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Abstract

The two most important functions describing the evolution of the universe and its
structures are the expansion function E(a) and the linear growth factor D+(a). It is
desirable to constrain them based on a minimum of assumptions in order to avoid biases
from assumed cosmological models. The expansion function has been determined in
previous papers in a model-independent way using distance moduli to type-Ia supernovae
and assuming only a metric theory of gravity, spatial isotropy and homogeneity. Here,
we extend this analysis in three ways: (1) We enlarge the data sample by combining
measurements of type-Ia supernovae with measurements of baryonic acoustic oscillations;
(2) we substantially simplify and generalise our method for reconstructing the expansion
function; and (3) we use the reconstructed expansion function to determine the linear
growth factor of cosmic structures, equally independent of specific assumptions on an
underlying cosmological model other than the usual spatial symmetries. In this approach,
the present-day matter-density parameter Ωm0 is the only relevant parameter for an
otherwise purely empirical and accurate determination of the growth factor. We further
show how our method can be used to derive a possible time evolution of the dark energy
as well as the growth index directly from distance measurements. Deviations from ΛCDM
that we see in some of our results may be due to possibly insufficient flexibility of our
method that could be cured by larger data samples, a real departure from ΛCDM at
a ≲ 0.3, or hidden systematics in the data. The latter could be a matter of concern for
all type-Ia supernovae analyses based on ΛCDM fitting approaches, especially in view of
the current dispute on the value of H0. These results illustrate the applicability of our
approach as a diagnostic tool.
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1 Introduction20

The expansion function of the universe and the linear growth factor of cosmic structures21

are the two most fundamental functions describing the evolution of the universe and its22

structures. They are indirectly accessible to astronomical observations, such as luminosity-23

distance measurements of type-Ia supernovae (SN Ia). Combining both functions allows to24

distinguish between different cosmological models.25

The accelerated expansion rate of the universe has been established more than twenty26

years ago based on SN Ia distance measurements [1, 2]. The cosmological standard model27

explains this acceleration by the cosmological constant or a dynamical dark-energy component28

currently dominating the energy content of the universe [3]. The nature of the dark energy is29

largely unknown. So far, all attempts to derive it from fundamental theory have led to values30

which are way too large to explain the cosmic acceleration. Phenomenological explanations31

are typically based on a dark-energy equation of state, possibly varying with time. Some of32

them bypass fine-tuning problems, but lack fundamental justifications. Constraining the nature33

of the dark energy thus remains one of the most important tasks for contemporary cosmology.34

The two functions mentioned, the cosmic expansion function and the linear growth factor of35

cosmic structures, are the most important links between observations and the nature of the36

dark energy.37

We are here proposing a method to constrain the linear growth factor of cosmic structures38

without reference to any specific model for the energy content of the universe. We derive the39

expansion function in a way similar to that proposed by [4] and [5], but in a substantially40

simplified and standardised manner. The only assumptions made there are that the universe is41

topologically simply connected, spatially homogeneous and isotropic on average, and that the42

expansion rate is reasonably smooth. Extending this analysis to the linear growth of cosmic43

structures, we only add the assumption that the linear growth of cosmic structures on the44

relevant scales is locally driven by Newtonian gravity.45

We briefly review and revise the method of [4] in Sect. 2 and apply it exemplarily to the46

Pantheon sample of type-Ia supernovae (SN sample hereafter) and to the Pantheon sample47

combined with a sample of distance measurements from baryonic acoustic oscillations (BAO,48

hereafter SN-BAO sample) to obtain a purely empirical and rather tight constraint of the cosmic49
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expansion function. We further show how, assuming a spatially flat Friedmann-Lemaître model50

with dynamical dark energy, the hypothetical time evolution of dark energy can be derived51

from the empirically determined expansion function. In Sect. 3 we describe our method to52

calculate the linear growth factor, discuss the initial conditions for solving the growth equation,53

and present the results obtained from the SN sample and the SN-BAO sample. As an additional54

application we show how to derive the growth index from the expansion function. In Sect. 4,55

we briefly discuss the dependence of the derived functions on the data sample in view of56

controversies in the literature about the acquisition of existing SN samples. We illustrate the57

incompatibilities between two such samples by applying our method to both. Some of our58

derived functions deviate significantly from the ΛCDM predictions for both data samples, and59

we discuss possible reasons and implications. Finally, we summarise our conclusions in Sect. 5.60

2 Cosmic expansion61

2.1 Method62

As outlined in [4], the expansion function can be deduced from the luminosity of light sources of63

known intrinsic luminosity, such as calibrated SNe Ia, without assuming any specific Friedmann-64

Lemaître model. We briefly review this method in this section in a modified, simplified, and65

standardised version.66

Even though gravity is commonly described by general relativity (GR), we only need to67

assume that space-time is described by a metric theory of gravity. We thus treat space-time as a68

four-dimensional, differentiable manifold with a metric tensor g. Assuming spatial isotropy69

and homogeneity, this metric has to be of the Robertson-Walker form with a scale factor a. In70

general relativity, Einstein’s field equations applied to the Robertson-Walker metric turn into the71

Friedmann equations, and the metric further specialises to the Friedmann-Lemaître-Robertson-72

Walker form. Then, the cosmic expansion function E(a) is given in terms of the Hubble function73

H(a) by74

H2(a) = H2
0

�

Ωr0a−4 +Ωm0a−3 +ΩDE(a) +ΩK0a−2
�

=: H2
0 E2(a) . (1)

This defines the cosmic expansion function E(a) in terms of the Hubble constant H0 and the75

contributing energy-density parameters. These are the radiation density Ωr0, the matter density76

Ωm0, the density parameter ΩK0 of the spatial curvature, all at the present time, and the possibly77

time-dependent dark-energy density parameter ΩDE(a). In the standard ΛCDM cosmology, ΩDE78

is replaced by the cosmological constant with the density parameter ΩΛ0 at the present time.79

It is important in our context that we do not assume any specific parameterisation of80

the expansion function of the type (1). Rather, we merely assume that we can build upon81

an underlying, but unspecified metric theory of gravity with the two common symmetry82

assumptions of spatial isotropy and homogeneity. The metric must then be of Robertson-Walker83

form, and its single remaining degree of freedom must be described by some expansion function84

E(a) whose form is a priori undetermined. We reconstruct E(a) from data without adopting85

the parameterisation (1).86

As an uncritical simplification, we further assume that the spatial sections of the space-time87

manifold are flat, following the empirical evidence for the spatial curvature of our Universe to88

be indistinguishable from zero within the limits of our observational uncertainties [6]. It would89

be quite straightforward to extend our analysis by replacing the radial comoving distance w in90

Eq. (9) below by the comoving angular-diameter distance fK(w).91
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We modify the approach developed in [4, 5] and used in [7, 8] in two important ways,92

allowing a substantial simplification and rendering the results more portable than before. First,93

we use Chebyshev polynomials of the first kind Tn(x), shifted to the interval [0,1], as an94

orthonormal basis-function system (see Appendix A). Second, we do not expand the distance,95

but a scaled variant of the inverse expansion function E(a) into these polynomials.96

Given measurements of distance moduli µi and redshifts zi , with 1≤ i ≤ N , we convert the97

distance moduli to luminosity distances Dlum,i via98

Dlum,i = 101+0.2µi pc (2)

and scale the redshifts zi to the variable99

x i :=
ai − amin

1− amin
, ai = (1+ zi)

−1 , (3)

normalised to the interval [0, 1], where amin = (1+ zmax)−1 is the scale factor of the maximum100

redshift in the sample. We further introduce the scaled luminosity distance101

di = a2
min (1+δax i)Dlum,i , δa :=

1− amin

amin
. (4)

Since the uncertainties on the redshifts are very small compared to those of the distance, the102

relative uncertainty of di is unchanged compared to that of Dlum,i . We thus obtain a scaled data103

sample {x i , di}.104

The radial comoving coordinate is105

w(x) =

∫ t0

t

cdt ′

a(t ′)
=

∫ 1

x

cdx ′

a(x ′) ẋ ′
=

∫ 1

x

cdx ′

amin ẋ ′(1+δax ′)
, (5)

in terms of the normalised scaled factor x . We define106

e(x) := [ ẋ (1+δax)]−1 (6)

and use107

ẋ =
ȧ

aminδa
=

ȧ
a

a
aminδa

= H0E(a)
1+δax
δa

(7)

to write e(x) as108

e(x) =
δa

E(a)(1+δax)2
. (8)

The luminosity distance in units of the Hubble radius c/H0 is109

Dlum(x) =
w(x)
a(x)

=
1

a2
min(1+δax)

∫ 1

x
dx ′e(x ′) , (9)

in spatially-flat geometry, using a = amin(1+δax). Thus, the scaled luminosity distance d(x) is110

d(x) =

∫ 1

x
dx ′e(x ′) , (10)

and the scaled, inverse expansion function e(x) is its negative derivative,111

e(x) = −d ′(x) . (11)
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We now proceed as follows with the transformed data set {x i , di}. We expand e(x) into shifted112

Chebyshev polynomials T ∗n (x),113

e(x) =
M
∑

j=1

c j T
∗
j (x) . (12)

Then, the scaled distances d(x) are given by114

d(x) =
M
∑

j=1

c j p j(x) , p j(x) :=

∫ 1

x
dx ′T ∗j (x

′) . (13)

Defining the matrix P by its components115

Pi j := p j(x i) , 1≤ i ≤ N , 1≤ j ≤ M , (14)

the vector c⃗ of coefficients c j is determined by the data vector d⃗ = (di)⊤ via116

d⃗ = Pc⃗ . (15)

With the covariance matrix C := 〈d⃗ ⊗ d⃗ 〉 of the scaled luminosity distances d⃗, the maximum-117

likelihood solution for c⃗ is118

c⃗ =
�

P⊤C−1P
�−1 �

P⊤C−1
�

d⃗ . (16)

The uncertainties ∆c j of the coefficients and ∆E(a) of the expansion function are obtained119

from the Fisher matrix F = P⊤C−1P in the following way. First, we diagonalise the Fisher120

matrix by rotating it into its eigenframe with a rotation matrix R, find its eigenvalues σ′−2
i121

and define a vector of decorrelated coefficient uncertainties ∆c⃗′ = (σ′1, . . . ,σ′M ). Second, we122

rotate this vector back into the frame of the Chebyshev polynomials and find ∆c⃗ = R⊤∆c⃗′. The123

uncertainties ∆ci obtained this way are slightly larger than the Cramer-Rao bound F−1/2
ii , as124

they are expected to be. Beginning with a large number M of coefficients, only those are kept125

which are statistically significant, i.e. which satisfy |c j| ≥∆c j .126

2.2 Cosmic expansion function from the SN sample127

We first reconstruct the expansion function using the Pantheon sample of type-Ia supernovae [9],128

covering the scale-factor range a ∈ [0.3067,1]. This sample has been criticised by [10] for129

being significantly discrepant from another established type-Ia supernovae sample (the JLA130

sample [11]) and for methods used in the post-processing of the observed data, especially131

peculiar velocity corrections. We use this sample nonetheless to prove the principle. All132

quantitative results in this work hinge on the reliability of the data. Possible systematics in the133

data may be the most likely reason for some of our results deviating from ΛCDM.134

We apply the algorithm described in the preceding subsection to derive the function e(a)135

defined in Eq. (8). Using the covariance matrix provided with the data, we determine the136

coefficient vector c⃗ using Eq. (16) and derive its uncertainty ∆c⃗ as described above. We arrive137

at M = 3 significant coefficients.138

We then transform to E(a) via Eq. (8) and determine its uncertainty from139

∆E(a)
E(a)

=
∆e(a)
e(a)

. (17)

Our result for the expansion function and its uncertainty are shown in Fig. 1. The uncertainties140

are very small because the entire information taken from the SN sample is compressed into141
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Figure 1: The cosmic expansion function E(a) is shown here as reconstructed from
the luminosity-distance measurements in the SN sample. Spanned by the shifted
Chebyshev polynomials T ∗j (a), the model needs three significant coefficients c j whose
error bars are determined by the covariance matrix of the data (see the entries in
Tab. 1). The 1-σ uncertainty shown here is so small because the entire information
from the data set is thus compressed into three numbers. The red line shows the
best-fitting, spatially-flat, Friedmann expansion function.

three coefficients here. Another reason is that the uncertainties assigned to the Pantheon data142

are already very small compared to other SN samples. The best-fitting ΛCDM model with143

EΛCDM(a) =
�

Ωm0a−3 + 1−Ωm0

�1/2
, (18)

in the common parameterisation of Eq. (1) and further assuming Ωr0 = 0 and ΩK0 = 0, requires144

Ωm0 = 0.324± 0.002. It is overplotted in red in Fig. 1.145

2.3 Cosmic expansion function from the SN-BAO sample146

We repeat our analysis with the combined SN-BAO sample. We collected a sample of BAO147

measurements by searching the reviewed literature for papers that appeared between January,148

2014, and December, 2018. We selected 21 papers according to the quality and the completeness149

of the data description and collected 89 measurements of the angular-diameter distance150

Dang/rd,fid in terms of a fiducial value rd,fid for the so-called drag distance, setting the physical151

scale of the BAOs. The drag distance is the sound horizon at the end of the baryon-drag epoch.152

Of these measurements, we kept 75 after removing those that seemed to be either dependent153

on or superseded by other measurements (see Appendix C). These measurements fall into the154

redshift range [0.24,2.4] and thus extend the scale-factor range of our reconstruction of the155

expansion function.156

The drag distance rd,fid is unknown to us. It is determined by157

rd =
1

H0

∫ ad

0

cs(a)da
a2E(a)

(19)

and thus needs for its theoretical calculation the expansion function for scale factors smaller than158

ad ≈ 1100−1. In order to remain as model-independent as possible, we choose to determine rd159
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Figure 2: Expansion functions determined from the SN-BAO sample and from the SN
sample alone for comparison. As in Fig. 1, 1-σ uncertainties are shown. The best-
fitting, spatially-flat Friedmann expansion function is the same as in Fig. 1 and thus
not repeated here. The reconstruction of E(a) from the combined samples requires
four significant coefficients (cf. Tab. 1).

by an empirical calibration: we apply an offset to the distance moduli derived from the BAO160

measurements such as to bring them into least-squared distance with the sample of distance161

moduli from the SN sample. This corresponds to cross-calibrating the drag distance to match162

absolute SN-Ia luminosities. This offset turns out to be redshift-independent, as expected. Its163

value of ∆µ= 10.783± 0.041 corresponds to a drag distance of164

rd = 143.4± 2.7Mpc , (20)

in good agreement with the value expected in the standard ΛCDM cosmology. We further165

estimate the covariance matrix of the BAO data via the uncertainties quoted in the papers,166

combine the two statistically fully independent samples and repeat the determination of the167

coefficients c⃗ and the expansion function as for the SN sample alone. The result is shown in168

Fig. 2. For the SN-BAO sample, we obtain M = 4 significant coefficients.169

Within their uncertainties, the expansion functions obtained from the SN sample alone and170

from the SN-BAO sample agree with each other, but the uncertainties due to the combined171

sample are somewhat smaller, and the redshift range of the reconstruction is slightly extended.172

The fit to the standard-ΛCDM expansion function leads to a result virtually indistinguishable173

from the SN sample alone, with Ωm0 = 0.319± 0.002, and is therefore not shown again in174

Fig. 2.175

Interestingly, the expansion function determined purely from the data is slightly more176

curved than the best-fitting Friedmann-Lemaître model. This difference is formally highly177

significant, but, as argued above, we do not want to emphasise it since it is likely to be caused178

by systematic biases in the data or their interpretation. The expansion coefficients determined179

from both data sets, i.e. from the SN sample and from the SN-BAO sample, are listed in Tab. 1.180

Albeit likely premature in view of possible systematics in the data, it is interesting to use181

the reconstructed expansion function to constrain the hypothetical time evolution of the dark182

energy. If the expansion function E(a) derived from the data were to be represented by the183
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Table 1: Significant expansion coefficients c⃗ and their uncertainties ∆c⃗.

Sample order j
SN sample c j 0.988 −0.372 0.045

∆c j 0.033 0.035 0.018
SN-BAO sample c j 0.983 −0.374 0.034 0.007

∆c j 0.029 0.032 0.017 0.001
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Figure 3: Constraints on a dynamical evolution of dark energy q(a) as given in Eq. 22,
obtained by comparing the expansion functions derived from the SN-BAO sample
with the expectation for a spatially-flat Friedmann-Lemaître model (blue). The red
band shows analogous constraints obtained from the SN sample only. As in Figs. 1
and 2, 1-σ uncertainties are shown.

expansion function EΛCDM(a) for a spatially-flat Friedmann-Lemaître model with dynamical184

dark energy, we should have185

E2(a)
!
= Ωm0a−3 + (1−Ωm0)q(a) , (21)

which would imply186

q(a) =
E2(a)−Ωm0a−3

1−Ωm0
, ∆q(a) =

�

�

�

�

2E(a)
1−Ωm0

�

�

�

�

∆E(a) , (22)

for the function q(a) quantifying the time evolution of the dark energy and its uncertainty. This187

function is shown in Fig. 3 for the SN and the SN-BAO sample, setting Ωm0 = 0.32 as obtained188

from the best-fitting ΛCDM model determined above. It illustrates one of the advantages of189

our approach, as the empirically determined expansion function does not assume any specific190

cosmological model in general, nor a specific model for dynamical dark energy in particular.191

In view of its 1-σ uncertainty show in Fig. 3, the derived function q(a) does not deviate192

significantly from the ΛCDM result q(a) = 1.193
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3 Linear growth of cosmic structures194

3.1 Equation to be solved195

Relative to the background expanding as described by E(a), structures grow under the influence196

of the additional gravitational field of density fluctuations δρ( x⃗ , t) = ρ̄(t)δ( x⃗ , t), where ρ̄(t)197

is the mean matter density and δ the density contrast. Structures small compared to the198

curvature radius of the spatial sections of the universe with a density contrast δ ≲ 1 can be199

treated as linear perturbations of a cosmic fluid in the framework of Newtonian gravity.200

Linearising the corresponding Euler-Poisson system of equations in the perturbations and201

expressing spatial positions in comoving coordinates leads to the well-known second-order,202

linear differential equation203

δ̈+ 2Hδ̇ = 4πGρ̄δ , (23)

for the density contrast δ of pressure-less dust. Since none of the terms in Eq. (23) depends on204

spatial scales, the solutions for δ can be separated into a time dependent function D(t) and a205

spatially dependent function f ( x⃗), writing δ( x⃗ , t) = D(t) f ( x⃗), where D(t) alone has to satisfy206

Eq. (23). Of the two linearly independent solutions of Eq. (23), one decreases with time and is207

thus irrelevant for our purposes. We focus on the growing solution D+(t), i.e. the linear growth208

factor. Transforming the independent variable in Eq. (23) from the time t to the scale factor a209

results in the equation210

D′′+ +
�

3
a
+

E′(a)
E(a)

�

D′+ =
3
2
Ωm

a2
D+ , (24)

for the linear growth factor, with primes denoting derivatives with respect to a. The time-211

dependent matter-density parameter Ωm(a) is given by212

Ωm(a) =
Ωm0

E2(a)a3
, (25)

in terms of the expansion function E(a) and the present-day matter-density parameter Ωm0.213

Equation (24) thus depends only on the expansion function E(a), its first derivative, and the214

present matter-density parameter Ωm0. We know E(a) empirically in a model-independent way215

from the procedure described in Sect. 2.216

3.2 Initial conditions and results for the linear growth factor217

Before we can proceed to solve Eq. (24) for the growth factor, we need to set Ωm0 and to specify218

initial conditions. Since we know E(a) from data taken in the scale-factor interval [amin, 1], we219

need to set the initial conditions at amin. Since Eq. (24) is homogeneous, the initial value of D+220

is irrelevant and can be set to any arbitrary value. We choose D+(amin) = 1. Concerning the221

derivative D′+(a) at a = amin, we begin with the ansatz D+ = an near a = amin, assume that n222

changes only slowly with a and use Eq. (24) to find223

n=
1
4

�

−1− ϵ +
Æ

(1+ ϵ)2 + 24(1−ω)
�

, (26)

for the growing solution, using the definitions224

ϵ := 3+ 2
d ln E
d ln a

and ω := 1−Ωm(a) . (27)

In the matter-dominated phase, both ϵ and ω are small compared to unity, and n is approxi-225

mately226

n≈ 1−
ϵ + 3ω

5
. (28)
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Figure 4: Linear growth factors D+(a) implied by the two expansion functions E(a)
shown in Fig. 2, obtained from the SN-BAO sample (blue) and from the SN sample
alone (red). As described in the text, the growth factors are obtained by solving
Eq. (25) using the empirically derived expansion functions and setting Ωm0 to the
value implied by the best-fitting ΛCDM model. The shaded areas cover the 1-σ
uncertainty propagated from the uncertainty of the expansion function E(a). This
uncertainty is comparable to the effect of varying Ωm0 within [0.27,0.37] which is
indicated by dashed lines in the example of the SN sample.

With the reconstructed expansion rate E(a), the parameter ϵ is fixed. For any choice of Ωm0,227

also ω is set via Eq. (25), thus so is the growth exponent n, and we can start integrating the228

growth function with the remaining initial condition229

D′+(amin) = nan−1
min =

nD+(amin)
amin

=
n

amin
. (29)

For each choice of Ωm0, we can now solve Eq. (24) with the initial conditions Eq. (29) and230

D+(amin) = 1. Having arrived at a = 1, we normalise the growth factor such that it is unity231

today, D+(a = 1) = 1. The uncertainty of the expansion function E(a) propagates to D+(a),232

but the uncertainty on D+ shrinks towards a = 1 because of this normalisation. The result is233

shown in Fig. 4 for Ωm0 as derived from the fit to the expansion function.234

The uncertainties from both the growth exponent n and the fitted matter-density parameter235

Ωm0, disappear in the line width of the plot. The shaded areas in Fig. 4 correspond to the236

propagated 1-σ uncertainties of the coefficients c⃗ defining the expansion function and are237

calculated as explained in [12]. These uncertainties are comparable to the effect of varying238

Ωm0 in the range [Ωm0 − 0.05,Ωm0 + 0.05] as indicated by the dashed lines in the same figure.239

Hence, the growth function depends only weakly on reasonably sized variations of Ωm0.240

3.3 The growth index of linear perturbations241

A common representation of the derivative of the growth factor with respect to the scale factor242

is given by the growth index γ, defined by243

d ln D+
d ln a

=: f (Ωm) = Ω
γ(a)
m . (30)
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Theoretically predicted values of γ that can be found in the literature [13–20] range from244

approximately γ = 0.4 (for some f (R) modifications of gravity [21]) to γ = 0.7. This range245

includes models with varying dark-energy equation of state [13,19], curved-space models [18]246

and models beyond general relativity [13,14,21,22]. Even for models with strongly varying γ,247

the values for redshifts z ∈ [0, 2] are usually very close to γ∼ 0.6.248

Without further specification, Eq. (30) is obviously valid for any cosmology since the249

growth index γ(a) could be any function of a. An advantage of writing the logarithmic slope250

of the growth function in this way is that γ(a) is very well constrained for a wide range of251

cosmological models and can be used as a diagnostic for the classification of models based252

on gravity theories even beyond general relativity [13,14]. For a recent and well structured253

review about constraints for γ in a wide range of models, see [14].254

Another substantial advantage of Eq. (30) is that γ happens to be almost constant within a255

wide range of models. [15] found a general expression for γ(a) that applies to any model with256

a mixture of cold dark matter plus cosmological constant (ΛCDM) or quintessence (QCDM).257

For example, for a dark-energy equation of state parameterised by a slowly varying function258

w(Ωm) in a spatially-flat universe, the growth index reduces to259

γ=
3(w− 1)
6w− 5

(31)

[16]. Thus, for any constant w, the growth index γ is itself constant and reduces to260

γ= 6/11≈ 0.55 for ΛCDM.261

It is interesting in our context that we can derive γ based on the reconstructed expansion262

function E(a). As we show in Appendix B, an approximate, yet sufficiently accurate solution263

for γ is264

γ=
ϵ + 3ω

2ϵ + 5ω
. (32)

For a ΛCDM model,265

2aE′

E
=

2a
E

�

−3Ωm0a−4

2E

�

= −3
Ωm0

E2a3
= −3(1−ω) , (33)

thus ϵ = 3ω from Eq. (27), and Eq. (32) reduces to γ= 6/11. With our reconstruction of the266

expansion function E, we can determine γ and its uncertainty267

∆γ=

�

�

∂ γ

∂ c j

�2

∆c2
j

�1/2

, (34)

for any choice of Ωm0. The result for Ωm0 as derived from the fit to the expansion function is268

shown for both data samples in Fig. 5.269

The growth index follows the ΛCDM result very closely for a ≳ 0.45, but increases for270

smaller scale factors. Furthermore, its uncertainty for the combined SN-BAO sample is larger271

than for the SN sample alone. This indicates that the two data sets are not fully compatible. It272

is thus likely that systematic errors in the data or any unaccounted covariance between the273

data points is responsible for the behaviour of γ at a ≲ 0.45. We will further comment on these274

deviations from the ΛCDM expectation in Sec. 4. Here, we conclude by pointing out that our275

reconstruction method allows a direct determination of the growth index γ.276

4 Comparison of different data samples277

While our method is model-independent in the sense discussed above, existing SN and BAO278

samples may depend on several model assumptions because they consist of measurements that279
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Figure 5: Growth index γ derived from the expansion function E, reconstructed from
the SN sample and from the SN-BAO sample, adopting Ωm0 = 0.319. The fact that
the uncertainty increases for the combined data sets at a ≲ 0.4 indicates that the
individual data sets are not fully compatible.

have been post-processed in sequences of non-trivial steps. Some of these steps may sensitively280

depend on cosmological model assumptions. Hence, while our algorithm itself makes no281

reference to a specific cosmological model, the functions we derive with it may reflect intrinsic282

model-dependences as well as biases possibly introduced into the data in the reduction process.283

In fact, existing data samples are partly incompatible with each other, and some post-processing284

steps are controversially discussed in the literature (e.g. [10]).285

To give the reader an idea of how the differences between currently available SN and BAO286

samples affect the results obtained by our model-independent approach, we repeat the whole287

analysis with a second sample of type-Ia SNe (the Union-2.1 sample, [23]) alone, and with this288

sample combined with the BAO sample. We thus contrast results obtained from four samples,289

i.e. the Pantheon sample, the Union-2.1 sample, and the two combined samples Pantheon+BAO290

and Union-2.1+BAO.291

The four functions discussed in this paper, i.e. the expansion function E(a), the dark-energy292

evolution q(a), the growth function D+(a), and the growth index γ(a), are plotted for the four293

data samples in Fig. 6. This comparison is meant to illustrate variations between samples but294

does not allow any quantitative conclusions about the quality of individual data sets, especially295

since both SN samples (as well as other established samples like the JLA sample) share large296

amounts of raw data as well as essential post-processing tools.297

The top left panel shows that the four reconstructed expansion functions are all compatible298

with each other in view of their uncertainties. The growth function reconstructed from the299

Union-2.1 sample alone is flatter than obtained from the other samples, but the three growth300

functions derived from the Pantheon sample alone and from the two SN+BAO samples are301

virtually identical. Within their 1-σ uncertainty bounds the dark energy evolution functions302

q(a) reconstructed from the four samples are partly not compatible with each other and with303

q(a) = 1. For scale factors a ≲ 0.4, the functions derived from the Pantheon sample and the304

two samples combined with BAO data turn upward, but in view of their 3-σ uncertainty bounds305

this tendency is so far not significant.306
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Figure 6: Each panel shows results obtained from four data samples: the Union-
2.1 and Pantheon SN samples (red and green, respectively), and these two samples
combined with BAOs (blue and yellow, respectively). From left to right and from top
to bottom, the four panels show (a) the expansion function E(a), (b) the evolution of
the dark energy q(a), (c) the linear growth factor D+(a), and (d) the growth index
γ(a). The growth functions obtained from the two combined SN+BAO samples are
nearly indistinguishable, hence the blue line in the lower left panel is hidden behind
the yellow line.

The growth index γ(a) shows the largest variation across different samples. While it closely307

follows the ΛCDM expectation for all samples at scale factors a ≳ 0.45, the Pantheon and in308

particular that BAO data drive it to larger values for scale factors a ≲ 0.45. Adding BAO data309

increases the uncertainty substantially, which indicates that the SN and BAO samples are to310

some degree incompatible with each other. Our cross-calibration of the BAO drag distance311

with the SNe only ensures that the BAO sample continuously extends the SN samples. This312

indication of partly incompatible data, and the enhanced uncertainty of the growth indices313

derived from the combined BAO and SN samples, leads us to the conclusion that we cannot314

take the apparent deviation from ΛCDM seriously yet. It might be an indication of systematics315

in the analyzed samples that would affect any cosmological analysis based on model fitting316

approaches.317

Even though our method could in principle be insufficiently flexible by its restriction to318

the few significant Chebyshev coefficients, the expansion functions shown in Figs. 1 and 2319

are rather more than less curved than the best-fitting expansion function for a spatially flat,320

conventional Friedmann cosmology.321

We draw three main conclusions from this analysis: first, the expansion and growth functions322

recovered from the largest and combined samples show only little variation in view of their323

uncertainties; second, the empirical calibration of the drag distance is quite insensitive to324

differences in the SN samples and the BAO sample stabilises the results of the combined325

samples; and third, the variations in the growth index and its uncertainty being larger in the326

combined SN+BAO samples indicate that the BAO and SN data sets are not fully compatible327

yet.328
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5 Conclusions329

We have shown here how the linear growth factor D+(a) of cosmic structures can be inferred330

from existing data with remarkably small uncertainty without reference to a specific cosmo-331

logical model. Following up on, modifying and extending earlier studies, we have derived the332

cosmic expansion function E(a) in a way independent of the cosmological model from the333

measurements of distance moduli to the type-Ia supernovae of the Pantheon sample and the334

Union-2.1 sample, as well as from each of the two samples combined with a sample of BAO335

distance measurements compiled from the literature. All we need to assume is that underlying336

the cosmological model is a metric theory of gravity and that our universe satisfies the sym-337

metry assumptions of spatial homogeneity and isotropy reasonably well. The uncertainty on338

this empirically determined expansion function already is remarkably small, and the results339

obtained from the Pantheon SN sample alone and from two SN samples combined with the340

BAO sample agree very well with each other.341

The expansion function obtained this way is the main ingredient for the differential Eq. (24)342

describing cosmic structure growth in the linear limit. Only one parameter is needed to solve this343

equation, viz. the present-day matter-density parameter Ωm0, because it enters into the initial344

conditions for solving Eq. (24) and into the equation itself. Adopting a value for Ωm0 derived345

from fitting a spatially flat Friedmann model to our reconstructed expansion function, we can346

also solve for the growth index γ defined in Eq. (30). This implies that, due to measurements347

of the distance moduli to the type-Ia supernovae in the SN and SN-BAO samples, the expansion348

function is accurately determined, and the linear growth factor D+ is tightly constrained up to349

a single remaining parameter, i.e. the present-day matter density parameter Ωm0.350

Variations of the results mainly for the growth index γ(a)with different data samples indicate351

that the data may contain systematic effects that may arise in the process of data reduction352

of the SN samples that could partly be caused by implicit cosmological model assumptions.353

Uncertainties in the growth index increasing in the combined SN+BAO samples show that the354

different data types do not seem to be fully compatible.355

Notwithstanding their uncertainties, our results for the dark-enery evolution q(a) shown in356

Fig. 3, and for the growth index γ(a), shown in Fig.5, illustrate how our method can be used357

with future data to derive these two functions directly from distance measurements.358

Some of our results, in particular the growth index and the time-dependence of the dark-359

energy density, deviate from the ΛCDM expectations. In the case of the dark-energy evolution360

function q(a), these deviations are not significant. In the case of the growth index γ(a), the361

most likely reasons are systematic effects in the data and partial incompatibilities between data362

samples, as discussed. We thus abstain from claiming any evidence for non-standard behaviour363

of these functions. However, the possible presence of systematics in the data samples would be364

a matter of concern for cosmological analyses based on ΛCDM fitting approaches, especially in365

view of the current dispute on the value of H0.366

In future work, we will extend the method presented here to further types of data. Our367

goal is to determine the two centrally important functions of cosmology, E(a) and D+(a),368

with as few assumptions as possible and without reference to a specific cosmological model.369

Such applications of our results may be particularly interesting which so far require assuming370

cosmological parameters or models for a possible evolution of dark energy, e.g. cosmological371

weak gravitational lensing.372
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A Chebyshev polynomials379

The (unnormalised) Chebyshev polynomials of the first kind T̄n(x) are defined on the interval380

[−1,1] by the recurrence relation381

T̄n+1(x) = 2x T̄n(x)− T̄n−1(x) , (A.1)

with T̄0(x) = 1 and T̄1(x) = x . They can be written in the form382

T̄n(cosθ ) = cos nθ (A.2)

and are orthogonal (but not orthornomal) with respect to the weight function383

w(x) = (1− x2)−1/2,384




T̄n(x)T̄m(x)
�

=

∫ 1

−1

dx
p

1− x2
T̄n(x)T̄m(x) =

∫ π

0

dθ cos nθ cos mθ

=











0 n ̸= m

π n= m= 0

π/2 n= m ̸= 0

. (A.3)

The normalised Chebyshev polynomials are thus given by385

Tn(x) :=

¨

(1/π)1/2 (n= 0)
(2/π)1/2 cos (n arccos x) (n> 0)

. (A.4)

Finally, the shifted Chebyshev polynomials are defined on the interval [0,1] in terms of the386

Chebyshev polynomials by387

T ∗n (x) = Tn(2x − 1) . (A.5)

They are orthonormal with respect to the weight function w∗(x) = (x − x2)−1/2.388

B Derivation of the growth index389

In terms of the logarithmic derivative390

f :=
d ln D+
d ln a

(B.1)

and using the parameters ϵ and ω introduced in Eq. (27), the linear growth equation (24)391

reads392
d f

d ln a
+

1
2
(1+ ϵ) f + f 2 =

3
2
(1−ω) . (B.2)
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We write393
d f

d ln a
= f

d lnΩm

d ln a
d ln f

d lnΩm
, (B.3)

use Eq. (25) to find394

d lnΩm

d ln a
= −ϵ (B.4)

and Eq. (30) to write395

d ln f
d lnΩm

= γ−ω
dγ

d lnΩm
, (B.5)

approximating lnΩm = ln(1−ω)≈ −ω in the last step. Neglecting terms of order ϵω, we have396

d f
d ln a

= −ϵγ f . (B.6)

Inserting this result into Eq. (B.2), dividing by f and approximating397

f = Ωγm = (1−ω)
γ ≈ 1− γω , (B.7)

we arrive at398

−ϵγ+
1
2
(1+ ϵ) + 1− γω=

3
2
[1+ (γ− 1)ω] , (B.8)

to linear order in ϵ and ω. Solving for γ finally gives the result399

γ=
ϵ + 3ω
2ϵ + 5ω

, (B.9)

quoted in Eq. (32).400

C BAO sample401

The sample of BAO measurements collected from the literature is listed in Tab. 2.402
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Table 2: BAO data.

n z DA/rd ∆(DA/rd) Description Reference
1 0.240 5.3637 0.4673 autocorrelation function of CMASS galaxies

in BOSS DR12
[24]

2 0.240 5.5939 0.3048 redshift-space distortion moments of LOWZ
and CMASS galaxy samples in BOSS DR12

[25]

3 0.310 6.2900 0.1400 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

4 0.310 6.2948 0.1963 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

5 0.310 6.3045 0.2734 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

6 0.320 6.6978 0.2099 autocorrelation function of CMASS galaxies
in BOSS DR12

[24]

7 0.320 6.4743 0.1896 redshift-space distortion moments of LOWZ
and CMASS galaxy samples in BOSS DR12

[25]

8 0.320 6.6689 0.3943 autocorrelation function of CMASS and
LOWZ galaxies in BOSS DR12, z = 0.3-0.5

[29]

9 0.320 6.6600 0.1600 analysis of redshift-space distortion mo-
ments in BOSS DR14 quasars

[30]

10 0.360 7.0900 0.1600 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

11 0.360 6.9379 0.2572 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

12 0.360 7.0870 0.2390 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

13 0.370 7.3818 0.3318 autocorrelation function of CMASS galaxies
in BOSS DR12

[24]

14 0.370 6.7249 0.4402 redshift-space distortion moments of LOWZ
and CMASS galaxy samples in BOSS DR12

[25]

15 0.380 7.4435 0.2730 galaxy clustering in BOSS DR12, combined
with various priors

[31]

16 0.380 7.3894 0.1218 power spectrum of galaxy distribution in
BOSS DR12

[32]

17 0.380 7.3894 0.1116 galaxy clustering in BOSS DR12, systematic-
error analysis

[33]

18 0.400 7.7000 0.1600 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

19 0.400 7.5335 0.2166 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

20 0.400 7.6576 0.2407 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

21 0.440 8.2000 0.1300 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

22 0.440 8.0547 0.1760 tomographic analysis of galaxy clustering in
BOSS DR12

[27]
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Table 2: BAO data (continued).

n z DA/rd ∆(DA/rd) Description Reference
23 0.440 8.0464 0.1601 tomographic analysis of redshift-space dis-

tortion moments in BOSS DR12 galaxies
[28]

24 0.450 8.2881 0.2954 angular galaxy clustering in SDSS DR10 [34]
25 0.470 7.7682 0.3869 angular galaxy clustering in SDSS DR10 [34]
26 0.480 8.6400 0.1100 tomographic configuration-space analysis of

galaxy autocorrelations in BOSS DR12
[26]

27 0.480 8.6977 0.1895 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

28 0.480 8.6059 0.1812 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

29 0.490 7.7100 0.3245 angular galaxy clustering in SDSS DR10 [34]
30 0.490 8.7092 0.2641 autocorrelation function of CMASS galaxies

in BOSS DR12
[24]

31 0.490 8.7227 0.2099 redshift-space distortion moments of LOWZ
and CMASS galaxy samples in BOSS DR12

[25]

32 0.510 7.8926 0.2789 angular galaxy clustering in SDSS DR10 [34]
33 0.510 8.8510 0.1264 galaxy clustering in BOSS DR12, systematic-

error analysis
[33]

34 0.520 8.9000 0.1200 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

35 0.520 9.0565 0.2031 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

36 0.520 9.0465 0.1984 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

37 0.530 8.7336 0.6107 angular galaxy clustering in SDSS DR10 [34]
38 0.550 8.7021 0.5119 angular galaxy clustering in SDSS DR10 [34]
39 0.560 9.1600 0.1400 tomographic configuration-space analysis of

galaxy autocorrelations in BOSS DR12
[26]

40 0.560 9.3813 0.2031 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

41 0.560 9.3778 0.2077 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

42 0.570 9.5241 0.1428 autocorrelation function of CMASS and
LOWZ galaxies in BOSS DR12, z = 0.3-0.5

[29]

43 0.570 9.4200 0.1300 analysis of redshift-space distortion mo-
ments in BOSS DR14 quasars

[30]

44 0.590 9.5896 0.1693 autocorrelation function of CMASS galaxies
in BOSS DR12

[24]

45 0.590 9.6235 0.1558 redshift-space distortion moments of LOWZ
and CMASS galaxy samples in BOSS DR12

[25]

46 0.590 9.4500 0.1700 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

47 0.590 9.5167 0.2301 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

48 0.590 9.6347 0.2279 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]
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Table 2: BAO data (continued).

n z DA/rd ∆(DA/rd) Description Reference
49 0.610 9.6292 0.1593 galaxy clustering in BOSS DR12, systematic-

error analysis
[33]

50 0.640 9.9011 0.2844 autocorrelation function of CMASS galaxies
in BOSS DR12

[24]

51 0.640 9.7792 0.2777 redshift-space distortion moments of LOWZ
and CMASS galaxy samples in BOSS DR12

[25]

52 0.640 9.6200 0.2200 tomographic configuration-space analysis of
galaxy autocorrelations in BOSS DR12

[26]

53 0.640 9.5573 0.2775 tomographic analysis of galaxy clustering in
BOSS DR12

[27]

54 0.640 9.8065 0.3849 tomographic analysis of redshift-space dis-
tortion moments in BOSS DR12 galaxies

[28]

55 0.800 10.3720 0.9699 Fourier-space measurement of clustering of
eBOSS DR14 quasars

[35]

56 0.800 10.8119 1.1428 clustering of 147000 eBOSS DR14 quasars [36]
57 0.978 10.7334 1.9281 tomographic analysis of quasar clustering in

eBOSS DR14
[37]

58 1.000 12.0449 0.9880 Fourier-space measurement of clustering of
eBOSS DR14 quasars

[35]

59 1.000 11.5205 1.0319 clustering of 147000 eBOSS DR14 quasars [36]
60 1.230 11.9710 1.0805 tomographic analysis of quasar clustering in

eBOSS DR14
[37]

61 1.500 12.0693 0.7443 Fourier-space measurement of clustering of
eBOSS DR14 quasars

[35]

62 1.500 12.1559 0.7362 clustering of 147000 eBOSS DR14 quasars [36]
63 1.520 12.5186 0.7443 combination of power spectrum and bispec-

trum of BOSS DR12 galaxies
[38]

64 1.520 12.5186 0.6767 clustering of 148659 quasars from eBOSS
DR14 survey

[39]

65 1.526 11.9689 0.6536 tomographic analysis of quasar clustering in
eBOSS DR14

[37]

66 1.944 12.2343 0.9911 tomographic analysis of quasar clustering in
eBOSS DR14

[37]

67 2.000 12.3585 0.5391 Fourier-space measurement of clustering of
eBOSS DR14 quasars

[35]

68 2.000 12.0111 0.5616 clustering of 147000 eBOSS DR14 quasars [36]
69 2.200 12.1697 0.4969 Fourier-space measurement of clustering of

eBOSS DR14 quasars
[35]

70 2.200 11.8546 0.5392 clustering of 147000 eBOSS DR14 quasars [36]
71 2.225 10.0425 1.7588 autocorrelation function of BOSS DR12

quasars
[40]

72 2.330 11.3423 0.6396 Lya forest in 157783 BOSS DR12 quasars [41]
73 2.340 11.2754 0.6513 Lya forest in 137562 BOSS DR11 quasars [42]
74 2.360 10.8000 0.4000 Lya forest in 137562 BOSS DR11 quasars [42]
75 2.400 10.5000 1.2513 cross-correlation between 234367 quasars

and 168889 forests in BOSS
[43]
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