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Abstract

Building on the recent discovery of the first candidate black hole operator in the N = 4
super-Yang-Mills, we explore the near-supersymmetric aspects of the theory that cap-
ture lightly excited, highly stringy black holes. We extend the superspace formalism
describing the classically supersymmetric (1/16-BPS) sector of N = 4 super-Yang-Mills
and compute a large number of one-loop anomalous dimensions. Despite being in the
highly stringy regime, we find hints of a gap in the spectrum, similar to that found by
a gravitational path integral. We also determine the actual expression of the first can-
didate black hole operator at weak gauge coupling, going beyond the cohomological
construction.
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1 Introduction and summary

Since the discovery of the emblematic holographic duality between type IIB string theory and
N = 4 super-Yang-Mills (SYM) twenty-five years ago, various remarkable connections and
matches have been established. Keys to bridging the two far-apart regimes of simplicity include
integrability in the planar limit [1], supersymmetry protection [2], conformal bootstrap [3],
and large charge universality [4] (see also the references contained in these reviews). Al-
though non-planar non-supersymmetric aspects of the theory are computable in each of the
dual descriptions, without an overlapping regime of validity, the statement of a duality cover-
ing all corners of the theory becomes unverifiable.

The advent of the holographic duality opened a new chapter in the study of black holes
and surrounding puzzles. Black holes’ existence has long necessitated a deeper understanding
of the quantum nature of gravity, as the singularity signals a breakdown of general relativity,
and the No-Hair theorem prevents any classical explanation of the statistical entropy. In the
holographic setting, the gauge theory supplies a non-perturbative description of a bulk black
hole as an ensemble of microstates. Reproducing the salient features of black holes, such as
their entropy, within the gauge theory framework is widely regarded as a highly significant
test of the duality, as well as an affirmation of string theory as a consistent theory of quantum
gravity. Moreover, exact supersymmetric results coming from gauge-theoretic computations
have supplied key guidance in bettering our first-principle understanding of the gravitational
path integral.

Until lately, the main focus on the N = 4 SYM side has been the study of its index, with a
triumph being the successful match of the asymptotic growth of the (signed) degeneracies with
the black hole entropy [5–7]. However, the index counts all states equally, blending gravitons,
black holes, and whatnot, as well as all their bound states into a set of numbers. One can
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embrace more refined studies of supersymmetric states, going beyond indiscriminate counting.
Pursuit in this direction was attempted by [8–13], and achieved a recent breakthrough by [14]
in constructing a first candidate black hole (non-graviton) microstate (in the cohomological
sense). Generalizations and further progress were made in [15–17].

Let us quickly review this line of development. By the standard argument in Hodge theory,
there is a one-to-one correspondence between the supersymmetric states and the cohomology
of the associated supercharge Q [11]. The cohomologies corresponding to gravitons are fully
recognized and can be completely separated from the rest [13]. It has been conjectured [11]
and perturbatively proven [14] that away from the free point gYM = 0, the spectrum of super-
symmetric states (captured by the dimensions of the Q-cohomologies) does not depend on the
gYM. In [14], an extensive enumeration of cohomology classes at weak coupling, extending to
high energies and charge ranges, unveiled the first non-graviton cohomology for gauge group
SU(2).

A separate line of development in recent years is the study of “coarse-grained” holographic
dualities between simple gravitational theories and ensemble-averaged (quench-disordered)
non-gravitational systems and has achieved remarkable success. While the philosophical na-
ture of such dualities is a subject of intense debate, much less controversial is the embedding
of these coarse-grained dualities inside “fine-grained” dualities as effective descriptions. In a
series of papers [18–22], the dynamics near an extremal black hole’s horizon, which contains
an AdS2 factor, has been analyzed using an effective Jackiw-Teitelboim (JT) gravitational path
integral. For near-supersymmetric black holes, their main result is a quantitative prediction
of the near-BPS spectrum. These developments on the gravitational side pose some natural
questions to the gauge-theoretic framework. To name a few: Can the effective JT supergravity
description be deduced within the gauge-theoretic framework? Are there qualitative features
shared between (or perhaps interpolating) the weak and strong coupling regimes?

Summary of this work This paper develops tools for studying N = 4 SYM in the non-planar
near-supersymmetric regime.

• Expanding the superspace formalism of [13,14], we drastically simplify the Hamiltonian
encoding the spectrum of one-loop anomalous dimensions in a subsector of the full the-
ory comprising operators that are BPS in the free gYM→ 0 limit. We also clarify the rela-
tionship among operators at different couplings, and in what sense near-supersymmetric
black holes are captured by this subsector.

• We systematically construct and diagonalize the Hamiltonian across a large range of
charges. The resulting near-BPS spectrum at weak coupling shows features reminiscent
of the spectrum at strong ’t Hooft coupling, which is captured by N = 2 JT supergravity
[20]; in particular, there are hints of a “gap” (a proper notion of which requires large
N).

• Diagonalizing the Hamiltonian in the charge sector of the first non-graviton cohomology
gives the precise weak-coupling form of the candidate black hole operator (a specific
representative of the cohomology), which was also computed in simultaneous work [23].

The remainder of this paper is organized as follows. Section 2 introduces the classically-
BPS sector of N = 4 SYM and discusses its Hilbert space and Hamiltonian. Section 2.3 dis-
cusses the near-horizon excitation of near-BPS black holes and argues a conjecture on the
relation between them and the classically-BPS sector. Section 3 develops the matrix repre-
sentations for the supercharge Q and the one-loop dilatation operator H. Section 4 give dif-
ferential representations for Q and H. Section 5 presents our results and gives discusses the
implications and outlooks.
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2 Classically-BPS sector and near-BPS black holes

This section characterizes the classically-BPS sector of N = 4 super-Yang-Mills (SYM), de-
scribes its symmetry algebra, and explains how it captures near-BPS physics even in the strong
coupling regime.

2.1 Hilbert space and level repulsion

The N = 4 super-Yang-Mills is a supersymmetric gauge theory with two marginal parame-
ters, a gauge coupling gYM and a topological angle θ . The fields and action are detailed in
Appendix D. To define the classically-BPS sector describing near-BPS excitations, let us begin
with the Hilbert space of local operators in N = 4 SYM. The psu(2, 2|4) superconformal alge-
bra, which is reviewed in Appendix B, acts on the Hilbert space as linear maps. To define BPS
states, we pick a supercharge and its Hermitian conjugate (BPZ conjugate)

Q ≡Q4
− , Q† = S−4 , (1)

whose anti-commutator is

∆≡ 2{Q,Q†}= D− 2JL − q1 − q2 − q3 . (2)

Unitarity implies that all the states or operators must satisfy the BPS bound

∆≥ 0 . (3)

The states that saturate the BPS bound (3) are called BPS states.1

In perturbation theory, the dilation operator D admits an expansion

D = D(0) + g2
YMD(2) + g4

YMD(4) + · · · . (4)

The leading term D(0) is the classical (bare) dimension. The classically-BPS states are those
that satisfy the classical BPS condition

∆(0) ≡ D(0) − 2JL − q1 − q2 − q3 = 0 . (5)

The classically-BPS sector is the space that contains all the classically-BPS states. It is a closed
sector because under operator-mixing the classically-BPS operators do not mix with classically
non-BPS operators. This fact can be argued in perturbation theory by noting that the classical
dimension commutes with all the higher loop dilatation operators [24], i.e. [D(0), D(n)] = 0.
Hence, operator-mixing only occurs among operators with the same angular momenta, R-
charges, and classical dimension. Even at finite Yang-Mills coupling gYM, one still expects
the classically-BPS sector to be well-defined. The classical dimension of an operator can be
defined adiabatically, by following its energy (conformal dimension) along a path with no level
crossing to weak coupling.

By the von Neumann-Wigner theorem (level repulsion), level crossing in the operator spec-
trum only occurs at real codimension-two submanifolds of the conformal manifold. The con-
formal manifold of N = 4 SYM is a complex one-dimensional space, parametrized by the
complexified gauge coupling

τ=
θ

2π
+

4πi
g2

YM

. (6)

1The states that do not saturate (3) but saturate the BPS bound of other supercharges would not be referred to
as BPS states in this paper.
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Hence, level crossings only happen at isolated points on the complex τ-plane, and we define
the classical dimension of an operator at generic coupling τ by following a path to τ = i∞
that avoids all these points.2

The anomalous dimension D− D(0) in the classically-BPS sector can be naturally regarded
as the Hamiltonian of a supersymmetric quantum mechanics,

H ≡ D− D(0) = 2{Q,Q†} . (7)

The perturbative expansion of H starts at one-loop order. As argued in [14], with a suit-
able regularization scheme, the supercharge Q receives no quantum corrections perturbatively.
Therefore, on the right-hand side of (7), the perturbative corrections must be encoded in the
Hermitian conjugation (BPZ conjugation) †. We will focus on the one-loop Hamiltonian, where
† is induced by the inner product in the free theory (gYM = 0).3 In the following, H always
refers to the one-loop Hamiltonian, and † to the free Hermitian conjugation.

2.2 Symmetry algebra and characters

The symmetry algebra of the classically-BPS sector is the centralizer of∆ in psu(2,2|4), which
can be written as a semi-direct product

C(∆) = u(1)⋉ [psu(1, 2|3)× su(1|1)] , (8)

and whose generators are detailed in Appendix C. Let us define the C(∆) primary operators
to be the operators annihilated by all the superconformal supercharges inside C(∆). The su-
perconformal supercharges outside C(∆) all have ∆ < 0 except S+4 which has ∆ = 2. If a
C(∆) primary operator O is also annihilated by S+4 , then it is also a psu(2, 2|4) superconformal
primary, otherwise it is a descendent of the psu(2, 2|4) superconformal primary S+4 (O). If O
is a BPS operator, it is a superconformal primary in a bx-type superconformal multiplet when
JL = 0, and it is a superconformal descendent in a cx-type superconformal multiplet when
JL > 0 [8]. If O is a non-BPS operator, by the decomposition rules (2.16) in [8], O should
fall into a cx-type superconformal multiplet in the free limit gYM → 0, and hence should be a
superconformal descendent.

The spectrum of the classically-BPS sector can be summarized by a partition function as

Z(β ,ωi ,Φi) = Tr∆(0)=0

�

e−β∆−J1ω1−J2ω2−q1Φ1−q2Φ2−q3Φ3
�

. (9)

The partition function can be organized by the centralizer C(∆) symmetry. We split the parti-
tion function into a sum of the BPS and non-BPS partition functions as

Z(β ,ωi ,Φi) = ZBPS(β ,ωi ,Φi) + Znon-BPS(β ,ωi ,Φi) , (10)

where ZBPS contains the contributions from the BPS (∆ = 0) states, and Znon-BPS contains the
contributions from the non-BPS states in the classically-BPS states.

We will focus on the non-BPS partition function Znon-BPS(β ,ωi ,Φi). The non-BPS
states in the classically-BPS sector form long multiplets of the centralizer C(∆). Hence,

2It is worth mentioning that level crossings are only expected to happen at the free points, i.e. the PSL(2,Z)
images of τ = i∞, and the level crossings in the planar limit at finite ’t Hooft coupling disappear after including
1/N corrections [25].

3In our convention specified in Appendix D, gYM is an overall coupling constant of the action (D.9). Hence, the
two-point functions (inner products) of the fundamental fields in free theory are all proportional to g2

YM. Alter-
natively, one could rescale the fundamental fields to normalize their two-point functions. This would make the
supercharge Q of order gYM when acting on classically-BPS operators.
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Znon-BPS(β ,ωi ,Φi) can be decomposed into characters χ∆,JL ,JR,qi
(β ,ωi ,Φi) of the long mul-

tiplets,

χ∆,JL ,JR,qi
(β ,ωi ,Φi) =

e−β∆−JL(ω1+ω2)−
1
3 (Φ1+Φ2+Φ3)(q1+q2+q3)χJR

(e−ω1+ω2)

(1− e−ω1)(1− e−ω2)

×χq1−q2,q2−q3

�

e−
1
3 (2Φ1−Φ2−Φ3), e−

1
3 (Φ1+Φ2−2Φ3)
�

×
∏

t i ,si=±1
t1+t2+s1+s2+s3=1

�

1+ e−
1
2 (t1ω1+t2ω2+s1Φ1+s2Φ2+s3Φ3)

�

,

(11)

where χJR
and χq1−q2,q2−q3

are the su(2) and su(3) characters, explicitly given by

χJR
(e−ω) =

2JR
∑

n=0

e(n−JR)ω ,

χR1,R2
(e−Ω1 , e−Ω2) = e−(R1+2R2)Ω1

R1+R2
∑

k=R2

R2
∑

l=0

e
3(k+l)Ω1

2
sinh (k−l+1)(2Ω2−Ω1)

2

sinh 2Ω2−Ω1
2

,

(12)

where the su(3) characters are labeled by the Dynkin labels R1 = R1
1 −R2

2 = q1 − q2 and
R2 =R2

2 −R3
3 = q2 − q3.

2.3 Near-BPS black holes

Under the AdS/CFT correspondence, in the ’t Hooft large N limit, generic BPS states with large
angular momenta and R-charges of order

J1, J2, q1, q2, q3 ∼ N2≫ 1 , (13)

are dual to the microstates of 1/16-BPS black holes in AdS5 × S5 [26–30]. Here J1, J2 are
rotation generators along the two-planes in R4, and are related to JL , JR by (B.9). For a
black hole to have a macroscopic event horizon, all five angular momenta and R-charges (13)
must be activated. Furthermore, standard BPS black hole solutions in AdS5 are subject to a
charge relation, see e.g. (2.85) in [6]. However, as discussed in [31], “revolving black holes”—
standard BPS black hole solutions boosted by momenta P—easily violate the charge relation
(in specific one direction). From a gauge-theoretic standpoint, the charge relation does not
seem natural: at finite N , the quantization of charges makes it impossible to satisfy the relation
exactly.

Excitations of black holes near the BPS bound have been studied in [20]. Let us recap some
key results. The near-horizon geometry of a BPS black hole has an AdS2 factor and develops an
emergent local su(1,1|1) superconformal algebra. The finite-temperature quantum corrections
break this local symmetry to a global su(1, 1|1), which acts as the isometry of the near-horizon
region. The dimensional reduction of the ten-dimensional IIB supergravity down to AdS2 is
expected to produce an N = 2 Jackiw-Teitelboim (JT) supergravity, whose boundary N = 2
Schwarzian theory captures the Goldstone modes of the symmetry breaking. A distinguishing
feature of the N = 2 Schwarzian theory from its less supersymmetric cousins is the presence of
a gap in its spectrum above the ground states [32,33]. This implies that the low-lying spectrum
of BPS and near-BPS black holes consists of order eN2

isolated BPS states and a continuum of
near-BPS states with an order N−2 gap separating them from the BPS states. More precisely,
in a sector with large fixed angular momenta and R-charges (13), the near-BPS states in the
continuum have dimensions above the bound

∆>∆BPS+∆gap , ∆gap =
e∆

N2
, (14)
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where e∆ is an explicit function of the angular momenta and R-charges, given in (3.91) of [20].
Let us argue that the gap, together with the lower end of the continuum in the spectrum,

is captured by the classically-BPS sector in the N = 4 SYM. In the weak coupling limit, the
classically non-BPS states have∆≳ 1

2 because∆(0) ≥ 1
2 . By the von Neumann-Wigner theorem

(level repulsion), when going from weak to strong coupling, the∆’s of the classically non-BPS
states cannot become lower than those of the classically-BPS states. Hence, the states at the
lower end of the continuum must be classically-BPS.

In the next section, we develop a matrix representation for H and diagonalize it for small
ranks N = 2, 3, 4 up to relatively high angular momenta and R-charges. Our results lead
us to further conjecture that the gap ∆gap is a continuous function of the ’t Hooft coupling
λ= g2

YMN , behaving as

∆gap =
e∆ (λ)
N2

, e∆= e∆(1)λ+O(λ2) , (15)

in the weak coupling limit and charge regime (13). In other words, the spectrum of the Hamil-
tonian H in (7) has a gap of order g2

YM/N in the sector with large angular momenta and
R-charges (13).

3 Matrix representation

In this section, we review the superspace formalism of [13], introduce an explicit basis for
the classically-BPS Hilbert space of N = 4 super-Yang-Mills (SYM), derive a compact formula
for the inner product, and compute the matrix representations of the supercharge Q and the
one-loop Hamiltonian H.

3.1 Superspace formalism

In perturbation theory, the classically-BPS operators can be constructed by gauge-invariant
combinations of fundamental fields and covariant derivatives that classically saturate the BPS
bound (see Appendix D)

φ i ≡ Φ4i , ψi ≡ −iΨ+i , λα̇ ≡ Ψ
4
α̇ , f = −iF++ ≡ i(σµν)++Fµν , Dα̇ ≡ D+α̇ , (16)

for i = 1,2, 3 and α̇ = +̇, −̇. They are referred to as BPS letters. The BPS letters can be
assembled nicely into a superfield Ψ(zα̇,θi) in the superspace C2|3 as [13]

Ψ(zα̇,θi) = −i
∞
∑

n=0

1
n!
(zα̇Dα̇)

n
�

1
n+ 1

zβ̇λβ̇ + 2θiφ
i + εi jkθiθ jψk + 4θ1θ2θ3 f

�

, (17)

where zα̇ and θi are the bosonic and fermionic superspace coordinates. The supercharge Q
acts on the superfield Ψ as

{Q,Ψ}= Ψ2 , (18)

and obeys the Leibniz rule when acting on composites of Ψ ’s. The BPS letters can be recovered
by taking superspace derivatives as

ΨA ≡ ∂ a1

z+̇
∂

a2

z−̇
∂

a3
θ1
∂

a4
θ2
∂

a5
θ3
Ψ(z,θ )
�

�

z=0,θ=0 , (19)

where A = (a1, · · · , a5). Using the trace basis, the classically-BPS sector is spanned by the
multi-traces

tr (ΨA1 · · ·ΨAm)tr (ΨB1 · · ·ΨBn) · · · , (20)

which would be referred to as the BPS words. The multi-traces are subject to trace relations,
which can be eliminated by substituting explicit N × N (traceless) matrices for ΨA.
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3.2 Basis and inner product

Consider a subspace V of the classically-BPS sector spanned by the BPS words with a fixed
number (nz+̇ , nz−̇ , nθ1

, nθ2
, nθ3
) of derivatives ∂z+̇ , ∂z−̇ , ∂θ1

, ∂θ2
, ∂θ3

. Such BPS words, denoted by
wi , can be assembled into a finite-dimensional row vector w⃗= (w1, w2, · · · ). After substituting
explicit matrices, we can expand the BPS words wi in terms of the monomials t i of the matrix
components, whereas, for traceless matrices, we use the traceless condition to substitute the
(N , N)-component of the matrix. The expansion can be written explicitly as

w⃗= t⃗A′ , (21)

where t⃗ = (t1, t2, · · · ) is a row vector of monomials t i and A′ is the matrix of the coefficients of
the expansion. Now, we can eliminate the trace relations between wi by column reducing the
matrix A′. Let us denote the column reduced matrix by A. A complete basis of the subspace V
is given by the elements of the row vector O⃗ = (O1,O2, · · · ),

O⃗ = t⃗A . (22)

Let |Oi〉 be the state corresponding to the operators Oi . We denote the inner product
matrix of the states |Oi〉’s by M,

Mi j ≡ 〈Oi|O j〉 , M† =M . (23)

M is related to the inner product matrix Ti j = 〈t i|t j〉 of the monomials t i ’s by

Mi j = 〈Oi|O j〉=
∑

k,l

A∗kiAl j〈tk|t l〉= (A†TA)i j . (24)

As discussed in Section 2.1, since we focus on the one-loop Hamiltonian, we use the inner
product T in the free theory, which can be computed by the two-point functions,




t i(x)
† t j(0)
�

=
〈t i|t j〉
|x |2∆0

, (25)

where t i and t j have the same classical dimension ∆0, otherwise the two-point function van-
ishes.

In the free theory, the two-point function can be simply computed by Wick contractions.
More explicitly, consider a typical monomial

(ΨA1)I1
J1
· · · (ΨAY )IY

JY
, (26)

where the upper (or lower) I , J = 1, · · · , N indices are the SU(N) or U(N) fundamental (or
antifundamental) indices. The inner product of the monomial (26) with itself factorizes as



(ΨAn)In
Jn
· · · (ΨA1)I1

J1

�

�(ΨA1)I1
J1
· · · (ΨAY )IY

JY

�

=
∑

π∈SY

(−1)Nπ



(ΨA1)I1
J1

�

�(ΨAπ(1))
Iπ(1)
Jπ(1)

�

· · ·



(ΨAn)In
Jn

�

�(ΨAπ(Y ))
Iπ(Y )
Jπ(Y )

�

, (27)

where the sum is over all the permutations π ∈ SY , and Nπ is the number of commutations
between fermionic letters.

In Appendix E, we explicitly compute the inner product matrix of single letters in the
superfield basis, and find a rather compact result



∂
a1

z+̇
∂

a2

z−̇
∂

a3
θ1
∂

a4
θ2
∂

a5
θ3
ΨJ

I

�

�∂
a1

z+̇
∂

a2

z−̇
∂

a3
θ1
∂

a4
θ2
∂

a5
θ3
Ψ L

K

�

=
g2

YM

24+2a1+2a2π2
Γ (a1 + 1)Γ (a2 + 1)Γ (a1 + a2 + a3 + a4 + a5)

×

¨

δJ
Kδ

L
I , for U(N) ,

δJ
Kδ

L
I −

1
N δ

J
I δ

L
K , for SU(N) .

(28)
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3.3 Matrix representation for Q and H

The supercharge Q action (18) does not change the number of derivatives, and hence maps
the space V to itself. Let Y be the number of Ψ ’s in a BPS word, and VY be the subspace of V
with a fixed Y . Q acts on V as a chain complex

· · · VY−1 VY VY+1 · · · .
Q Q Q Q (29)

We will write O⃗Y , t⃗Y and AY for those with a fixed number of Ψ ’s. By acting the supercharge
on the vector t⃗Y and then re-expanding the result in terms of the elements in t⃗Y+1, we find

Q
�

t⃗Y

�

= t⃗Y+1qY , (30)

where q is a matrix of the expansion coefficients. Substituting it into (22), we find

Q
�

O⃗Y

�

=Q
�

t⃗Y

�

AY = t⃗Y+1qY AY . (31)

The dimension of the Q-cohomology is given by the rank of the matrices as

dim(VY )− dim(QVY )− dim(QVY−1)

= rank(AY )− rank(qY AY )− rank(qY−1AY−1) . (32)

Consider a pair of bra and ket states, 〈Oi| and
�

�O j

�

, with Y + 1 and Y numbers of Ψ ’s,
respectively. Sandwiching the supercharge Q between them, we obtain a matrix QY as

(QY )i j ≡ 〈Oi|Q|O j〉=
∑

k,l

(AY+1)
∗
ki(qY AY )l j〈tk|t l〉= (A

†
Y+1TY+1qY AY )i j , (33)

where the states 〈tk| and |t l〉 each have Y + 1 number of Ψ ’s.
Now, sandwiching the Hamiltonian H between a pair of bra and ket states, 〈Oi| and

�

�O j

�

,
each having Y numbers of Ψ ’s, we obtain a matrix HY as

(HY )i j ≡ 〈Oi|H
�

�O j

�

. (34)

Using the commutator (7), we find

(HY )i j = 2
�

〈Oi|QQ†
�

�O j

�

+ 〈Oi|Q†Q
�

�O j

��

= 2
�

QY−1M−1
Y−1Q†

Y−1 +Q†
Y M−1

Y+1QY

�

i j ,
(35)

where the matrix MY is the inner product matrix in the subspace VY , given by restricting the
matrix (24) as

MY = A†
Y TY AY . (36)

Because our basis |Oi〉 is not orthonormal, the eigenvalues of the Hamiltonian are not the
eigenvalues of HY , but instead the eigenvalues of the matrix hY given by H acting on the basis
vector |Oi〉 (with Y number of Ψ ’s),

H|Oi〉 ≡
∑

j

�

�O j

�

(hY ) ji . (37)

The matrices hY and HY are related by

hY =M−1
Y HY . (38)

We have obtained all the ingredients for computing the hY . The inner product matrix
TY was computed in the previous subsection and Appendix E. The matrices AY and qY are
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computed for small ranks N = 2, 3, 4 and a large class of different (nz+̇ , nz−̇ , nθ1
, nθ2

, nθ3
)’s

and Y ’s in [14].
Finally, let us comment on the construction of the graviton cohomology, which is defined

as the cohomology represented by the operators in (5.1) in [13]. Let g⃗Y be a row vector of
these representatives in the trace form. Similar to what we did around (21), by substituting
the explicit matrices for each BPS letter and expanding the result, we get

g⃗Y = t⃗Y B′Y , (39)

where B′Y is the matrix of the coefficients of the expansion. Next, we column reduce the
matrix B′Y getting a matrix BY . The independent representatives of the graviton cohomology
are contained in the row vector

G⃗Y = t⃗Y BY . (40)

The dimension of the graviton cohomology can be computed by

rk(BY ,qY−1AY−1)− rk(qY−1AY−1) , (41)

where the matrix (BY ,qY−1AY−1) is given by concatenating the matrices BY and qY−1AY−1. To
know whether a given BPS operator O is a (multi-)graviton operator, we could check that if
O is in the same cohomology class as the operators in the row vector G⃗Y .

3.4 Large N limit

In the large N limit with fixed charges, the standard ’t Hooft’s argument tells us that we can
focus on the single-trace operators since the anomalous dimensions of multi-trace operators
are given by the sums of those of the single-trace constituents.4 Let us see this explicitly in our
formalism.

We start with the vector w⃗ of BPS words defined in Section 3.2, and further order the
entries of w⃗ according to the number of traces. Using the inner product of the BPS letter (28),
we compute the inner product matrix

Mi j ≡ 〈wi|w j〉 , M † =M . (42)

At finite N , the matrixM is degenerate with the null space spanned by the trace relations. In
the large N limit, there is no trace relation, and the words with different numbers of traces
have inner products suppressed by N−1.5 Hence, at the leading order, the inner product matrix
M is nondegenerate and block diagonal. One can further argue that the blockMn associated
with the n-trace words is the n-th tensor power of the block associated with single-trace words,
i.e.

Mn =M1 ⊗ · · · ⊗M1
︸ ︷︷ ︸

n

.
(43)

The action of the supercharge Q on the BPS words w⃗ gives a matrix Q as

Q(w⃗) = w⃗Q . (44)

As the Q-action does not change the number of traces, the matrix Q is also block diagonal.
Furthermore, by the Leibniz rule of the Q-action, the block Qn of the n-trace words should
take the form

Qn =Q1 ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

n−1

+I ⊗Q1 ⊗ I ⊗ · · · ⊗ I + I ⊗ · · · ⊗ I ⊗Q1 , (45)

4This is the limit in which the theory is integrable and have little to do with black holes. The latter are obtained
in a different limit where the charges scale with N appropriately.

5A word wi of total length L has norm Mii that grows as N L to the leading order. One could thus define
w̃i ≡ N−L/2wi and M̃i j ≡ 〈w̃i |w̃ j〉 to make the strict large N limit well-defined.
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where I is the identity matrix acting on the space of single-trace words. Using (42) and (44),
we find

〈wi|Q|w j〉= (MQ)i j . (46)

Taking the Hermitian conjugate, we obtain

〈wi|Q†|w j〉= (Q†M )i j . (47)

Combining the above two formulae, we find

〈wi|H
�

�w j

�

= 2
�

〈wi|QQ†
�

�w j

�

+ 〈wi|Q†Q
�

�w j

��

= 2(MQM−1Q†M +Q†MQ)i j . (48)

Now, we consider the action of the Hamiltonian H on the BPS words w⃗,

Hw⃗≡ w⃗H , (49)

where the matrixH is given by

H = 2(QM−1Q†M +M−1Q†MQ) . (50)

In the large N limit, using (43) and (45), we find that the matrixH is also block diagonal
with the blockHn of the n-trace words given by the tensor product

Hn =H1 ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

n−1

+I ⊗H1 ⊗ I ⊗ · · · ⊗ I + I ⊗ · · · ⊗ I ⊗H1 . (51)

Hence, we can focus on the block H1, whose eigenvalues are the anomalous dimensions of
single-trace operators, and (51) proves the statements in the first paragraph of this subsection.

4 Q and H as differential operators

We can represent the supercharge Q and the one-loop Hamiltonian H as (functional) differ-
ential operators in superfield space. Even though this is not the method used to obtain the
anomalous dimensions in Section 5, this representation serves as a convenient tool for ana-
lytic computations.

From the action of supercharge Q on the superfield Ψ (18), we can represent Q as a differ-
ential operator with respect to Ψ:

Q = Tr
�

Ψ2 δ

δΨ

�
�

�

�

z=0,θ=0
, (52)

where
δ

δΨ
as an N×N matrix has components

�

δ

δΨ

�

I J
=

δ

δΨJ I
. More explicitly,

δ

δΨ
is written

in terms of the derivatives of the BPS letters as

δ

δΨ
≡ i

∞
∑

n=0

←−
∂ n

∂ zα̇1 · · ·∂ zα̇n

�

∂

∂ (Dα̇1
· · ·Dα̇n−1

λα̇n
)
+

1
2

←−
∂

∂ θi

∂

∂ (Dα̇1
· · ·Dα̇n

φ i)

−
1
4
εi jk

←−
∂ 2

∂ θi∂ θ j

∂

∂ (Dα̇1
· · ·Dα̇n

ψk)
−

1
4

←−
∂ 3

∂ θ1∂ θ2∂ θ3

∂

∂ (Dα̇1
· · ·Dα̇n

f )



 . (53)

Here, the rule for the derivative with a left arrow is, e.g.

Ψn

←−
∂ 3

∂ θ1∂ θ2∂ θ3
Ψ =

�

∂ 3

∂ θ1∂ θ2∂ θ3
(Ψn)

�

Ψ , (54)
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for any positive integer n. Similarly, Q† at one-loop order has the differential representation

Q† =
g2

YM

16π2
Tr

�

Ψ
δ2

δΨ2

�

�

�

�

z=0,θ=0
, (55)

where the normalization of Q† can be fixed by matching with the known one-loop anomalous
dimension of the Konishi operator, as will be done momentarily.6 Substituting the differential
representations (52) and (55) into (7) gives the representation of the Hamiltonian H.

Konishi multiplet Consider the charge sector (nz+̇ , nz−̇ , nθ1
, nθ2

, nθ3
) = (0, 0,1, 1,1), with the

number of Ψ ’s given by Y = 3. This Hilbert subspace is spanned by two operators,

Tr (∂θ1
Ψ∂θ2

Ψ∂θ3
Ψ)∼ Tr (φ1φ2φ3) ,

Tr (∂θ1
Ψ∂θ3

Ψ∂θ2
Ψ)∼ Tr (φ1φ3φ2) .

(56)

From ∂
∂ θi
Ψ2|z=0,θ=0 = 0, we immediately have

Q Tr (φ1φ2φ3) =Q Tr (φ1φ3φ2) = 0 . (57)

We can also compute the Q† action by acting ∂
∂Ψ one after another, giving

Q†Tr (φ1φ2φ3) = −
g2

YM

64π2

�

Tr
�

∂1∂2Ψ
∂

∂ φ2

∂

∂ φ1

�

Tr
�

φ1φ2φ3
�

+Tr
�

∂2∂3Ψ
∂

∂ φ3

∂

∂ φ2

�

Tr
�

φ2φ3φ1
�

+ Tr
�

∂3∂1Ψ
∂

∂ φ1

∂

∂ φ3

�

Tr
�

φ3φ1φ2
�

�

�

�

�

�

z=0,θ=0

= −
i g2

YM

32π2
NTr
�

ψiφ
i
�

.

(58)

Similarly,

Q†Tr (φ1φ3φ2) =
i g2

YM

32π2
NTr (ψiφ

i) . (59)

Now we can compute H Tr (φ1φ2φ3) = 2QQ† Tr (φ1φ2φ3), where

QQ†Tr (φ1φ2φ3) = −
i g2

YM

32π2
NTr (Ψ2 ∂

∂Ψ
)Tr (ψiφ

i)
�

�

�

z=0,θ=0

= −
i g2

YM

32π2
N
�

−
i
2

Tr (∂2∂3Ψ
2 ∂

∂ψ1
)Tr (ψiφ

i)
�

�

�

�

�

z=0,θ=0
+ cyclic

=
3g2

YMN

16π2
[Tr (φ1φ2φ3)− Tr (φ1φ3φ2)] ,

(60)

and

QQ†Tr (φ1φ3φ2) = −
3g2

YMN

16π2
[Tr (φ1φ2φ3)− Tr (φ1φ3φ2)] . (61)

The matrix representation of H in this charge sector can be immediately read off to be

H =
3g2

YMN

8π2

�

1 −1
−1 1

�

. (62)

6Note that the method in Section 3 does not require extra information to determine the overall normalization
of Q†, H, and relatedly, the one-loop anomalous dimensions.
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Table 1: The maximal n of our computation, the number of operators, the number
of C(∆) multiplets, and the number of distinct values of one-loop anomalous di-
mensions, for each N . The subscripts ST and MT stand for single- and multi-trace,
respectively.

N nmax # BPS # non-BPS # C(∆) long # distinct
operators operators multiplets nonzero values

2 24 17990 2202266 934 776
3 17 3808 185939 311 232
4 15 2051 56353 144 101
∞ST 22 1917 7359925 9264 4286
∞MT 22 1086343 20501627 27617 4385

The eigenvalues are

0 ,
3g2

YMN

4π2
. (63)

In fact, the eigenvector with a non-zero eigenvalue is proportional to Tr (φ1[φ2,φ3]), which
is a descendant of the Konishi operator Tr (ΦmnΦmn) [34], since

Q4
−Q4
+Tr (ΦmnΦmn) = 4iQ4

−Tr (φ iψi) = 24Tr (φ1[φ2,φ3]) . (64)

One can easily compare (63) with the known one-loop anomalous dimension of the Konishi
operator, e.g. in [35], to verify that the normalization of Q† in (55) is correct.

5 Results and discussions

Using the machinery developed in Section 3, we systematically constructed and diagonalized
the one-loop Hamiltonian in the classically-BPS sector, in increasing

n≡ 2(3JL + q1 + q2 + q3) , (65)

for all charges up to the nmax indicated in Table 1. Also specified are the number of C(∆) long
multiplets and the number of distinct nonzero values of one-loop anomalous dimensions. The
data can be publicly accessed on https://github.com/yinhslin/bps-counting.

When analyzing the data, we can consider the spectrum of all operators, of C(∆) primaries,
or of C(∆)multiplets.7 To study the statistics of anomalous dimensions, it is natural to consider
the spectrum of primaries or multiplets to avoid large degeneracies. We choose to consider the
spectrum of primaries, since each primary has well-defined angular momenta and R-charges,
whereas a multiplet contains many different charges. Holographically, C(∆) acts as boosts
(and fermionic generalizations) on objects in the bulk (see e.g. [31] for a discussion), hence
if we are interested in analyzing the “core” properties of objects (such as the near-horizon
excitations of black holes), and not their motion in the ambient AdS, then it is certainly more
natural to consider the spectrum of primaries.

7Recall that C(∆) primaries are defined as operators annihilated by all the superconformal supercharges S in
C(∆), so a single multiplet can contain multiple primaries.
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5.1 Statistics of anomalous dimensions and hints of a gap

The results of the one-loop anomalous dimensions are presented as the smooth histograms
defined by the density

ρ(δ)≡
1
|I|

∑

δi∈I

1
p

2πσ
exp

�

−
(δi −δ)2

2σ2

�

, (66)

where δ is the normalized one-loop anomalous dimension

δ ≡
π2E

g2
YMN

, E : Eigenvalue of H = g2
YMD(2) , (67)

and I is the set of C(∆) long multiplets or the set of non-BPS C(∆) primary operators.
Figure 1 and 2 present smooth histograms of C(∆) long multiplets and non-BPS C(∆) pri-

maries, for all charge sectors up to the maximal n indicated in Table 1 for various gauge groups.
To avoid interference among different charge sectors, Figure 3 presents smooth histograms of
superconformal primary operators in select charge sectors. The spectrum of a fixed-charge
sector does not depend on nmax, but that without fixing charges does.

The spectrum of one-loop anomalous dimensions supports our conjecture (15). The
smooth histograms for the SU(∞)MT spectrum exhibit no visible “gap” (see Section 2.3 for
proper notion) above δ = 0 consistent with (15) where the gap becomes zero when N →∞.8

On the other hand, the smooth histograms for SU(2), SU(3), SU(4) exhibit clear “gaps” above
δ = 0. However, our current data is not enough to fit the value of e∆(1) in (15).

It is tempting to think that our conjectural existence of a gap is the highly stringy version
of the gap in the spectrum of near-extremal black holes established in [20] by a gravitational
path integral computation. In the non-BPS case, there is no definitive method to distinguish
multi-gravitons from potential black holes, thus putting an asterisk on how much our data
reflects stringy black hole physics.9 This issue is often ignored because in the charge regime
(13), black holes dominate the statistical ensemble anyway.

Finally, note that even though the energy E and nmax of our data set are quite large com-
pared to N2, as seen in Table 1, the individual angular momenta and R-charges are still smaller
than N2 once we distribute n over the five charges (J1, J2, q1, q2, q3), as seen in e.g. Figure 3.

5.2 Smallest BPS black hole operator at weak coupling

In [9–11, 13–16], BPS operators were analyzed and constructed at the level of cohomology.
The non-renormalization theorem of [14] dictates that exactly-BPS representatives of the co-
homologies exist to all orders in perturbation theory. In this work, we computed the actual
BPS operators at weak coupling by diagonalizing the Hamiltonian.

The most interesting cohomology found in [14] was for the smallest BPS black
hole (non-multi-graviton) operator Obh with gauge group SU(2). It has charge
(nz+̇ , nz−̇ , nθ1

, nθ2
, nθ3
) = (0,0, 4,4, 4) and is septic in the fundamental fields. Let us present

its actual weak coupling expression—not merely at the level of cohomology but as a concrete
operator (which was also computed in simultaneous work [23]).

To all orders in perturbation theory, Obh takes the form

Obh = O+QO′ , (68)

8We do not have a clear mathematical definition of “gap” for finite N and charges, so the word is used in a
qualitative sense in which visually the smooth histogram appears to exhibit a gap.

9However, see Appendix F of [17] for a proposed criterion, and some evidence that all classically-BPS non-BPS
states in the same charge sector as a BPS black hole are black-hole-like.
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Figure 1: Smooth histograms (with σ = 0.05) of nonzero one-loop anomalous di-
mensions δ of C(∆) long multiplets, up to the maximal n indicated in Table 1 for
planar and N = 2, 3,4.
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Figure 2: Smooth histograms (with σ = 0.05) of nonzero one-loop anomalous di-
mensions δ of non-BPS C(∆) primaries, up to the maximal n indicated in Table 1 for
planar and N = 2, 3,4.
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Figure 3: Smooth histograms (with σ = 0.2) of nonzero one-loop anomalous dimen-
sions δ of the C(∆) primary operators with select charges labeled as (JL , JR, q1, q2, q3).
The charge sectors on the left column (SU(∞)MT cases) are at n = 22, and on the
right column (SU(2) cases) are at n= 24. The values of δgap displayed on top of the
plots are the actual smallest values of δ.
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where O is a representative of the 1-dimensional Q-cohomology (i.e. it is Q-closed but not
Q-exact), and O′ has charge (0,0, 4,4, 4) and is sextic in the fundamental fields. The space of
(gauge-invariant) operators in the classically-BPS sector with charge (0,0, 4,4, 4) and sextic
in the fundamental fields is 53-dimensional, of which a 17-dimensional subspace is invariant
under the cyclic symmetry permuting θi . In [15], a basis for this 17-dimensional subspace was
chosen to be10

O′1 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ2
∂θ3
Ψ)Tr (∂θ1

∂θ2
∂θ3
Ψ∂θ1

Ψ)Tr (∂θ2
Ψ∂θ2

Ψ) + cyclic,

O′2 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ2
∂θ3
Ψ)Tr (∂θ1

Ψ∂θ2
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

∂θ3
Ψ) + cyclic,

O′3 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ2
∂θ3
Ψ)Tr (∂θ1

Ψ∂θ2
∂θ3
Ψ)Tr (∂θ2

Ψ∂θ1
∂θ3
Ψ) + cyclic,

O′4 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

Ψ)Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

Ψ)Tr (∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ) + cyclic,

O′5 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ1

∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ1

Ψ∂θ2
Ψ) + cyclic,

O′6 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

Ψ)Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ2

Ψ∂θ1
∂θ3
Ψ) + cyclic,

O′7 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

Ψ)Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ1

Ψ∂θ1
∂θ3
Ψ) + cyclic,

O′8 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

Ψ)Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ2

Ψ∂θ2
∂θ3
Ψ) + cyclic,

O′9 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

Ψ)Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ1

Ψ∂θ2
∂θ3
Ψ) + cyclic,

O′10 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ2
∂θ3
Ψ)Tr (∂θ1

Ψ∂θ1
∂θ3
Ψ)Tr (∂θ2

Ψ∂θ2
∂θ3
Ψ) + cyclic,

O′11 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

Ψ)Tr (∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

∂θ2
Ψ) + cyclic,

O′12 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

Ψ)Tr (∂θ2
∂θ3
Ψ∂θ1

∂θ2
Ψ) + cyclic,

O′13 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

∂θ2
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

Ψ) + cyclic,

O′14 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ1

Ψ∂θ1
∂θ3
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

∂θ2
Ψ) + cyclic,

O′15 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ1

Ψ)Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ1

Ψ∂θ2
∂θ3
Ψ) + cyclic,

O′16 = Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ1

∂θ3
Ψ∂θ1

∂θ2
Ψ)Tr (∂θ1

Ψ∂θ2
∂θ3
Ψ) + cyclic,

O′17 = Tr (∂θ2
∂θ3
Ψ∂θ1

∂θ3
Ψ)Tr (∂θ1

∂θ3
Ψ∂θ1

∂θ2
Ψ)Tr (∂θ1

∂θ2
Ψ∂θ2

∂θ3
Ψ) ,

(70)

and O was chosen to be

O = Tr (∂θ2
∂θ3
Ψ∂θ1

Ψ + ∂θ1
∂θ3
Ψ∂θ2

Ψ)Tr (∂θ1
∂θ2
Ψ∂θ1

Ψ)Tr (∂θ1
∂θ3
Ψ∂θ2

∂θ3
Ψ∂θ2

∂θ3
Ψ)

+ cyclic. (71)

By direct computation, we find that the actual BPS black hole operator at one-loop order has
the expression

Obh = O+
3O3

40
+

O6

180
−

O7

20
−

O8

20
+

O9

180
+

3O10

40

+
O12

9
+

17O13

90
+

3O14

10
+

2O15

45
−

O16

9
+

O17

2
, (72)

where Oi ≡QO′i for i = 1, . . . , 17.
Let us write the BPS black hole operator Obh in a manifestly SU(3) invariant form. Let us

consider the SU(3) invariant representative in [16],

eO = εi1 i2 i3ε j1 j2 j3εk1k2k3
εl1 l2 l3εm1m2m3

εk1 l1m1

× Tr (∂ i1Ψ∂ k2k3Ψ)Tr (∂ j1Ψ∂ l2 l3Ψ)Tr (∂ i2 i3Ψ∂ j2 j3Ψ∂ m2m3Ψ) , (73)

10In the early versions of [15], O′15 was written as (up to normalization)

Tr (∂θ1
∂θ2
∂θ3
Ψ∂θ2

∂θ3
Ψ)Tr (∂θ1

Ψ∂θ1
∂θ2
Ψ)Tr (∂θ2

∂θ3
Ψ∂θ1

∂θ3
Ψ) + cyclic, (69)

which equals − 1
2 O′3 −

1
2 O′10 −O′12 −O′13 −O′14. To fix this, we replaced (69) with the expression in (70).
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where we used the abbreviation ∂ i1···in ≡ ∂θi1
· · ·∂θin

. The SU(3) invariant subspace is four-
dimensional and we choose the basis to be

eO′1 = εi jkεlmnTr (∂ 123Ψ∂ iΨ)Tr (∂ 123Ψ∂ jkΨ)Tr (∂ lΨ∂ mnΨ) ,
eO′2 = εimnε jklTr (∂ 123Ψ∂ iΨ)Tr (∂ 123Ψ∂ jkΨ)Tr (∂ lΨ∂ mnΨ) ,
eO′3 = εi1 i2 i3ε

j1k1 l1ε j1 j2 j3εk1k2k3
εl1 l2 l3Tr (∂ 123Ψ∂ i1 i2Ψ)Tr (∂ i3Ψ∂ j2 j3Ψ)Tr (∂ k2k3Ψ∂ l2 l3Ψ) ,

eO′4 = εi1 i2 i3ε
j1k1 l1ε j1 j2 j3εk1k2k3

εl1 l2 l3Tr (∂ 123Ψ∂ j2 j3Ψ)Tr (∂ i1Ψ∂ k2k3Ψ)Tr (∂ i2 i3Ψ∂ l2 l3Ψ) .

(74)

The BPS black hole operator Obh can be written as

Obh = eO−
4eO1

9
+ 4eO2 −

7eO3

9
+

10eO4

9
, (75)

where eOi ≡QeO′i for i = 1, · · · , 4.

6 Outlook

In this work, the superspace formulation of [13,14] describing the classically-supersymmetric
sector of N = 4 super-Yang-Mills has been extended to capture non-supersymmetric aspects of
the theory. The formalism’s striking simplicity promises new progress in the old perturbative
approach to interactions. Concretely, we used the formalism to amass a large data set of one-
loop anomalous dimensions capturing near-supersymmetric black holes in a highly stringy
regime.

It would be highly desirable if the full symmetry algebra C(∆) could be manifest in the
Hamiltonian. Our current approach requires first constructing and diagonalizing the Hamilto-
nian involving all operators, and then a posteriori organizing the results into C(∆) multiplets.
As is clear from Table 1, the actual number of multiplets or primaries is much smaller than
that of all operators, so there appears to be a large amount of redundant effort. Eliminating
this redundancy could be key in pushing the effectiveness of the superspace formalism.11

The one-loop Hamiltonian can also be viewed as a non-relativistic reduction of N = 4
super-Yang-Mills. Treating this Hamiltonian as a quantum mechanical theory in its own right
is a subject dubbed Spin-Matrix theory [36]. The superspace formalism may provide a useful
restructuring of the quantum mechanics.

Another natural question to ask is whether the superspace formalism applies to higher
loops. The requirement that the superconformal supercharges S and special conformal genera-
tors K should admit series expansions in gYM compatible with the C(∆) superconformal algebra
and the non-renormalization of the supercharges Q and momenta P might be enough to “boot-
strap” gYM corrections to the differential representation of Q† at higher loops. In smaller sub-
sectors, compatibility with the psu(2, 2|4) superconformal algebra has been used to determine
the gYM expansion of the dilatation operator D to two and three-loop orders [24,37–39].12

Jackiw-Teitelboim (JT) gravity is holographically dual to a random matrix theory with
Gaussian unitary ensemble (GUE) [40]. This duality is further generalized to N = 1 and
N = 2 JT supergravities [41, 42]. Can the random matrix dual of N = 2 JT supergravity be
embedded in N = 4 SYM? At large N , consider a finite range of charge sectors with large
angular momenta and R-charges

J1, J2, q1, q2, q3 ∼ N2 , ∆J1, ∆J2, ∆q1, ∆q2, ∆q3 ∼ 1 . (76)

11First constructing all operators and then selecting primaries by imposing the S = 0 conditions is not too helpful,
as the first step would impose a computational bottleneck.

12The supercharge Q receives superficial gYM corrections (see (4.1) in [38]) that can be eliminated by a change
of basis.
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Perhaps the Hamiltonians over these charge sectors can be regarded as random matrices with
varying dimensionality. Can this offer a connection to the random matrix dual of JT?

We leave the reader with a few more open questions. Is there a gauge-theoretic way to
distinguish graviton operators from black holes in the near-BPS sector? Can the weak gauge
coupling regime be accessed by first-principle gravitational techniques? For instance, does the
proposed dual of free Yang-Mills theory in [43] have modifications/deformations that could
activate gYM?
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A Spinor convention

We define

σ0 =

�

1 0
0 1

�

, σ1 = i

�

0 1
1 0

�

, σ2 = i

�

0 −i
i 0

�

, σ3 = i

�

1 0
0 −1

�

. (A.1)

The components satisfy
(σµ)∗αα̇ = ε

αβεα̇β̇(σµ)ββ̇ . (A.2)

We have the identities

(σµ)αα̇(σµ)ββ̇ = 2εαβεα̇β̇ , (σµ)αα̇(σµ)
ββ̇ = 2δβαδ

β̇
α̇ , (σµ)αα̇(σν)αα̇ = 2δµν . (A.3)

We use the convention ε+− = 1= ε+−, and

vα = εαβ vβ , vα = vβεβα , vα̇ = εα̇β̇ vβ̇ , vα̇ = vβ̇εβ̇ α̇ . (A.4)

Let us define

(σµν)
α
β =

1
2
(σ[µ)

αγ̇(σν])βγ̇ , (σµν)
α̇

β̇
=

1
2
(σ[µ)

γα̇(σν])γβ̇ , (A.5)

which satisfies the SO(4) Lie algebra.
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B Superconformal algebra

The psu(2, 2|4) superconformal algebra has a bosonic subalgebra is su(2, 2)× su(4). The con-
formal algebra su(2,2) is generated by the

Pαβ̇ , Kαβ̇ , D , (JL)
α
β , (JR)

α̇

β̇
, (B.1)

where α, β = +, − and α̇, β̇ = +̇, −̇ are the spinor indices of su(2)L and su(2)R. The su(4)
R-symmetry is generated by

Rm
n . (B.2)

with the traceless condition
R1

1 + R2
2 + R3

3 + R4
4 = 0 . (B.3)

The upper (lower) m, n= 1, · · · , 4 are the (anti-)fundamental indices of su(4). The fermionic
generators of psu(2, 2|4) are

Qn
α , Sαn , Qα̇n , S

α̇n
. (B.4)

The nonzero commutators of the psu(2,2|4) superconformal algebra are

[(JL)
α
β , (JL)

γ

δ
] = δγ

β
(JL)

α
δ −δ

α
δ(JL)

γ

β
, [(JR)

α̇

β̇
, (JR)

γ̇

δ̇
] = δγ̇

β̇
(JR)

α̇

δ̇
−δα̇

δ̇
(JR)

γ̇

β̇
,

[(JL)
α
β , Pγδ̇] = −δ

α
γ Pβδ̇ +

1
2
δαβ Pγδ̇ , [(JL)

α
β , Kγδ̇] = δγ

β
Kαδ̇ −

1
2
δαβKγδ̇ ,

[(JR)
α̇

β̇
, Pγδ̇] = −δ

α̇

δ̇
Pγβ̇ +

1
2
δα̇
β̇

Pγδ̇ , [(JR)
α̇

β̇
, Kγδ̇] = δδ̇

β̇
Kγα̇ −

1
2
δα̇
β̇

Kγδ̇ ,

[D, Pαβ̇] = Pαβ̇ , [D, Kαβ̇] = −Kαβ̇ ,

[Kαβ̇ , Pγδ̇] = δ
γ
αδ
β̇

δ̇
D−δβ̇

δ̇
(JL)

α
γ −δ

γ
α(JR)

β̇

δ̇
,

[Kαβ̇ ,Qn
γ] = δ

α
γS
β̇n

, [Kαβ̇ ,Qγ̇n] = δ
β̇
γ̇ Sαn ,

[Pαβ̇ , Sγn] = −δ
γ
αQβ̇n , [Pαβ̇ , S

γ̇n
] = −δγ̇

β̇
Qn
α ,

[(JL)
α
β ,Qn

γ] = −δ
α
γQn

β +
1
2
δαβQn

γ , [(JL)
α
β , Sγn] = δ

γ

β
Sαn −

1
2
δαβSγn ,

[(JR)
α̇

β̇
,Qγ̇n] = −δα̇γ̇Qβ̇n +

1
2
δα̇
β̇
Qγ̇n , [(JR)

α̇

β̇
, S
γ̇n
] = δγ̇

β̇
S
α̇n
−

1
2
δα̇
β̇

S
γ̇n

,

{Sαm,Qn
β}=

1
2
δn

mδ
α
βD−δn

m(JL)
α
β −δ

α
βRn

m ,

{S
α̇m

,Qβ̇n}=
1
2
δm

n δ
α̇

β̇
D−δm

n (JR)
α̇

β̇
+δα̇

β̇
Rm

n ,

{Qm
α ,Qβ̇n}= δ

m
n Pαβ̇ , {Sαm, S

β̇n
}= δn

mKαβ̇ ,

[Rm
n , Rp

q] = δ
p
nRm

q −δ
m
q Rp

n ,

[Rm
n ,Qp

γ] = δ
p
nQm
γ −

1
4
δm

n Qp
γ , [Rm

n ,Qγp] = −δm
p Qγn +

1
4
δm

n Qγp ,

[Rm
n , Sγp] = −δ

m
p Sγn +

1
4
δm

n Sγp , [Rm
n , S

γp
] = δp

nS
γm
−

1
4
δm

n S
γp

,

[D,Qm
α ] =

1
2

Qm
α , [D,Qα̇m] =

1
2

Qα̇m ,

[D, Sαm] = −
1
2

Sαm , [D, S
α̇m
] = −

1
2

S
α̇m

.

(B.5)
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Let us denote the Hermitian conjugate in the radial quantization (BPZ conjugate) by †, and
the Hermitian conjugate in the usual quantization (with the time translation generated by P0)
by ∗. We have

P†
αβ̇
= Kαβ̇ , (Qm

α )
† = Sαm , (Qα̇m)

† = S
α̇m

, (B.6)

and the other generators are †-conjugated to themselves. We also have

(Qm
α )
∗ =Qα̇m , (Sαm)

∗ = S
α̇m

, P∗
αβ̇
= Pβα̇ , (Kαβ̇)∗ = Kβα̇ , ((JL)

α
β)
∗ = ((JR)

α̇

β̇
)∗ . (B.7)

and the other generators are ∗-conjugated to themselves.
It is sometimes convenient to use a different parametrization of the Cartan generators as

q1 = −R2
2 − R3

3 , q2 = −R1
1 − R3

3 , q3 = −R1
1 − R2

2 , (B.8)

and

(JL)
−
− ≡ JL ≡

J1 + J2

2
, (JR)

−̇
−̇ ≡ JR ≡

J1 − J2

2
. (B.9)

qi and Ji generate rotations along the five orthogonal two-planes inside R10 where the
so(6)× so(4) ∼= su(4)× su(2)L × su(2)R act. The supercharges Qm

α and Qα̇m can be relabeled
using the eigenvalues of qi and Ji as Qq1,q2,q3

J1,J2
,

Q1
± =Q+,−,−

±,± , Q2
± =Q−,+,−

±,± , Q3
± =Q−,−,+

±,± , Q4
± =Q+,+,+

±,± ,

Q±̇1 =Q−,+,+
±,∓ , Q±̇2 =Q+,−,+

±,∓ , Q±̇3 =Q+,+,−
±,∓ , Q±̇4 =Q−,−,−

±,∓ .
(B.10)

Another commonly used parametrization of the Cartan generators of su(4) is the Dynkin labels
R1, R2, and R3. They are related to qi and Rm

m by

R1 = R1
1 − R2

2 = q1 − q2 , R2 = R2
2 − R3

3 = q2 − q3 , R3 = R3
3 − R4

4 = −q1 − q2 . (B.11)

Finally, the momentum, special conformal, and Lorentz generators with the vector indices
(Pµ, Kµ, and Mµν) are given by

Pαβ̇ =
1
2
(σµ)αβ̇ Pµ , Kαβ̇ =

1
2
(σµ)αβ̇Kµ ,

(JL)
α
β =

1
2
(σµν)αβMµν , (JR)

α̇

β̇
=

1
2
(σµν)

α̇

β̇
Mµν .

(B.12)

They satisfy the standard commutation relations

[Mµν, Mρσ] = δνρMµσ −δµρMνσ +δνσMρµ −δµσMρν ,

[Mµν, Pρ] = δνρPµ −δµρPν , [Mµν, Kρ] = δνρKµ −δµρKν ,

[Kµ, Pν] = 2δµνD− 2Mµν .

(B.13)

C Centralizer subalgebra C(∆)

We list the generators of the centralizer C(∆) = u(1) ⋉ [psu(1, 2|3)× su(1|1)]. The u(1) is
generated by

(JL)
−
− . (C.1)

The su(1|1) is generated by

Q4
− , S−4 , 2{Q4

−, S−4 }= D− 2(JL)
−
− − 2R4

4 . (C.2)
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The psu(1, 2|3) has bosonic subalgebra su(1,2)× su(3). The su(3) is generated by

Ri
j ≡ Ri

j −
1
3
δi

j(R
1
1 + R2

2 + R3
3) . (C.3)

The su(1,2) is generated by

(JR)
α̇

β̇
, Pα̇ ≡ P+α̇ , K α̇ ≡ K+α̇ , D+ (JL)

−
− . (C.4)

The fermionic generators of psu(1, 2|3) are

Qi
+ , Qα̇i , S+i , S

α̇i
. (C.5)

The centralizer C(∆) has a u(1, 2) subalgebra, whose commutators are

M α̇
β̇ ≡

1
2
(σµ)+α̇(σν)+β̇Mµν = (JR)

α̇

β̇
− (JL)

−
−δ

α̇

β̇
, (C.6)

where Mµν is the generators of the conformal algebra so(2,4). We have the commutators

[K α̇, Pβ̇] = δ
α̇

β̇
D−M α̇

β̇ , [M α̇
β̇ , M γ̇

δ̇] = δ
γ̇

β̇
M α̇

δ̇ −δ
α̇

δ̇
M γ̇

β̇ ,

[M α̇
β̇ , Pγ̇] = −δα̇γ̇ Pβ̇ , [M α̇

β̇ , K γ̇] = δγ̇
β̇

K α̇ .
(C.7)

D Fundamental fields in N = 4 SYM

The fundamental fields in N = 4 SYM are

Φmn , Ψαm , Ψ
m
α̇ , Aαβ̇ ≡

1
4
(σµ)αβ̇Aµ . (D.1)

The scalars Φmn satisfy the reality condition Φ∗mn =
1
2ε

mnpqΦpq ≡ Φmn, and the fermions Ψαm

and Ψ
m
α̇ are ∗-conjugates of each other, i.e. Ψ∗αm = Ψ

m
α̇ .

The supercharges Qm
α and Qα̇m act on the fundamental fields as [11,24,44]13

[Qm
α ,Φnp] = 2δm

[nΨp]α , {Qm
α ,Ψ

n
β̇}= 2iDαβ̇Φ

mn ,

{Qm
α ,Ψβn}= −2iδm

n Fαβ + εαβ[Φ
mp,Φnp] , [Qm

α , Aβγ̇] = −εαβΨ
m
γ̇ ,

[Qmα̇,Φnp] = −2δ[nmΨ
p]
α̇ , {Qα̇m,Ψβn}= 2iDβα̇Φmn ,

{Qα̇m,Ψ
n
β̇}= −2iδn

mFα̇β̇ − εα̇β̇[Φ
np,Φmp] , [Qα̇m, Aβγ̇] = −εα̇γ̇Ψβm ,

(D.3)

where

Fαβ ≡ −
1

16
(σµν)αβ Fµν , Fα̇β̇ ≡ −

1
16
(σµν)α̇β̇ Fµν ,

∂αβ̇ =
1
4
(σµ)αβ̇∂µ , Dαβ̇ =

1
4
(σµ)αβ̇Dµ , Dµ = ∂µ − iAµ .

(D.4)

13Our convention is related to the convention in [24] by

Ψ
them,m

α̇
=

i
2g
Ψ

us,m

α̇
, Ψ them

αm =
i

2g
Ψus
αm , Φthem

m σm
ab =

1
i g
Φus

ab , Φthem
m σm,ab =

1
i g
Φus,ab ,

Dthem
µ
σ
µ

αβ̇
= iDus

αβ̇
, Athem

µ
σ
µ

αβ̇
=

i
g

Aus
αβ̇

, x them
µ
= −4i xus

µ
,

(D.2)

where our coordinate convention is chosen such that the momentum generator Pµ satisfy the standard conformal
algebra (B.13).
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The supercharges act on the field strength as

[Qm
α , Fβγ] = εα(βDγ)

δ̇Ψ
m
δ̇ , [Qm

α , Fβ̇ γ̇] = −Dα(β̇Ψ
m
γ̇) ,

[Qα̇m, Fβ̇ γ̇] = εα̇(β̇Dδγ̇)Ψδm , [Qα̇m, Fβγ] = −Dα̇(βΨγ)m .
(D.5)

The equations of motion for the fermions are

Dβα̇Ψ
β
a = i[Φab,Ψ

b
α̇] , Dαβ̇Ψ

aβ̇
= i[Φab,Ψαb] . (D.6)

For our purpose, we have only used the above commutators in the free theory, where we
can ignore the commutator [Φmp,Φnp], and replace the covariant derivatives with the partial
derivatives. It is easy to check that they are compatible with the superconformal algebra, i.e.

[Qm
α , {Qβ̇n, X }] + [Qβ̇n, {Qm

α , X }] = 2iδm
n ∂αβ̇X ,

[Qm
α , {Qn

β , X }] + [Qn
β , {Qm

α , X }] = 0 ,
(D.7)

up to the equations of motion, and with the identification of the momentum Pαβ̇ and the
derivative ∂αβ̇ as

Pαβ̇ = 2i∂αβ̇ =
1
2

i(σµ)αβ̇∂µ . (D.8)

In our convention, the super-Yang-Mills action is

S =
2

g2
YM

∫

d4 x Tr
�

1
4

FµνFµν − 2DµΦmnDµΦmn − 4[Φmn,Φpq][Φmn,Φpq]

− 64iΨ
m
α̇ Dβα̇Ψmβ + 32Ψαm [Φ

mn,Ψαn] + 32Ψ
mα̇ �
Φmn,Ψ

n
α̇

�

�

+
θ

16π2

∫

d4 x εµνρσFµνFρσ . (D.9)

It is the same as the (1.5), (1.14) in [24] by the map between the conventions given in Foot-
note 13.

E Inner product of single BPS letters

E.1 Inner product of matrix fields

Consider a scalar field X valued in the adjoint representation of U(N). The inner product
between the matrix components of X is diagonal

〈X I
J |X

L
K〉= δ

J
Kδ

L
I . (E.1)

When the scalar field X is in the adjoint representation of SU(N), the inner product is

〈X I
J |X

L
K〉= δ

J
Kδ

L
I −

1
N
δJ

I δ
L
K . (E.2)

The inner product between the off-diagonal matrix elements of X is diagonal, but between
the diagonal matrix elements of X is non-diagonal. We could consider linear combinations of
the diagonal matrix elements of X such that the inner product between them is diagonal. For
example, for N = 2, we have

X 1
1 = X1 ,

X 2
2 = −X1 .

(E.3)
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For N = 3, we have
X 1

1 = −X1 +X2 ,

X 2
2 = X1 +X2 ,

X 3
3 = −2X2 .

(E.4)

For N = 4, we have
X 1

1 = −X1 −X2 +X3 ,

X 2
2 = 2X2 +X3 ,

X 3
3 = X1 −X2 +X3 ,

X 4
4 = −3X3 .

(E.5)

The inner product matrices of Xi are diagonal matrices with the diagonal components
〈X1|X1〉=

1
2 , 〈X2|X2〉=

1
6 , 〈X3|X3〉=

1
12 .

E.2 Inner products of BPS letters without derivatives

Let us consider BPS letters (16) without covariant derivatives, which corresponds to the con-
formal primary states

�

�φ i
�

, |ψi〉 , |λα̇〉 , | f 〉 . (E.6)

We presently compute the inner products of the fundamental fields (D.1) in the free theory.
Using the action (D.9), we compute the two-point function of the scalar Φmn,

〈Φmn(x)Φpq(0)〉=
g2

YM

32π2

δm
[pδ

n
q]

|x |2
. (E.7)

The inner product of |Φmn〉 is given by the limit

〈Φmn|Φpq〉= lim
x→∞

|x |2〈Φmn(x)Φpq(0)〉=
g2

YM

32π2
δm
[pδ

n
q] . (E.8)

The fermions Ψαm, Ψ
m
α̇ and the field strength Fαβ are related to the scalar by

|Ψαm〉=
1
3

Qn
α|Φnm〉 , |Ψm

α̇ 〉= −
1
3

Qβ̇n|Φ
nm〉 ,

|Fαβ〉=
i
8

Qm
(α|Ψβ)m〉= −

i
24

Qm
αQn

β |Φmn〉 .
(E.9)

Their inner product can be computed by using the superconformal algebra given in Appendix B,
and the fact that the scalars Φmn’s are superconformal primaries, i.e.

Sαm|Φnq〉= 0= S
m
α̇ |Φnq〉 . (E.10)

We compute the inner product of the fermions and field strength,14

〈Ψαp|Ψβq〉=
1
9
〈Φmp|{Sαm,Qn

β}|Φnq〉=
g2

YM

64π2
δαβδ

p
q ,

14The inner products can also be obtained from the two-point functions

〈Ψαm|Ψβn〉= lim
x→∞

|x |2 xµ(σ
µ)αγ̇〈Ψ

m

γ̇
(x)Ψβn(0)〉 , 〈Ψ

α̇

m|Ψ
n

β̇
〉= lim

x→∞
|x |2 xµ(σ

µ)γα̇〈Ψγm(x)Ψ
n

β̇
(0)〉 ,

〈Fαβ |Fγδ〉= lim
x→∞

|x |2 xµ(σ
µ)αα̇xν(σ

ν)ββ̇ 〈Fα̇β̇ (x)Fγδ(0)〉 .
(E.11)
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〈Ψα̇p |Ψ
q
β̇
〉=

1
9
〈Φmp|{S

α̇m
,Qβ̇n}|Φ

nq〉=
g2

YM

64π2
δα̇
β̇
δq

p ,

〈Fαβ |Fγδ〉= 〈Ψβp|Sαp Qm
γ |Ψδm〉 (E.12)

=
1
64
〈Ψβp|{Sαp ,Qm

γ }|Ψδm〉 −
1
64
〈Ψβp|Qm

γ Sαp |Ψδm〉

=
g2

YM

32π2

�

1
8
δαγδ

β

δ
+

1
32
δαδδ

β
γ

�

−
1
64
〈Ψβp|Qm

γ Sαp |Ψδm〉

=
g2

YM

256π2
δα(γδ

β

δ) .

Specializing the above results to the BPS letters, we find

〈φi|φ j〉=
g2

YM

64π2
δ

j
i , 〈ψi|ψ j〉=

g2
YM

64π2
δi

j , 〈λα̇|λβ̇〉=
g2

YM

64π2
δα̇
β̇

, 〈 f | f 〉=
g2

YM

256π2
. (E.13)

E.3 Inner products of BPS letters with derivatives

Let us consider BPS letters with covariant derivatives. In free theory, the covariant derivatives
become partial derivatives and are related to the momentum generator Pαβ̇ as

Dαβ̇ = ∂αβ̇ =
1
2i

Pαβ̇ . (E.14)

Hence, these BPS letters are descendent of the conformal primary letters (E.6), and take the
form as

Pα̇1
· · · Pα̇n

|X 〉 , (E.15)

for |X 〉=
�

�φ i
�

, |ψi〉, |λα̇〉, or | f 〉. Their inner products are

〈X |K α̇n · · ·K α̇1 Pβ̇1
· · · Pβ̇n

|X 〉 , (E.16)

which are reduced to the inner product 〈X |X 〉 by the commutators in the su(1, 2) subalgebra
given in Appendix C. In particular, the commutators (C.7) imply

K −̇Pn
−̇Pm
+̇ = n(D+m+ n− 1)Pn−1

−̇ Pm
+̇ − nPn−1

−̇ Pm
+̇ M −̇−̇

−mPn
−̇Pm−1
+̇ M −̇+̇ + Pn

−̇Pm
+̇ K −̇ ,

K +̇Pn
−̇Pm
+̇ = m(D+m+ n− 1)Pn

−̇Pm−1
+̇ −mPn

−̇Pm−1
+̇ M +̇+̇

− nPn−1
−̇ Pm

+̇ M +̇−̇ + Pn
−̇Pm
+̇ K +̇ .

(E.17)

The M α̇
β̇ action on the conformal primary states as,

M α̇
β̇

�

�φ i
�

= 0 , M α̇
β̇ |ψi〉= −

1
2
δα̇
β̇
|ψi〉 ,

M α̇
β̇ |λγ̇〉= −δ

α̇
γ̇ |λβ̇〉+

1
2
δα̇
β̇
|λγ̇〉 , M α̇

β̇ | f 〉= −δ
α̇

β̇
| f 〉 .

(E.18)

Now, let us define
FX (m, n)≡ 〈X |(K +̇)m(K −̇)nPn

−̇Pm
+̇ |X 〉 , (E.19)

for X = φ i , ψi , f , and

F+,+(m, n)≡ 〈λ+̇|(K +̇)m(K −̇)nPn
−̇Pm
+̇ |λ+̇〉 ,

F−,−(m, n)≡ 〈λ−̇|(K +̇)m(K −̇)nPn
−̇Pm
+̇ |λ−̇〉 ,

F+,−(m, n)≡ 〈λ+̇|(K +̇)m−1(K −̇)nPn−1
−̇ Pm

+̇ |λ−̇〉 ,

F−,+(m, n)≡ 〈λ−̇|(K +̇)m(K −̇)n−1Pn
−̇Pm−1
+̇ |λ+̇〉 .

(E.20)
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From (E.17), we find

FX (m, n) = n(∆X +m+ n− 1+ JL)FX (m, n− 1) ,

FX (m, n) = m(∆X +m+ n− 1+ JL)FX (m− 1, n) ,
(E.21)

where ∆X and JX are the eigenvalues of D and (JL)−−. We also find

F+,+(m, n) = n(m+ n)F+,+(m, n− 1) ,

F+,+(m, n) = m(m+ n+ 1)F+,+(m− 1, n) + nF+,−(m, n) ,

F−,−(m, n) = n(m+ n+ 1)F−,−(m, n− 1) +mF−,+(m, n) ,

F−,−(m, n) = m(m+ n)F−,−(m− 1, n) ,

(E.22)

where we have used (E.18). We also have

F+,−(m, n) = (n− 1)(m+ n)F+,−(m, n− 1) +mF+,+(m− 1, n− 1) ,

F+,−(m, n) = m(m+ n)F+,−(m− 1, n) ,

F−,+(m, n) = n(m+ n− 1)F−,+(m, n− 1) ,

F−,+(m, n) = (m− 1)(m+ n)F−,+(m− 1, n) + nF−,−(m− 1, n− 1) .

(E.23)

We solve these recurrence relations. The solutions are

FX (m, n) =
Γ (m+ 1)Γ (n+ 1)Γ (∆X + JL,X +m+ n)

Γ (∆X + JL,X )
〈X̄ |X 〉 , (E.24)

and
F+,+(m, n) = Γ (m+ 2)Γ (n+ 1)Γ (m+ n+ 1)〈λ̄+̇|λ+̇〉 ,

F−,−(m, n) = Γ (m+ 1)Γ (n+ 2)Γ (m+ n+ 1)〈λ̄−̇|λ−̇〉 ,

F+,−(m, n) = Γ (m+ 1)Γ (n+ 1)Γ (m+ n)〈λ̄+̇|λ+̇〉 ,

F−,+(m, n) = Γ (m+ 1)Γ (n+ 1)Γ (m+ n)〈λ̄−̇|λ−̇〉 .

(E.25)

Let us summarize these inner products by using the BPS superfield.

φ i =
i
2
∂θi
Ψ , ψi = −

i
4
εi jk∂θ j

∂θk
Ψ , λα̇ = i∂zα̇Ψ , f = −

i
4
∂θ1
∂θ2
∂θ3
Ψ , (E.26)

First, using the relation

∂ m
z+̇
∂ n

z−̇
Ψ(Z)
�

�

Z=0 = −i
m( 1

2i P+̇)m−1( 1
2i P−̇)nλ+̇ + n( 1

2i P+̇)m(
1
2i Pn−1
−̇ )λ−̇

m+ n
, (E.27)

we find



�

∂ m
z+̇
∂ n

z−̇
Ψ
�† �
�∂ m

z+̇
∂ n

z−̇
Ψ
�

=
41−m−n

(m+ n)2
�

m2Fλ̄+̇,λ+̇
(m− 1, n) + n2Fλ̄−̇,λ−̇

(m, n− 1) +mnFλ̄+̇,λ−̇
(m, n) +mnFλ̄−̇,λ+̇

(m, n)
�

= 41−m−nΓ (m+ 1)Γ (n+ 1)Γ (m+ n)〈λ̄+̇|λ+̇〉 . (E.28)

It is straightforward to find the following formulae




�

∂ m
z+̇
∂ n

z−̇
∂θ1
Ψ
�† �
�∂ m

z+̇
∂ n

z−̇
∂θ1
Ψ
�

= 41−m−nΓ (m+ 1)Γ (n+ 1)Γ (m+ n+ 1)〈φ̄1|φ1〉 ,



�

∂ m
z+̇
∂ n

z−̇
∂θ1
∂θ2
Ψ
�† �
�∂ m

z+̇
∂ n

z−̇
∂θ1
∂θ2
Ψ
�

= 41−m−nΓ (m+ 1)Γ (n+ 1)Γ (m+ n+ 2)〈ψ̄3|ψ3〉 ,



�

∂ m
z+̇
∂ n

z−̇
∂θ1
∂θ2
∂θ3
Ψ
�† �
�∂ m

z+̇
∂ n

z−̇
∂θ1
∂θ2
∂θ3
Ψ
�

=
1
2

42−m−nΓ (m+ 1)Γ (n+ 1)Γ (m+ n+ 3)〈 f̄ | f 〉 ,
(E.29)
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and similar results by permuting the θ1, θ2, θ3. With the inner products of the primary states
(E.13), we find



∂
a1

z+̇
∂

a2

z−̇
∂

a3
θ1
∂

a4
θ2
∂

a5
θ3
Ψ
�

�∂
a1

z+̇
∂

a2

z−̇
∂

a3
θ1
∂

a4
θ2
∂

a5
θ3
Ψ
�

=
g2

YM

24+2a1+2a2π2
Γ (a1 + 1)Γ (a2 + 1)Γ (a1 + a2 + a3 + a4 + a5) . (E.30)

F Alternative expression for the smallest black hole operator

In [15], an expression for the smallest black hole operator of [14] was presented on paper.
This appendix translates the superfield notation of Section 5.2 to the notation of [15] up to
normalization. Writing σ⃗ as a vector of Pauli matrices,15 we define φ⃗ i , ψ⃗i and f⃗ through

φ⃗ i · σ⃗ =
i
2
∂θi
Ψ , ψ⃗i · σ⃗ = −

i
4
εi jk∂θ j

∂θk
Ψ , f⃗ · σ⃗ = −

i
4
∂θ1
∂θ2
∂θ3
Ψ . (F.1)

Then
O′1 = 4096( f⃗ · f⃗ )( f⃗ · φ⃗1)(φ⃗2 · φ⃗3) + cyclic,

O′2 = 2048( f⃗ · f⃗ )(φ⃗1 · φ⃗2)(ψ⃗1 · ψ⃗2) + cyclic,

O′3 = 2048( f⃗ · f⃗ )(φ⃗1 · ψ⃗1)(φ⃗
2 · ψ⃗2) + cyclic,

O′4 = 2048( f⃗ · φ⃗1)( f⃗ · φ⃗2)(ψ⃗1 · ψ⃗2) + cyclic,

O′5 = 2048( f⃗ · ψ⃗1)( f⃗ · ψ⃗2)(φ⃗
1 · φ⃗2) + cyclic,

O′6 = 2048( f⃗ · φ⃗1)( f⃗ · ψ⃗1)(φ⃗
2 · ψ⃗2) + cyclic,

O′7 = 2048( f⃗ · φ⃗2)( f⃗ · ψ⃗1)(φ⃗
1 · ψ⃗2) + cyclic,

O′8 = 2048( f⃗ · φ⃗1)( f⃗ · ψ⃗2)(φ⃗
2 · ψ⃗1) + cyclic,

O′9 = 2048( f⃗ · φ⃗2)( f⃗ · ψ⃗2)(φ⃗
1 · ψ⃗1) + cyclic,

O′10 = 2048( f⃗ · f⃗ )(φ⃗1 · ψ⃗2)(φ⃗
2 · ψ⃗1) + cyclic,

O′11 = −1024( f⃗ · φ⃗1)(ψ⃗1 · ψ⃗2)(ψ⃗1 · ψ⃗3) + cyclic,

O′12 = −1024( f⃗ · ψ⃗2)(ψ⃗1 · φ⃗1)(ψ⃗1 · ψ⃗3) + cyclic,

O′13 = −1024( f⃗ · ψ⃗3)(ψ⃗1 · ψ⃗2)(ψ⃗1 · φ⃗1) + cyclic,

O′14 = −1024( f⃗ · ψ⃗1)(φ⃗
1 · ψ⃗2)(ψ⃗1 · ψ⃗3) + cyclic,

O′15 = −2048( f⃗ · φ⃗1)( f⃗ · ψ⃗1)(φ⃗
1 · ψ⃗1) + cyclic,

O′16 = −1024( f⃗ · ψ⃗1)(ψ⃗2 · ψ⃗3)(φ⃗
1 · ψ⃗1) + cyclic,

O′17 = −512(ψ⃗1 · ψ⃗2)(ψ⃗2 · ψ⃗3)(ψ⃗3 · ψ⃗1) ,

(F.2)

and
O = −1024(ψ⃗1 · φ⃗1 − ψ⃗2 · φ⃗2)(ψ⃗3 · φ⃗1)ψ⃗2 · (ψ⃗1 × ψ⃗1) + cyclic. (F.3)

15Note that in terms of the σ-matrices defined in (A.1), we have σ⃗ = (−iσ1,−iσ2,−iσ3).
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