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Abstract

We study the circular Wilson loop in the symmetric representation of U(N) in N = 4
super-Yang-Mills (SYM). In the large N limit, we computed the exponentially-suppressed
corrections for strong coupling, which suggests non-perturbative physics in the dual
holographic theory. We also computed the next-to-leading order term in 1/N , and the
result matches with the exact result from the k-fundamental representation.
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1 Introduction

The partition function of N = 4 SYM on S4 reduces to a random matrix model with Gaussian
unitary ensemble [1–3]. This fact allows exact computation of expectation values of super-
symmetric observables, such as circular Wilson loops in various representations of the gauge
group U(N) [4].

Motivated by the AdS/CFT correspondence, the regime of interest is when N is large and
the ’t Hooft coupling, λ = g2

YMN , is strong. For the Wilson loops in k-symmetric/anti-symmetric
representations, which can be mapped to a system of free bosons/fermions [5], the leading
order results matched neatly with their holographic picture, that is, a D3-brane/D5-brane
carrying an amount k of the fundamental string charge [6–8]. We recommend [9] for a review.

Concerning the next-to-leading order in strong coupling, [10] computed it recently for the
anti-symmetric case, by using the Sommerfeld expansion of the Fermi distribution. However,
the derivation for the symmetric case was precluded by the onset of Bose-Einstein conden-
sation. One of our goals here is precisely to compute these subleading corrections in strong
coupling for the symmetric case.

The other goal is to compute the next-to-leading order in 1/N , in order to shed some light
on a longstanding discrepancy. That is, the non-planar result in [11] was computed as the
correction to the saddle-point that was found by analytic continuation done in [5]. This did
not match with the holographic solution derived in [12], which used the spectrum obtained in
[13]. In the field theory side, we can say that the path of the saddle was unclear. Therefore, we
will avoid analytic continuation, and instead, we will do an honest matrix model computation
from scratch, as we did for theN = 2∗ SYM in [14]. Nonetheless, we do expect the non-planar
result for the k-symmetric representation to match with the k-fundamental representation,
since Wilson loops in these two representations differ by exponentially-suppressed terms in
strong coupling, as shown in [15].

2 Wilson loops

A Wilson loop, in the representationR of the gauge group, U(N) in our case, is defined as the
expectation value of the character of the representation, i.e.

W = ⟨χR⟩ , χR = trRU , (2.1)
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where U is a path-ordered exponential of the gauge connection Aµ, transported along a close
contour C:

U = P exp [∮
C

ds (i ẋµAµ + ∣ ẋ ∣Φ)] . (2.2)

Here we also have the coupling to one of the scalar fields Φ of N = 4 SYM, in order to make
the Wilson loop locally supersymmetric.

For N = 4 SYM on S4, the supersymmetric localization technique [3] is applicable to such
Wilson loops whose contour lies on the equator of the 4-sphere 1. In the Euclidean signature,
the partition function reduces to a Gaussian matrix model integral:

Z = ∫ dN a
N

∏
i< j

(ai − a j)
2 e−

2N
λ ∑N

k=1 a2
k , (2.3)

where the integration variables are the eigenvalues of the vev of the scalar field Φ, i.e.

⟨Φ⟩ = diag(a1, . . . , aN). (2.4)

2.1 Symmetric representation

Our focus will be on Wilson loops in the k-symmetric representation, with the Young diagram

R =

k
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(2.5)

where k ∼ N , and we will take N →∞, so that the ratio f ≡ k/N is kept fixed.
Let us depart from the (Weyl) character formula for the symmetric case, derived in the

appendix A, which is

χk =
N

∑
i=1

ekai
N

∏
j≠i

1
1 − ea j−ai

. (2.6)

Due to the exponential weight, the main contribution comes from the largest eigenvalue aN
2:

χk ≈ ekaN
N−1

∏
j=1

1
1 − ea j−aN

. (2.7)

Furthermore, in the strong coupling limit, the product in (2.7) is exponentially small in λ, so
that the character reduces to the one of the k-wrapped fundamental representation

χk ≈ ekaN , (2.8)

in agreement with the conclusion of [15].
Let us write the Wilson loop expectation value with (2.7) more explicitly as:

W =
1
Z ∫

dN a e−N2S , S = S0 +
1
N

S1, (2.9)

1 The compactification on S4 does not really matter in this context because of the conformal invariance of
N = 4 SYM.

2 In the appendix F, we comment on the contribution from the rest of the sum in (2.6).
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where 3

S0 =
2
λ

1
N

N−1

∑
i=1

a2
i −

1
N2

N−1

∑
i

N−1

∑
j≠i

Re [log(a j − ai)] (2.10)

S1 =
2
λ

a2
N −

2
N

N−1

∑
i=1

log (aN − ai) − f aN +
1
N

N−1

∑
j=1

log (1 − ea j−aN ) , f ≡
k
N

. (2.11)

Since N is large, we will use the saddle-point method to solve (2.9), which yields

log W ≈ −N (F0 +
1
N
F1) , (2.12)

and F = F0 +F1/N is the free energy.

2.2 Saddle-point equations

Let us use the continuous approximation (for all the eigenvalues except the largest), by intro-
ducing the density function:

ρ(x) =
1
N

N−1

∑
i=1
δ(x − ai). (2.13)

Note that the normalization condition in this case is:

∫

c

−c
d x ρ(x) = 1 −

1
N

, (2.14)

implying

∫

c

−c
d x ρ0(x) = 1 and ∫

c

−c
d x ρ1(x) = −1, (2.15)

if the density is expanded as ρ = ρ0 + ρ1/N .
Let us also call A ≡ aN . Then, the leading order equations in N are:

⨏

c

−c
d y
ρ0(y)
x − y

=
2x
λ

(2.16)

⨏

c

−c
d y
ρ0(y)
A− y

=
2A
λ
−

f
2
+

1
2 ∫

c

−c
d y

ρ0(y)
eA−y − 1

(2.17)

and the subleading order 4:

⨏

c

−c
d y
ρ1(y)
x − y

= −
1

x − A
−

1
2(eA−x − 1)

. (2.18)

In the appendix B, we show a systematic way to solve integral equations and apply it to
our equations.

3 For convenience, we put a list of the action and its derivatives in the appendix D. For S0 written here, we used
the identity:

N−1

∑
i

N−1

∑
j=i+1

log(a j − ai) =
1
2

N−1

∑
i

N−1

∑
j≠i

Re [log(a j − ai)] .

4 It is not necessarily to expand A = A0 + A1/N for our purposes (see footnote 6). It is straightforward to solve
it though, for (B.66):

⨏

c

−c
d y
ρ1(y)
A0 − y

=
2
λ

A1 ⇒ A1 = −
A0 c2

2(A2
0 − c2)

.
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Figure 1: Density distribution in the planar limit.

3 Strong coupling correction

In this section, we will work in the planar limit. We will start by reproducing the Drukker-
Fiol result [16], and then compute the exponentially-suppressed corrections to it, in strong
coupling.

3.1 Saddle-point configuration

The solution to the equation (2.16) is the well-known Wigner semi-circle (B.65), that we copy
here:

ρ0(x) =
2
√

c2 − x2

πc2
, c =

√
λ. (3.19)

The Bose distribution term in the equation (2.17) is exponentially suppressed in strong
coupling, since A > c. We thus neglect it for the leading order in strong coupling and, using
the semi-circle distribution, it is straightforward to compute A, which is

A = c
√
κ2 + 1, κ =

c f
4

. (3.20)

We plotted the saddle-point configuration in fig. 1.

3.1.1 Correction to A

The exponentially-small correction to (3.20) (let us denote it by δA) actually gives higher
order corrections to the action, as we shall see later on. We can compute it by expanding
(2.17) (with the semi-circle distribution) in A 5 :

∫

c

−c
d y

ρ0(y)
eA−y − 1

= f −
4
√

(A+ δA)2
− c2

c2
. (3.21)

Using the geometric sum identity

1
eA−y − 1

=
∞
∑
m=1

e−(A−y)m, (3.22)

5 Note that we neglected the expansion from the Bose term, since it is exponentially-suppressed.
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then, commuting the integration and the sum, and integrating term by term, we end up with
the following identity (the series is convergent for A ⩾ c):

∫

c

−c
d y

ρ0(y)
eA−y − 1

= 2
∞
∑
m=1

e−Am

c m
I1(c m), (3.23)

where I1(z) is the modified Bessel function. In the strong coupling limit,

2
∞
∑
m=1

e−Am

c m
I1(c m) ≈

2
√

2πc3/2 e−(A−c), (3.24)

and we obtain the leading order correction to (3.20):

δA = −

¿
Á
ÁÀ c κ2

8π (κ2 + 1)
e−c(

√
κ2+1−1). (3.25)

3.2 The leading order result

The first contribution to the free energy comes from the 1/N term in the large N expansion
of the action (C.76), since S0[ρ0] is canceled by the partition function whose saddle-point
distribution is ρ0, hence

F0 = S1[ρ0] − [
δS0 [ρ0]

δρ(x)
]

x=c
, (3.26)

where (see the appendix D)

S1[ρ0] =
2A2

c2
− 2∫

c

−c
d y ρ0(y) log(A− y) − f A (3.27)

[
δS0 [ρ0]

δρ(x)
]

x=c
= 2 − 2⨏

c

−c
d y ρ0(y) log(c − y). (3.28)

Here, we just dropped the last term in (D.86) (let us call it the Bose term), since it is subleading
in strong coupling. We will come back to it in the next subsection.

The integrals can be done using the semi-circle distribution (B.65), and the results are
shown in the appendix E. In order to consider how corrections to A (3.20) contribute to the
free energy, we expand the free energy result for small δA, and we arrive to 6

F0 = −2(κ
√
κ2 + 1 + sinh−1

(κ) −
2
√
κ2 + 1
c2κ

δA2
) , (3.29)

which is the well-known result derived by Drukker and Fiol [16] when we drop the subleading
δA term:

F0 = −2 (κ
√
κ2 + 1 + sinh−1

(κ)) . (3.30)

Our next step is to take into account the ignored Bose term in the action, as in (D.86).

6 The same formula applies to the 1/N correction to A, and we see clearly that it does not contribute to the
next-to-leading order term in large N , due to it being quadratic.
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3.3 Strong-coupling expansion

The strategy to compute the Bose term is to integrate the result (3.23) over A, which gives

∫

c

−c
d y ρ0(y) log (1 − e y−A) = −2

∞
∑
m=1

e−Am

c m2
I1(c m), A ⩾ c (3.31)

where the integration constant is zero, fixed by taking A to infinity. This term, which is an
identity, plus the δA term in (3.29) constitute the corrections to the Drukker-Fiol solution in
the planar limit. In principle, for large λ, terms of any order can be generated.

Let us derive the first few corrections, by expanding (3.31) in strong coupling. First, the
leading contribution comes from the first term of the sum, and then, we expand the modified
Bessel function:

∫

c

−c
d y ρ0(y) log (1 − e y−A) ≈ −

2 e−AI1(c)
c

(3.32)

≈ −
2

c
√

2πc
e−(A−c)

(1 −
3
8c

−
15

128c2
+ . . .) . (3.33)

The last expansion in the parenthesis can actually be written in a compact way up to O(c−n)
7:

∫

c

−c
d y ρ0(y) log (1 − e y−A) =

−
2

c
√

2πc
e−(A−c) ⎛

⎝
−
Γ (n − 1

2) Γ (n + 3
2) 2F2 (1,−n;−n − 1

2 , 3
2 − n;−2c)

π(2c)nΓ (n + 1)

⎞

⎠
. (3.34)

Replacing A by (3.20) and c =
√
λ, the free energy with the leading exponential corrections

is

F0 = −2
⎛

⎝
κ
√
κ2 + 1 + sinh−1

(κ) −

√
2
π

e−
√
λ (
√
κ2+1−1)

λ3/4 [1 −
3

8
√
λ
−

15
128λ

+O (λ−3/2
)]

⎞

⎠
.

(3.35)

4 Non-planar correction

In this section, we will work in the strong coupling limit. We will compute the next-to-leading
order free energy in large N , i.e. F1. In principle, there are three potential sources: the large
N expansion of the action, the fluctuations around the saddle-point configuration, and the
SU(N) correction. For the latter, we will discuss it separately in the appendix G.

4.1 Action

Let us start with the contribution from the action, which is the 1/N2 term in (C.76), i.e.

F1, S =
1
2 ∫

c

−c
d x ρ1(x)

δS1 [ρ0]

δρ(x)
−

1
2
[∫

c

−c
d y ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
+
δS1 [ρ0]

δρ(x)
]

x=0

(4.36)

7 The series expansion for the modified Bessel function used here is taken from: http://functions.wolfram.
com/Bessel-TypeFunctions/BesselI/06/02/03/01/.
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where the functional derivatives are explicit in the appendix D. The first integral is the same
as the integral (E.91), and the second term is

1
2
[∫

c

−c
d y ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
+
δS1 [ρ0]

δρ(x)
]

x=0

= log(

√
A+ c −

√
A− c

√
A− c +

√
A+ c

) . (4.37)

Then, replacing A by (3.20), we get

F1, S = − log

⎛
⎜
⎜
⎜
⎝

(
√
κ2 + 1 − κ)

√

2κ (
√
κ2 + 1 + κ) + 1

2cκ2

⎞
⎟
⎟
⎟
⎠

. (4.38)

4.2 Determinant

The saddle-point method gives also the contribution of the quadratic fluctuations around the
saddle-point configuration, which is a Gaussian integral that can be integrated:

∫

∞

−∞
dN a e−N2S

≈ e−N2S∗

¿
Á
ÁÀ (2π)N

N2N det (S′′∗ )
. (4.39)

Here we formally denoted the Hessian matrix of the action as S′′, and the subindex ∗ indicates
evaluation at the saddle-point configuration. We will skip this latter notation though, for
simplicity.

This correction to the partition function must be taken into account as well (see (2.9)),
whence the contribution to the free energy is

F1, det = −
1
2

log(
det (S′′Z )
det (S′′)

) . (4.40)

The second derivatives of the action are shown in the appendix D. We will drop the terms
with the exponential, since they are subleading in strong-coupling and we are not interested
in this now 8. Notice first that the cross derivatives are of higher order in 1/N , which allows
us to approximate the full determinant using expansion by minors as below:

det(S′′) ≈
∂ 2S
∂ a2

N
det(

∂ 2S
∂ ai∂ a j

) , i, j ≠ N . (4.41)

The contribution from the minor is independent of the scaling parameter κ, and its diagonal
elements are actually vanishing, due to the saddle-point equation:

∂ S
∂ ak

= 0 ⇒
∂ 2S
∂ a2

k

= 0, k ≠ N , (4.42)

since the derivative and the finite sum commutes. When k = N , we can solve the second
derivative by going to the continuous limit (recall A = aN ):

∂ 2S
∂ A2

=
4

c2N
+

2
N ∫

c

−c

ρ0(y)
(A− y)2

d y (4.43)

=
1

c2N
4
√
κ2 + 1
κ

. (4.44)

8 This means we are using the character formula (2.8).
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We do not know how to compute the determinant of the minor, neither the determinant
from S′′z (which is the same as the minor but one dimension higher), but the dimension analysis
suggests their scaling as

det(
∂ 2S
∂ ai∂ a j

) ∼ (
1

c2N
)

N−1

, detS′′Z ∼ (
1

c2N
)

N
.

Hence, we conclude that the contribution to the Wilson loop is

F1, det =
1
2

log(
4
√
κ2 + 1
κ

) + constant, (4.45)

where constant is not a function of the scaling parameter κ.

4.3 Solution

Summing the contributions (4.38) and (4.45), the subleading order free energy is

F1 =
1
2

log (κ3
√
κ2 + 1) + log(4

√
λ) + constant. (4.46)

In order to match this with the exact result from the matrix model computation for the k-
fundamental representation [17]:

F1,◻k =
1
2

log (κ3
√
κ2 + 1) , (4.47)

we see that constant must cancel log(4
√
λ). This is consistent, since we neglected the Bose

term, meaning we are indeed using the character formula for the k-fundamental case (2.8).

5 Conclusion

In this paper we used the saddle-point method to compute strong-coupling and non-planar
corrections to the leading order solution for the Wilson loop in the symmetric representation.

The strong-coupling corrections come from the Bose statistic term in the character formula
(2.7), which is the only term that distinguishes the Wilson loops in the k-symmetric represen-
tation from the k-fundamental representation. We expanded it using geometric series, and for
strong coupling, it gives an infinite series of exponentials of negative coupling, where each of
these terms has also a power series in 1/

√
λ. The first leading exponential term is explicitly

shown in (3.35), which agrees with the estimate done in [15]. The latter also provided a
world-volume interpretation as a disk open string attached to the D-brane. It would certainly
be interesting to understand further these non-perturbative corrections in future works.

We would like to comment as well that the fundamental representation also contains non-
perturbative corrections [18], when expanding the exact planar result [1] for strong coupling:

Wfund =
2

√
λ

I1(
√
λ) ∼ e

√
λ
+ e−

√
λ. (5.48)

This is, however, for the Wilson loop, not for the log of the Wilson loop as in our case.
The second goal of the paper was to solve the next-to-leading order term in 1/N , while

remaining at the strong coupling limit. Up to a constant term that we were unable to compute,
our solution (4.46) agreed perfectly with the exact k-fundamental representation result, which
depends only on the scaling parameter κ = k

√
λ/(4 N). It is consistent from the matrix model

9
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side. However, matching with the holographic dual remains an open question, since the result
from the one-loop partition function for the D3-brane computed in [12] is

F1, D3 =
1
2

log(
κ3

√
κ2 + 1

) . (5.49)

It coincides with the matrix model solution only in the limit κ << 1, as discussed in [12]. One
can also point out corrections from SU(N). Indeed, at the non-planar limit, the traceless con-
dition from SU(N) adds an extra 1/N term to the density (see the appendix G). Nonetheless,
this does not help solve the mismatch problem. The D3-brane computation should probably
be revisited with a better understanding of the D-brane backreaction.
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A Weyl character formula for the symmetric representation

Given the generating function G(α), we can derive the character χk, i.e.

G(α) =∑
k

eα kχk ⇒ χk = ∫

C+iπ

C−iπ

dα
2πi

eα k G(α). (A.50)

For the symmetric representation,

G(α) =
N

∏
i=1

1
1 − eai−α , (A.51)

and C is larger than ai for all i. Assume the eigenvalue set is partially ordered, non-degenerate
and finite, i.e. {−∞ < a1 < . . . < aN < ∞}. Then, we can deform the integration contour to
encircle all the eigenvalues, as shown in fig. 2, and use the residue theorem. The contours C1

and C2 cancel each other, and C3 is vanishing. Since the eigenvalues are non-degenerate, they
are all single poles, and we obtain (2.6).

B Compute the eigenvalue density

Consider the integral equation

⨏

b

a
d y
ρ(x)
x − y

= F(x). (B.52)

Its solution9 is given by

ρ(x) = ⨏
b

a

d y
2π

F(y)
x − y

¿
Á
ÁÀ(b − x)(x − a)

(b − y)(y − a)
(B.53)

9 The reader can check that this is indeed the solution by using the Poincaré-Bertrand transposition formula:

⨏

b

a

1
x − y

[⨏

b

a

f (x , t)
t − x

d t] d x = −π2 f (y, y) + ⨏
b

a
[⨏

b

a

f (x , t)
(x − y)(t − x)

d x] d t.
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Figure 2: In the α plane, we deform the original integration contour to wrap the eigenvalues
that lie on the real axis. The contours C1 and C2 cancel each other, and C3 is vanishing.

with the conditions

∫

b

a

d y
π

F(y)
√

(b − y)(y − a)
= 0 (B.54)

∫

b

a

d y
π

yF(y)
√

(b − y)(y − a)
= 1 (B.55)

that fix the endpoints a and b. The last condition is the normalization condition for the eigen-
value density ρ(x).

We solve the system of (B.53), (B.54) and (B.55) perturbatively in 1/N . Hence, consider

F = Fa +
1
N

Fb, a = a0 +
1
N

a1, b = b0 +
1
N

b1, (B.56)

where, for the case at hand,

Fa(x) =
2
λ

x , Fb(x) = −
1

x − A
+ ξ. (B.57)

Using Fa only, (B.53) can be solved straightforwardly by the residue theorem, and the
result is

ρa(x) =
2
√

(x − a)(b − x)
πλ

. (B.58)

Solving (B.54) and (B.55) at the leading order in N gives

c ≡
√
λ = b0 = −a0. (B.59)

Expanding ρa, we get the leading order for the density, and a subleading order term:

ρa(x) =
2
√

c2 − x2

πc2
+

1
N

c (b1 − a1) + x (a1 + b1)

2
√

c2 − x2
. (B.60)

The next-to-leading order correction to the endpoints are computed using Fb in (B.54) and
(B.55), which reduce to

a1 + b1 = −
c2

√
A2 − c2

− c2ξ (B.61)

b1 − a1 = −
c A

√
A2 − c2

. (B.62)
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Then, the 1/N correction to ρa becomes

ρa,1(x) = −
A+ x

π
√

(A2 − c2) (c2 − x2)
−

x ξ

π
√

c2 − x2
(B.63)

We still need to consider the Fb contribution in (B.53), which gives another 1/N correction to
the density, that is:

ρb,1(x) =

√
c2 − x2

π(A− x)
√

A2 − c2
. (B.64)

The 1/N correction to the density is then the sum of ρa,1 and ρb,1.

B.1 Solution

In conclusion, we have computed up to the subleading order in 1/N for the eigenvalue density.
In order to fix the notation, let us denote ρ = ρ0 + (ρ1 + ρ1,ξ)/N , where

ρ0(x) =
2
√

c2 − x2

πc2
(B.65)

ρ1(x) = −

√
A2 − c2

π(A− x)
√

c2 − x2
(B.66)

ρ1,ξ(x) = −
x ξ

π
√

c2 − x2
(B.67)

and c =
√
λ. When ξ = 0, which corresponds to the U(N) case, our solution is in agreement

with the result obtained in [17], where the resolvent method was used. If we consider SU(N)

instead, the traceless condition fixes the value of ξ:

N

∑
i=1

ai = 0 ⇒ N ∫
c

−c
d x x ρ(x) + A = 0 ⇒ ξ =

2
√

A2 − c2

c2
. (B.68)

C Large N expansion for the action

Given the action S = S0 + S1/N , let us expand it around ρ = ρ0 + ρ1/N :

S [ρ0 +
1
N
ρ1] = S0[ρ0] +

1
N

S1[ρ0]

+
1
N ∫

c

−c
d x ρ1(x)

δS0 [ρ0]

δρ(x)
+

1
N2 ∫

c

−c
d x ρ1(x)

δS1 [ρ0]

δρ(x)

+
1

2N2 ∫

c

−c
∫

c

−c
d x d y ρ1(x)ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
+ O(N−3

). (C.69)

Using integration by parts, the equation of motion for S0

0 =
d

d x
δS0 [ρ0]

δρ(x)
, (C.70)

the identity

[
δS0 [ρ0]

δρ(x)
]

x=−c
= [
δS0 [ρ0]

δρ(x)
]

x=c
, (C.71)
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which is a consequence of ρ0(x) = ρ0(−x), and the normalization condition for ρ1 in (2.15),
we obtain

∫

c

−c
d x ρ1(x)

δS0 [ρ0]

δρ(x)
= − [

δS0 [ρ0]

δρ(x)
]

x=c
(C.72)

For the second derivative term, we also use the equation of motion for S,

0 =
d

d x
δS [ρ]

δρ(x)
=

d
d x
δS0 [ρ]

δρ(x)
+

1
N

d
d x
δS1 [ρ]

δρ(x)
, (C.73)

then expanding the density ρ = ρ0 + ρ1/N and integrating with ρ1, we conclude that

∫

c

−c
d y ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
+
δS1 [ρ0]

δρ(x)
= constant, (C.74)

thus, we can set x = 0 to determine the constant. Now, integrating again the above expression
with ρ1 yields the following equality:

∫

c

−c
∫

c

−c
d x d y ρ1(x)ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
=

− ∫

c

−c
d x ρ1(x)

δS1 [ρ0]

δρ(x)
− [∫

c

−c
d y ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
+
δS1 [ρ0]

δρ(x)
]

x=0

(C.75)

In conclusion, (C.69) reduces to

S [ρ0 +
1
N
ρ1] = S0[ρ0] +

1
N

(S1[ρ0] − [
δS0 [ρ0]

δρ(x)
]

x=c
)

+
1

2N2
(∫

c

−c
d x ρ1(x)

δS1 [ρ0]

δρ(x)
− [∫

c

−c
d y ρ1(y)

δ2S0 [ρ0]

δρ(x)δρ(y)
+
δS1 [ρ0]

δρ(x)
]

x=0

)

+ O(N−3
). (C.76)

D Action and derivatives

For convenience, we write a list of the action, S = S0+S1/N , and its derivatives, for the Wilson
loop in the k-symmetric representation of U(N). Both the discrete version and the continuous
approximation will be relevant for many computations in the paper.
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D.1 Discrete

S0 =
2
λN

N−1

∑
n=1

a2
n −

2
N2

N−1

∑
i=1

N−1

∑
j=i+1

log (a j − ai) (D.77)

S1 =
2
λ

a2
N −

2
N

N−1

∑
i=1

log (aN − ai) − f aN +
1
N

N−1

∑
j=1

log (1 − ea j−aN ) (D.78)

∂ S
∂ ak

=
4
λN

ak −
2

N2

N

∑
j≠k

1
ak − a j

+
1

N2

1
eaN−ak − 1

, k ≠ N (D.79)

∂ S
∂ aN

=
4
λN

aN −
2

N2

N−1

∑
j=1

1
aN − a j

−
f
N
−

1
N2

N−1

∑
j=1

1
eaN−a j − 1

(D.80)

∂ 2S
∂ a2

k

=
4
λN

+
2

N2

N

∑
j≠k

1

(ak − a j)
2
+

1
N2

eaN−ak

(eaN−ak − 1)2
, k ≠ N (D.81)

∂ 2S
∂ a2

N
=

4
λN

+
2

N2

N−1

∑
j=1

1

(ak − a j)
2
+

1
N2

N−1

∑
j=1

eaN−a j

(eaN−a j − 1)2
(D.82)

∂ 2S
∂ al∂ ak

= −
2

N2 (ak − al)
2 , l ≠ k ≠ N (D.83)

∂ 2S
∂ aN∂ ak

= −
2

N2 (ak − aN)
2 −

1
N2

eaN−ak

(eaN−ak − 1)2
(D.84)

D.2 Continuous

S0[ρ] =
2
λ
∫

c

−c
d y ρ(y)y2

− ⨏

c

−c
d y ρ(y)∫

c

−c
dzρ(z)Re [log(z − y)] (D.85)

S1[ρ] =
2
λ

A2
− f A− 2∫

c

−c
d y ρ(y) log(A− y) + ∫

c

−c
d y ρ(y) log(1 − e y−A

) (D.86)

S0[ρ]

δρ(x)
=

2
λ

x2
− ⨏

c

−c
d y ρ(y) log((y − x)2

) (D.87)

δS1[ρ]

δρ(x)
= −2 log(A− x) + log(1 − ex−A

) (D.88)

δ2S0[ρ]

δρ(x)δρ(y)
=

⎧⎪⎪
⎨
⎪⎪⎩

− log ((y − x)2) if x ≠ y

0 if x = y
(D.89)

E Integrals

The integrals below are used to compute the on-shell action. They are valid for A > c > 0 and
c > x > −c, except for the one with ρ0, which is also valid when A = c. The explicit expressions
for the densities can be found in the appendix B.1.
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∫

c

−c
d y ρ0(y) log(A− y) = −

1
2
−

A(
√

A2 − c2 − A)

c2
+ log(

√
A2 − c2 + A

2
) (E.90)

∫

c

−c
d y ρ1(y) log(A− y) =

1
2

log
⎛
⎜
⎝

2A(
√

A2 − c2 + A) − c2

4 (A2 − c2)
2

⎞
⎟
⎠

(E.91)

⨏

c

−c
d y ρ1(y)Re [log(y − x)] = − log(A− x) − log(

√
A+ c −

√
A− c

√
A− c +

√
A+ c

) (E.92)

∫

c

−c
d y ρ1,ξ(y) log(A− y) = (A−

√
A2 − c2)ξ (E.93)

F Exponentially-small corrections in N

Let us write the character (2.6) as

χk = χk,1 + χk,rest, (F.94)

where

χk,1 = ekaN
N−1

∏
j=1

1
1 − ea j−aN

(F.95)

≈ eN( f A−∫ c
−c d yρ(y) log(1−e y−A)) (F.96)

and

χk,rest =
N−1

∑
i=1

ekai
N

∏
j≠i

1
1 − ea j−ai

(F.97)

≈ N ∫
c

−c
ρ(x) eN( f x−⨏ c

−c ρ(x) log(1−e y−x)−log(1−eA−x)). (F.98)

We used the equilibrium distribution (B.65) and (3.20) for the approximations above.
Thus, the Wilson loop, i.e. the expectation value of the character, can be written as

W = W1 +Wrest (F.99)

= W1 (1 + N ∫
c

−c
ρ(x)e−NΓ(x) d x) , (F.100)

where

Γ (x) ≡ f (A− x) + ⨏
c

−c
ρ(y) log(

1 − e y−x

1 − e y−A) d y + log (1 − eA−x) . (F.101)

If Γ (x) > 0, then at large N , the integral must be much smaller than 1:

log W − log W1 = log(1 + N ∫
c

−c
ρ(x)e−NΓ(x) d x) (F.102)

≈ N ∫
c

−c
ρ(x)e−NΓ(x) d x (F.103)

≈ e−N Γeff(x∗), (F.104)

where in the last step, the saddle-point approximation is used.
We check numerically that Γ (x) > 0 for all x in the interval [−c, c] when c is large enough,

see the plots in fig. 3. Since we are in the strong-coupling regime, the correction from χk,rest

is certainly exponentially suppressed for large N .
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Figure 3: The left plot is when c = 1, and Γ (x) can have negative values. The right plot is
when c = 10, and Γ (x) is positive for the eigenvalue interval. In both plots, f = 1 is used.

G SU(N) correction

The body of this paper has focused on the U(N) gauge group. Nevertheless, usual holography
is referred to SU(N), though there are arguments [19] favoring U(N). Since our computation
is quite straightforward, let us compute explicitly the correction of SU(N) to the subleading
order in large N . All we need to do it is to add a Lagrange multiplier term to the action

Sξ =
2ξ
N2

N

∑
i=1

ai , (G.105)

in order to enforce the traceless constraint:

dSξ
dξ

= 0 ⇒
N

∑
i=1

ai = 0. (G.106)

The saddle-point equations also get modified, by adding ∂ Sξ
∂ ai

=
2ξ
N2 to the derivatives in D.

Hence, the SU(N) correction to the Wilson loop enters only through the density, see B.1. The
contribution to the log of the Wilson loop is exactly the integral (E.93), where A should be
replaced by (3.20) and ξ by (B.68), and we end up with the free energy

F1,ξ = −2κ(
√

1 + κ2 − κ). (G.107)

We see that this addition to our U(N) result (4.46) does not match either with the holographic
solution (5.49).
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