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Abstract

We calculate the quantum Fisher information for a generic many-body fermionic system
in a pure state depending on a parameter. We discuss the situations where the parameter
is imprinted in the basis states, in the state coefficients, or both. In the case where the
parameter dependence of coefficients results from a Hamiltonian evolution, we derive a
particularly simple expression for the quantum Fisher information. We apply our find-
ings to the quantum Hall effect, and evaluate the quantum Fisher information associated
with the optimal measurement of the magnetic field for a system in the ground state of
the effective Hamiltonian. The occupation of electron states with high momentum en-
forced by the Pauli principle leads to a “super-Heisenberg” scaling of the sensitivity with
a power law that depends on the geometry of the sensor.
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1 Introduction

The Hall effect offers a precise and economic way of measuring magnetic fields with small,
integrated sensors. Typical commercially available Hall sensors based on silicon have sensi-
tivities of about 100 nT/Hz1/2 [1]. Graphene-based ones are projected to achieve sensitivities
normalized to the width w (Bminw) of 4 pT·mm/

p
Hz at room temperature [2]. The quantum

Hall effect, reached at very strong magnetic fields and low temperatures, has also become a
cornerstone of metrology, allowing a measurement of the von Klitzing constant RK = h/e2 to
10 digits precision [3].

In the present work we do not investigate the precision with which one can access RK ,
but assess the ultimate sensitivity of magnetic field sensors based on the quantum Hall effect.
This ultimate sensitivity is only bound by quantum noise and thermal noise of the sensor, and
should be attainable once all the technical noises, such as electrical noise in the amplifiers and
wires, vibrations, fluctuating charges in the materials etc. have been removed. A powerful
formalism for calculating this ultimate sensitivity is provided by the quantum Cramér-Rao
bound (QCRB) [4–6], expressed in terms of the quantum Fisher information (QFI), which
leads to an important ultimate benchmark of the sensitivity.

Motivated by the Hall effect application, we first investigate here more generally quantum
parameter estimation with a system consisting of a large number of indistinguishable fermions
(typically electrons). Such a system is most concisely described by fermionic quantum field
theory, which we will briefly review in the following for setting up the notations used. We
will consider quantum states written in a basis of many-particle states. These basis states are
obtained by “creating” fermions in single-particle states, chosen here as eigenstates of some
single-particle Hamiltonian. We will consider three different ways by which a parameter de-
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pendence can be imprinted on such a state: via a parameter-dependent evolution Hamiltonian,
via parameter-dependent fermionic many-particle basis states, or via a Bogoliubov transfor-
mation. Note that many other possibilities exist to imprint a parameter on a state, see [7].
In all three cases mentioned above, a parameter-independent initial state will be transformed
into a parameter-dependent state via a parameter-dependent unitary transformation. Let us
now discuss these three ways in turn.

i.) Time evolution generated by a Hamiltonian that depends on a parameter is the stan-
dard situation in most single-particle or single-mode applications of quantum metrology, where
one typically considers a fixed (parameter-independent) basis and initial states, and time-
dependent and parameter-dependent amplitudes for those. Both dependencies of the ampli-
tudes arise from propagation with the Hamiltonian.

ii.) The parameter dependence may be imprinted in the many-particle basis states them-
selves. Indeed, as these are anti-symmetrized linear combinations of single-particle energy
eigenstates, a change of the single-particle Hamiltonian can modify its eigenbasis, so that
even without time evolution the state of the system can contain information about the value
of the parameter. For a specific example, consider a single particle in a harmonic trap. As-
sume the particle is in the ground state of the oscillator, and the parameter we are interested
in is the frequency of the trap. Through the oscillator length the ground-state wave function
clearly depends on the frequency. Increasing the frequency squeezes the ground-state wave
function in position space. Hence, even without time-evolution, one can measure, at least in
principle, the frequency of the harmonic oscillator (see [8] for details). In quantum optics,
the quantum fluctuations of the vacuum state (i.e. without any photons present) have indeed
been measured directly [9], and it is clear that they depend on the frequency considered.

An underlying physical assumption of this reasoning is that the system is always in the ac-
tual parameter-dependent ground state (or any other state specified through a given number of
excitations of a single-particle Hamiltonian or linear combinations thereof) when the param-
eter is changed. A change of the parameter must therefore happen adiabatically. However,
according to the formalism of the quantum Cramér-Rao bound, only infinitesimal changes
of the parameter need to be considered for determining the best sensitivity with which the
parameter can be estimated, and hence adiabatic changes over infinitesimal changes of the
parameter suffice to justify the model. We will therefore assume that the system indeed tracks
the parameter-dependent many-particle states over infinitesimal changes of the parameter.
This is a common assumption in the literature, see e.g. [10] and works citing it, where the QFI
was calculated for a many-body ground state driven across a phase transition.

iii.) In the more general situation encountered in quantum field theory the number of par-
ticles need not be conserved, which creates an additional freedom for encoding parameters
compared to single-particle quantum mechanics. Indeed, the most general linear transforma-
tions of the creation and annihilation operators that preserve their fermionic anti-commutation
relations are Bogoliubov transformations. We will therefore consider Bogoliubov transforma-
tions as a third way of coding parameters in a state. In the most general situation, Bogoliubov
transformations allow to mix excitations with creation of holes, which opens the way to a new
kind of quantum parameter estimation not possible with single-particle basis change. We will
first discuss this general case and derive very general expressions for the QFI. We will then
consider the special case where the particle number is conserved, that is, when Bogoliubov
transformations mix creation operators with creation operators only and annihilation opera-
tors with annihilation operators only. This corresponds to changing the single-particle basis
states. This case will be relevant to application of our results to the quantum Hall effect.

Bogoliubov transformations for quantum parameter-estimation have been considered be-
fore in bosonic field theories [11]. Analytical results were obtained for the estimation of small
parameters in terms of Bogoliubov coefficients for single-mode and two-mode Gaussian chan-
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nels. The QFI for specific two-mode bosonic Gaussian states was also found in [12]. In [13]
an exact expression for the QFI of an arbitrary two-mode bosonic Gaussian state was obtained.
Carollo and co-workers calculated the symmetric logarithmic derivative of general Gaussian
fermionic states [14]. In [15] a proper definition of entanglement in fermionic systems and its
connection to the sensitivity of quantum metrology schemes based on them was investigated.

Here, we investigate quantum-parameter estimation for arbitrary pure states of indistin-
guishable fermions, and include all three ways of encoding a parameter described above. Per-
forming a time evolution, a basis change or a Bogoliubov transformation amounts to applying
a unitary operator to the initial quantum state. In Section 3 we calculate the QFI in the case
where an initial parameter-independent state is subjected to a parameter-dependent unitary
transformation. We then derive a chain rule for the QFI in the case of two successive unitary
transformations, which allows us to identify the contribution from each of them as well as their
mutual influence. In Section 4 we calculate the QFI for Bogoliubov transformations (whose
formalism is reviewed in Section 2). Section 5 is dedicated to applying this formalism to the
quantum Hall effect.

2 Fermionic quantum field theories and Bogoliubov transforma-
tions

The present section introduces some notation in Subsection 2.1 and recalls the Bogoliubov
formalism in Subsections 2.2, 2.3 and 2.4. The reader familiar with this formalism can skip
these latter subsections and go directly to Section 3.

2.1 Fermionic basis states

The most general pure state of indistinguishable fermions in M single-particle modes can be
written in the form

|ψ〉=
∑

n

ψn |n〉c , (1)

where the sum runs over all M -tuples n = (n0, n1, . . . , nM−1) with nk ∈ {0,1}, and

|n〉c = (c
†
0)

n0(c†
1)

n1 ...(c†
M−1)

nM−1 |vac〉c , (2)

which by convention we abbreviate to
∏M−1

k=0 (c
†
k)

nk |vac〉c , is the state of nk particles in mode k
for k = 0, . . . , M −1. Here, the states |n〉c are the N -particle states |n0〉c⊗|n1〉c⊗· · ·⊗ |nM−1〉c ,
or equivalently |n0, n1, . . . , nM−1〉c , with N =

∑

k nk, and |nk〉c are eigenstates of a single-
particle Hamiltonian, with k = 0, 1,2, . . .. The operator c†

k creates a fermion in mode k out of
the vacuum |vac〉c . The vacuum state |vac〉c of particles c is defined as the state that satisfies
ck |vac〉c = 0 ∀k = 0, . . . , M − 1, i.e. it is a state that contains no particles of type c.

The set of all 2M states |n〉c , with n running over all M -tuples of 0 and 1, forms a basis of
Fock space, and ψn in (1) are the (complex) coefficients of |ψ〉 in that basis. We will consider
|ψ〉 to depend on a parameter ω that we want to estimate. In the most general situation the
parameter dependence can arise both from the ψn and from the basis states |n〉c . Note that
for energies much smaller than the rest masses of the fermions, superpositions containing a
different number of particles are forbidden by the particle-number superselection rule. States
of the form (1) are nevertheless considered for example in BCS theory of superconductivity
[16], where particle number conservation is enforced only on average (and to a very good
precision, for a large number of particles). Of course, by an appropriate choice of the ψn , one
can restrict |ψ〉 to a state with a fixed number of particles.
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2.2 Bogoliubov transformations

We consider the situation where the ck arise from a parameter-dependent Bogoliubov trans-
formation from parameter-independent creation and annihilation operators a†

k and ak. Bo-
goliubov transformations are the most general linear transformations that preserve canonical
anticommutation relations. They take the general form

c†
i = a†

j U ji + a jVji ,

ci = a jU
∗
ji + a†

j V
∗
ji (3)

(with Einstein summation convention), where U ji , Vji are parameter-dependent complex num-
bers. The preservation of the anticommutation relations {c†

i , c j} = {a
†
i , a j} = δi j implies the

condition U†U + V †V = IdM , while {ci , c j} = {ai , a j} = 0 gives U t V + V t U = 0, where V t

denotes the transpose of V , and IdM the M ×M -dimensional identity matrix. When arranged
as a matrix W with

W =

�

U V ∗

V U∗

�

, (4)

the two above conditions on U and V can be equivalently expressed as W †W = Id2M ,
so that W is unitary. Following [17] we introduce the compact vector notation
α=(a†, a)≡(a†

0, . . . a†
M−1, a0, . . . aM−1), and correspondingly γ=(c†, c)≡(c†

0, . . . c†
M−1, c0, . . . cM−1).

We shall denote by α† the column vector (a0, . . . aM−1, a†
0, . . . a†

M−1)
T . The Bogoliubov trans-

formation (3) can then be written simply as γ= αW .
Let S be the 2M × 2M matrix defined from W by the relation

W = exp(iSΞ) , (5)

with

Ξ=

�

0 IdM
IdM 0

�

. (6)

Because of (5) and the definition (4), the matrix S has the block form

S =

�

S(2) S(1)

−S(1)∗ −S(2)∗

�

, (7)

where S(1) and S(2) are (in general complex) M ×M matrices, with S(1) = S(1)† Hermitian and
S(2) = −S(2)t antisymmetric. The matrix S is not Hermitian in general, but it satisfies S t = −S,
and hence S† = −S∗. We define the operators

Ŝ(α) =
1
2
αSαt , (8)

T̂ (α) = exp(iŜ(α)) . (9)

Since αt = Ξα† (where the † conjugates the annihilation and creation operators and trans-
forms the row vector into a column vector), Ŝ(α) can be written in the alternative form
Ŝ(α) = 1

2αSΞα†. The operator T̂ (α) satisfies the identity

T̂ (α)αT̂ (α)† = αW = γ . (10)
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2.3 Relation between bases

To the vacuum state |vac〉c for particles of type c corresponds a vacuum state |vac〉a for particles
of type a. It is defined by ak |vac〉a = 0 ∀k = 0, . . . , M − 1. In general, the two vacua are
different, |vac〉c ̸= |vac〉a, as is obvious from the fact that whenever Vji ̸= 0 in Eq. (3), the
operator ci creates a particle of type a. The two vacua are related via

|vac〉c = T̂ (α) |vac〉a , (11)

as can be readily seen by noting that Eqs. (10) and (11) imply

ck |vac〉c = T̂ (α)ak T̂ †(α)T̂ (α) |vac〉a = T̂ (α)ak |vac〉a = 0 (12)

(see e.g. [17]). Only in the case where V = 0 (i.e. the Bogoliubov transformation does not
mix creation operators with annihilation operators) does one have, up to possibly a phase,
|vac〉c = |vac〉a. Equation (11) generalizes to an arbitrary state: one has for a Fock state

|n〉c =
M−1
∏

k=0

(c†
k)

nk |vac〉c

=
M−1
∏

k=0

�

T̂ (α)(a†
k)

nk T̂ (α)†
�

T̂ (α) |vac〉a

= T̂ (α)
M−1
∏

k=0

(a†
k)

nk |vac〉a

= T̂ (α) |n〉a , (13)

and by linearity for an arbitrary pure state

|ψ〉=
∑

n

ψn |n〉c = T̂ (α)
∑

n

ψn |n〉a . (14)

2.4 One-particle overlaps

We now calculate the overlap between one-particle states in terms of the Bogoliubov parame-
ters. Let R be the M ×M matrix defined as

Rkl = a 〈k|l〉c , (15)

where |k〉c is the state with one particle in mode k, i.e. the state |n〉c with ni=δik, 0≤ i≤M−1.
Using the expression of γi given by Eq. (10), we have for i, j ∈ {1, . . . , 2M}

a 〈vac|α j γi |vac〉c = a 〈vac|α j αk |vac〉c Wki (16)

(again with implicit summation). Since by definition a j |vac〉a = |0〉 and ci |vac〉c = |0〉, the
left-hand side of (16) has the block structure

�

0 0
R 0

�

. (17)

On the right-hand side of (16) the term a 〈vac|α j αk |vac〉c has the block structure

�

0 0
P Q

�

. (18)
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Using the block structure (4) of W , Eq. (16) readily gives

PU +QV = R , (19)

PV ∗ +QU∗ = 0 . (20)

Matrices P and Q can be calculated by using the following canonical decomposition for the
operators T̂ (α) [17]:

T̂ (α) = |U†|1/2e Ẑ eŶ eX̂ , (21)

where

X̂ =
1
2

∑

i, j

X i jaia j , X = U∗−1V , (22)

Ŷ =
1
2

∑

i, j

Yi ja
†
i a j , e−Y = U† , (23)

Ẑ =
1
2

∑

i, j

Zi ja
†
i a†

j , Z = V ∗U∗−1 , (24)

and |.| denotes the determinant (recall that in general U is not a unitary matrix). While op-
erators X̂ and Ŷ contain annihilation operators, Ẑ only contains creation operators. Thus
|vac〉c = T̂ (α) |vac〉a = |U†|1/2e Ẑ |vac〉a and the overlap between vacua reads

a 〈vac|vac〉c = |U†|1/2 . (25)

Matrix P is readily obtained as

Pk j = a 〈vac| ak a†
j |vac〉c = |U†|1/2δk j . (26)

Using the identity [18]
�

ak, e Ẑ
�

=
∑

l

Zkl a
†
l e Ẑ (27)

(which can be shown by induction), we get

a 〈vac| anake Ẑ |vac〉a = a 〈vac| an

�

ak, e Ẑ
�

|vac〉a

=
∑

l
a 〈vac| ana†

l e Ẑ |vac〉a Zkl

= a 〈vac| e Ẑ |vac〉a Zkn

= −Znk (28)

(the relation U t V + V t U = 0 implies Z t = −Z). Therefore,

Qnk = a 〈vac| anak |vac〉c = −Znk|U†|1/2 . (29)

When we replace P and Q by their above expression in Eq. (20), we get V ∗ − ZU∗ = 0, which
is in fact a direct consequence of the definition of Z . Doing the same in Eq. (19) we get
|U†|1/2(U − ZV ) = R. Using (24), this gives

R= |U†|1/2
�

U − V ∗U∗−1V
�

. (30)

We recognize the Schur complement of the block U∗ in matrix W , which appears in the ex-
pression for the inverse of the block matrix W . Since W is unitary, Eq. (30) reduces to

R= |U†|1/2 U†−1 . (31)

If the Bogoliubov transformation is such that V = 0, then the relation U†U+V †V = IdM implies
that U is unitary. From Eq. (31) we then have U = R, so that for this particular Bogoliubov
transformation U is simply the matrix of one-particle overlaps. In other words, the Bogoliubov
transformation between two single-particle bases can be obtained by taking U = R and V = 0.
This is the situation we encounter in section 4.1.4 below.
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3 Quantum Cramér-Rao bound and quantum Fisher information
in fermionic quantum field theories

3.1 Quantum Cramér-Rao bound

Let |ψω〉 be a quantum state which depends on a parameter ω. More generally, consider
a density matrix ρ(ω) that describes a parameter-dependent mixed state. One would like
to know how precisely one can estimate ω based on the measurement of some observables.
This will depend in general, of course, on a lot of things, starting with the measurements
chosen, the precision of the measurement devices used, the noisiness of the environment, the
number of measurements, the statistics of the data obtained, and how the data are analyzed.
However, with the quantum Cramér-Rao bound (QCRB) [4–6], a very powerful theoretical
tool is available that allows one to calculate the smallest possible uncertainty of any unbiased
estimate of ω, no matter what positive-operator-valued measure (POVM) measurements are
performed, and what estimator functions are used to analyze the data, as long as they are
unbiased estimator functions based on the measurement results alone. Suppose we want to
estimate a parameter ω by measuring Me times a quantity X (e.g. a POVM) whose statistics
of outcomes P(X = x |ω) depends on ω. An estimator ω̂(x1, . . . , xMe

) is any function that
maps the Me measurement results x1, . . . , xMe

to an estimate of the parameter ω. It is called
unbiased if the average of ω̂ for the probability distribution P(X = x |ω) is 〈ω̂〉 = ω locally.
With such an estimate at hand, measurement of X allows one to access ω. However, since
the measurement results fluctuate in general due to the quantum nature of the state, so does
the estimator. Its smallest possible variance gives the optimal sensitivity with which one can
estimateω by measuring X . The QCRB provides a lower bound for the variance of ω̂. It reads

var(ω̂)≥
1

Me

1
I(ρ(ω),ω)

, (32)

where I is the quantum Fisher information, given by

I(ρ(ω),ω) = tr
�

ρ(ω)L2(ω)
�

, (33)

and the symmetric logarithmic derivative operator L(ω) is a linear operator defined through

∂ωρ(ω) =
1
2
(L(ω)ρ(ω) +ρ(ω)L(ω)) . (34)

The bound can be saturated in the limit of Me → ∞. The QFI can generically [19, 20] be
interpreted geometrically through the Bures distance between two states ρ(ω) and ρ(ω+δω)
that differ infinitesimally in the parameter. This gives an appealing physical interpretation to
the QCRB: the ultimate sensitivity with which a parameter coded in a quantum state can be
estimated is all the more large as the state depends strongly on the parameter.

3.2 General expressions for the quantum Fisher information

The QFI for systems with infinite-dimensional Hilbert space is in general difficult to calculate,
as it typically requires the diagonalization of the density matrix in order to determine the
logarithmic derivative or the calculation of the Bures distance. However, if the state is given
already in diagonalized form, closed expressions for the QFI can be found. The simplest case
in this category is that of a pure state |ψω〉. Its QFI can be shown to be [21]

I(|ψω〉 ,ω) = 4
�

〈ψ̇ω|ψ̇ω〉+ 〈ψ̇ω|ψω〉
2� , (35)
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where |ψ̇ω〉 ≡ ∂ω |ψω〉 (see Eq. (26) in [22]). Note that in the whole paper dots denote
derivatives with respect to the parameter ω. For a mixed state ρ(ω) given in its eigenbasis,
ρ(ω) =
∑

r pr(ω)|ψ(r)ω 〉〈ψ
(r)
ω |, where the |ψ(r)ω 〉 form an orthonormal basis, one has

I(ρ(ω),ω) =
∑

r

(∂ωpr)2

pr
+ 2
∑

n,m

(pn − pm)2

pn + pm

�

�〈ψ(n)ω | ψ̇
(m)
ω 〉
�

�

2
, (36)

where the sums are over all terms with non-vanishing denominators.
The form (35) can be equivalently expressed as

I(|ψω〉 ,ω) = 4 〈ψ̇ω| (1− |ψω〉〈ψω|) |ψ̇ω〉 . (37)

Under that form, the QFI can be directly related to the Fubini-Study metric. More generally,
the QFI has a simple geometric interpretation: it is related to the Bures distance between two
infinitesimally close states [23] via the identity [24]

I(ρ(ω),ω) = 4 lim
δω→0

dB (ρ(ω),ρ(ω+δω))
2

δω2
, (38)

with

dB(ρ,ρ′) =
�

2− 2 tr
Ç

ρ
1
2ρ′ρ

1
2

�
1
2

. (39)

3.3 QFI for a unitary transformation

3.3.1 General pure state

The most general pure states of a system described within quantum field theory are of the form
(1). Both the basis states |n〉c and the amplitudes ψn(ω) can depend on the parameter ω, so
that we have to deal with states of the form

|ψω〉=
∑

n

ψn(ω) |n〉ω . (40)

The reason for this is that the basis states |n〉ω are constructed as antisymmetrized linear
combinations of single-particle eigenstates that can depend on the parameter through the
single-particle Hamiltonian. For example, in the case of the quantum Hall effect that we will
consider in detail in section 5, the single-particle energy eigenstates correspond to Landau
levels that depend on the magnetic field (or equivalently the cyclotron frequency ω), i.e. they
are energy eigenstates of an harmonic oscillator with frequency ω, leading e.g. in position
representation to wavefunctions with a typical length scale given by the frequency-dependent
oscillator length.

As mentioned in the Introduction, a parameter can be imprinted on a quantum state via an
evolution Hamiltonian, via many-particle basis states even in the absence of a time evolution,
or via a Bogoliubov transformation. A parameter-independent initial state is transformed into
a parameter-dependent state via a parameter-dependent unitary transformation. In addition,
the propagation of a superposition of eigenstates leads to parameter-dependent phases of the
amplitudes. As we will show, the form (40) can be obtained from a parameter-independent
state by means of two consecutive unitary operators. We first consider the case where a single
unitary operator is applied. Of course, one could always combine these two unitaries into a
single one, but for some applications the decomposition into two unitaries is natural, as will
be illustrated in Sec. 4.2 below.
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3.3.2 A single unitary

Suppose the unitary transformation is of the form T̂ω = exp(iŜω), with Ŝω Hermitian, act-
ing on some parameter-independent reference state

�

�ψω0

�

, so that the state is of the form
|ψω〉 = T̂ω
�

�ψω0

�

. This situation arises for example by a time evolution driven by a Hamilto-
nian Ĥω that depends on the parameter ω (in which case Ŝω = −Ĥω t is also proportional to
time t). A simple calculation shows that the QFI (35) can be rewritten as

I (|ψω〉 ,ω) = 4var
�

H,
�

�ψω0

��

, with H = −i T̂ †
ω

˙̂Tω , (41)

where the operator H is Hermitian and

var(H, |ψ〉) = 〈ψ|H2 | ψ〉 − 〈ψ|H |ψ〉2 . (42)

3.3.3 Two unitaries and chain rule for the QFI

Let us now consider the case where the parameter is encoded in |ψω〉 by means of two con-
secutive unitaries depending on ω. Our aim is thus to calculate the QFI of a state of the form

|ψω〉= Ûω T̂ω
�

�ψω0

�

. (43)

In the same way as H in Eq. (41), we define U = −iÛ†
ω

˙̂Uω. From unitarity of Ûω and T̂ω we
have

H = −i T̂ †
ω

˙̂Tω = i ˙̂T †
ω T̂ω , H2 = ˙̂T †

ω
˙̂Tω , (44)

U = −iÛ†
ω

˙̂Uω = i ˙̂U†
ωÛω , U2 = ˙̂U†

ω
˙̂Uω , (45)

with H and U Hermitian. We introduce the state

|φω〉= T̂ω
�

�ψω0

�

, (46)

so that

|ψω〉= Ûω |φω〉 , (47)

|ψ̇ω〉=
˙̂Uω |φω〉+ Ûω |φ̇ω〉 , (48)

|φ̇ω〉=
˙̂Tω
�

�ψω0

�

. (49)

This yields the identities

〈φ̇ω|φ̇ω〉= 〈ψω0
|H2|ψω0

〉 , (50)

〈φ̇ω|φω〉= −i 〈ψω0
|H|ψω0

〉 . (51)

From Eq. (35) we then obtain

1
4

I(|ψω〉 ,ω) = var(H,
�

�ψω0

�

) + var(U , |φω〉) (52)

− 2 Im 〈φ̇ω|U |φω〉 − 2 〈φω|U |φω〉 〈ψω0
|H|ψω0

〉 .

Equation (52) provides a chain rule for the QFI associated with two unitary operators. If Ûω or
T̂ω is the identity operator, one gets back the expression (41) for a single operator. When two
unitaries are present, the variances sum up, but in addition there is a cross term that comes
from the variation of both Ûω and T̂ω with the parameter. Note that recently, a chain rule
for the QFI was derived in a different context, namely in a case where quantum evolution is
followed by a POVM that depends itself on the parameter [25].
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4 Some specific cases

4.1 QFI for Bogoliubov transformations

We now consider the situation where the parameter ω is encoded in |ψω〉 by means of a sin-
gle unitary transformation T̂ω(α) associated with a Bogoliubov transformation. The operator
T̂ω(α) is defined by Eqs. (4)–(9), with matrices W and S depending on a parameter ω. In the
language of section 3.3, particles of type c correspond to parameter value ω and particles of
type a to parameter value ω0.

This situation is a special case of section 3.3 where the operator Ŝω is quadratic in creation
and annihilation operators. The QFI is thus directly given by Eq. (41), where the Hermitian
operator H is H = −i T̂ω(α)†

˙̂Tω(α). Our aim is to reexpress the QFI in terms of the matrices
U and V defining the Bogoliubov transformation.

4.1.1 General case

Using Eq. (A.4) giving the derivative of an integral, we first rewrite H as [24,26]

H =
∫ 1

0

ds e−isŜω(α)
dŜω(α)

dω
eisŜω(α) (53)

=
1
2

Ṡi j

∫ 1

0

ds e−isŜω(α)αie
isŜω(α)e−isŜω(α)α je

isŜω(α)

(again with implicit summation over repeated indices). The term e−isŜω(α)αie
isŜω(α) can be

rewritten as T̂ω(α)−sαi T̂ω(α)s = (αe−isSΞ)i , yielding

H = 1
2

∫ 1

0

ds (αe−isSΞ)i Ṡi j(αe−isSΞ) j (54)

=
1
2
αl

∫ 1

0

ds (e−isSΞ)l i Ṡi j(e
−isSΞ)k jαk (55)

=
1
2
αl

∫ 1

0

ds (e−isSΞ)l i Ṡi j(e
isΞS) jkαk , (56)

where between (55) and (56) we have used (SΞ)t = −ΞS due to antisymmetry of S. The
operator H can thus be expressed as a quadratic form in the ai , a†

i as

H = 1
2
αΩ̃αt , (57)

with

Ω̃=

∫ 1

0

ds e−isSΞṠeisΞS . (58)

In Appendix A we give an alternative proof of (58) based on the commutation relations of Ŝ
and ˙̂S. The above equation gives the most general expression for the operator whose variance
gives the QFI. The remaining integral in Eq. (58) makes it uneasy to use. In order to make
some progress we now consider a natural additional hypothesis.
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4.1.2 Case [S,Ξ] = 0

The general result (57)–(58) can be further simplified if we make the additional assumption
that S and Ξ commute: The block structure (7) implies that [S,Ξ] = 0 if and only if S = −S∗,
that is, iS is a real matrix. In such a case, using (A.4), Eq. (58) gives

Ω̃Ξ=

∫ 1

0

ds e−isSΞṠΞeisSΞ = −iW †Ẇ , (59)

so that H becomes

H = 1
2
αΩα† , with Ω= −iW †Ẇ (60)

(we used the identity Ξαt = α† mentioned below Eq. (9)). Thus, in such a case where iS is
real, the matrix W that defines the Bogoliubov transformation, together with its derivative with
respect to the parameter ω, provide an expression for H as a quadratic form of the operators
a†

i , ai .
Below, we will be interested in the calculation of the QFI as a function of ω in the vicinity

of a fixed parameter ω0. We will therefore evaluate all quantities in the limit ω → ω0. In
this limit, the Bogoliubov transformation goes to the identity, so that we have U → IdM and
V → 0. The matrix Ẇ then involves derivatives of U and V with respect toω taken atω→ω0,
that we will denote U̇ and V̇ . Taking the derivative of the relations U†U + V †V = IdM and
U t V + V t U = 0M with respect to ω and then the limit ω → ω0 we get U̇ + U̇ t = 0 and
V̇ + V̇ t = 0; this can be shown by using the fact that since iS is real then W = exp(iSΞ) is, too
(with Ξ defined by Eq. (6)), and therefore also U and V . With this antisymmetry of U̇ and V̇
together with the fermionic anticommutation relations, Eq. (60) becomes

H = −i
∑

k<l

�

U̇kl a
†
kal − U̇kl a

†
l ak + V̇kl a

†
ka†

l + V̇kl akal

�

. (61)

4.1.3 Case U = R real and V = 0

From now on we will specialize to the case where the Bogoliubov transformation does not mix
creation and annihilation operators, i.e. V = 0, and the unitary transformation U is orthogonal.
This case is of great relevance, since it is precisely the framework in which we will derive
expressions in Section 5. Indeed, in the context of the quantum Hall effect the Bogoliubov
transformation is given by the matrix R of overlaps (C.1), whose entries are real. The fact
that these overlaps are real is a consequence of the structure of the Hall wavefunctions in the
Landau gauge, given by Eq. (101) below: the complex phase is a plane wave that does not
depend on the parameter ω, yielding a (real) delta function in the overlap.

In this case, W is real and one can always choose a matrix S in (5) such that iSΞ is real.
Hence iS is real, and as a consequence [S,Ξ] = 0. Equation (61) can thus be used, and it gives

H = −i
∑

k<l

Ṙkl(a
†
kal − a†

l ak) . (62)

4.1.4 QFI for a basis state

Let us consider the case where |ψω〉 is the parameter-dependent basis state |n〉ω = T̂ω |n〉ω0
.

Again we associate mode c with ω and mode a with ω0. According to (41), the QFI is given
by the variance I(|n〉ω ,ω) = 4var(H, |n〉ω0

).
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In the remainder of the paper we will only address the case where [S,Ξ] = 0, in which
case H is given by the expression (61). It only requires to calculate H |n〉a. We have

ak |n〉a = δnk ,1 (−1)
∑k−1

j=0 n j |nk〉a , (63)

a†
k |n〉a = δnk ,0 (−1)

∑k−1
j=0 n j |nk〉a , (64)

where |nk〉a is the state |n〉a with nk replaced by 1− nk (i.e. the kth “bit” in the binary string
n is flipped). This leads (for k < l) to

a†
kal |n〉a = δnk ,0δnl ,1 (−1)

∑l−1
j=k n j |nk,l 〉a , (65)

a†
l ak |n〉a = −δnk ,1δnl ,0 (−1)

∑l−1
j=k n j |nk,l 〉a , (66)

where in |nk,l 〉a bits k and l are flipped. Similarly we have (still for k < l)

a†
ka†

l |n〉a = δnk ,0δnl ,0 (−1)
∑l−1

j=k n j |nk,l 〉a , (67)

akal |n〉a = δnk ,1δnl ,1 (−1)
∑l−1

j=k n j |nk,l 〉a . (68)

Inserting these expressions into Eq. (61) leads to

H |n〉a = −i
∑

k<l

�

U̇klδnk ,0δnl ,1+U̇klδnk ,1δnl ,0+V̇klδnk ,0δnl ,0+V̇klδnk ,1δnl ,1

�

(−1)
∑l−1

j=k n j |nk,l 〉a ,

(69)
which can be shortened to

H |n〉a = −i
∑

k<l

(−1)
∑l−1

j=k n j D(|nk−nl |)
kl |nk,l 〉a , (70)

with D(0) = V̇ and D(1) = U̇ . Since each flipped state |nk,l 〉a is orthogonal to |n〉a, we have

a 〈n|H |n〉a = 0. The quadratic term in (42) is given by the square of the 2-norm of H |n〉a.
Since all terms in the sum (70) are orthogonal to each other, the QFI finally reads

I(|n〉ω ,ω) = 4
∑

k<l

|D(|nk−nl |)
kl |2 . (71)

In the case where U = R is real and V = 0, H is given by Eq. (62). Only D(1) = Ṙ contributes,
so that Eq. (71) reduces to

I(|n〉ω ,ω) = 4
∑

k<l
|nk−nl |=1

|Ṙkl |2 . (72)

This is the expression which we shall use in Section 5 in the context of the quantum Hall effect.
It is interesting to analyze Eq. (72) in the context of a finite-dimensional Hilbert space. The

sum in (72) is a sum over all pairs of occupied and unoccupied modes. For a finite-dimensional
Hilbert space of single-particle states where each state is occupied (e.g. an insulating band
in a solid), this sum vanishes. Indeed, as the corresponding Fock space is one-dimensional,
all parameter dependence through unitary transformations amongst the annihilators trivially
reduces to a phase, which cancels in the density matrix. Hence, the state is independent of
the parameter under such unitaries, as can be checked explicitly for N = 2, which is consistent
with the fact that the QFI is zero. This implies, of course, that ω cannot be measured at all,
but not that the variance of any unbiased estimator diverges. Rather, the conditions for the
QCRB break down: one cannot have an unbiased estimator in an ε-interval about the true
value ω if the state is independent of ω: 〈ω̂〉 =ω can only be true at a single point if the lhs
is independent of ω, not in a whole finite interval, even if it is arbitrarily small.
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4.2 QFI for a Bogoliubov transformation followed by a Hamiltonian evolution

In Section 3.3.3 we obtained the QFI associated with a state obtained by applying an operator
T̂ω followed by an operator Ûω. It is expressed via the chain rule (52). This expression takes
a much simpler form in the case where Ûω is the evolution operator associated with the ω-
dependent Hamiltonian

Ĥω =
∑

k

εk(ω)n̂k(ω) , (73)

describing a system of non-interacting fermions, and T̂ω is the Bogoliubov transformation that
changes the basis by mapping particles of type a (corresponding to parameter value ω0) to
particles of type c (corresponding to parameter value ω). In (73), εk(ω) are the parameter-
dependent single-particle energy eigenvalues, and n̂k are the occupation number operators.
We have, from Eq. (13), the identity

|n〉ω = T̂ω |n〉ω0
. (74)

Let the initial state be parameter-independent (or, equivalently, taken at a fixed value ω0
of the parameter). The evolution operator Ûω = exp(−iĤω t) is diagonal in the basis |n〉ω, so
that

|ψω(t)〉= Ûω T̂ω
�

�ψω0
(0)
�

= e−iĤω t
∑

n

ψn |n〉ω

=
∑

n

ψne−iEn(ω)t |n〉ω

=
∑

n

ψn(ω, t) |n〉ω , (75)

with ψn(ω, t) = ψne−iEn(ω)t and En(ω) =
∑

k εk(ω)nk the total energy of many-body basis
state |n〉ω. Thus one can go from

�

�ψω0
(0)
�

to a state of the form (40) with two unitaries, one
for the change of basis and the other for time evolution.

Our aim is to calculate the QFI of

|ψω〉=
∑

n

e−iEn(ω)tψn |n〉ω , (76)

where ψn are the coordinates of the initial state
�

�ψω0
(0)
�

in the basis |n〉ω0
and thus are

independent of ω. We introduce

|γω〉=
∑

n

�

−i Ėn(ω)t
�

e−iEn(ω)tψn |n〉ω , (77)

|χω〉=
∑

n

e−iEn(ω)tψn |ṅ〉ω , (78)

|ϕω〉=
∑

n

e−iEn(ω)tψn |n〉ω0
, (79)

so that |ψ̇ω〉= |γω〉+ |χω〉. In terms of |γω〉 and |χω〉, the QFI Eq. (35) reads

1
4

I(|ψω〉 ,ω) = 〈γω|γω〉+ 〈γω|ψω〉
2 + 〈χω|χω〉+ 〈χω|ψω〉

2

+ 〈γω|χω〉+ 〈χω|γω〉+ 2 〈γω|ψω〉 〈χω|ψω〉 . (80)

14

https://scipost.org
https://scipost.org/SciPostPhys.16.3.085


SciPost Phys. 16, 085 (2024)

One then readily gets from (77)

〈γω|γω〉+ 〈γω|ψω〉
2 =
∑

n

|ψn|2 Ė2
n t2 −
�

∑

n

|ψn|2 Ėn t

�2

. (81)

If we define the diagonal operator Ė =
∑

n Ėn |n〉〈n|ω0
, this gives

〈γω|γω〉+ 〈γω|ψω〉
2 = var(Ė t,ϕω) . (82)

Performing the derivative of Eq. (74) with respect to ω, we get

|ṅ〉ω =
˙̂Tω T̂ †

ω |n〉ω , (83)

and thus
|χω〉=

˙̂Tω T̂ †
ω |ψω〉=

˙̂Tω |ϕω〉 . (84)

This yields 〈χω|ψω〉= −i 〈ϕω|H|ϕω〉 and thus

〈χω|χω〉+ 〈χω|ψω〉
2 = var(H,ϕω) . (85)

Noting that
|ϕ̇ω〉=
∑

n

�

−i Ėn(ω)t
�

e−iEn(ω)tψn |n〉ω0
= T̂ †

ω |γω〉 , (86)

the last contribution in Eq. (80) involves the terms

〈γω|ψω〉= i
∑

n

|ψn|2 Ėn t ≡ i 〈Ė t〉ψω0
= i 〈Ė t〉ϕω , (87)

and 〈γω|χω〉, which from Eqs. (84) and (86) gives

〈γω|χω〉= i 〈ϕ̇ω|H|ϕω〉= −〈Ė t H〉ϕω . (88)

We obtain

〈γω|χω〉+ 〈χω|γω〉= −〈Ė t H〉ϕω − 〈H Ė t〉ϕω , (89)

〈γω|ψω〉 〈χω|ψω〉= 2 〈Ė t〉ϕω 〈H〉ϕω . (90)

Summing together all contribution in (80) we get

1
4

I(|ψω〉 ,ω) = var(Ė t,ϕω) + var(H,ϕω)− 〈Ė t H〉ϕω − 〈H Ė t〉ϕω + 2 〈Ė t〉ϕω 〈H〉ϕω
= 〈(Ė t −H)2〉ϕω − 〈Ė t −H〉2ϕω . (91)

We thus obtain the very compact expression

I(|ψω〉 ,ω) = 4var(Ė t −H,ϕω) , (92)

with Ė =
∑

n Ėn |n〉〈n|ω0
and

ω0
〈m|H |n〉ω0

= i ω0
〈m| ˙̂T †

ω T̂ω |n〉ω0
= i ω〈ṁ|n〉ω . (93)

Expression (92) generalizes well-known variance-based formulas [24]. At t = 0, state |ϕω〉
coincides with
�

�ψω0

�

and thus we recover the QFI for a single unitary, Eq. (41).
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4.3 QFI for a general state

We now put together the results from the previous two subsections and consider the case of a
superposition |ψω〉 =

∑

nψn(ω) |n〉ω of basis states. The QFI is given by Eq. (92), that is, by
the variance of Ė t −H in state |ϕω〉. That state is defined by (79), namely,

|ϕω〉=
∑

n

e−iEn(ω)tψn |n〉ω0
, (94)

in the basis of kets |n〉ω0
. Operator H corresponds to a Bogoliubov transformation and its

action on basis states |n〉a is given by Eq. (70). Since ω0 is the frequency for type-a particles,
we have

H |n〉ω0
= −i
∑

k<l

(−1)
∑l−1

j=k n j D(|nk−nl |)
kl |nk,l 〉ω0

. (95)

By linearity, Eqs. (94)–(95) directly give

H |ϕω〉= −i
∑

n

ψn(ω, t)
∑

k<l

(−1)
∑l−1

j=k n j D(|nk−nl |)
kl |nk,l 〉ω0

, (96)

with ψn(ω, t) = ψne−iEn(ω)t Permuting the two sums, we make the change from nk,l to n in
the sum over n. This does not change the term D(|nk−nl |)

kl , while flipping nk changes the overall
sign. This leads to

H |ϕω〉=
∑

n

hn(ω) |n〉ω0
,

hn(ω) = i
∑

k<l

(−1)
∑l−1

j=k n j D(|nk−nl |)
kl ψnk,l (ω, t) . (97)

The vectors H |ϕω〉 are now both expressed in the same basis |n〉ω0
, so that

�

Ė t −H
�

|ϕω〉=
∑

n

�

Ėn tψn(ω, t)− hn(ω)
�

|n〉ω0
. (98)

We therefore get

var(Ė t −H,ϕω) =
∑

n

�

�Ėn tψn(ω, t)− hn(ω)
�

�

2 −
�

∑

n

(Ėn t|ψn|2 −ψ∗n(ω, t)hn(ω))

�2

. (99)

For a single particle the calculation can be done more easily starting directly from (35). One
checks that in that case one gets (99) with n replaced by the index of the single particle states.

5 Application to quantum Hall effect

5.1 Single-particle quantum Hall physics

We now turn to an application of our results to quantum Hall physics. We consider a two-
dimensional system of size L along the x-axis and w along the y-axis, subjected to a perpen-
dicular constant magnetic field B along the z-axis. We choose the coordinate system such
that |y| ≤ w/2, 0 ≤ x ≤ L. We denote by A = Lw the area of the sample. The fre-
quency ω = eB/meff is the cyclotron frequency of charge carriers with effective mass meff,
lB =
p

ħh/(eB) =
p

ħh/(meffω) is the magnetic length, and at the same time the oscillator
length associated with frequency ω. We denote with nB = 1/(2πl2

B) = B/(h/e) the magnetic
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flux density (number of flux quanta Φ0 = h/e per unit area), and M = nBA is the total number
of flux quanta.

In the Landau gauge A = (−B y, 0, 0), one can make the Ansatz that the wave function
factorizes in x and y direction. Choosing periodic boundary conditions in the x-direction
results in plane waves in x with wave vector of the form km = m(2π/L). The effective total
Hamiltonian is then given by

H =
p2

y

2meff
+

1
2

meffω
2(y − ym)

2 , (100)

where ym = kml2
B is a shift of the oscillator in the y direction that depends on the quantum

number m of the quantization in x-direction. The kinetic energy of the plane wave is contained
in the y2

m term. As a consequence, m enters only through the shift ym in (100) of the origin of
the oscillator, and thus energy eigenvalues do not depend on m: Landau levels are degenerate.
The condition |ym| ≤ w/2 is equivalent to |m| ≤A/(4πl2

B) =Ameffω/(4πħh) = Φ/(2Φ0), which
for ω the cyclotron frequency amounts to |m| ≤ M/2. This is the well-known result that the
number M of states per Landau level (LL) n, and hence degeneracy of each energy eigenvalue
ħhωeffn, is given by the number of flux quanta through the surface. For simplicity we will
assume M to be odd, so that m takes the values m= −(M − 1)/2, . . . , 0, . . . (M − 1)/2.

The energy eigenstates |n, m〉ω can be labeled with the two quantum numbers n, m. They
are conveniently described in the chosen Landau gauge by the wave functions

〈x , y|n, m〉ω =
eikm x

p
L
χn,m

�

y − kml2
B

lB

�

, (101)

where

χn,m(η) =
Nn
p

lB
Hn(η)e

−η2/2 , (102)

is the usual harmonic-oscillator wave function in terms of the Hermite polynomial Hn(η), while

Nn =
1
p

2n
p
πn!

, (103)

is a normalization factor.

5.2 Wave function overlaps

In order to calculate the QFI using Eq. (72), we first need to obtain the derivative of the matrix
R of overlaps. We calculate the overlap between states |n, m〉ω0+δω, where the frequency differs
from ω0 by an infinitesimal amount δω, and states |n′, m′〉ω0

at some fixed frequency ω0. At
first order,

ω0
〈n′, m′|n, m〉ω0+δω ≃ δn,n′δm,m′ + ω0

〈n′, m′|∂ω0
|n, m〉ω0

δω . (104)

The calculation of the first-order term is detailed in Appendix B. We get the final expression

ω0
〈n′, m′|n, m〉ω0+δω ≃ δn,n′δm,m′ +

�

kmlBp
2ω0

�p
nδn′,n−1 −

p
n+ 1δn′,n+1

�

+
1

4ω0

�Æ

n(n− 1)δn′,n−2 −
Æ

(n+ 2)(n+ 1)δn′,n+2

�

�

δm′,mδω .

(105)
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An alternative way of deriving this quantity is to start from the Hutchisson formula [27] for
Rn′n = ω0




n′
�

�n
�

ω
, given by

Rn′n =
Æ

2−(n+n′)qn!n′!(−1)ne−
1
4γ

2p
min(n,n′)
∑

r=0

(−2q)r

r!

⌊(n−r)/2⌋
∑

s=0

(γp)n−r−2s

(n− r − 2s)!
x s

s!

×
⌊(n′−r)/2⌋
∑

t=0

(γq)n
′−r−2t

(n′ − r − 2t)!
(−x)t

t!
, (106)

with γ = km(l2
B(ω)− l2

B(ω0))/lB(ω), x = (ω−ω0)/(ω+ω0), q = 2(ωω0)1/2/(ω+ω0), and
p = 2ω0/(ω+ω0) (we took the formula of [27] with ν′ =ω0 and ν′′ =ω). This approach is
more cumbersome. As a check, we show in Appendix C that a first-order expansion of (106)
around ω=ω0 allows us to recover the result (105).

5.3 Gauge choice and occupation numbers

We now consider the basis state |n〉ω where N particles fill the lowest available energy levels.
The filling factor ν = N/M , with M the number of states per LL, determines how many

LLs are occupied. The largest integer smaller than ν is denoted by f . In an infinitely extended
sample without additional potentials (“ideal sample”), it determines the last fully occupied LL.
The last LL is occupied by only m̄ particles, with N = M f + m̄.

In an ideal sample all single-electron states with the same n are degenerate in energy, and
the larger the value of km the larger the sensitivity of these states to a change of magnetic
field. Indeed km determines how quickly the wavefunctions oscillate, and hence how sensitive
they are to a change of lB with B. Importantly, while the different values that km can take
are to a certain degree arbitrary in the ideal system of flat Landau levels in the absence of an
electrostatic potential, we consider in the following a smoothly varying confinement potential
that lifts the degeneracy at the different values of km. The absolute values of km therefore
matter for the QFI, as the QFI depends on the energy eigenstate considered.

As we have just mentioned, in a real sample, the degeneracy in energy is broken by the elec-
trostatic potential, which takes into account both smooth disorder and a possible confinement
potential. The order in which the LL states are occupied is nontrivial, and this can influence the
QFI. Here, we omit disorder and consider a smooth confinement potential. In a sensor based
on a two-dimensional electron gas (2DEG), confined electrostatically by metallic electrodes at
a substantial distance from the 2DEG, on the order of 100 nm, the confining potential varies
on a length scale typically much larger than lB for a magnetic field on the order of 1T . The
additional potential hardly modifies the electron wave functions in this case and hence just
leads to a shift of the energy eigenvalues corresponding to the value of the potential where
the energy eigenstate is localized. By symmetry, one can expect the minimum of the confining
potential to lie at the center of the sample, where it can be approximated by a slow-varying
potential. The shorter the sample in a given direction, the stronger a variation of the confining
potential in that direction, and hence, the larger the additional potential energy. This implies
that the lowest-energy single electron states to be populated are oscillator states extended in
the largest direction of the sample, where the potential energy due to the confining potential
grows more slowly. This situation is naturally taken care of in the Landau gauge: Ax = −B y
for w≫ L, but Ay = Bx for L ≫ w (with the other components of A equal zero). For w ≃ L,
a symmetric Landau gauge A = B(−y, x , 0) is most appropriate and leads to axial-symmetric
wave functions and conservation of angular momentum instead of linear momentum. But
since the additional potential is, for w= L, also symmetric under w↔ L, both Ax = −B y and
Ay = Bx should lead to the same result as the symmetric gauge in this case.
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In addition to this confining potential, there is typically also a disorder potential in a real
sample. Disorder arises from impurities or dopants that are in general relatively far from the
2DEG as well, and hence lead to a random potential that varies slowly over the sample. Energy
eigenstates are then localized at the minimum of this potential and filled in order of increasing
energy, like puddles. The quantum number m ceases to be a good quantum number and is
replaced by a quantum number that labels the position where the oscillator state corresponding
to the Landau levels are localized. This implies a QFI that varies randomly from sample to
sample, with a statistics that is, however, beyond the scope of the paper. In the following we
restrict ourselves to a clean sample with only a confining potential that breaks the degeneracy
in energy of the LLs.

5.4 Quantum Fisher information for the N-particle quantum Hall effect

We shall now focus on the case w ≫ L with Ax = −B y . The QFI is given by (72), which
involves a sum over all pairs of labels (k, l) with k < l, so that only labels such that the
occupation number differs by 1 contribute. If only the lowest levels are filled, the sum runs
over all pairs k < l such that level k is occupied and level l is empty. In the present context
of the quantum Hall effect, each label k has to be replaced by two quantum numbers (n, m);
the QFI is thus a sum over all pairs of contributions such that (n, m) is occupied and (n′, m′)
is empty. The summand is the derivative of the overlap between a level (n, m) and a level
(n′, m′), obtained from Eq. (105); it reads

Ṙn′,m′;n,m =

�

kmlB
�p

nδn′,n−1 −
p

n+ 1δn′,n+1

�

p
2ω0

+

p

n(n− 1)δn′,n−2 −
p

(n+ 2)(n+ 1)δn′,n+2

4ω0

�

δm′m . (107)

Recall from Sect. 5.1 that m = −M−1
2 , . . . , 0, . . . M−1

2 and N = M f + m̄. The fully filled LLs are
labelled n= 0, .., f −1, while the last LL n= f contains m̄ particles filling states

�

�n,−M−1
2 + i
�

with 0 ≤ i ≤ m̄− 1. From the δm′m in (107) only pairs with m = m′ contribute, therefore we
sum over pairs (n, m) and (n′, m) with n < n′ and with (n, m) occupied and (n′, m) empty. If
m= −M−1

2 + i with 0≤ i ≤ m̄− 1, the occupied states are n= 0, ..., f and the empty ones are
n′ ≥ f + 1. If m ≥ −M−1

2 + m̄, the occupied states are n = 0, ..., f − 1 and the empty ones are
n′ ≥ f . Thus, the QFI (72) can be expressed as

I(|n〉ω ,ω) = 4





m̄− M+1
2
∑

m=− M−1
2

f
∑

n=0

∞
∑

n′= f +1

+

M−1
2
∑

m=m̄− M−1
2

f −1
∑

n=0

∞
∑

n′= f



 |Ṙn′,m;n,m|2 . (108)

Note that from the delta function in (107) only pairs with m= m′ contribute. Only terms with
n < n′ contribute to the sum, so that only terms δn′,n+1 and δn′,n+2 survive. Equation (108)
reduces to

I(|n〉ω ,ω) = 4





m̄− M+1
2
∑

m=− M−1
2

f
∑

n=0

∞
∑

n′= f +1

+

M−1
2
∑

m=m̄− M−1
2

f −1
∑

n=0

∞
∑

n′= f





×
�

(kmlB)2(n+ 1)
2ω2

δn′,n+1 +
(n+ 2)(n+ 1)

16ω2
δn′,n+2

�

, (109)
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where we have set ω0 = ω. Only pairs n, n′ differing by 1 or 2 units contribute, thus (109)
becomes

I(|n〉ω ,ω) =
1
ω2





m̄−(M+1)/2
∑

m=−(M−1)/2

�

2(kmlB)
2( f + 1) +

1
2
( f + 1)2
�

+
(M−1)/2
∑

m=m̄−(M−1)/2

�

2(kmlB)
2 f +

1
2

f 2
�



 . (110)

Replacing km by its value 2πm/L, one can perform the sum over m. This leads to the final
expression

I(|n〉ω ,ω) =
1

6L2ω2

�

3L2(− f ( f + 1)M + 2 f N + N)

− 4π2l2
B

�

2 f ( f + 1)(2 f + 1)M3 + 6(2 f + 1)MN2

− 3N(2 f M +M)2 − 4N3 + N
�

�

. (111)

The first line is independent of L and the geometry of the sample. The remaining terms both
depend on B and L. Since ω and B are linearly related, error propagation leads to the same
relative minimal standard deviation of an unbiased estimator σ(B̂) of B as for ω. Together
with Eq. (32) we obtain

σ(B̂)≥
meff/e
p

Me I(|n〉ω ,ω)
, (112)

where Me is the number of independent measurements. A necessary condition for the
application of the formula is that the very description of the system in terms of har-
monic oscillators is adequate. This implies that the magnetic field must not be too weak,
i.e. lB ≪ w, which sets a lower bound on B for given w, B ≫ ħh/(ew2) with numerical values
B[T]≫ 6.58× 10−16/(w[m])2. Conversely, for given B the formula implies a minimal sensor
size of w > 25.7 nm/(

p

B[T]). Secondly, we recall that we assumed w≫ L. In the opposite
case, w and L should be exchanged. As explained above, symmetry under exchange of w and
L is not to be expected in a sensor where the confining potential breaks that symmetry.

The most interesting regime corresponds to N ≫ 1. In a realistic sample, the areal density
n2D = N/(L w) of the electrons is fixed. In this case, for increasing N , w or L must increase as
well, and with them M ∝ L w∝ N . Hence, in the limit of large N one should replace M by
its value (N − m̄)/ f . Suppose w = µNλlB and L = νN1−λlB with 1/2 ≤ λ ≤ 1 to ensure that
w≫ L for large N . For λ > 1/2, one always has w≫ L for N →∞, whereas for λ = 1/2,
w/L = µ/ν is fixed but can be large. Then the leading term in N of the QFI becomes

I(|n〉ω ,ω)≃
2π2

3 f 2ω2ν2
N1+2λ , (113)

and signals faster than “Heisenberg scaling” of the QFI (meaning I(|n〉ω ,ω)∝ N2 [28]) for
λ > 1/2. The fastest possible scaling, I(|n〉ω ,ω)∝ N3 can be achieved in the limit of fixed L
and correspondingly w∝ N , i.e. in the limit of a strip-like sensor.

The origin of this “super-Heisenberg scaling” can be traced back to the
∑

m m2 in (110)
with bounds ∼ M ∼ N which gives a scaling∝ N3. It arises from occupying high-momentum
states in x-direction, as is required for Fermions by the Pauli principle. Since km determines
also the shift ym = kml2

B of the harmonic oscillators in y direction, large values of km lead to
correspondingly large sensitivity to a change of lB and hence of B. Interestingly, if the kinetic
energy in x-direction had a power-law scaling with kx with a different power, also the scaling
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Figure 1: Logarithmic contour plot of the minimal standard deviation, i.e. log10σ(B̂),
of an unbiased estimate B̂ of the magnetic field B based on the quantum Hall effect,
Eqs. (112) and (111) for a single readout, Me = 1, as function of the width w of the
sensor and magnetic field B for 10−8 ≤ B[T] ≤ 102. The minimal error is plotted
only where the theory is applicable, w> L, lB(B). The length is set to L = 1µm, and
w≥ 10−5 m.

of the sensitivity with N would change, with higher powers being favorable. Numerically, us-
ing typical parameter values for Gallium arsenide (meff ≃ 0.068me, n2D ≃ 1.0×1015/m2) and
a magnetic field of 1 T, the minimal predicted error is on the order of 6.2×10−11 T for a single
measurement with a sensor of size w= 1 cm, L = 1 mm. The number of information-carrying
measurements per second is determined by the bandwidth of the interrogation scheme. That
bandwidth is ultimately limited by the cyclotron frequency, and hence the number of measure-
ments in 1 s cannot be greater than Me ∼ 1/(ω · 1s) ≃ 1012 at 1 T. A more conservative band-
width of 10 G Hz yields a bound on the achievable sensitivity on the order of 10−16 T/Hz1/2,
to be compared with 100 nT/Hz1/2 sensitivity of a silicon-based commercially available sen-
sor [1], or another one with 0.4µT sensitivity at fields up to about mT with a chip of linear
size ∼mm [29].

In Fig. 1 we plot the minimal estimation errorσ(B) as function of B and w in the parameter
ranges where lB(B)< w is satisfied, which is everywhere outside the yellow left lower corner,
whose boundary indeed scales as w∝ 1/

p
B. The length is fixed in this plot, i.e. λ = 1 in

Eq. (113). The expected scaling σ(B) ∝ w−3/2 is reached for sufficiently large w, as can
be seen e.g. for B = 1 T. It should be kept in mind that i.) we considered the case of zero
temperature and neglected decoherence, and ii.) the QCRB provides an idealized lower bound
on the error that can rarely be achieved in practice due to additional technical noise and other
imperfections. Nevertheless, the QCRB (112) constitutes an important benchmark that allows
one to understand what sensitivity is possible in principle as function of B and the size of the
sensor.

6 Conclusion

In summary, we have derived analytical expressions for the quantum Fisher information (QFI)
that determines the smallest possible fluctuations of an unbiased estimator of a parameter en-
coded in an arbitrary pure quantum state of a fermionic many-body system via three different
types of unitary transformations. In the case of two concatenated unitaries we obtained a
simple chain rule for the QFI, Eq. (52), that simplifies further for parameters coded through a
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Bogoliubov transformation (61), for a many-body basis state (71), or a Hamiltonian time evo-
lution paired with a modification of the single-particle energy eigenstates (92). In the latter
case, a variance of a Hermitian generator naturally arises just as for a single unitary evolution,
albeit taken in an intermediate state. We applied the general results to the quantum Hall effect
in the ground state of non-interacting electrons and calculated the smallest possible standard
deviation of an unbiased estimator of the magnetic field. We found a scaling of the sensitiv-
ity (standard deviation) with which the magnetic field can be measured as 1/

p
N1+2λ, where

λ ∈ [1/2,1] controls the scaling of the width and length of the sensor with the number of
electrons.

For any λ > 1/2 this corresponds to a “super-Heisenberg” scaling of the sensitivity, a term
that is somewhat controversial. In [30] it was shown in the context of quantum metrology
of a parameter that drives a many-body system through a continuous quantum critical point,
with an energy gap which vanishes polynomially with N at the critical point, that no faster
than Heisenberg scaling can be achieved without violating the assumption of adiabaticity if
the time needed for preparing the initial state through adiabatic driving is taken into account.
Our scenario is not of that type, however. We do not consider a phase transition with a closing
gap, nor a time-dependent parameter in the present case of the quantum Hall effect. The
QFI that we calculate, Eq. (113), does hence not contain time. Its value merely reflects the
dependence of the single-particle energy eigenstates on the cyclotron frequency. The initial
state of the sensor can be reached for any value of the magnetic field by cooling the sample
close to the ground state. One can nevertheless prepare the initial state starting from a different
value of the magnetic field by modifying the magnetic field as a function of time; however, we
still make the assumption that degeneracy of the energy-eigenstates is lifted at least by the
confinement potential. In real samples, a disorder potential lifts the degeneracy additionally,
and for generic values of the magnetic field one expects no closed gaps, regardless the number
of electrons. Therefore, even in such a scenario, where the magnetic field is driven as function
of time we do not expect that a slowing down of the rate of change of the parameter is required
with increasing N in order to remain adiabatic over an infinitesimal change of the parameter.

The “super-Heisenberg scaling” has its physical origin in the occupation of high-energy
momentum states, as required by the Pauli principle, which lead to large spatial displacements
of the energy eigenstates corresponding to the Landau-levels, proportional to the momentum
and the magnetic length squared. The large momenta hence translate to high sensitivity to
changes of the magnetic length and as a consequence of the magnetic field. It should be kept
in mind, however, that the analysis is highly idealized: zero temperature was assumed, and all
decoherence effects as well as technical noise are neglected. Future work will have to show
how robust the large sensitivities are, and how they change when using different materials.
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A Alternative proof of (57)

Here we sketch an alternative proof of (57). For brevity we define Ĥ = iŜ, and a 2M × 2M
matrix H = iS/2, i.e. Ĥ = αHαt . One then shows in the fermionic case by direct calculation
that

[Ĥ, ˙̂H] = 2α(H, Ḣ)αt , (A.1)
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where the commutator-like bilinear form (A, B) of two operators is defined as

(A, B)≡ AΞB − BΞA , (A.2)

with Ξ defined in Eq. (6). Eq. (A.1) generalizes to higher order commutators [A, B]n de-
fined recursively through [A, B]n+1 = [A, [A, B]n] and [A, B]0 = B, and correspondingly
(A, B)n+1 = (A, (A, B)n) and (A, B)0 = B:

[Ĥ, ˙̂H]n = 2nα(H, Ḣ)nα
t . (A.3)

Next, one can write the derivative of an exponential of a parameter dependent operator alter-
natively as

∂

∂ω
eβH(ω) =

∫ β

0

ds e(β−s)H(ω) ∂ H(ω)
∂ω

esH(ω) , (A.4)

where β is an arbitrary real number. The simplest proof of (A.4) follows the lines of [31] by
showing that both sides of the equation satisfy the first-order differential equation

∂ F
∂ β
−H(ω)F(β) =

∂ H(ω)
∂ω

eβH(ω) , (A.5)

together with F(0) = 0, which fixes the solution uniquely. Next one checks the identities
eAΞBe−ΞA =
∑∞

n=0
1
n!(A, B)n and eABe−A =

∑∞
n=0

1
n![A, B]n. With this we have

H = −i T̂ † ˙̂T = (−i)

∫ 1

0

due−iuŜ i
∂ Ŝ
∂ω

e−iuŜ (A.6)

=

∫ 1

0

du
∞
∑

n=0

1
n!
[−iuŜ, ˙̂S]n (A.7)

=
α

2

�

∫ 1

0

du
∞
∑

n=0

(−iu)n

n!
(S, Ṡ)n

�

αt (A.8)

=
α

2

∫ 1

0

du e−iuSΞṠeiuΞSαt (A.9)

=
1
2
αΩ̃αt , (A.10)

with Ω̃ given by (58), which completes the proof.

B Derivation of wavefunction overlaps

We start from Eq. (104). Instead of varying the frequency, it is more convenient to make the
change of variables to the magnetic length l ≡ lB =

p

ħh/(meffω) (for ease of notation, in the
present Appendix we denote the magnetic length just by l). Equation (104) becomes

ω0
〈n′, m′|n, m〉ω0+δω ≃ δn,n′δm,m′ + l〈n′, m′|∂l |n, m〉l

dl
dω0

δω , (B.1)

and dl/dω0 = −(1/2)l/ω0. The matrix element

l〈n′, m′|∂l |n, m〉l =
∫

d xd y l〈n′, m′|x , y〉∂l〈x , y|n, m〉l , (B.2)
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can now be calculated from the explicit expression (101) of the wave functions. In particular
(101) gives

∂l〈x , y|n, m〉l =
eikm x

p
L
∂lχn,m(η) , (B.3)

with
η=

y
l
− kml . (B.4)

Integration over x yields a δm,m′ coefficient. The matrix element (B.2) becomes

l〈n′, m′|∂l |n, m〉l = δm,m′ l

∫

dηχn′,m′(η)∂lχn,m(η) . (B.5)

Using
dη
dl
= −

y
l2
− km = −

η

l
− 2km , (B.6)

we get

∂lχn,m(η) = −
χn,m(η)

2l
+
Nnp

l

dη
dl
∂η

�

Hn(η)e
−η2/2
�

= −
χn,m(η)

2l
−
Nnp

l

�η

l
+ 2km

�

�

∂ηHn(η)−ηHn(η)
�

e−η
2/2 .

(B.7)

One thus obtains for the matrix element (B.2)

l〈n′, m′|∂l |n, m〉l

= −
1
2l
δn,n′δm,m′ −δm,m′NnNn′

∫

dη e−η
2
Hn′(η)
�η

l
+ 2km

�

�

∂ηHn(η)−ηHn(η)
�

= −
1
2l
δn,n′δm,m′ −δm,m′NnNn′

∫

dη e−η
2
Hn′(η)
�η

l
+ 2km

�

[2nHn−1(η)−ηHn(η)]

= −
1
2l
δn,n′δm,m′

−δm,m′NnNn′

∫

dη e−η
2
Hn′(η)

�

4kmnHn−1(η) +
2n
l
ηHn−1(η)− 2kmηHn(η)−

η2

l
Hn(η)

�

,

(B.8)

where we have used ∂ηHn(η) = 2nHn−1(η) [32]. These integrals can be evaluated if we
express η and η2 in terms of Hermite polynomials,

H1(η) = 2η , H2(η) = 2(2η2 − 1)⇔ η2 =
1
2
+

1
4

H2(η) , (B.9)

so that (B.8) becomes

l〈n′, m′|∂l |n, m〉l = −
1
2l
δn,n′δm,m′ −δm,m′NnNn′

∫

dη e−η
2
Hn′(η) [4kmnHn−1(η) (B.10)

+
n
l

H1(η)Hn−1(η)− kmH1(η)Hn(η)−
1
2l

Hn(η)−
1
4l

H2(η)Hn(η)
�

.

We can now use the identity [32]
∫ ∞

−∞
dη e−η

2
Hn′(η)Hm(η)Hn(η) =

2(m+n+n′)/2pπn′!n!m!
(s− n′)!(s− n)!(s−m)!

, (B.11)
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where s = 1
2(n+n′+m) (note that s is an integer due to the parity of the Hermite polynomials

– indeed, for an odd integer value of n + n′ + m the integrand in (B.11) is an odd function
and thus the integral vanishes). We also make use of the orthogonality relation of the Hermite
polynomials

∫ ∞

−∞
dη e−η

2
Hn′(η)Hn(η) =

p
π2nn!δn′,n , (B.12)

so that the matrix element (B.10) becomes

l〈n′, m′|∂l |n, m〉l = −2
p

2nkmδn′,n−1δm′,m

−δm′,mNnNn′

�

n
l

2(n+n′)/2pπn′!(n− 1)!
� n′−n

2 + 1
�

!
� n−n′

2

�

!
� n+n′

2 − 1
�

!
Π(n+ n′)

− km
2(n+n′+1)/2pπn′!n!
� n+1−n′

2

�

!
� n′+1−n

2

�

!
� n+n′−1

2

�

!
Π(n+ n′ + 1)

−
1
4l

22+(n+n′)/2pπn′!n!
� n−n′

2 + 1
�

!
� n′−n

2 + 1
�

!
� n+n′

2 − 1
�

!

�

Π(n+ n′) ,

(B.13)

where we have introduced a parity function

Π(m) =

�

1 , for m even,
0 , for m odd,

(B.14)

to take into account the different cases for which the integral (B.11) vanishes. Further simpli-
fications can be obtained by noticing that the factorials in the denominators of (B.13) involve
both n′−n and n−n′ in each term. Since the factorial of a negative number is infinite, we get
the following simplifications

Π(n+ n′)
� n′−n

2 + 1
�

!
� n−n′

2

�

!
= δn′,n−2 +δn′,n , (B.15)

Π(n+ n′ + 1)
� n+1−n′

2

�

!
� n′+1−n

2

�

!
= δn′,n−1 +δn′,n+1 , (B.16)

Π(n+ n′)
� n−n′

2 + 1
�

!
� n′−n

2 + 1
�

!
=

1
2
δn′,n−2 +δn′,n +

1
2
δn′,n+2 . (B.17)

Replacing the normalization factors NnNn′ by their value (103), Eq. (B.13) then reduces to

l〈n′, m′|∂l |n, m〉l = −2
p

2nkmδn′,n−1δm′,m −δm′,m

p
n′!n!

�

1
2l

1
� n+n′

2 − 1
�

!

�

δn′,n−2 −δn′,n+2

�

−
p

2km
1
� n+n′−1

2

�

!

�

δn′,n−1 +δn′,n+1

�

�

, (B.18)

which further simplifies to

l〈n′, m′|∂l |n, m〉l = −
p

2km

�p
nδn′,n−1 −

p
n+ 1δn′,n+1

�

δm′,m

−
1
2l

�Æ

n(n− 1)δn′,n−2 −
Æ

(n+ 2)(n+ 1)δn′,n+2

�

δm′,m . (B.19)

Expanding expression (B.1) to linear order in δω we directly get Eq. (105).
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C Alternative derivation of (105)

We start from the Hutchisson formula for the overlaps Rnn′ = ω0




n
�

�n′
�

ω
. It is given by [27]

with ν′ =ω0 and ν′′ =ω, and reads

Rnn′ =
Æ

2−(n+n′)qn!n′!(−1)n
′
e−

1
4γ

2p
min(n,n′)
∑

r=0

(−2q)r

r!

⌊(n′−r)/2⌋
∑

s=0

(γp)n
′−r−2s

(n′ − r − 2s)!
x s

s!

×
⌊(n−r)/2⌋
∑

t=0

(γq)n−r−2t

(n− r − 2t)!
(−x)t

t!
, (C.1)

with γ =
p

ωmeff/ħhd = d/lB(ω), d = km(l2
B(ω) − l2

B(ω0)), x = (ω − ω0)/(ω + ω0),
q = 2(ωω0)1/2/(ω+ω0), and p = 2ω0/(ω+ω0).

We want to calculate the first derivative of Rnn′ with respect to ω, taken at ω = ω0. In
that limit we have (γ2p)′ = q′ = 0. Contributions to the derivative will therefore come from
derivatives of terms of the form (γp)a(γq)b x c with a, b, c ≥ 0, that is,

[(γp)a(γq)b x c]′ = a(γp)a−1(γp)′(γq)b x c+(γp)a b(γq)b−1(γq)′x c+(γp)a(γq)bcx c−1 x ′ . (C.2)

In the limitω=ω0 we have γ= x = 0, so that only terms with an exponent 0 in (C.2) can yield
a nonzero contribution. Equation (C.2) reduces to (γp)′ = −km/ω

3/2
0 for a = 1, b = c = 0, to

(γq)′ = −km/ω
3/2
0 for b = 1, a = c = 0, and to x ′ = 1/(2ω0) for c = 1, a = b = 0. The first case

corresponds to s = t = 0, r = n′ − 1 = n. The second case gives s = t = 0 and r = n′ = n− 1.
The third case leads to either s = 0, t = 1, r = n′ = n − 1 or s = 1, t = 0, r = n′ − 1 = n.
Gathering all contributions together we exactly get the first-order term of Eq. (105).
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