
+

w f̄ Rv

µ
uδû−

u2

4πRu

�

2w f δHL −
2πw f̄ RvδRu

µRu

��

−π(cL f
δRu +δcLw f Ru) + RM . (A.33)

At this point, it is useful to write

û= σ+∆û , v̂ = σ+∆v̂ , (A.34)

where ∆û,∆v̂ are periodic. The expression for the charge difference becomes

̸δQ f , f̄ = δQ fp
+

1
2µ

∮

dσ∂σ

�

σ2

2
(w f RuδRv +w f̄ RvδRu) +σRuRv(w f δ∆v̂ +w f̄ δ∆û)

+σ(w f RuδRv∆v̂ +w f̄ RvδRu∆û)
�

−π(cL f
δRu +δcLw f Ru) + RM ,

(A.35)

where we dropped all the periodic terms under ∂σ. Since the expression in paranthesis is
entirely symmetric under f ↔ f̄ , u↔ v and the RM contribution is just minus the left-moving
one with f ↔ f̄ , u↔ v, all the winding terms cancel and we are left with

̸δQ f , f̄ = δQ fp
+δQ̄ f̄p

+π
�

cL̄ f̄
δRv +δcL̄w f̄ Rv − cL f

δRu −δcLw f Ru

�

, (A.36)

where we have defined

δQ̄ f̄p
= δ

�

−
1
2

∮

dσ∂σv f̄pL̄
�

= −
1
2

∮

dσ f̄p(v̂)∂σvδL̄p . (A.37)

It is clear that the charge (A.36) will only be integrable for special values of the integration con-
stants. One such value is of course zero; a more non-trivial choice would be to take cL = 2αHL
and cL̄ f̄

= −α
∮

L̄ f̄ ′ for some constant α. In both cases, the contribution of the constants to
the conserved charges vanishes. As it is hard to imagine how one could obtain a non-zero
contribution that is integrable for general variations, we will simply choose these constants to
be zero, which amounts to a particular way to fix the ambiguities in the definition of u, v and
L f .

Final result

Upon a trivial integration in phase space, the final result for the holographic conserved charges
of T T̄ -deformed CFTs is

Q f , f̄ =
1
2

∮

dσ fp∂σuL− 1
2

∮

dσ f̄p∂σvL̄≡Q f + Q̄ f̄ , (A.38)

which precisely agrees with the formula already proposed in [24]. Note, however, that the
derivation presented in this section is entirely from first principles and the steps through which

41

https://scipost.org
https://scipost.org/SciPostPhys.16.1.006


SciPost Phys. 16, 006 (2024)

we arrived at this result were rather non-trivial: first, we showed that the functions f (u), f̄ (v)
that parametrize the asymptotic diffeomorphisms of the space-time dual to T T̄ -deformed CFTs
necessarily have winding, which is entirely fixed (A.14) by the periodic part of the functions
to

w f =
µRv

πRRH
Q̄ f̄ ′p
+
µ2HR

π2RRH
Q f ′p

, w f̄ = −
µRu

πRRH
Q f ′p
−
µ2HL

π2RRH
Q̄ f̄ ′p

. (A.39)

Then, we proved that only the periodic part of the functions enters in the charge formula, as re-
quired by conservation. For this reason, the notation Q f and Q fp

can be used interchangeably.
As we will see in the next subsection, the non-trivial structure we have found does nevertheless
have consequences for the charge algebra.

Our derivation assumed - specifically in (A.30) - that the periodic part of the function f
only depends on u and Ru via the combination û= u/Ru. Note that more possibilities to obtain
integrable charges open up if we relax this requirement. For example, if we consider instead
the rescaled function Ru f (û), the charge variation given by our general formula (A.36) is

̸δQRu f ,Rv f̄ = RuδQ fp
−πcLRu f

δRu −δcLwRu f Ru + RM . (A.40)

This variation can be rendered integrable by choosing δcL = δcL̄ = 0 as before, but now with

cL f
= −

Q f

πRu
, cL̄ f̄

=
Q̄ f̄

πRv
. (A.41)

Using the fact that the charge is linear in the function f , this turns the right-hand-side into a
trivially integrable δ(RuQ fp

) - the charges associated with the rescaled diffeomorphisms.

A.3 The charge algebra

In this subsection, we compute the algebra of the conserved charges we have found. As briefly
reviewed at the beginning of section (4), in the covariant phase space formalism the charge
algebra is given by δχQξ: the change in the charge associated to an allowed diffeomorphism
ξ between two backgrounds that differ by another diffeomorphism, χ. In our case, both dif-
feomorphisms are of the form (A.7). We will take χ, which acts on the background, to be
labeled by two functions g, ḡ. The associated δχL is given in (A.9) with f replaced by g, and
the corresponding δLint and δu are given by20

δχLint = 2Lg ′ +L′g − ℓ

8πG
g ′′′ −L′δχ cu ,

δχu=
µ(L̄ ḡ + L̄ ḡ − ℓ

8πG ḡ ′′) +µ2L̄(Lg +Lg − ℓ
8πG g ′′)

1−µ2LL̄
+δχ cu , (A.42)

where δcu (and its right-moving counterpart, δcv) represents an ambiguity in distributing
δχL into an intrinsic variation and one due to the shift of its arguments, as in (A.10). This
ambiguity does not affect the previous discussion, where it was assumed that δLint was given,
but it does enter here, where only the total variation (A.9) is known. Upon distributing the
δcu factor between the two parantheses (and similarly for its right-moving counterpart), one
can easily read off from this solution the zero modes δcL,δcL̄ of

∫ u
δLp and
∫ v
δL̄p

δχ cL = cLg
+

Qgp

πRu
+
δχ cv

µ
−

HL

πRu
δχ cu , δχ cL̄ = cL̄ ḡ

−
Q̄ ḡp

πRv
+
δχ cu

µ
−

HR

πRv
δχ cv . (A.43)

20Note that δu is not given by (A.7) translated to the u, v coordinate system; rather, (A.7) describes a change
in the coordinates U , V with the intrinsic part of the L variation set to zero, whereas (A.9) represents the same
transformation of the bulk metric produced from a change in the fields, but with the T T̄ coordinates U , V held
fixed.
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Remember that integrability of the charges required that δcL = cL f
= 0. This, together with

the equation above, determines the values of δχ cu,v in (A.42).
Plugging in the explicit form (A.13) of g, we find that δLint has a non-periodic part pro-

portional to wguL′. Comparing this with the general form (A.17), we conclude that

wg = −
δχRu

Ru
= −

µ

πRu
δχHR , w ḡ = −

δχRv

Rv
= −

µ

πRv
δχHL . (A.44)

Comparing this with the general formula (A.39) for wg , w ḡ , we find a prediction for how HL,R
change under the diffeomorphism, which should tell us about the corresponding commutators
of the Hamiltonians with the conserved charges

δχHL =
RuRv

RRH
Qg ′p
+
µHLRv

πRRH
Q̄ ḡ ′p

, δχHR = −
RuRv

RRH
Q̄ ḡ ′p
−
µHRRu

πRRH
Qg ′p

. (A.45)

Given the expression (A.42) for δLint , we can obtain - using (A.24) - the periodic quantity
δLp(u) that enters the formula for charge difference

δLp(u) = 2Lg ′p +L′gp +wgL−
ℓ

8πG
g ′′′p −L

′δcu , (A.46)

where gp is the periodic part of g. A similar expression holds for the right-movers. The charge
difference between the two backgrounds is given by

Q f (δgΦ) =
1
2

∮

dσ fp

�

2Lg ′p +L′gp +wgL−
ℓ

8πG
g ′′′p

�

∂σu

=Q fp g ′p−gp f ′p
+wgQ fp

+δχ cu Q f ′p
−

ℓ

16πG

∮

du fp(u)g
′′′
p (u) +

1
2

∮

dσ∂σ(L fp gp)

+ RM . (A.47)

The last term integrates to zero, as all the functions under the derivative are periodic, and the
third term yields the usual central contribution. We can immediately check that for f = 1, for
which we obtain δχHL , this result agrees with (A.45) above. The final result reads21

δχQ f , f̄ =Q fp g ′p−gp f ′p
+Q̄ f̄p ḡ ′p− ḡp f̄ ′p

+wgQ fp
+w ḡp

Q̄ f̄p
+δχ cu Q f ′p

+δχ cv Q̄ f̄ ′p
+K fp ,gp

+K̄ f̄p , ḡp
. (A.48)

Plugging in the values of δχ cu,v and wg, ḡ , we find a non-linear algebra. To present it, it is useful
to split the commutation relation between left-movers and right-movers, by associating Q f to
the case where fp ̸= 0 and f̄p = 0, and the reverse for Q̄ f̄ ; note that in both cases, the winding
parts of f and f̄ are non-zero, being determined by the periodic parts via (A.39). The charge
algebra that we find is

{Q f ,Qg}=Q fp g ′p−gp f ′p
+
µ2HR

π2RRH
(Q f Qg ′ −QgQ f ′) +K f ,g ,

{Q̄ f̄ , Q̄ ḡ}= Q̄ f̄p ḡ ′p− ḡp f̄ ′p
−
µ2HL

π2RRH
(Q̄ f̄ Q̄ ḡ ′ − Q̄ ḡQ̄ f̄ ′) + K̄ f̄ , ḡ , (A.49)

where K f ,g is the central extension in (A.47), and K̄ f̄ , ḡ is its right-moving counterpart. For
the left-right commutator we find

{Q f , Q̄ ḡ}=
2µ

2πRRH
(RuQ f ′Q̄ ḡ + RvQ f Q̄ ḡ ′) . (A.50)

21Noting that δχ cu Q f ′p +δχ cv Q̄ f̄ ′p = w f

�

πRu
µ δχ cv −HLδχ cu

�

+w f̄

�

HRδχ cv −
πRv
µ δχ cu

�

= −w f Q g −w f̄ Q ḡ , where

we re-expressed Q f ′ , Q̄ f̄ ′ in terms of the winding using (A.39), the non-linear correction to the charge algebra can
be written more symmetrically as (δχQ f , f̄ )non-lin. = wgQ f +w ḡQ f̄ −w f Q g −w f̄ Q ḡ .
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It is useful to rewrite these charges and their commutators in terms of a Fourier basis, where
fn = einu/Ru and f̄n = −e−inv/Rv . We find

i{Qm,Qn}=
1
Ru
(m− n)Qm+n +

µ2HR

π2RRHRu
(m− n)QmQn +

c m3

12R2
u
δm+n ,

i{Q̄m, Q̄n}=
1
Rv
(m− n)Q̄m+n +

µ2HL

π2RRHRv
(m− n)Q̄mQ̄n +

c m3

12R2
v
δm+n ,

i{Qm, Q̄n}= −
µ(m− n)
πRRH

QmQ̄n . (A.51)

The semi-classical commutation relations are obtained by the replacement i{ , } → ħh−1[ , ].
However, we expect this to yield only the first term in the expansion of the full quantum
commutator with respect to ħh, as in principle a Poisson algebra, such as the one we find here,
can contain arbitrary powers of the generators; in particular, in the full quantum theory the
ordering of the generators that appear in the non-linear correction would need to be specified.
This issue is further discussed in [37].

We would now like to match this algebra with the symmetry algebra of T T̄ - deformed
CFTs, which was argued in [36] to be Virasoro × Virasoro in a certain basis. For this, it is
interesting to work out the algebra of the rescaled charges QRu f . Remember that, due to the
integrability constraint, the variation of this charge was not simply equal to RuδQ f , which
implies that the algebra of these charges will be different. The main difference is that now the
value (A.41) for the integration constants cL f

, cL̄ f̄
when plugged into (A.43) with δχ cL,L̄ = 0

sets δχ cu,v = 0. This new solution affects the charge variation, which now reads

δRu gQRu f = R2
uQ fp g ′p−gp f ′p

−
R2

uℓ

16πG

∮

du fp g ′′′p +wgRuQ f +Q f δgRu . (A.52)

Since δgRu = −wgRu, the last two terms cancel and we are left with a Virasoro algebra with the
same central extension as the undeformed CFT, precisely reproducing the prediction of [36].
It is to be expected that this algebra will not receive further quantum corrections. In the
semiclassical limit, the Virasoro generators are simply rescaled versions of the ones in the
Fourier basis by a factor of Ru; however, their relation could become more complicated in the
full quantum theory.

Note that from a field-theoretical perspcetive, the fact that multiplying the generators by a
factor of the field-dependent radius, which depends on the Hamiltonian, changes the algebra of
the corresponding generators is trivial. However, in the covariant phase space formalism, this
multiplicative factor is simply seen as a c-number, and it is the integrability of the conserved
charges that ensures that the correct algebra of the rescaled generators is reproduced, via
the subtle contributions of integration constants that were constrained by integrability, as we
explained.

Finally, let us note that it is not clear whether the representation theorem - which in the
most general situation that is currently known links the variation of the charges to the modified
Lie bracket (96) of the associated vector fields - holds in our case. The reason is that the
modified Lie bracket (96), when applied to the vector fields (A.7), does not yield a vector
whose winding is constant. While it may still be the case that the charges associated with this
more non-trivial vector only depend on its periodic part, a separate analysis would be needed
to ascertain it. The more likely scenario is that the modified Lie bracket needs to be modified
even further in order to hold in these situations. In appendix (B.3) we discuss an additonal
modification that appears to be needed, independently of the winding.
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B Perturbative analysis around constant backgrounds

In this section, we particularize our non-linear expressions for the field-dependent coordinates
and allowed diffeomorphisms in the spacetimes dual to double-trace T T̄ -deformed CFTs to
constant backgrounds and small perturbations thereof, in order to facilitate the comparison
with the analogous quantities in the asymptotically linear dilaton backgrounds. We also re-
compute the charge algebra from the ground up using these perturbative expressions, in order
to mimick the analogous computations in the asymptotically linear dilaton backgrounds; the
details of the two sets of computations turn out to be extremely similar. Finally, we check that
the representation theorem - which is needed to determine the allowed diffeomorphisms of
the perturbed asymptotically linear dilaton specetimes - does hold in the related double-trace
T T̄ dual at least to leading order in the perturbation, so we can still trust it for the purposes
of this article.

To avoid confusion, in this section the constant backgrounds and their associated field-
dependent coordinates will be denoted as L(0), L̄(0) and, respectively, u(0), v(0), whereas the
superscript is dropped in the main body of the paper.

B.1 Perturbative expansion of the symmetry generators

Constant backgrounds

When L, L̄ are constant, the equations (A.3) are trivially solved for u(0), v(0) in terms of the
fixed T T̄ coordinates

u(0) =
U +µL̄(0)V

1−µ2L(0)L̄(0)
, v(0) =

V +µL(0)U
1−µ2L(0)L̄(0)

. (B.1)

In terms of the natural parametrization (34) of the linear dilaton background, we find

u(0) =
(p+ β)U + 2µLvV

2p
, v(0) =

(p+ β)V + 2µLuV
2p

. (B.2)

The allowed diffeomorphisms ξ f , f̄ upon such a background take the form

ξU = f (u(0)) +µL̄(0) ( f̄ (v(0))− f̄0) , ξV = f̄ (v(0)) +µL(0) ( f (u(0))− f0) , (B.3)

and ξρ = ρ( f ′ + f̄ ′), where we have specifically made the choice cLh
= 0, which amounts to

subtracting the Fourier zero modes f0, f̄0 of the two functions, i.e. we are considering the dif-
feomorphisms associated with the “unrescaled” generators of the charge algebra. In addition,
we have chosen to ignore the effect of the radial component of the diffeomorphism on ηU ,V by
dropping all the terms proportional to ℓ/(8πG) from the diffeomorphism, which amounts to
discarding the contributions proportional to the central charge. The reason behind this choice
is that the radial component of the diffeomorphism in the spacetime dual to T T̄ - deformed
CFTs does not match the radial component of the Einstein radial gauge diffeomorphism in
the asymptotically linear dilaton backgrounds, so a comparison cannot be made anyways. In
addition, in the asymptotically linear dilaton backgrounds we set Fr = 0 , which significantly
simplifies the O(ε) computations.

Note also that since the functions are periodic to this order, there is no winding that needs
to be compensated and the change of coordinates U → U ′ = U + εξU , V → V ′ = V + εξV

is well-defined. Another way to see this is that the extra winding in (A.39) vanishes because
Q f ′ , Q̄ f̄ ′ are zero for the constant background.
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Perturbed backgrounds

Let us now perturb the constant background by a diffeomorphism ηh,h̄ of the form (B.3),
labeled by two periodic functions h(u) and h̄(v). The T T̄ coordinates change as

U → U ′ = U + εηU , V → V ′ = V + εηV . (B.4)

From the active point of view, acting with this diffeomorphism changes the values of L, L̄.
Particularizing (A.9) to constant parameters and dropping the f ′′′, f̄ ′′′ terms since they are
proportional to ℓ/(8πG), we obtain

L(u) = L(0) + 2εL(0)h′(u(0)) +O(ε2) , L̄(v) = L̄(0) + 2εL̄(0)h̄′(v(0)) +O(ε2) . (B.5)

With these expressions for the parameters, we solve again the equations for the field-dependent
coordinates up to O(ε)

u= u(0) + εu(1) =
U + 2µεL̄(0)(h̄− h̄0) +µL̄(0)(V + 2µεL(0)(h− h0))

1−µ2L(0)L̄(0)
,

v = v(0) + ε v(1) =
V + 2µεL(0)(h− h0) +µL(0)(U + 2µεL̄(0)(h̄− h̄0))

1−µ2L(0)L̄(0)
, (B.6)

where the zero mode of h, h̄ has been removed because for h, h̄ constant, the transforma-
tions(B.4) are simply isometries of the background, which do not affect L(0), L̄(0), and thus
one should not have to change the definition of the field-dependent coordinate. This also
agrees with our general rule of setting to zero the integration constants cL, cL̄. The allowed
diffeomorphisms upon this background take the form

ξU = f (u) +µ

∫ v

L̄(v) f̄ ′ = f (u(0) + εu(1)) +µL̄(0)( f̄ (v(0) + εv(1))− f̄0) + 2µεL̄(0)
∫ v(0)

h̄′ f̄ ′ ,

ξV = f̄ (v) +µ

∫ u

L(u) f ′ = f̄ (v(0) + εv(1)) +µL(0)( f (u(0) + εu(1))− f0) + 2µεL(0)
∫ u(0)

h′ f ′ .

(B.7)
For the comparison with the asymptotically linear dilaton background, it is useful to write
down explicitly the O(1) and O(ε) terms in the expansion of these diffeomorphisms as in
(102), where ξ(0) is given by (B.3) and ξ(1) reads

ξ(1)U =
2µL̄(0)

1−µ2L(0)L̄(0)

�

f ′(h̄− h̄0 +µL(0)(h− h0)) +µL(0) f̄ ′(h− h0 +µL̄(0)(h̄− h̄0))
�

+ 2µL̄(0)
∫ v(0)

h̄′ f̄ ′ ,

ξ(1)V =
2µL(0)

1−µ2L(0)L̄(0)

�

f̄ ′(h− h0 +µL̄(h̄− h̄0)) +µL̄(0) f ′(h̄− h̄0 +µL(0)(h− h0))
�

+ 2µL(0)
∫ u(0)

h′ f ′ . (B.8)

It is important to note that the functions f , f̄ above do have winding, contrary to the homony-
mous functions in the main text, which are purely periodic. As per our general discussion, this
explicit winding is determined by the requirement the periodicities of the U , V coordinates
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be fixed. Given that the winding only appears at subleading order in perturbation theory, it
appears useful to separate the diffeomorphisms (A.7) into two parts

ξ f , f̄ = ξ(p) + ξ(w) , (B.9)

one determined by the periodic part of the functions f , f̄ , and the other purely associated with
the winding part, which we will sometimes call a “compensating diffeomorphism”

ξU
(w) = w f u+w f̄ (u− U) , ξV

(w) = w f̄ v +w f (v − V ) , ξ
ρ

(w) = ρ(w f +w f̄ ) , (B.10)

where the coefficients w f , f̄ are fixed as in (A.39). For the perturbative analysis at hand, ξ(p)
simply corresponds to (B.7) with the functions taken to be periodic and

ξU
(w) = w f u(0) +µw f̄ L̄

(0)v(0) , ξV
(w) = w f̄ v(0) +µw f L(0) u(0) , (B.11)

where the windings are given by

w f =
2µL̄(0)(−
∮

dv(0) f̄ ′h̄′ +µL(0)
∮

du(0)h′ f ′)

2πR(1+µL̄(0))
ε ,

w f̄ =
2µL(0)(−
∮

du(0) f ′h′ +µL̄(0)
∮

dv(0)h̄′ f̄ ′)

2πR(1+µL(0))
ε . (B.12)

This is in perfect agreement with (A.39) evaluated at this order, where

Q′f = εL
(0)

∮

du(0) h′ f ′ , Q̄ f̄ ′ = −εL̄
(0)

∮

dv(0) h̄′ f̄ ′ , (B.13)

and we use the fact that HL = L(0)πRu, HR = L̄(0)πRv , which follows from (A.5), as well as
RH/Rv = 1+µL̄(0), etc.

B.2 The perturbative charge algebra

In this appendix, we compute the charge algebra corresponding to the asymptotic vector fields
(B.8) up to O(ε). For the comparison with the asymptotically linear dilaton analysis, it is
useful to split the computation of the charge difference at O(ε) according to the splitting of
the vector fields into periodic and winding parts

δχ(p)+χ(w)Qξ(p)+ξ(w) = δχ(p)Qξ(p) +δχ(w)Qξ(p) +δχ(p)Qξ(w) +δχ(w)Qξ(w) . (B.14)

Since the compensating diffeomorphisms are each at least O(ε), the last term does not con-
tribute to the order we are interested in.

Let us first compute the algebra of two left-moving diffeomorphisms, by setting all the
periodic functions of v(0) to zero. As before, the diffeomorphism ξ is given by the periodic
function f and χ by g. We start by computing the charge difference δχ(p)Qξ(p) . The zero

modes h0, h̄0 do not contribute to the result. After various integrations by parts, we checked
that the function h̄ and its derivatives do not contribute to the result and we are left with

δχ(p)Qξ(p)

=
ruL(0)

1−µ2L(0)L̄(0)

�

− 2µ2L(0)L̄(0)
�

∮

dσg ′
�

∫ u(0)

f ′h′ − u(0)
∮

dσ f ′h′

2πR

�

+

∮

dσ f ′h′

2πR

∮

dσu(0)g ′
�

+µ2L(0)L̄(0)
�

f0

∮

dσg ′h′ + g0

∮

dσ f ′h′
�

+

∮

dσ
�

(1−µ2L(0)L̄(0)) f g ′ − (1+µ2L(0)L̄(0))g f ′
�

h′
�

, (B.15)

47

https://scipost.org
https://scipost.org/SciPostPhys.16.1.006


SciPost Phys. 16, 006 (2024)

where we split the first term into an integral of a periodic function and one of a non-periodic
one. We integrate by parts the periodic part

δχ(p)Qξ(p) = ruL(0)
∮

dσ( f g ′ − g f ′)h′ −
ruL(0)

1−µ2L(0)L̄(0)
2µ2L(0)L̄(0)
∮

dσ f ′h′

2πR

∮

dσu(0)g ′

+
ruL(0)

1−µ2L(0)L̄(0)
µ2L(0)L̄(0)
�

f0

∮

dσg ′h′ − g0

∮

dσ f ′h′
�

. (B.16)

It is useful to rewrite the expression above using the winding, w f =
2µ2L(0)L̄(0)

1−µ2L(0)L̄(0)

∮

dσh′ f ′

2πR , which

we particularized for f̄ = 0. We obtain

δχ(p)Qξ(p) = ruL(0)
∮

dσ( f g ′ − g f ′)h′ − ruL(0)w f

∮

dσu(0)g ′ + ruL(0)
1
2

2πR(wg f0 −w f g0)

=Q f g ′−g f ′ +wgQ(0)f −w f Q(0)g − ruL(0)w f

∮

dσu(0)g ′ , (B.17)

where in the last line we recognized the charges at O(ε) and O(1) respectively. Next, we
computed the charge difference δχ(w)Qξ(p) , which vanishes

δχ(w)Qξ(p) = wgL(0)
1+µL̄(0)

1−µ2L(0)L̄(0)

∮

dσ( f − f0) = 0 , (B.18)

because it is the integral on the circle of a periodic function without zero mode. Finally, we
computed the charge difference δχ(p)Qξ(w) , which can be written as

δχ(p)Qξ(w) = w f L(0)
1+µL̄(0)

(1−µ2L(0)L̄(0))2

∮

dσ(U +µL̄(0)V )g ′ = w f L(0)ru

∮

dσu(0)g ′ . (B.19)

This contribution cancels exactly the non-periodic part of δχ(p)Qξ(p) , leading to a well-defined
result for the total charge difference

{Qξ,Qχ}= δχQξ =Q f g ′−g f ′ +wgQ(0)f −w f Q(0)g . (B.20)

Clearly, this matches the final double-trace result linearized around constant backgrounds.
We should point out that removing the zero modes from the vector fields as in (B.3) is of

utmost importance in obtaining the correct non-linear charge algebra. Had we not done so, it
would have amounted to choosing constants in (A.43) cL f

= L(0) f0 and δg cL = 2L(0)g0. The
naïve calculation would have seemed to work, as the integrals of non-periodic functions cancel
consistently with each other. The remaining terms yield however an incorrect result that we
can recover directly by setting to zero f0, g0 in (B.15) and (B.18)

δχQξ = ruL(0)
∮

dσ( f g ′ − g f ′)h′ + 2πRruL(0)(wg f0 −w f g0) +O(ε2)

=Q f g ′−g f ′ + 2wgQ(0)f − 2w f Q(0)g +O(ε2) . (B.21)

Finally, by removing twice the zero modes, which corresponds to the choice cL f
= 2L(0) f0 and

δg cL = 0, we obtain, letting f0 7→ 2 f0, g0 7→ 2g0 in (B.15), (B.18)

δχQξ =Q f g ′−g f ′ +O(ε2) . (B.22)

48

https://scipost.org
https://scipost.org/SciPostPhys.16.1.006


SciPost Phys. 16, 006 (2024)

Multiplying the charges by Ru as dictated by integrability and taking the derivatives with re-
spect to u/Ru, we find the Witt algebra of the rescaled generators.22

The algebra of two right-moving generators works in an exactly analogous way. In order
to obtain the mixed commutator, we repeat the previous computation for one “left” and one
“right” vector field. The periodic-periodic charge difference is

δχ̄(p)Qξ(p) =
µL(0)L̄(0)

(1−µ2L(0)L̄(0))2

�

− 2(1+µL(0))
∮

dσ ḡ ′
�

∫ u(0)

f ′h′ − u(0)
∮

dσ f ′h′

2πR

�

+ f0(1+µL(0))
∮

dσ ḡ ′h̄+ (1+µL̄(0))
∮

dσ( ḡ0 − 2 ḡ) f ′h′ − 2(1+µL(0))
∮

dσ f ′h′

2πR

∮

dσ ḡ ′u(0)
�

.

(B.23)

After integrating by parts the first term and recognizing the windings, we are left with

δχ̄(p)Qξ(p) = 2πR
w f̄ ḡ0L̄(0)(1+µL(0))−wg f0L(0)(1+µL̄(0))

2(1−µ2L(0)L̄(0))
+w f̄ L̄

(0) r
2
v

ru

∮

dσu(0) ḡ ′ .

(B.24)

Next, we computed the charge difference

δχ̄(w)Qξ(p) = wg
1+µL̄(0)

1−µ2L(0)L̄(0)
L(0)2πRf0 . (B.25)

The last contribution to the charge difference is given by

δχ̄(p)Qξ(w) = −w f̄ L̄
(0)rv

∮

dσv(0) ḡ ′ . (B.26)

Adding to it the last term in (B.24) and splitting the field-dependent coordinates into a part
proportional to σ and one proportional to t, we see that the terms proportional to σ cancel
among themselves. The ones proportional to t do not contribute either since

w f̄ L̄
(0)r2

v

∮

dσ ḡ ′
�

u(0)

ru
−

v(0)

rv

�

= w f̄ L̄
(0)r2

v
2(1−µ2L(0)L̄(0))

(1+µL(0))(1+µL̄(0))
t

∮

dσ ḡ ′ = 0 . (B.27)

The remaining terms in (B.24) and (B.25) give

δχ̄Qξ =
1
2

2πR(wg f0ruL(0) +w f̄ g0rvL̄(0)) = wgQ(0)f −w f̄ Q̄(0)ḡ , (B.28)

which is the double-trace result linearized around constant backgrounds.
In order to see all the non-linear terms of the T T̄ algebra, one needs to expand the final re-

sults up to O(ε2). Such terms are proportional to the windings, which are at least O(ε), so one
can naïvely expect to obtain them from the vector fields expanded up to O(ε) only. However,
this is not true, as one can see from the expansion (B.7), which is valid for the full functions
f , f̄ and not only their periodic parts. Particularizing the functions to f = w f u(0), f̄ = w f̄ v(0),
we obtain an O(ε2) periodic contribution to the vector fields, which depends on the windings
up to O(ε) and enters in the non-linear charge algebra. Thus, we conclude that without the
knowledge of the vector fields up to O(ε2), we cannot obtain all the non-linear terms in the
charge algebra.

22Our analysis can no longer see the central charge because we have set the responsible terms to zero in the
asymptotic diffeomorphisms (B.3) used in this appendix.
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B.3 Comments on the representation theorem

As discussed at the end of the previous appendix, the representation theorem in its most gen-
eral currently known form [49,50]

δχQξ =Q[ξ,χ]∗ , (B.29)

where [ξ,χ]∗ is the modified Lie bracket (96) of the two vector fields, may not hold for the
spacetimes dual to double-trace T T̄ - deformed CFTs. Given the similarities between the
asymptotic symmetries of these spacetimes and those of asymptotically linear dilaton back-
grounds, one may worry that the representation theorem could be violated in the latter case,
which may in turn invalidate our use of this theorem in section (4.2) to fix the allowed diffeo-
morphisms upon the perturbed backgrounds. In this appendix, we show that the representa-
tion theorem does hold perturbatively to leading order in the spacetimes dual to double-trace
T T̄ - deformed CFTs, which is sufficient for the purposes of this article.

More precisely, at O(1) the winding terms vanisgh and the vector fields are given only by
periodic functions. Thus, the problem with the representation theorem due to winding terms is
not present at this order. In this section, we show that standard modified Lie bracket is almost
enough for the theorem to hold for the “unrescaled” vector fields; an additional modification,
as imposed by integrability of charges, is required for the closure of the algebra. In the case of
the “rescaled” vector fields, which lead to a Virasoro × Virasoro charge algebra, the represen-
tation theorem is automatically satisfied. In both cases, for the computation of the modified
Lie bracket, it is essential to take into consideration the origin of the terms appearing in the
vector fields, which can only be inferred from knowledge of the full non-linear expressions in
double-trace T T̄ - deformed CFTs.

Representation theorem at O(1) for the “unrescaled” generators

We compute the modified Lie bracket of vector fields at O(1). We restrict to left vector fields
by setting all functions of v to zero. Even though we set to zero the radial component of the
vector fields and we drop the terms proportional to ℓ/(8πG) as explained, we write also the
full result at the end of the computation.

For two vector fields of the form

ξ f = f ∂U +µ[

∫ u(0)

L(0) f ′]��zm∂V = f ∂U +µL(0)( f − f0)∂V , (B.30)

the Lie bracket is given by

[ξ f ,ξg]L.B. =
�

1+µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
( f g ′ − g f ′) +

µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
(g0 f ′ − f0 g ′)
�

(∂U +µL(0)∂V ) .

(B.31)

The standard modification of the Lie bracket, taking into account the field-dependence in the
vector fields, is given by (96):

δgξ f = f ′δgu(0)(∂U +µL(0)∂V ) + 2µL(0)
∫ u(0)

g ′ f ′∂V . (B.32)

The last term, which comes from the intrinsic variation of the parameter in the integral

[
∫ u(0)
δgL

(0)
int f ′]��zm, is symmetric under f ↔ g, so it will drop out from the modified Lie bracket:

[ξ f ,ξg]∗ = [ξ f ,ξg]L.B.− (δ f ξg −δgξ f ) = [ξ f ,ξg]L.B.+( f
′δgu(0)− g ′δ f u(0))(∂U +µL(0)∂V ) .

(B.33)
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We can already predict, before plugging in the expression for δgu(0), that the algebra does not
close with this standard modified Lie bracket, because the U and V components of the resulting
vector field are proportional. This is not the case for our O(1) vector fields, for which the V
component differs by a subtraction of the zero mode. Let us see that indeed this zero mode is
not zero, preventing the algebra to close.

For constants backgrounds, δg cu = −
µ2L(0)L̄(0)

1−µ2L(0) L̄(0) g0, which implies:

δgu(0) =
2µ2L(0)L̄(0)

1−µ2L(0) L̄(0)
(g − g0) . (B.34)

Plugging in this expression, we find:

[ξ f ,ξg]∗ =
��

f +
µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
f0

�

g ′ −
�

g +
µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
g0

�

f ′
�

(∂U +µL(0)∂V ) .

(B.35)

We can see now that the zero mode of the V component, as computed from the Lie bracket
and its standard modification, is µL(0)( f g ′ − g f ′)zm ̸= 0. For charge integrability, we need to
remove this zero mode, by a supplementary modification of the Lie bracket:

[ξ f ,ξg]∗∗ = [ξ f ,ξg]∗ − ([ξ f ,ξg]
V
∗ )zm∂V . (B.36)

With this modification, the algebra closes:

[ξ f ,ξg]∗∗ = [( f −δ f cu)g
′ − (g −δg cu) f

′](∂U +µL(0)∂V )

−µL(0)(( f −δ f cu)g
′ − (g −δg cu) f

′)zm∂V ,

= ξ( f −δ f cu)g ′−(g−δg cu) f ′ = ξ f g ′−g f ′ +δg cuξ f ′ −δ f cuξg ′ . (B.37)

Mapping the vector fields to charges, this corresponds to:

{Q f ,Qg}(0) =Q(0)f g ′−g f ′ +δg cuQ(0)f ′ −δ f cuQ(0)g ′ . (B.38)

Since on constants backgrounds Q(0)f ′,g ′ = 0, we are left with the correct result at O(1):

{Q f ,Qg}(0) =Q(0)f g ′−g f ′ . (B.39)

We checked that including the radial components and the terms proportional to ℓ/(8πG), we
obtain:

[ξ f ,ξg]∗ = ξ( f −δ f cu)g ′−(g−δg cu) f ′ +µ
�

L(0)(( f −δ f cu)g
′ − (g −δg cu) f

′)−
ℓ

16πG
( f ′′g ′ − g ′′ f ′)
�

zm
∂V .

(B.40)
Hence, all the terms group to give the full vector field we obtained before in the partial com-
putation, and the only modification is an extra “central charge” contribution to the zero mode
of the V component that we need to extract by hand. The final result after the modification is:

[ξ f ,ξg]∗∗ = ξ( f −δ f cu)g ′−(g−δg cu) f ′ , (B.41)

leading to the correct charge algebra, up to the central extension that the algebra of vector
fields cannot see.

Let us now notice that a naive computation, without taking into consideration the fact that

µL(0)( f − f0) comes actually from µ[
∫ u(0) L(0) f ′]��zm leads to a wrong result, that needs extra

modifications of the Lie bracket:

δgξ f = f ′δgu(0)(∂U +µL(0)) +µ(δgL
(0)
int f −δg(L(0) f0))∂V = f ′δgu(0)(∂U +µL(0))

+µ(2L(0)g ′ f −δg(L(0) f0))∂V . (B.42)
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Hence, the modified Lie bracket would give:

[ξ f ,ξg]∗ =
��

f +
µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
f0

�

g ′ −
�

g +
µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
g0

�

f ′
�

(∂U +µL(0)∂V )

+µ
�

2L(0)( f g ′ − g f ′) +δ f (L(0)g0)−δg(L(0) f0)
�

∂V . (B.43)

For closure of the algebra, we need the result to be of the form:

F(∂U +µL(0)∂V )−µL(0)Fzm∂V , (B.44)

for some periodic function F(u(0)). The last term needs to be constant, which is not the
case for our last term in (B.43), since δ f (L(0)g0) − δg(L(0) f0) is constant and f g ′ − g f ′

is not. Thus, the algebra obtained from this naive modification of the Lie bracket does
not close and we need to modify it further by extracting the nonconstant piece. The natu-

ral explanation for this modification is that µL(0)( f − f0) comes from µ[
∫ u(0) L(0) f ′]��zm and

µ[
∫ u(0)

δgL
(0)
int f ′]��zm −µ[
∫ u(0)

δ f L
(0)
int g ′]��zm = 0, so that extra piece should not have been there

in the first place.

Representation theorem at O(1) for the “rescaled” generators

For the generators that lead to the Virasoro algebra, the representation theorem is satisfied
at O(1) with the standard modified Lie bracket. Again, we will write explicitly the partial
computation with radial component and terms proportional to ℓ/(8πG) to 0 and state the full
result in the end. Let us remember that in this case

cL f
= −L(0) f0 = −

Q(0)f

πRu
. (B.45)

Since windings are 0, δRu = 0, so we can ignore the rescaling by the radius at this order
because it will not lead to any extra terms, but just to an overall multiplication factor. Thus,
we start with the vector fields of the form:

ξ f = f ∂U +µ
�

[

∫ u(0)

L(0) f ′]��zm −L(0) f0
�

∂V = f ∂U +µL(0)( f − 2 f0) . (B.46)

However, writing the last term as in the rightmost equation might be misleading, because the
origin of the two zero modes is different and this affects how we take their variations. The Lie
bracket gives:

[ξ f ,ξg]L.B. =
�

1+µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
( f g ′ − g f ′) +

2µ2L(0)L̄(0)

1−µ2L(0)L̄(0)
(g0 f ′ − f0 g ′)
�

(∂U +µL(0)∂V ) .

(B.47)
Let us now compute the modification to the Lie bracket, as before:

δgξ f = f ′δgu(0)(∂U +µL(0)∂V ) +µ[

∫ u(0)

δgL
(0)
int f ′]��zm∂V −µδg(L(0) f0)∂V . (B.48)

The term with the primitive again drops out in the modified Lie bracket from antisymmetry.
The variation of the field-dependent coordinates is still (B.34). Hence we obtain

[ξ f ,ξg]∗ = ( f g ′ − g f ′)(∂U +µL(0)∂V )−µ(δg(L(0) f0)−δ f (L(0)g0))∂V

= ( f g ′ − g f ′)(∂U +µL(0)∂V )−
µ

πRu
(δgQ(0)f −δ f Q(0)g )∂V . (B.49)
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We want to compare this modified Lie bracket with:

ξ f g ′−g f ′ = ( f g ′ − g f ′)(∂U +µL(0)∂V )−µL(0)( f g ′ − g f ′)zm +µcL f g′−g f ′

= ( f g ′ − g f ′)(∂U +µL(0)∂V )− 2
µ

πRu
Q(0)f g ′−g f ′ . (B.50)

We see that the two results agree if δgQ(0)f − δ f Q(0)g = 2Q(0)f g ′−g f ′ , which is in agreement with
the charge algebra, from which we dropped the central charge:

δgQ(0)f =Q(0)f g ′−g f ′ . (B.51)

With this condition satisfied by the constant terms, we see that we obtain precisely
[ξ f ,ξg]∗ = ξ f g ′−g f ′ . Taking into account the overall multiplication by Ru and considering
the derivatives with respect to u/Ru, we obtain:

[Ruξ f , Ruξg]∗ = Ruξ f g ′−g f ′ , (B.52)

which leads to the correct charge algebra.
Finally, we performed the same computation for the full O(1) vector fields. The result

(B.52) is still valid, now for full vector fields, while the constraint on the constants receives an
extra term

δgQ(0)f =Q(0)f g ′−g f ′ −
ℓ

16πG

∮

du(0) f g ′′′ , (B.53)

which is exactly the full charge algebra at O(1), including the central charge. With the con-
straint being automatically satisfied, we conclude that at least to this order, the algebra of
vector fields closes with the standard modified Lie bracket.
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