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Abstract

We study the time evolution in the transverse-field Ising chain subject to quantum quenches
of finite duration, ie, a continuous change in the transverse magnetic field over a finite
time. Specifically, we consider the dynamics of the total energy, one- and two-point
correlation functions and Loschmidt echo during and after the quench as well as their
stationary behaviour at late times. We investigate how different quench protocols affect
the dynamics and identify universal properties of the relaxation.
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1 Introduction

Experiments on ultracold atomic gases in optical lattices have opened the opportunity to sim-
ulate condensed-matter models in a well-controlled setup [1–3], and also to probe the non-
equilibrium dynamics of such strongly correlated quantum systems [4–9]. These systems are
isolated from their environment to the extent that we can consider them closed, and they
allow for dynamic control of the system parameters, enabling investigation of dynamics in-
duced by quantum quenches [10, 11], ie, the time evolution following a sudden change in
one of the system parameters. This triggered a considerable interest in theoretically address-
ing the non-equilibrium behaviour of various condensed-matter models as a consequence of
sudden quenches, see References [12–14] for a review. A natural extension of this setting
are finite-time quenches, ie, the study of the dynamics during and after the change of the
system parameters over a finite time interval τ. Obviously the two extreme limits to this prob-
lem are the sudden quench and the adiabatically slow change of parameters, but the huge
regime between these limits and the generic time dependence of the parameters open many
possibilities for new features in the non-equilibrium dynamics. The main aim of the present
manuscript is the study of this dynamics in the prototypical transverse-field Ising chain. So far
finite-time quenches have been investigated mostly in bosonic as well as fermionic Hubbard
models [15–17] and one-dimensional Luttinger liquids [18–25].

In this work, we focus on finite-time quenches in the transverse field Ising (TFI) model.
The Ising model has been realised experimentally in an ultracold gas of bosonic atoms in a
linear potential [26], and its behaviour following sudden quenches across the critical point
has been observed [27]. Theoretically, going back to the 70s [28–30] sudden quenches have
been studied extensively in this system. In particular, the order parameter and spin correlation
functions [31,32] as well as the generalised Gibbs ensemble [33–35] describing the late time
stationary state have been investigated in detail. For example, as a consequence of the Lieb–
Robinson bounds [36,37] the spin correlation functions show a clear light-cone effect [10]. In
our results, those behaviours are reproduced and generalised to take into account the finite-
quench duration and non-sudden protocol. We note that in the context of the Kibble–Zurek
mechanism some attention has been given to linear ramps through the quantum phase tran-
sition in the TFI model [38–40]. Furthermore, the behaviour of the order parameter in the
late-time limit after linear ramps in the ferromagnetic phase has been investigated [41].

This paper is organised as follows: In section 2 we set the notation and review the di-
agonalisation of the TFI chain. In section 3 we discuss the setup of a finite-time quantum
quench and derive expressions for the time evolution of the correlation functions in the TFI
chain without addressing the specifics of the quench protocol. We also construct the gener-
alised Gibbs ensemble describing the stationary state at late times after the quench, again
without addressing specific quench protocols. In section 4 we discuss specific quench proto-
cols: linear, exponential, cosine and sine, cubic and quartic quenches, as well as piecewise
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differentiable versions thereof. Hereby the protocols are chosen to cover different features of
the time dependence like non- differentiable kinks. This allows us to identify properties of the
non-equilibrium dynamics that are universal, ie, independent of these details. We derive the
equations governing the time-dependent Bogoliubov coefficients for each of the protocols and
calculate their exact solutions for the linear and exponential quenches. In section 5 we analyse
the behaviour of the total energy, transverse magnetisation, transverse and longitudinal spin
correlation functions, and the Loschmidt echo during and after the quench. In section 6 we
briefly discuss the scaling limit of our results. Finally, in section 7 we re-interpret our results
in the context of time-dependently curved spacetimes [42] before concluding with an outlook
in section 8.

2 Transverse field Ising (TFI) chain

The Hamiltonian of the N -site TFI chain is given by

H = −J
N
∑

i=1

�

σx
i σ

x
i+1 + gσz

i

�

, (1)

whereσa, a = x , y, z, are the Pauli matrices, J > 0 sets the energy scale and periodic boundary
conditions σa

N+1 = σ
a
1 are imposed. The dimensionless parameter g describes the coupling

to an external, transverse magnetic field. In the thermodynamic limit, the TFI chain at zero
temperature is a prototype system which exhibits a quantum phase transition [43]. The tran-
sition occurs between the ferromagnetic (ordered) phase for g < 1 and the paramagnetic
(disordered) phase for g > 1, with the critical point being gc = 1.

The Hamiltonian (1) can be exactly diagonalised by transforming to a spinless representa-
tion [32, 44, 45]. First, using the spin raising and lowering operators σ±i =

1
2

�

σx
i ± iσ y

i

�

it is
recast into

H = −J
N
∑

i=1

�

σ+i +σ
−
i

� �

σ+i+1 +σ
−
i+1

�

− J g
N
∑

i=1

�

1− 2σ+i σ
−
i

�

. (2)

We can then transform the spin operators to fermions by means of a Jordan–Wigner transfor-
mation

ci = exp
�

iπ
∑

j<i

σ+j σ
−
j

�

σ−i , c†
i = σ

+
i exp

�

iπ
∑

j<i

σ+j σ
−
j

�

, (3)

where ci and c†
i are spinless fermionic creation and annihilation operators at lattice site i.

The Hamiltonian in terms of the Jordan–Wigner fermions obtains a block-diagonal structure
H = He ⊕Ho, where

He/o = −J
N
∑

i=1

�

c†
i − ci

��

c†
i+1 + ci+1

�

− J g
N
∑

i=1

�

1− 2c†
i ci

�

. (4)

The reduced Hamiltonian He/o acts only on the subspace of the Fock space with even/odd
number of fermions. In the sector with an even fermion number, the so-called Neveu–Schwarz
(NS) sector, the fact that exp(iπ

∑N
i=1 c†

i ci ) = 1 implies that the fermions have to satisfy an-
tiperiodic boundary conditions cN+1 = −c1. Similarly, in the sector with odd fermion number,
usually referred to as Ramond (R) sector, the relation exp(iπ

∑N
i=1 c†

i ci ) = −1 implies periodic
boundary conditions cN+1 = c1.

We perform a discrete Fourier transformation to momentum space as ck =
1p
N

∑N
i=1 ci eiki ,

where we have set the lattice spacing to unity. The Hamiltonian becomes

He/o = −J gN + 2J
∑

k

(g − cos k)c†
kck − i J

∑

k

sin k
�

c†
−kc†

k + c−kck

�

, (5)
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where the sum over momenta k implies the sum over n = −N
2 , . . . , N

2 − 1, and the momenta
are quantised as kNS

n =
2π
N (n+

1
2) in the even and kR

n =
2πn
N in the odd sector.

In the even sector, the Hamiltonian can finally be diagonalised by applying the Bogoliubov
transformation

ηk = ukck − ivk c†
−k, η†

k = ukc†
k + ivk c−k. (6)

We choose the transformation such that the Bogoliubov coefficients uk and vk are real. From
the requirement that the Bogoliubov operators satisfy the usual fermionic anticommutation
relations, we obtain u2

k + v2
k = 1 as well as uk = u−k and vk = −v−k. We can therefore

parametrise the Bogoliubov coefficients as uk = cos θk
2 and vk = sin θk

2 . The requirement in the
new representation is that the off-diagonal terms of the Hamiltonian vanish, which yields the
condition

eiθk =
g − eik

p

1+ g2 − 2g cos k
. (7)

The Hamiltonian is then diagonalised as He =
∑

k εk

�

η†
kηk −

1
2

�

, where the single particle
dispersion relation is εk = 2J

p

1+ g2 − 2g cos k. The excitation gap is thus given by ∆ =
εk=0 = 2J |1− g|.

In the odd sector, the diagonalisation proceeds similarly using the Bogoliubov transforma-
tion (6). Additional care has to be taken for the momenta k0 = 0 and k−N/2 = −π, which do
not have partners with−k. The resulting Hamiltonian is Ho =

∑

k 6=0 εk

�

η†
kηk −

1
2

�

−2J(1−g)×
�

η†
0η0 −

1
2

�

.

3 Finite-time quantum quenches

3.1 General quench protocols

In the setup we consider, the system is initially prepared in the ground state of the Hamiltonian
H(gi), which is the vacuum state for the Bogoliubov fermions ηk and η†

k. Starting at t = 0
the coupling to the transverse field is continuously changed over a finite quench time τ until
it reaches its final value gf. Following the quench, ie, for times t > τ, the system evolves
according to the Hamiltonian H(gf). In other words, we consider the time-dependent system

H(t) = −J
N
∑

i=1

�

σx
i σ

x
i+1 + g(t)σz

i

�

, (8)

with the continuous function g(t) taking the limiting values

g(t < 0) = gi, g(t > τ) = gf. (9)

Some examples of protocols g(t) are shown in Fig. 1.
We are interested in the dynamical behaviour of physical observables, ie, in calculating

the expectation values of time-evolved operators taken with respect to the initial ground state.
Unlike in the sudden-quench case where the pre- and post-quench Bogoliubov fermions are di-
rectly related [46], for general protocols one has different instantaneous Bogoliubov fermions
and Bogoliubov coefficients at each time, which is not practical. Instead, we assume the fol-
lowing ansatz for the time evolution of the Jordan–Wigner fermions [38]

ck(t) = uk(t)ηk + ivk(t)η
†
−k, (10)
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Figure 1: Left: Sketch of different quench protocols for gi = 0 to gf =
2
3 . Right: Corresponding

change rate of the gaps.

ie, we keep the Bogoliubov fermions ηk which diagonalise the initial Hamiltonian and cast
the temporal dependence into the functions uk(t) and vk(t). Making use of the Heisenberg
equations of motion for the operators ck(t) and c†

k(t) we obtain

i
d
dt

�

uk(t)
v∗−k(t)

�

=

�

Ak(t) Bk
Bk −Ak(t)

��

uk(t)
v∗−k(t)

�

, (11)

with Ak(t) = 2J
�

g(t)−cos k
�

, Bk = 2J sin k, and the asterisk ∗ denoting complex conjugation.
According to (6) the initial conditions read

uk(t = 0) = cos
θ i

k

2
, vk(t = 0) = sin

θ i
k

2
, (12)

with the angle θ i
k defined by (7) with the initial value g = gi. The equations (11) can also be

decoupled as
∂ 2

∂ t2
yk(t) +

�

Ak(t)
2 + B2

k ± i
∂

∂ t
Ak(t)

�

yk(t) = 0, (13)

where the upper and lower sign refers to the equation for yk(t) = uk(t) and yk(t) = v∗−k(t)
respectively. During the quench, the solutions to these equations depend on the precise form
of g(t) and in some cases allow for explicit analytic solutions. We will address several of these
protocols in section 4.

After the quench, the equations for the Bogoliubov coefficients simplify to

∂ 2

∂ t2
yk(t) +ω

2
k yk(t) = 0, (14)

with the solution

yk(t) = cy
3 eiωk t + cy

4 e−iωk t , ωk =
Ç

Ak(τ)
2 + B2

k = εk(gf), (15)

where we have defined the single-mode energies ωk after the quench. The constants c y
3 and

c y
4 are determined by the continuity of the solutions at t = τ with the results

cu
3 =

e−iωkτ

2ωk

��

ωk − Ak(τ)
�

uk(τ)− Bkv∗−k(τ)
�

, (16)

cu
4 =

eiωkτ

2ωk

��

ωk + Ak(τ)
�

uk(τ) + Bkv∗−k(τ)
�

, (17)
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for uk(t), and

cv
3 =

e−iωkτ

2ωk

��

ωk + Ak(τ)
�

v∗−k(τ)− Bkuk(τ)
�

, (18)

cv
4 =

eiωkτ

2ωk

��

ωk − Ak(τ)
�

v∗−k(τ) + Bkuk(τ)
�

, (19)

for v∗−k(t). We stress that these constants depend on the momenta k and the quench duration
τ, but we use the shorthand notation c y

n = c y
n,k(τ) for brevity.

3.2 Transverse magnetisation and correlation functions

In order to probe the system, we aim at calculating local observables during and after a time-
dependent quench. The observables we have in mind are the transverse magnetisation and
two-point functions in the transverse and longitudinal direction. Here we briefly sketch how
to express these observables in terms of the time-dependent Bogoliubov coefficients uk(t) and
vk(t).

Firstly, we write the correlators in terms of Jordan–Wigner fermions in (3) and define
auxiliary operators ai = c†

i + ci and bi = c†
i − ci to obtain

M z =



σz
i

�

= 〈biai〉 , (20)

ρz
n =




σz
iσ

z
i+n

�

= 〈ai biai+n bi+n〉 , (21)

ρx
n =




σx
i σ

x
i+n

�

= 〈biai+1 bi+1 . . . ai+n−1 bi+n−1ai+n〉 . (22)

Here we have used 1 − 2c†
i ci = ai bi = −biai and suppressed the time dependence of the

operators for concise notation. Furthermore, due to translational invariance the observables
do not depend on the lattice site. Secondly, we define the contractions, vacuum expectation
values of pairs of operators, as Si j =




bi b j

�

, Q i j =



aia j

�

and Gi j =



bia j

�

= −



a j bi

�

. The
transverse magnetisation is then simply given by

M z = −Gii . (23)

Employing the Wick theorem, we can express the two-point functions in terms sums of products
of all possible contractions. This can be conveniently written in the form of Pfaffians [29]

ρz
n =

�

�Si,i+n Gi,i Gi,i+n
Gi+n,i Gi+n,i+n

Q i,i+n

�

�

�

�

�

�

, (24)

ρx
n =

�

�Si,i+1 Si,i+2 . . . Si,i+n−1 Gi,i+1 Gi,i+2 . . . Gi,i+n
Si+1,i+2 . . . Si+1,i+n−1 Gi+1,i+1 Gi+1,i+2 . . . Gi+1,i+n

...
...

...
...

Si+n−2,i+n−1 Gi+n−2,i+1 Gi+n−2,i+2 . . . Gi+n−2,i+n
Gi+n−1,i+1 Gi+n−1,i+2 . . . Gi+n−1,i+n

Q i+1,i+2 . . . Q i+1,i+n
...

Q i+n−1,i+n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

. (25)

In this triangular notation, Pfaffians can be viewed as generalised determinants which can
be expanded along “rows” and “columns” in terms of minor Pfaffians [47]. They can also
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be evaluated from the corresponding antisymmetric matrices A as Pf(A)2 = det A. Here the
matrix A has vanishing elements on the main diagonal, its upper triangular part is the Pfaffian
as written in (24) and (25), and the lower triangular part is the negative transpose of the
Pfaffian in question. Thirdly, we introduce auxiliary quadratic correlators αi j and βi j , and
express their time-dependence in terms of Bogoliubov coefficients by using (10)

αi j(t) =
¬

ci (t)c
†
j (t)

¶

=
1

2π

∫ π

−π
dk e−ik(i− j)|uk(t)|2, (26)

βi j(t) =
¬

ci (t)c j (t)
¶

=
i

2π

∫ π

−π
dk e−ik(i− j)uk(t)v−k(t). (27)

Using these functions, the various contractions become

Si j(t) = 2i Im(βi j(t))−δi j , (28)

Q i j(t) = 2i Im(βi j(t)) +δi j , (29)

Gi j(t) = 2Re(βi j(t))− 2αi j(t) +δi j . (30)

These functions are the entries of (23)–(25), which give the general expressions for the time
dependence of the correlation functions. An additional simplification is the fact that we may
use translational invariance of the system to write Si j = S( j − i), Q i j = Q( j − i) and Gi j =
G( j− i). It is then evident that the corresponding matrices in (24) and (25) are block-Toeplitz
matrices, with entries on each descending diagonal in a block identical, which reduces the
computational effort.

The behaviour of these functions depends on the form and duration of the quench and will
be discussed in subsequent sections. Some general features will be treated analytically.

3.3 Generalised Gibbs ensemble

It is by now well established that at very late times after a sudden quench a stationary state is
formed which is well described by a generalised Gibbs ensemble (GGE) [33–35,48,49]. This
ensemble contains the infinitely many integrals of motion in the TFI chain and thus retains
more information about the initial state than just its energy. Considering finite-time quenches,
a similar situation appears where the role of the initial state is taken by the time-evolved state
at t = τ. More precisely, since the time evolution for times t > τ is governed by the time-
independent Hamiltonian H(τ) = H(gf), we can construct the GGE

ρGGE =
1
Z

exp

�

−
∑

k

λknf
k

�

, (31)

where nf
k = η

f
k

†
ηf

k are the post-quench mode occupations with ηf
k

†
and ηf

k being the Bogoli-
ubov fermions which diagonalise H(gf). We note in passing that the mode occupations are
non-local in space, but that they are related to local integrals of motion via a linear transfor-
mation [35] and can thus be used in the construction of the GGE. The Lagrange multipliers λk
are fixed by

¬

ηf
k

†
ηf

k

¶

= Tr
�

ρGGEη
f
k

†
ηf

k

�

(32)

and Z = Tr
�

exp(−
∑

k λknf
k)
�

is the normalisation. Explicitly, by first reverting to Jordan–
Wigner fermions and then to the initial Bogoliubov fermions ηk, we find
¬

ηf
k

†
(τ)ηf

k(τ)
¶

= (uf
k)

2|vk(τ)|
2 + (vf

k)
2|uk(τ)|

2 + uf
kvf
−k

�

u−k(τ)vk(τ) + u∗−k(τ)v
∗
k(τ)

�

, (33)
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where uf
k and vf

k are the Bogoliubov coefficients corresponding to Bogoliubov fermions ηf
k as

defined in (6). This allows us to fix the Lagrange multipliers by equating (33) with

Tr
�

ρGGEη
f
k

†
ηf

k

�

=
1

1+ eλk
. (34)

We see that the Lagrange multipliers, and consequently the expectation values in the station-
ary state, depend on the duration τ and form g(t) of the quench through the Bogoliubov
coefficients uk(τ) and v∗−k(τ).

To show the validity of the GGE, we prove the equivalence of the stationary values and the
GGE values of the quadratic correlators introduced in (26) and (27). Putting (15) into (26)
and (27), and taking the long-time average, we obtain

αs
i j =

1
4π

∫ π

−π
dk e−ik(i− j)

�

1+ cos2 θ f
k

�

|uk(τ)|
2 − |v−k(τ)|

2
�

− cosθ f
k sinθ f

k

�

uk(τ)v−k(τ) + u∗k(τ)v
∗
−k(τ)

��

, (35)

β s
i j =

i
4π

∫ π

−π
dk e−ik(i− j)

�

sin2 θ f
k

�

uk(τ)v−k(τ) + u∗k(τ)v
∗
−k(τ)

�

− cosθ f
k sinθ f

k

�

|uk(τ)|
2 − |v−k(τ)|

2
��

. (36)

The same result is obtained for the GGE expectation values αGGE
i j = Tr

�

ρGGEcic
†
j

�

and βGGE
i j =

Tr
�

ρGGEcic j

�

.

4 Results for different quench protocols

In this section we collect some results for the explicit quench protocols sketched in Fig. 1,
namely the linear, exponential, cosine, sine and polynomial quenches. We also define some
piecewise differentiable protocols, which are later used as a check of principles but not exten-
sively studied.

4.1 Linear quench

We start with the simplest finite-time quench protocol, which is the linear quench of the form
(see the blue line in Fig. 1)

g(t) = gi + vg t, (37)

where vg = (gf − gi)/τ is the rate of change in the transverse field. For the linear quench the
differential equations in (13) become

∂ 2
t yk(t) +

�

at2 + bk t + ck

�

yk(t) = 0, (38)

with a = 4v2
g , bk = 8vg(gi − cos k), ck = 4(1 + g2

i − 2gi cos k) ± 2ivg , and the upper and
lower signs refering to the equations for yk(t) = uk(t) and yk(t) = v∗−k(t) respectively. This
equation can be cast into the form of a Weber differential equation [50] whose solutions in
terms of parabolic cylinder functions are

yk(t) = c y
1 Dνk

( t̃(t)) + c y
2 D−νk−1(i t̃(t)), (39)
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Figure 2: Comparison of the mode occupations nf
k after different finite-time quenches with

the sudden-quench result ns
k. We observe that nf

k → ns
k for τ→ 0 irrespective of the quench

protocol.

where νk = (−4iack + ib2
k − 4a3/2)/(8a3/2) and t̃(t) = eiπ/4(21/2a1/4 t + 2−1/2a−3/4 bk). The

constants c y
1 and c y

2 are set by the initial conditions

uk(t)|t=0 = ui
k, (40)

v∗−k(t)|t=0 = vi
−k, (41)

d
dt

uk(t)|t=0 = −iAk(0)u
i
k − iBkvi

−k, (42)

d
dt

v∗−k(t)|t=0 = −iBkui
k + iAk(0)v

i
−k; (43)

explicitly we find

cu
1 =
−D−ν−1 (id2)

�

ui
k [2Ak(0) + id1d2] + 2vi

−kBk

	

+ 2d1ui
kD−ν (id2)

2d1 {D−ν (id2)Dν (d2) + iD−ν−1 (id2) [Dν+1 (d2)− d2Dν (d2)]}
,

cu
2 =

Dν (d2)
�

ui
k [2Ak(0)− id1d2] + 2vi

−kBk

	

+ 2id1ui
kDν+1 (d2)

2d1 {D−ν (id2)Dν (d2) + iD−ν−1 (id2) [Dν+1 (d2)− d2Dν (d2)]}
, (44)

for uk(t), and

cv
1 =

D−ν−1(id2)
�

vi
−k [2Ak(0)− id1d2]− 2ui

kBk

	

+ 2d1vi
−kD−ν(id2)

2d1 {D−ν(id2)Dν(d2)− iD−ν−1(id2) [d2Dν(d2)− Dν+1(d2)]}
,

cv
2 =

Dν (d2)
�

vi
−k [−2Ak(0)− id1d2] + 2ui

kBk

	

+ 2id1vi
−kDν+1 (d2)

2d1 {D−ν (id2)Dν (d2)− iD−ν−1 (id2) [d2Dν (d2)− Dν+1 (d2)]}
, (45)

for v∗−k(t). In both cases, for brevity, we use t̃(t) = d1 t + d2 with d1 = eiπ/421/2a1/4 and
d2 = eiπ/42−1/2a−3/4 bk, and we have suppressed the subindex k in νk as well as d2.

In order to investigate the limit of sudden quenches we calculated the post-quench mode
occupation nf

k given in (33) after a linear quench and compared it to the post-quench mode
occupation after a sudden quench ns

k. The latter is given by [46] ns
k =

1
2

�

1− cos(θ f
k − θ

i
k)
�

. As
is shown in Fig. 2 the difference between the two vanishes as the quench duration is decreased,
ie, limτ→0 nf

k = ns
k. As can be seen from the figure, this is true for the exponential, cosine and

sine protocols as well.
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4.2 Exponential quench

Another quench protocol which allows for an explicit analytical solution is the exponential
quench of the form

g(t) = gi − 1+ exp
�

ln (|gf − gi + 1|)
t
τ

�

, (46)

which is shown as green line in Fig. 1. The differential equations in (13) in this case become

∂ 2
t yk(t) +

�

ak + bke f t + ce2 f t
�

yk(t) = 0, (47)

where ak = 4
�

g2
i + 2(1+ cos k)(1− gi)

�

, bk = 8
�

gi − 1− cos k± i(4τ)−1 ln |gf − gi + 1|
�

, c =
4 and f = τ−1 ln |gf − gi + 1|. The upper and lower signs in bk refer to the equation for
yk(t) = uk(t) and yk(t) = v∗−k(t) respectively. This equation can be solved using a substitution
yk(t) = wk(t)zk(t), where wk(t) is chosen such that the equation for zk(t) reduces to an
associated Laguerre equation [50]. The full solution is

yk(t) = ei
p

ak tei
p

c
f (1−e f t )

�

c y
1 U(−λk, 1+ νk, t̃(t)) + c y

2 Lνk
λk
( t̃(t))

�

(48)

where U(−λ, 1 + ν, t̃) denotes a confluent hypergeometric function of the second kind and
Lν
λ
( t̃) is a generalised Laguerre polynomial. Here λk = −i

p
ak/ f − ibk/(2 f

p
c)− 1/2, νk =

2i
p

ak/ f and t̃(t) = d1e f t with d1 = 2i
p

c/ f . The constants c y
1 and c y

2 are set by the initial
conditions with the explicit results given by

cu
1 =

�

i
�

−Ak(0)−
p

a+
p

c
�

Lν
λ
(d1) + d1 f Lν+1

λ−1(d1)
�

ui
k − iBk Lν

λ
(d1)vi

−k

d1 f
�

U(−λ,ν+ 1, d1)Lν+1
λ−1(d1) +λU(1−λ,ν+ 2, d1)Lνλ(d1)

� , (49)

cu
2 =

�

i
�

Ak(0) +
p

a−
p

c
�

U(−λ,ν+ 1, d1) + d1 f λU(1−λ,ν+ 2, d1)
�

ui
k

d1 f
�

U(−λ,ν+ 1, d1)Lν+1
λ−1(d1) +λU(1−λ,ν+ 2, d1)Lνλ(d1)

� (50)

+
iBkU(−λ,ν+ 1, d1)vi

−k

d1 f
�

U(−λ,ν+ 1, d1)Lν+1
λ−1(d1) +λU(1−λ,ν+ 2, d1)Lνλ(d1)

� ,

cv
1 =

�

i
�

Ak(0)−
p

a+
p

c
�

Lν
λ
(d1) + d1 f Lν+1

λ−1(d1)
�

vi
−k − iBk Lν

λ
(d1)ui

k

d1 f
�

U(−λ,ν+ 1, d1)Lν+1
λ−1(d1) +λU(1−λ,ν+ 2, d1)Lνλ(d1)

� , (51)

cv
2 =

�

i
�

−Ak(0) +
p

a−
p

c
�

U(−λ,ν+ 1, d1) + d1 f λU(1−λ,ν+ 2, d1)
�

vi
−k

d1 f
�

U(−λ,ν+ 1, d1)Lν+1
λ−1(d1) +λU(1−λ,ν+ 2, d1)Lνλ(d1)

� (52)

+
iBkU(−λ,ν+ 1, d1)ui

k

d1 f
�

U(−λ,ν+ 1, d1)Lν+1
λ−1(d1) +λU(1−λ,ν+ 2, d1)Lνλ(d1)

� .

We stress that we have suppressed the subindex k of νk and λk for clarity.
As in the case of a linear quench, we have compared the post-quench mode occupations

nf
k with the sudden-quench result (see Fig. 2). We find very similar behaviour to the linear

quench even for moderate quench durations.

4.3 Cosine and sine quench

The cosine quench is defined as a half period of a negative cosine

g(t) =
gi + gf

2
+

gi − gf

2
cos
πt
τ

. (53)

Unlike the two protocols discussed above, this protocol is differentiable for all times. Unfor-
tunately, the differential equations (13) in this case have no analytic solution, so we have to
resort to a numerical treatment.
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Similarly, the sine quench is defined as a quarter period of a sine

g(t) = gi + (gf − gi) sin
πt
2τ

. (54)

In this protocol the transverse field initially changes faster than in the others, but slows down
close to t = τ. It is differentiable everywhere except at t = 0. Again, the differential equations
(13) have no analytic solution and we study this case numerically.

The comparison of the obtained post-quench mode occupations for the cosine and sine
protocols with the sudden-quench result are again shown in Fig. 2.

4.4 Polynomial quenches

The cubic quench is defined as

g = gi − 3(gi − gf)
� t
τ

�2
+ 2(gi − gf)

� t
τ

�3
, (55)

and the quartic quench is

g = gi − 2(gi − gf)
� t
τ

�2
+ (gi − gf)

� t
τ

�4
. (56)

Both protocols are differentiable everywhere, ie, they feature no kinks. The differential equa-
tions (13) have no analytic solution in these cases.

4.5 Piecewise quenches with a kink

Finally we introduce a quench protocol composed of two cosine functions stitched together at
t = τ

2 so that the protocol is continuous, but the derivative is not. The protocol is defined as

g(t) =

(

gf+(1−
p

2)gi

2−
p

2
− gf−gi

2−
p

2
cos πt

2τ , 0≤ t ≤ τ
2 ,

3gf+gi
4 + gf−gii

4 cos 2πt
τ , τ

2 < t ≤ τ.
(57)

Similarly, we define a protocol consisting of two linear functions with different slopes. We do
this by stitching them at t = τ

2 , leading to a discontinuous derivative:

g(t) =

¨

gi +
4

3τ(gf − gi)t, 0≤ t ≤ τ
2 ,

1
3(2gi + gf) +

2
3τ(gf − gi)t,

τ
2 < t ≤ τ.

(58)

5 Results for observables

5.1 Total energy

The simplest observable in the system is the total energy per site, Etot =
1
N 〈H(t)〉. Following

the quench, the total energy is constant due to the unitary time evolution. During the quench,
however, it depends on the quench protocol as

Etot =
J

2π

∫ π

−π
dk
�

2
�

g(t)− cos k
�

|vk(t)|
2 + sin k

�

uk(t)vk(t) + u∗k(t)v
∗
k(t)

�

− g(t)
�

. (59)

Clearly the total energy in the system depends on the quench details, as shown in 3, while it
becomes independent of these details in the sudden and adiabatic limits as is well expected.
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Figure 3: Left: Total energy per site Etot(t) during a quench from gi = 0 to gf =
2
3 over τJ = 1

for different quench protocols. Inset: Quenches from gi = 0 to gf =
2
3 and varying durations

show the approach of E(τ) to the ground-state energy of the final Hamiltonian Ef
gs. Right:

Mode occupation nf
k of the final Hamiltonian at t = τ for quenches between phases (upper

panel) and inside a phase (lower panel).

We find that the total energy after the quench Etot(τ) approaches the adiabatic value Ef
gs as a

power-law, with the exponent depending on the quench details. For quenches within either the
ferromagnetic or paramagnetic phase we notice two types of behaviour depending on whether
the protocol has any kinks, ie, non-differentiable points: Quenches which feature kinks, ie,
the linear, exponential, sine, piecewise linear and piecewise cosine quenches all approach the
adiabatic value as Etot(τ)− Ef

gs∝ τ−2. Strikingly, quenches such as cosine, cubic and quartic,

which feature no kinks, display a much faster approach, ie, Etot(τ) − Ef
gs ∝ τ−4. The inset

to Fig. 3 demonstrates the different approaches to Ef
gs for several protocols. In contrast, for

quenches across the critical point we find Etot(τ)− Ef
gs ∝ τ−1/2 irrespective of the details of

the protocol.
The different adiabatic behaviour for quenches between different parts of the phase di-

agram may be related to differences in the behaviour of the mode occupations at k = 0 as
illustrated in Fig. 3. For quenches across the critical point (upper panel) the mode occupation
at k = 0 is finite, while, in contrast, for quenches within a phase one finds nf

k=0 = 0. However,
we observe no obvious difference between quench protocols with and without kinks. We note
that the cosine and sine quench have a higher mode occupation, especially of the high-energy
modes, and consequently a higher total energy after the quench as compared to the linear and
exponential quenches as visible in the left panel.

Furthermore, at t = τ the total energy will be smooth for the cosine and sine quenches
since the transverse field g(t) is differentiable, while Etot possesses kinks for the linear and
exponential quenches originating from the kinks in g(t).

5.2 Transverse magnetisation

Next, let us now look into the behaviour of the transverse magnetisation. We can compare the
magnetisation during the quench to the equilibrium ground-state magnetisation corresponding
to the instantaneous value of the coupling g(t), as shown in Fig. 4. If the quench duration is
small compared to the inverse of the energy scales of the system, the quench is fast. In this
case, the magnetisation is significantly offset from the equilibrium value for the corresponding
g(t). This is because the system cannot follow the change by reaching the ground state of
the instantaneous Hamiltonians H(t). On the other hand, as the quench slows down, the
system starts its relaxation during the quench, as demonstrated by the oscillatory behaviour
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Figure 4: Transverse magnetisation during the quench for various quench durations (left) and
protocols (right). Left: Linear quench from gi = 0 to gf =

2
3 . Full line is the equilibrium

value of transverse magnetisation for a given g(t). Right: Deviation of the magnetisation
in linear, cosine, sine and exponential quenches from the equilibrium magnetisation for the
corresponding g(t).

of the magnetisation. However, in both cases there is a noticeable lag in the reaction at the
very beginning of the quench. This behaviour remains qualitatively the same for different
quench protocols, although there are quantitative differences, as can be seen in Fig. 4. These
differences can be understood by comparing the behaviours to the gap change rates |∆̇| shown
in Fig. 1. The sine quench has the highest gap change rate initially, which means that the
system experiences this quench as the most violent, as demonstrated by the large amplitude
of oscillations of the magnetisation from its equilibrium value. On the other hand, the cosine
quench has the slowest initial gap change rate and the magnetisation in this case is much closer
to the equilibrium value.

Following the quench, the magnetisation approaches a steady value. This stationary part
of the magnetisation is given by M z

s = limt→∞M z(t) with the result

M z
s =

1
π

∫ π

−π
dk
�

cos2 θ f
k

�

|vk(τ)|
2 − |uk(τ)|

2
�

− cosθ f
k sinθ f

k

�

uk(τ)vk(τ) + u∗k(τ)v
∗
k(τ)

��

,

(60)
which coincides with the GGE value. The dependence of the stationary value on the duration
of the quench τ and quench protocol g(t) is shown in Fig. 5. In the left panel we notice that for
quenches within the ferromagnetic regime an oscillatory behaviour in τ exists which is most
pronounced for the linear and exponential quench protocol and may be linked to the existence
of a kink in g(t) at t = τ. We notice similar oscillatory behaviour in the sine and piecewise
quenches. In the inset we see the large-τ behaviour of the stationary magnetisation which is
similar to the large-τ behaviour of the total energy. The deviation from the adiabatic value for
quenches with a kink behaves as |M z

s − M z
a | ∝ τ−2. In contrast, there is a |M z

s − M z
a | ∝ τ−4

behaviour in quenches without such kinks. The same type of approaches are observed for
quenches within the paramagnetic regime. On the other hand, for quenches through the phase
transition, no oscillations are observed and the approach to the adiabatic limit is much slower,
ie, |M z

s −M z
a | ∝ τ−1/2 (right panel).

The relaxation to the stationary value is described by the time-dependent part of the mag-
netisation (t > τ)

M z
r (t) = M z(t)−M z

s = −
2
π

∫ π

−π
dk Re

�

f (k)e2iωk t
�

, (61)

where we recall that ωk = εk(gf) defines the single-mode energies after the quench and we
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Figure 5: Stationary part of the transverse magnetisation as a function of the quench duration
for several quench protocols. The dashed black and full grey lines show the adiabatic and
sudden values respectively. The insets show large τ behaviour, where the adiabatic value is
defined by M z

a = limτ→∞M z
s .
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Figure 6: Approach to the stationary value of the transverse magnetisation following a linear
quench. The full grey line is the stationary phase approximation result, the dashed line is t−3/2

with a constant prefactor, and the blue dots show the numerical evaluation for certain times.
The inset shows the spectral analysis of the oscillations demonstrating peaks at frequencies
2ω0 and 2ωπ indicated by the vertical lines.

have defined

f (k) =
1
4

e−2iωkτ
�

sin2 θ f
k

�

|vk(τ)|
2 − |uk(τ)|

2
�

+ (cosθ f
k − 1) sinθ f

k

�

uk(τ)vk(τ) + u∗k(τ)v
∗
k(τ)

��

.

(62)
Using a stationary phase approximation we can evaluate the late-time behaviour of this integral
to be

M z
r (t) = −

√

√ 2
π

∑

k0

|Φ′′(k0)|−3/2Re
�

f ′′(k0)exp
�

iΦ(k0)t + i Sgn(Φ′′(k0))
3π
4

��

t−3/2, (63)

where Φ(k) = 2ωk = 4J
q

1+ g2
f − 2gf cos k and the stationary points are k0 = −π, 0,π re-

spectively. Fig. 6 shows the relaxation of the magnetisation. As in the case of a sudden
quench [28, 51] the relaxation follows a t−3/2 law. Superimposed on the decay are oscilla-
tions with frequencies 2ω0 and 2ωπ originating from the stationary points of the phase. The
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Figure 7: Connected two-point correlation function in the transverse direction for a linear
quench. The full line is the stationary phase approximation result, the dashed line is the t−3

envelope. The time scale at which correlations set in is indicated by tF. Inset: Spectral analysis
of the oscillations demonstrating a pronounced peak at 2(ω0 +ωπ) and washed out peaks at
the frequencies 2(ω0 −ωπ), 4ω0, 4ωπ respectively.

quench protocol and the duration of the quench implicitly enter the expression of the pref-
actor of t−3/2 via the Bogoliubov coefficients in f (k), while the qualitative behaviour, ie, the
power-law decay and oscillations, are unaffected by the details of the protocol.

5.3 Transverse two-point function

The two-point function in the transverse direction is given by the Pfaffian (24) which can be
evaluated from a 4 × 4 matrix. The elements of this matrix are αi j and βi j , the quadratic
correlators introduced in (26) and (27) respectively. At late times we evaluate the behaviour
of these correlators using a stationary phase approximation with the result

αi,i+n(t) = α
s
i,i+n + F1

n (t)t
−3/2, βi,i+n(t) = β

s
i,i+n + F2

n (t)t
−3/2. (64)

The stationary parts of the functions are given in (35) and (36), they are found to be negligibly
small in comparison to the amplitudes of the time-dependent parts. The prefactors F1

n (t) and
F2

n (t) are sums of oscillatory terms at k0 = −π, 0,π, with constant amplitudes and frequencies
2ωk0

. Based on this, the connected two-point function in the transverse direction behaves as

ρz
C,n(t) = 〈σ

z
i (t)σ

z
i+n(t)〉 − 〈σ

z
i (t)〉

2 (65)

= 4
�

|βi,i+n(t)|2 − |αi,i+n(t)|2
�

= ρz
s,n + G1

n(t)t
−3/2 + G2

n(t)t
−3. (66)

Since αs
i j and β s

i j are negligibly small, the first two terms in (66) are suppressed, and the ob-

served late-time behaviour is a t−3 decay. The prefactor G2
n(t) is a sum of oscillatory terms with

constant amplitudes and frequencies 2(ω0 +ωπ), 2(ω0 −ωπ), 4ω0 and 4ωπ. This is shown
in Fig. 7. The power-law decay is independent of the quench details, ie, the quench protocol
or whether the initial and final values of the quench parameter are in the paramagnetic or the
ferromagnetic phase.

The connected two-point function is exponentially small in the spatial separation n up
to the Fermi time tF when it exhibits the onset of correlations. At later times it shows an
algebraic decay ∝ t−3 with oscillations as shown in Fig. 7. The appearance of the time
tF corresponds to the physical picture of quasiparticles spreading through the system after
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Figure 8: Left: Density plot of the two-point correlation function in the transverse direction
following a linear quench. Points of onset are extracted from the first variation with an absolute
value not smaller than 1% of the global maximum, lines are linear fits on those points. In white
we also indicate the horizon in the sudden-quench case. Right: Density plots of the two-point
correlation function in the transverse direction during and after several quench protocols with
the same initial and final parameters as on the left. Lines are square root fits on onset points.

sudden quantum quenches as originally put forward by Calabrese and Cardy [10, 11]. The
picture adapted to the case of finite-time quenches is as follows [22, 24]: during the quench,
0 ≤ t ≤ τ, pairs of quasiparticles with momenta −k and k are created. The quasiparticles
originating from closely separated points are entangled and propagate through the system
semi-classically with the instantaneous velocity vk(t), which is the propagation velocity of the
elementary excitations vk(t) = dεk[g(t)]/dk for a given transverse field g(t). A consequence
of this is the light-cone effect—entangled quasiparticles arriving at the same time at points
separated by n induce correlations between local observables at these points. This can be seen
in Fig. 7, where the connected transverse correlation function does not change significantly
until tFJ ' nJ/2vmax = 15. In this rough estimate, we use that the velocity of the fastest
mode after the quench is vmax(t) = 2J min[1, g(t)]. As stated before, following the onset, the
correlations algebraically decay to time-independent values.

The main effects of the finite quench time on the light-cone effect are shown in Fig. 8.
Firstly, the quasiparticles are not only created at t = 0, but over the entire quench duration τ.
Secondly, during the quench, the particles with momentum k propagate with the instantaneous
velocity vk(t), leading to a bending [22, 24] of the light cone for times t ≤ τ clearly visible
the plots. Together, these two effects result in a delay of the light cone as compared to the
sudden case. A simple estimate for this delay can be obtained by considering the fastest mode
created at t = 0, which will have propagated at t = τ to xest =

∫ τ

0 dt vmax(t). On the other
hand, in the sudden case the horizon will be at the position xsq = vmax(τ)τ, implying for the
delay ∆x ≈ xsq − xest, which is consistent with the results shown in Fig. 8.

5.4 Longitudinal two-point function

The two-point function in the longitudinal direction can be evaluated from the Pfaffian (25).
The corresponding antisymmetric matrix is of dimension 2n×2n, where n is the separation of
the spins we are considering. The elements of the matrix are αi j and βi j from equations (26)
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Figure 9: Left: Two-point correlation function in the longitudinal direction following a linear
quench. The full line is the stationary phase approximation result, the dashed line its t−3/2

envelope. Right: Stationary value of the two-point function for varying spin separations. The
full line is an exponential fit to the data.

and (27).
We consider the longitudinal two-point function in the disordered phase only, which equals

the connected correlation function because the expectation value of the order parameter van-
ishes. We analyse its behaviour by using the results of the stationary phase approximation
given in (64). Based on this, the connected two-point function in the longitudinal direction
and for a quench within the paramagnetic phase behaves as

ρx
n (t) = ρ

x
s,n + Fn(t)t

−3/2, (67)

in leading order. We note that the power-law decay∝ t−3/2 is identical to the sudden-quench
case [32]. The prefactor Fn(t) is a sum of oscillatory terms, and ρx

s,n is exponentially small
in the separation n, as can be seen in Fig. 9. Similar to the transverse two-point function
discussed in the previous section there is a clear light-cone effect with a bending of the horizon
during the quench.

Finally we note that the longitudinal two-point function and order parameter have been in-
vestigated in the late-time limit after linear ramps within the ferromagnetic phase by Maraga et
al. [41]. In particular, they showed that the stationary longitudinal two-point function decays
exponentially in the separation n, ie, ρx

s,n ∝ e−n/ξ, with the correlation length ξ being fi-
nite even for arbitrarily small quench rates vg = (gf − gi)/τ, implying the absence of order
limn→∞ρ

x
s,n = 0 after linear ramps. The decay towards this stationary state was not investi-

gated in detail, but in analogy to the sudden-quench case [32] we expect the stationary value
to be approached as∝ t−3.

5.5 Loschmidt echo

It was observed previously [52] that the time evolution of the Loschmidt amplitude after sud-
den quenches will show non-analytic behaviour provided the quench connected different equi-
librium phases. Due to the formal similarity of this behaviour and equilibrium phase transitions
this was dubbed dynamical phase transition. Subsequently various aspects of these dynamical
phase transitions have been investigated theoretically in various models [53–59], in particu-
lar revealing important differences to the usual equilibrium phase transitions [60, 61]. The
experimental observation of a dynamical phase transition in the time evolution of a fermionic
quantum gas has been recently reported in Ref. [62].

In the present work we investigate the signature of the dynamical phase transition follow-
ing finite-time quenches in the TFI chain. More precisely, we consider the return amplitude
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between the time evolved state |Ψ(t)〉= U(t) |Ψ0〉 and the initial state |Ψ0〉= |Ψ(t = 0)〉, ie,

G(t) = 〈Ψ0|Ψ(t)〉= 〈Ψ0|U(t)|Ψ0〉. (68)

The expectation is that the corresponding rate function l(t) = − 1
N ln |G(t)|2 will show non-

analytic behaviour at specific times t?n provided the finite-time quench crossed the quantum
phase transition at g = 1. We note in passing that the Loschmidt echo after finite-time
quenches has been considered previously by Sharma et al. [63]. However, this work con-
sidered solely the evolution after the quench, ie, the amplitude 〈Ψ(τ)|Ψ(t > τ)〉, and the
finite-time quench appears as a way to prepare the “initial state" |Ψ(τ)〉. We stress that, in
contrast, we consider the full time evolution both during and after the quench.

To compute the return amplitude (68), we start by noting that the Hamiltonian has the
form H(t) =

∑

k>0 Hk(t) with

Hk(t) = Ak(t)
�

c†
kck + c†

−kc−k

�

− iBk

�

c†
−kc†

k + c−kck

�

, (69)

ie, the individual Hamiltonians Hk(t) couple only pairs of modes−k and k. The time-evolution
operator thus also decomposes as U(t) =

∏

k>0 Uk(t). Next, we revert to the pre-quench
operators ηk to write the single-mode Hamiltonian (69) in terms of the operators

K+k = η
†
kη

†
−k, K−k = ηkη−k, K0

k =
1
2

�

η†
kηk −η−kη

†
−k

�

, (70)

which satisfy the SU(1,1) algebra [K−k , K+p ] = 2δkpK0
k , [K0

k , K±p ] = ±δkpK±k . Now we can make
the following ansatz for the time-evolution operator [64,65]

Uk(t) = exp
�

iϕk(t)
�

exp
�

a+k (t)K
+
k

�

exp
�

a0
k(t)K

0
k

�

exp
�

a−k (t)K
−
k

�

. (71)

From i∂t Uk(t) = Hk(t)Uk(t) we then obtain differential equations for the coefficients ϕk(t),
a+k (t), a0

k(t) and a−k (t) which we solve with the initial conditions ϕk(0) = a+k (0) = a0
k(0) =

a−k (0) = 0. With this result the return amplitude becomes

G(t) = exp

�

−
iN
2π

∫ π

0

dk

∫ t

0

dt ′ Ak(t
′)

�

exp

�

N
2π

∫ π

0

dk ln
�

ui
ku∗k(t) + vi

kvk(t)
�

�

. (72)

The corresponding rate function is given by

l(t) = −
1
π

∫ π

0

dk ln
�

�

�ui
ku∗k(t) + vi

kvk(t)
�

�

�, (73)

which we plot in Fig. 10 during and after quenches across the critical point with different
quench durations and protocols. The rate function clearly features non-analyticities at times
t?n(τ). We note that the superscript ? denotes the critical times rather than complex conju-
gation, which we denote by the superscript ∗ throughout the paper. In contrast, we did not
observe such non-analyticities for quenches within a phase.

We observe that a short quench reproduces the sudden-quench result [52, 66], whereas
for longer quenches there is an offset in the characteristic times. This can be further investi-
gated by considering the return amplitude (72) after the quench t > τ using the post-quench
solutions from (15) for uk(t) and vk(t). In this case the corresponding rate function becomes

l(t) = −
1
π

∫ π

0

dk ln
�

�

�ui
kcu∗

4 − vi
kcv∗

4 + (u
i
kcu∗

3 − vi
kcv∗

3 )e
−2iωk t

�

�

�, (74)
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Figure 10: Left: Rate function of the return probability following linear quenches of different
durations. Vertical lines are the times t?n(τ). The full line is the rate function for the sudden
quench [52,66]. Right: Rate function following quenches of various protocols. Inset: Depen-
dence of the offset ∆t?(τ) on the quench duration and protocol. Full lines are guides to the
eye.

where ui
k and vi

k are the Bogoliubov coefficients of the initial Hamiltonian and cu/v
3/4 are the

momentum- and quench duration-dependent functions given in equations (18)–(17). When
considering the analytic continuation t → −iz of (74), the argument of the logarithm will
vanish at lines in the complex plane parametrised by the momentum k and explicitly located
at

zm(k) =
1

2ωk

�

ln
ui

kcu
3
∗ − vi

kcv
3
∗

ui
kcu

4
∗ − vi

kcv
4
∗ + iπ(2m+ 1)

�

, (75)

with m being an integer. The lines (75) will cut the real time axis provided there exists a
momentum k? with Re zm(k?) = 0. The corresponding critical times at which the rate function
l(t) will show non-analytic behaviour are given by t?m = −i Im zm(k?) with the explicit result

t?m(τ) =∆t?(τ) + t?
�

m+
1
2

�

, m= 0, 1,2, . . . , (76)

where the periodicity is given by t? = π/ωk? and the offset reads

∆t?(τ) =
1

2ωk
arg

ui
kcu∗

3 − vi
kcv∗

3

ui
kcu∗

4 − vi
kcv∗

4

�

�

�

�

k=k?
. (77)

We note that ∆t?(τ) depends on τ via the coefficients cu/v
3/4 . We also stress that the result

(76) is only valid for critical times after the quench t?m > τ. A comparison with the explicit
numerical evaluation of the rate function defined via (72) is plotted in Fig. 10; it shows
excellent agreement. In particular, the non-analyticities occur periodically and are shifted
relative to each other. The latter finding originates from the the fact that the critical mode k?,
obtained from Re zm(k?) = 0, depends implicitly on the quench protocol. We also note that
the condition Re zm(k?) = 0 cannot be satisfied for quenches within the same phase, while for
quenches across the critical point such a mode exists.

The analysis above is restricted to t > τ, but for relatively short quenches it captures all
critical times t?m, since they all occur after the quench. However, for slower quenches kinks in
the rate function occur during the quench. We plot several such situations in which t?1 < τ in
Fig. 11. In this case, the analysis of the rate function in (73) would require the use of solutions
of the differential equations with time-dependent coefficients in (13), which are not always
explicitly known.
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Figure 11: Left: Rate function of the return probability following linear quenches of different
durations. We stress that the first critical time t?1 occurs during quench, ie, t?1 < τ. On the
time axis we indicate the quench durations τi as well as the times tc

i at which the critical
point gc = 1 is crossed. Right: Scaling of the critical momenta defined via Re zn(k?) = 0 and
nk̃ = 1/2 for a linear quench. The behaviour is consistent with k?, k̃∝ τ−1/2.

Finally we compare the critical mode k? obtained from Re zm(k?) = 0 with the mode k̃
defined by nk̃ = 1/2, ie, corresponding to infinite temperatures. For dynamical phase transi-
tions after sudden quenches it was found that these two modes are identical [52]. In contrast,
for the finite-time quenches we considered here this is not the case, ie, in general we find
k? 6= k̃. Nevertheless, as shown in Fig. 11 the scaling behaviour of these two critical momenta
is consistent with k?, k̃∝ τ−1/2 as expected in the Kibble–Zurek scaling limit [40,67].

6 Scaling limit

As is well known, the vicinity of the quantum phase transition at g = 1 can be described by
the scaling limit [68,69]

J →∞, g → 1, a0→ 0, (78)

where a0 denotes the lattice spacing, while keeping fixed both the gap ∆ and the velocity v
defined by

2J |1− g|=∆, 2Ja0 = v. (79)

The Hamiltonian in the scaling limit reads

H =

∫ ∞

−∞

dx
2π

�

iv
2
(ψ∂xψ− ψ̄∂xψ̄)− i∆ψ̄ψ

�

, (80)

where ψ and ψ̄ are right- and left-moving components of a Majorana fermion possessing the
relativistic dispersion relation ε(k) =

p

∆2 + (vk)2. Thus we see that the finite-time quenches
considered in this article will lead to a time-dependent fermion mass [70] ∆(t) = 2J |1 −
g(t)|. We expect our results to directly carry over to the field theory (80), eg, the post-quench
relaxation of the transverse magnetisation should follow M z

r (t)∝ t−3/2 as is observed after
sudden quenches [51,71].

7 Quantum field on curved spacetime

Recently Neuenhahn and Marquardt [42] put forward the idea of using one-dimensional bosonic
condensates with time-dependent Hamiltonians in order to simulate a 1+1-dimensional ex-
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panding universe. In the following we argue that a similar construction can be performed for
the Ising field theory (80). We start from the corresponding action in Minkowski space

SIFT =
1
2

∫

dt dx
�

iv Ψ̄γµ∂µΨ + i∆(t)Ψ̄γ3Ψ
�

, (81)

where we introduced the two-spinor Ψ and two-dimensional gamma matrices in the Weyl
representation via

Ψ =

�

ψ

ψ̄

�

, Ψ̄ = Ψ†γ0 =
�

ψ̄,ψ
�

, γ0 = σx , γ1 = iσ y , γ3 = σ
z , (82)

and set ∂0 = ∂t and ∂1 = ∂x .
On the other hand, the action of a Dirac field with mass m in curved spacetime in 1+1-

dimensions is given by [72,73]

Sg =
1
2

∫

d2 x
p

−g
�

iv Ψ̄γaeµa∇µΨ + imΨ̄γ3Ψ
�

, (83)

where g is the determinant of the metric tensor, eµa is the corresponding zweibein and ∇µ de-
notes the covariant derivative. Specifically we consider the spatially flat Friedmann–Robertson–
Walker metric

ds2 = dt2 − R2(t)dx2, (84)

which describes a homogeneous, spatially expanding spacetime. With conformal time dη =
dt/R(t) the metric becomes

ds2 = R2(η)
�

dη2 − dx2
�

= R2(η)ηµνdxµdxν = gµνdxµdxν, (85)

where ηµν = diag(1,−1) is the Minkowski metric. Using this, the zweibein defined via ηab =
eµa eνb gµν is found to be eµa = R−1δ

µ
a with the inverse ea

µ = Rδa
µ. The covariant derivative is

given by

∇µ = ∂µ +
1
8
ωab
µ

�

γa,γb

�

= ∂µ −
∂ηR

2R
δ1
µγ3, (86)

where we have evaluated the spin connection ωab
µ = η

bcω
a
µ c defined using the Christoffel

symbols Γλµν as ω a
µ b = −eνb(∂µea

ν − Γ
λ
µνea

λ
). Thus with −g = R4 we find

Sg =
1
2

∫

dηdx R

�

iv Ψ̄γµ∂µΨ + iΨ̄

�

mRγ3 +
v∂ηR

2R
γ0

�

Ψ

�

. (87)

Finally, rescaling the fields according to χ =
p

RΨ, we obtain

Sg =
1
2

∫

dηdx
�

iv χ̄γµ∂µχ + imR(η)χ̄γ3χ
�

, (88)

thus establishing the relation∆(t) = mR(η(t)) between the time-dependent gap and the scal-
ing factor in the Friedmann–Robertson–Walker metric. Hence we conclude that the spreading
of correlations during the finite-time quench can be interpreted as propagation of particles in
an expanding space time. This result is very similar to the relation obtained in the bosonic
case [42].
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8 Conclusion

In conclusion, we have investigated finite-time quantum quenches in the transverse-field Ising
chain, ie, continuous changes in the transverse field over a finite time τ. We discussed the
general treatment of such time-dependent quenches in the TFI model and applied this frame-
work to several quench protocols. The precise forms of these protocols were chosen to cover
different features like kinks in the time dependence. Specifically we derived exact expressions
for the time evolution of the system in the case of a linear and an exponential protocol, and for
several others we obtained numerical solutions. Furthermore, we constructed the GGE for the
post-quench dynamics using the mode occupations of the eigenmodes of the final Hamiltonian.

Using these results, we analysed the behaviour of several observables during and after
the quench. Namely, we investigated the behaviour of the total energy, transverse magneti-
sation, transverse and longitudinal spin correlation functions and the Loschmidt echo. We
confirmed that the stationary values to which the observables relax correspond to the GGE
expectation values, as was of course expected. The approaches to the stationary values are os-
cillatory power laws, details of which can be extracted from a stationary-phase approximation.
Furthermore, we checked that the stationary values reproduce the corresponding results for
sudden quenches in the short-τ limit as well as the adiabatic expectation values in the long-τ
limit. As a function of the quench time τ the approach to the adiabatic values was shown to
follow different power laws, depending on whether the quench is within a phase, or if it is
done across the critical point.

In the time evolution of the two-point functions we observed the light-cone effect known
from sudden quenches. In comparison to the sudden case, however, there is an offset in the
horizon after the quench as well as a non-linear regime during the quench. These effects can
be ascribed to the production of quasiparticles during the quench as well as to the fact that
their instantaneous velocities depend on the quench protocol.

Furthermore, we investigated the behaviour of Loschmidt echo and found signatures of
dynamical phase transitions when quenching across the critical point, as was observed pre-
viously in sudden quenches. We analysed the rate function of the return amplitude and ob-
served smooth behaviour when quenching within a phase, and periodic non-analyticities when
quenching across the critical point. The latter are delayed as compared to the sudden-quench
case. We found exact analytical expressions for the post-quench times at which these non-
analyticities occur, characterising their periodicity and the delay. In addition, we showed nu-
merically that the non-analyticities can occur during the quench as well, provided the quench
duration is sufficiently long.

Finally, we looked into the scaling limit of the theory in which the transverse-field quench
corresponds to a quench in the mass of the Majorana fermions. We showed that, alternatively,
we can describe the quenching procedure by a field theory with constant parameters put on a
curved expanding spacetime, as was proposed previously for a bosonic field theory.

In the future it would be interesting to study the behaviour of other models during and
after finite-time quenches. As such investigations presumably have to be based on numer-
ical simulations, the results presented here may serve as an ideal starting point. From our
perspective, a natural model to begin with would be the axial next-nearest-neighbour Ising
chain, which, in the language of Jordan–Wigner fermions, would correspond to an interact-
ing, non-quadratic theory. While universal results like the scaling behaviour close to the phase
transition are expected to be identical to the TFI chain, the non-universal details of the time
evolution may reveal interesting interaction effects and their interplay with the energy scale
set by the finite quench time.
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