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Abstract

The recent progress in the optimization of two-dimensional tensor networks [H.-J. Liao,
J.-G. Liu, L. Wang, and T. Xiang, Phys. Rev. X 9, 031041 (2019)] based on automatic
differentiation opened the way towards precise and fast optimization of such states and,
in particular, infinite projected entangled-pair states (iPEPS) that constitute a generic-
purpose Ansatz for lattice problems governed by local Hamiltonians. In this work, we
perform an extensive study of a paradigmatic model of frustrated magnetism, the J1− J2
Heisenberg antiferromagnet on the square lattice. By using advances in both optimiza-
tion and subsequent data analysis, through finite correlation-length scaling, we report
accurate estimations of the magnetization curve in the Néel phase for J2/J1 ≤ 0.45. The
unrestricted iPEPS simulations reveal an U(1) symmetric structure, which we identify
and impose on tensors, resulting in a clean and consistent picture of antiferromagnetic
order vanishing at the phase transition with a quantum paramagnet at J2/J1 ≈ 0.46(1).
The present methodology can be extended beyond this model to study generic order-to-
disorder transitions in magnetic systems.
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1 Introduction

The spin-S antiferromagnet, with isotropic coupling J1 between nearest-neighbor spins located
on the sites of a square lattice, represents one of the most paradigmatic models of quantum
magnetism. At zero temperature, the system develops long-range antiferromagnetic (Néel)
order for any value of S: while for S ≥ 1 there are analytical arguments [1,2], for the extreme
quantum case with S = 1/2, this has been numerically proven thanks to quantum Monte
Carlo simulations on large systems [3–5]. Instead, any finite temperature will restore spin
rotation symmetry, in agreement with the Mermin-Wagner theorem [6]. A magnetically dis-
ordered ground state may be also achieved by including further super-exchange couplings,
most notably a next-nearest-neighbor interaction J2, which destabilizes the Néel order driving
towards a quantum phase transition. In this respect, much effort has been spent to understand
the ground-state properties of the J1 − J2 model defined by:

H = J1

∑

〈i, j〉

Si · S j + J2

∑

〈〈i, j〉〉

Si · S j . (1)

Here, 〈. . . 〉 and 〈〈. . . 〉〉 stand for nearest-neighbor and next-nearest-neighbor sites on the square
lattice, respectively; Si = (S x

i , S y
i , Sz

i ) represents the spin-1/2 operator on the site i. Both the
spin-spin interactions are taken positive.

In the presence of finite J2 a severe sign problem is present (especially in the local basis with
z-component defined on each site), which prohibits quantum Monte Carlo algorithms from as-
sessing large system sizes. Over the last three decades several alternative methods have been
introduced and kept improving, e.g., exact diagonalizations [7–9], series expansions [10,11],
coupled-cluster [12,13] and cluster mean-field approaches [14,15], density-matrix renormal-
ization group (DMRG) [16–18], functional-renormalization group (fRG) [19], and variational
Monte Carlo (VMC) approaches [20–23]. At present, there is a strong evidence that the ground
state has no magnetic order from J2/J1 ≈ 0.5 to J2/J1 ≈ 0.6. However, the investigations of
the nature of the paramagnetic phase have led to contradicting results, supporting the exis-
tence of a valence-bond solid (with either columnar or plaquette order) [7–12] or a spin liquid
(either gapped or gapless) [13, 14, 16, 19, 20], or even both [17, 18, 21–23]. One important
aspect emerging in the latest calculations is the existence of a continuous quantum phase tran-
sition between the antiferromagnetic and the paramagnetic phases for J2/J1 ≈ 0.5, where the
staggered magnetization (hereafter named simply “magnetization”) goes to zero.

Recently, borrowing concepts from quantum information, tensor-network methods have
been introduced [24–26]. In one dimension, the so-called matrix-product states (MPS) offer a
convenient and elegant rephrasing of previous DMRG ideas. MPS evolved into the method of
choice and provide very accurate approximations of the exact ground-state properties. Gen-
eralizations in two dimensions are more problematic. The prominent example, projected
entangled-pair states (PEPS), provide the correct entanglement structure of most quantum
ground states of local spin Hamiltonians [27], however, they suffer from a steep scaling of com-
putational effort when enlarging the system size. For this reason, their application has been
limited to ladder geometries with small number of legs [28,29] and finite 2D clusters with open
boundary and up to ≈ 200− 300 sites [30]. In order to overcome this computational barrier
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and avoid boundary effects, algorithms that work directly in the thermodynamic limit (dubbed
iPEPS) have been introduced and developed [31, 32]: here, only a small number of tensors
is explicitly considered and embedded into an environment that is self-consistently obtained
(e.g., within the so-called corner-transfer matrix approaches [33] or channels [34]). The size
of these tensors, and in turn the number of variational parameters of the wave function, is
characterized by the so-called bond dimension D. The iPEPS are systematically improved by
enlarging the bond dimension, accounting for increasingly entangled states.

In recent years, iPEPS have been applied to assess the nature of the ground state of the
J1−J2 model, mainly focusing on the highly-frustrated regime J2/J1 ≈ 0.5 [35–37]. However,
these attempts were not completely satisfactory, since they either used a simplified tensor
structure, limited to the description of paramagnets, or suffer from optimization problems,
arising in methods that are not fully satisfactory and consistent (e.g., the so-called simple
and full update [31, 38]). In this respect, a breakthrough in the field has been achieved by
performing the tensor optimization using the ideas of algorithmic differentiation, or better the
adjoint algorithmic differentiation (AAD) technique, which allow a very efficient optimization
even in the presence of large number of parameters [39]. Here, Liao and collaborators limited
their application to the unfrustrated Heisenberg model (with J2 = 0), showing that extremely
accurate and completely stable results may be obtained for both the ground-state energy and
magnetization.

Even though PEPS (and iPEPS) Ansätze are designed to describe both gapped and gapless
states (following the entanglement entropy’s area law, up to additive corrections), it remains an
open question whether generic optimization can reliably reproduce highly-entangled ground
states, as the ones that are possibly emerging in the frustrated regime J2/J1 ≈ 0.5 [20–23].
Therefore, in this work, we do not directly address the question of the nature of the mag-
netically disordered phase; instead, we focus our attention to the magnetically ordered phase
with J2/J1 ≤ 0.45 and perform an accurate determination of the magnetization curve as a
function of the frustrating ratio. In addition to its conceptual importance, the problem of the
disappearance of antiferromagnetic order under increasing frustration offers a stringent test
to most numerical methods, in general, and to tensor network methods, in particular. To this
end, we apply the same ideas of AAD to optimize the iPEPS Ansatz for the J1 − J2 model of
Eq. (1). Importantly, unlike the previously proposed gradient-based optimizations [34, 40],
the AAD can be effortlessly extended beyond nearest-neighbour Hamiltonians. The energy
and magnetization are obtained for different values of the bond dimension D, from 2 up to 7.
Then, the estimates for D →∞ are obtained for each frustration ratio J2/J1. Note however
that, this is not realized by a crude extrapolation in 1/D (for which the results for different
values of D are considerably scattered) but, instead, by performing a correlation-length ex-
trapolation, which is motivated by the finite-size scaling analysis that is well established in the
Néel phase, as recently proposed in Refs. [41, 42]. Despite the fact that this mode of extrap-
olation requires the calculation of the correlation length ξ, which may not be as accurate as
other thermodynamic quantities (e.g., energy and magnetization), it has been shown to give
remarkably good results for the unfrustrated Heisenberg model. In fact, as we have mentioned
earlier, even though iPEPS can describe certain gapless phases, their generic optimization in-
stead leads to states with finite correlation lengths. e.g., in the Néel phase, and the bond
dimension D turn out not to be the correct object to quantify this aspect. As we will show,
also in the presence of frustration, the analysis based on the correlation length gives reliable
thermodynamic estimates, even though no exact results are available. Our calculations are
compatible with a vanishing magnetization for J2/J1 ≈ 0.45, which is in close agreement with
recent calculations [13,18,20–23] and give a reference for future investigations.

The paper is organized as follows: in section 2, we will describe the iPEPS method; in
section 3, we present the results; in section 4, we finally draw our conclusions and discuss the
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perspectives.

2 iPEPS Ansatz and its optimization

We parametrize the state by a single real tensor

as
uldr = (2)

with a physical index s =↑,↓ labeling the standard Sz basis of the local physical Hilbert space
and auxiliary (or virtual) indices u, l, d, r of bond dimension D (by convention running from 0
to D−1 here). The physical wave function is then obtained by tiling the infinite square lattice
with tensor a and tracing over all auxiliary indices

ψ(a) =
∑

{s}

c(a){s}|{s}〉

c(a){s} := Traux(a
s0 as1 as2 . . .) = (3)

The tensor a is chosen (and constructed such as) to be invariant under a number of sym-
metries. First of all, it belongs to the A1 irreducible representation of the C4v point group, thus
enforcing all the spatial symmetries of the square lattice on the iPEPS. The antiferromagnetic
correlations are incorporated in the ansatz by unitaries −iσ y , which rotate the physical Sz

basis at every site of one sublattice. We absorb these unitaries into observables leaving the
definition of the wave function untouched [see Eq. (12)].

Secondly, the tensor a also possesses a further structure by requiring certain transforma-
tion properties under the action of U(1) group (see below). Such choice is motivated by the
remaining U(1) symmetry in the ordered phase, which manifests itself as equivalence between
different magnetizations connected by transverse (Goldstone) modes. As defined below, U(1)
tensor classes are defined by assigning specific “charges” to the virtual and physical degrees of
freedom.

When considering A1- and U(1)-symmetric states, the tensor a = a(~λ) is taken to be a
linear combination of (fixed) elementary tensors {t0, t1, . . .} (named a tensor “class”) such
that

a(~λ) =
∑

i

λi t i , (4)

with coefficients ~λ being the variational parameters. The elementary tensors {t0, t1, . . .} are
different representatives of the A1 irreducible representation for some choice of the U(1)
charges.

Given an iPEPS defined by tensor a, the evaluation of any observable O amounts to a
contraction of infinite double-layer network composed of tensors a together with the tensor
representation of O. Such tensor network is the diagrammatic equivalent of usual expression
〈O〉= 〈ψ(a)|O|ψ(a)〉. A central aspect of iPEPS method is an approximate contraction of such
networks. In this work, we realize them by finding the so-called environment tensors C and
T of dimension χ, dubbed environment dimension, by the means of corner-transfer matrix
(CTM) procedure [33]. These tensors compress the parts of the original infinite network in
approximate but finite-dimensional objects. Afterwards, the desired reduced density matrices
can be constructed from C and T , together with the on-site tensor a. Ultimately, the exact
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Figure 1: Definition of reduced-density matrices necessary for evaluating the energy
per site of the J1 − J2 model over single-site iPEPS with C4v symmetry. (a) Double-
layer tensors with contracted and uncontracted physical indices. (b) Infinite tensor
network corresponding to the next-nearest-neighbour ρ(NNN) as approximated by
ρ(NNN)
χ in the finite network with C and T tensors resulting from CTM. (c) Finite-

network approximation of nearest-neighbour ρ(NN)
χ within the same 2× 2 cluster.

value of any observable is recovered taking χ →∞, which we extrapolate from the data for
increasingly large χ.

The optimization of the tensor a (or equivalently in the U(1)-symmetric approach, of the
parameters ~λ) is carried out using standard gradient-based method L-BFGS supplemented
with backtracking linesearch. The gradients are evaluated by AAD, which back-propagates
the gradient through the whole process of energy evaluation for fixed χ [39]: Starting with a
given CTM, followed by assembling the reduced-density matrices from converged C , T tensors
and finally evaluating the spin-spin interaction between nearest and next-nearest neighbors.

2.1 Extracting the relevant U(1) charges

For small enough frustration, in the Néel phase, the unconstrained optimization of tensor a
leading to correct U(1)-symmetric iPEPS would be a desirable outcome. Under circumstances,
AAD optimization can arrive at an almost U(1)-symmetric tensor ã. In such case, a direct
and robust evidence can be seen in the nearly degenerate pairs of leading eigenvalues of the
transfer matrix. Importantly, such iPEPS states provide an unbiased information about the
energetically favourable U(1)-charge structure of tensor a. We are concerned with inferring
these charges from the elements of tensor ã. Obtaining the correct charge assignment of the
smallest D tensors allows (i) to perform an efficient variational optimization over a greatly
reduced number of parameters ~λ, (ii) to obtain truly U(1)-symmetric environments via CTM
and, finally, (iii) to predict the correct charge content of higher-D a tensors and, hence, enable
to perform (i) and (ii) for larger D.

Before describing how to achieve the goal of obtaining the charges from the almost sym-
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Figure 2: Key steps of the CTM algorithm for single-site iPEPS with C4v symmetry.
(i) Initial tensors at iteration i: {C (i), T (i)}. (ii) Construction of enlarged corner
and its reshaping into matrix of dimensions D2χ × D2χ. (iii) Symmetric eigenvalue
decomposition of enlarged corner and truncation down to leading χ eigenpairs by
magnitude of the eigenvalues. Truncation is always done at the boundaries between
degenerate eigenvalues (see text). (iv) Absorption and truncation with isometry P
from step (ii) for half-row/-column tensor T .

metric ã tensor, let us first briefly review the expected properties of the resulting U(1)-symmetric
a tensor. In practice, one has to assign U(1) charges ~u= (u↑, u↓) and ~v = (v0, . . . , vD−1) (which
could be rational numbers) to the two physical spin-1/2 components and the D virtual degrees
of freedom on each of the four auxiliary indices. Without loss of generality we take them to
be integers. Notice that in order to preserve C4v symmetry the same charges ~v are taken on
each of four auxiliary legs of the tensor. The action of an element g ∈ U(1) on a is given by:

as
uldr → (ga)suldr = as′

u′ l ′d ′r ′U
ss′Vuu′Vl l ′Vdd ′Vr r ′ , (5)

where U and V are diagonal matrices depending on g, and, in order to preserve C4v symmetry,
all auxiliary indices are transformed by the same V :

U ss′ = eiθgus
δss′ , (6)

Vγγ′ = eiθg vγδγγ′ , (7)

with the phase θg ∈ R and γ = 0, . . . , D− 1. Therefore, the non-zero elements of the tensor a
transform according to

(ga)suldr = as
uldr eiθg (us+vu+vl+vd+vr ). (8)

In this language, the U(1) invariance is realized by simply enforcing a selection rule for the
non-zero tensor elements as

uldr , which should exhibit a local charge conservation

us + vu + vl + vd + vr = N . (9)

Notice that there is some freedom in the definition of the charges since shifts like us→ us+α,
vσ→ vσ + β , and N → N +α+ 4β , with α and β ∈Z, leave Eq. (9) invariant.

Hence, Eq. (9) implies that a is indeed invariant up to global phase under the action of
U(1). Once the relevant U(1) charges ~u and ~v are known (see below), practically, Eq. (9) is
used in the construction of the elementary tensors {t0, t1, . . . } by filtering out their non-zero
elements.
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Table 1: U(1) charges as inferred from unrestricted simulations with bond dimen-
sions D = 2, . . . , 7. Predictions of the charges for D = 8 and 9 are also shown. Note
that the ordering of the vα charges is arbitrary and the gauge freedom has been fixed
by taking N = 1. The last column shows the number of elementary tensors t i .

D [u↑, u↓, v0, v1, · · · , vD−1] number of tensors

2 [1,−1, 0,2] 2
3 [1,−1, 0,2, 0] 12
4 [1,−1, 0,2,−2, 0] 25
5 [1,−1, 0,2,−2, 0,2] 52
6 [1,−1, 0,2,−2, 0,2,−2] 93
7 [1,−1, 0,2,−2, 0,2,−2,2] 165
8 [1,−1, 0,2,−2, 0,2,−2,0, 2] 294
9 [1,−1, 0,2,−2, 0,2,−2,0, 2,−2] 426

Let us now describe how to infer the charges from an unrestricted tensor optimization that
has produced an almost symmetric on-site tensor ã, with bond dimension D. To identify the
dominant (at least for small D) U(1)-symmetric component of ã, and then ultimately derive
the hidden U(1) charges, we have to first perform a higher-order singular value decomposition
of ã:

ãs
uldr = Z ss′Yuu′Yl l ′Ydd ′Yr r ′ c

s′
u′ l ′d ′r ′ , (10)

with unitary matrices Z , Y , and the so-called core tensor c. The same unitary Y is associated to
different auxiliary legs due to the enforced C4v symmetry. The core tensor c plays an analogous
role to singular values in standard singular value decomposition of a matrix. The untruncated
core tensor c by itself defines a physically equivalent iPEPS to the one given by ã. A good lower-
rank approximation of ã can be obtained by truncation of the smallest elements of the core
tensor c. The basic premise, supported by nearly degenerate transfer matrix spectrum for small
D, is that the relative magnitude of symmetry-breaking elements of tensor c is small. Therefore,
we assume that the largest elements of tensor c respect the U(1)-symmetry constrain associated
to an unknown set of charges ~u and ~v.

For the last step in identifying the charges, we re-formulate the problem in terms of linear
algebra. First, taking a set of n largest tensor elements (modulo C4v symmetry), and writing
down Eq. (9) for each of them will result in a set of n coupled linear equations (with integer
coefficients) of the D + 2 unknown charges. Whenever n > D + 2, the linear system becomes
over-complete and, increasing n still allows the same solution for the charges, unless n is taken
too large so that (small) non-zero tensor elements breaking U(1)-symmetry are included. To
solve this linear problem it is convenient to recast the constraints into a n×(D+2)matrix. The
matrix, containing integer matrix elements, is obtained by simply counting the total number
of charges of each type γ and s on the virtual and physical legs, respectively. More precisely,
we define vectors ~n(cs

uldr) of integer coordinates that count the number of times specific index
value appears among the indices of a given tensor element. Expressing each individual element
constraint (9) as ~n(cs

uldr) · (~u, ~v) = N and recasting them into matrix form, the linear system
can be written in a compact fashion as M · (~u, ~v) = ~N .

To be explicit, let us consider the case D = 3 for which all charges can be obtained using
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only the n= D+ 2= 5 largest tensor elements of tensor c:

~n(c↑0000) →
~n(c↓0001) →
~n(c↑0002) →
~n(c↑2222) →
~n(c↑0222) →











1 0 4 0 0
0 1 3 1 0
1 0 3 0 1
1 0 0 0 4
1 0 1 0 3











·











u↑

u↓

v0
v1
v2











=











N
N
N
N
N











. (11)

If the tensor c possesses an (approximate) U(1) symmetry structure (as in the example above),
then the linear system has a non-trivial solution in terms of charges ~u and ~v. To solve it, it
is known that one needs to bring the matrix M into its Smith normal form (see Appendix A).
Note here that the integer N can, in fact, be changed arbitrarily. Although, the explicit values
of the charges will depend on N , the U(1) class of a tensors will not. In other word, there is
some “gauge” freedom to determine each U(1) class. For the example with D = 3 considered
here, we get integer charges, u↑ = +1, u↓ = −1, v0 = 0, v1 = 2 and v2 = 0, as can be checked
by direct substitution in Eq. (11) choosing N = 1. A complete list of the relevant charges are
shown in Table 1 for bond dimension up to D = 9.

2.2 Reduced density matrices, CTM algorithm, and implementation details

The evaluation of energy is realized through two distinct reduced-density matrices (RDM),
ρ(NN) and ρ(NNN), for nearest and next-nearest neighbour sites respectively. Their diagram-
matic definition is shown in Fig. 1. The energy per site is then given by:

e = 2J1Tr
�

ρ(NN)S · S̃
�

+ 2J2Tr
�

ρ(NNN)S · S
�

, (12)

with S̃α = −σ ySα(σ y)T , as these are the only non-equivalent terms of Hamiltonian (1) acting
on the single-site iPEPS with C4v symmetry.

The two RDMs are obtained by substituting the environment of a 2× 2 cluster within the
infinite tensor network with the CTM approximation and tracing out all but two (nearest-
neighbor or next-nearest-neighbor) sites. The leading computational cost in contraction of
these networks is O[(χD2)3p2] with p = 2 being the dimension of the physical index s. A
more complete alternative is to consider a RDM of all four spins contained within the cluster.
However, contracting such network with eight open physical indices is more expensive in terms
of computational complexity and memory requirements, as both are amplified by a factor of
p2.

The most demanding part of the calculations is the CTM algorithm. Given the highly
constrained nature of our iPEPS, in particular the C4v symmetry imposed on tensor a, we can
utilize the efficient formulation of the algorithm of Ref. [33]. The C4v symmetry of the on-site
tensor a is reflected in the corner matrix C which is taken to be diagonal and half-row/-column
tensor T which is symmetric with respect to the permutation of its environment indices. We
show the diagrammatic description of the main steps within single CTM iteration in the Fig. 2.

There are few more remarks to be made regarding the implementation of the CTM algo-
rithm. The initial C and T tensors are given by partially contracted double-layer tensor, e.g.
C(dd ′)(r r ′) =

∑

sul as
uldr as

uld ′r ′ . In addition, after each step of the CTM the tensors C and T are
symmetrized accordingly and normalized by their largest element. To establish the conver-
gence of the CTM, we use the RDM of nearest neighbors ρ(NN)

2×1 computed just from the 2× 1

cluster at each CTM step. Once the difference (in sense of Frobenius norm) between ρ(NN)
2×1

from two consecutive iterations becomes smaller than εC T M , we consider the CTM converged.
During optimization we set εC T M = 10−8, which typically requires at most O(70) iterations to
converge for largest (D,χopt) = (7,147) simulations considered. For scaling of observables of
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Figure 3: Top: Definition of the transfer matrix E and its finite-χ approximation Eχ
given by the converged T tensor. Due to C4v symmetry imposed on the ansatz, the
transfer matrix is symmetric and can be diagonalized. Eigenvalues are ordered with
descending magnitude with the leading eigenvalue λ0 normalized to unity. Bottom:
RDM for two-point correlation functions, defined for r ≥ 1, and its connection to
transfer matrix E.

optimized states we instead iterate CTM until εC T M = 10−12. Remarkably, the U(1) symmetry
is preserved along the CTM procedure, whenever we adjust the truncation as to never break
the multiplet structure of the enlarged corner.

Finally, a peculiar complication is present in the process of computing gradients by AAD,
with two distinct aspects. First, the standard definition of adjoint function of eigenvalue (or
singular value) decomposition relies on computing the full decomposition [43]. Hence, in
this context one cannot resort to significantly faster partial decompositions such as Lanczos
(at least during gradient computation). This sets the leading complexity of CTM iteration to
O[(χD2)3]. Recently, a developed differentiable dominant eigensolver tries to address this
shortcoming by alternative adjoint formula [44]. The second, more fundamental aspect is the
ill-defined adjoint in the case of degenerate eigenvalues stemming from the terms proportional
to the inverse of spectral gaps. We use a smooth cutoff function [39] to tame this problematic
terms. Although doing so, the accidental crossings of eigenvalues in course of CTM sometimes
result in erroneous gradients. In general, we found this occurrence, manifested by the failure
of linesearch, to be rare. The formulation of AAD applied to gauge-invariant scalars (such as
energy), whose computation however involves eigendecomposition with degenerate spectrum,
still remains an open problem.

The complete algorithm is available as a part of the open-source library peps-torch [45]
focused on AAD optimization of iPEPS.

3 Results

Our analysis is based upon an extensive set of calculations for various bond dimensions, rang-
ing from D = 2 to 7, and different values of the frustrating ratio J2/J1 up to 0.5. For the
large bond dimensions considered, the optimizations have been performed with environment
dimensions up to χopt = 4D2 in the case of D = 5,6 and up to χopt = 3D2 for D = 7. Here, we
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want to highlight a few important aspects of iPEPS that are crucial for the investigation of the
magnetically ordered phase. First of all, within optimizations with no imposed symmetries,
there is a generic tendency to break the physical U(1) symmetry of the Néel state (correspond-
ing to global rotations around the axis of the spontaneous magnetization), leading to a slight
(spin) nematic order, e.g., different values of the nearest-neighbour S xS x and S yS y correla-
tions. This effect becomes more severe with increased frustration. For example, for most of the
states with D > 3 and J2 ¦ 0.3, there is a sensible (e.g., 5− 10% and even larger) difference
in the correlation lengths corresponding to the transverse directions. Connected to this issue,
we observe that it is possible to stabilize distinct “families” of local minima for various bond
dimensions D, in particular D = 3 and 4, with substantial differences in their magnetization,
correlation length, and the degree of nematic order. Every family corresponds to a specific
way the quantum fluctuations are built on top of the classical Néel state, e.g., by converging
towards one of the possible choices of U(1) charges or breaking the symmetry completely.
Given the limited number of bond dimensions that are available within our AAD optimization,
it is then of utmost importance to identify the family of minima that are connected and lead
to a smooth and physically sound extrapolation in the D → ∞ limit. Therefore, using the
scheme introduced in Sec. 2.1, we take the optimized and almost U(1)-symmetric states from
unrestricted simulations (typically for J2 ≈ 0) and infer their charge structure. The charges
revealed by this analysis are listed in Table 1 and define the correct classes of C4v-symmetric
U(1) iPEPS for D ranging from 2 to 7, which best describe the Néel phase.

In order to obtain the thermodynamic estimates of the ground-state energy and magne-
tization (within the magnetically ordered phase), we compute these quantities for increasing
values of the bond dimension D. A brute-force extrapolation in 1/D provides poor estimates,
given the fact that the data are usually scattered, see for example the case of the magnetization
reported in Appendix B. Instead, we follow the recent proposal that has been put forward in
Refs. [41,42]. In this respect, for every value of D used, we compute the dominant correlation
length ξ which is defined by the so-called transfer matrix E of iPEPS, see Fig. 3:

ξ= −
1

log |λ1|
, (13)

where λ1 is the second largest eigenvalue of the transfer matrix (without the loss of generality
we assume that the largest one is normalized to 1). We remark that the value of ξ obtained in
this way coincides with the correlation length of the usual spin-spin correlation function (or,
more precisely, the transverse correlations):

〈S0 · Sr〉=

¨

Tr[ρ(2)(r)S · S] r ∈ even

Tr[ρ(2)(r)S · S̃] r ∈ odd
, (14)

where ρ(2)(r), defined in Fig. 3, is the two-point RDM. To obtain the χ → ∞ limit of the
correlation length, we use the scaling formula [41,46]:

1
ξ(χ)

=
1

ξ(∞)
+α

�

log

�

�

�

�

λ3(χ)
λ1(χ)

�

�

�

�

�β

, (15)

which allows for more precise extrapolation of ξ than the usual 1/χ scaling across all ratios
of J2/J1

1. Finally, the thermodynamic estimates of the energy and magnetization (squared)

1In general one uses ratio of the second and third largest eigenvalues, λ1 and λ2; however, due to U(1) sym-
metry, they are always degenerate, forcing us to consider the next largest eigenvalue λ3.
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Table 2: Ground-state energies (in units of J1) e(D,χ) and magnetization square
m2(D,χ) for D = 7, which can be considered as upper bounds of the exact
D → ∞ values. The tensor was optimized up to an environment dimension
χopt = 3D2 = 147. The χ →∞ extrapolations are done from environment bond
dimensions χ ∈ [D2, 13D2].

J2/J1 e(7,147) e(7,χ →∞) m2(7, 147) m2(7,χ →∞)
0.0 -0.669428 -0.669432 0.0994 0.0994
0.05 -0.649273 -0.649277 0.0926 0.0926
0.1 -0.629497 -0.629501 0.0852 0.0852
0.15 -0.610154 -0.610159 0.0771 0.0771
0.2 -0.591314 -0.591320 0.0685 0.0685
0.25 -0.573067 -0.573076 0.0591 0.0591
0.3 -0.555520 -0.555533 0.0491 0.0491
0.35 -0.538850 -0.538867 0.0383 0.0382
0.4 -0.523054 -0.523259 0.0270 0.0268
0.45 -0.508895 -0.508976 0.0173 0.0173
0.5 -0.496152 -0.496289 0.0086 0.0086

are obtained by a suitable fit in powers of 1/ξ:

e(ξ) = e(∞) +
A
ξ3
+O

�

1
ξ4

�

, (16)

m2(ξ) = m2(∞) +
B
ξ
+O

�

1
ξ2

�

, (17)

where m= |Tr[ρ(1)S]| and ρ(1) is the single site RDM.
Let us start discussing the ground-state energy, shown in Fig. 4. For the unfrustrated case

J2 = 0, our results are fully compatible with what has been previously obtained in Refs. [41,
42]. The data points align perfectly according to the theoretical expectations and the extrapo-
lated values are in very good agreement with quantum Monte Carlo results [4,5]. For example
for D = 7 (after extrapolation in the environment dimension χ) we get e(D = 7) = −0.669432,
which is identical to the linear extrapolation in 1/ξ3 from D = 3 to 7. Including the sublead-
ing term 1/ξ4, the extrapolation gives e(∞) = −0.669437(2) (to be compared with the exact
value eQMC = −0.669437(5) [4]).

For future comparisons, the energies for D = 7 and different J2/J1 ratios are reported
in Table 2. Under increasing the frustrating ratio, a remarkably smooth behavior persists up
to J2/J1 ≈ 0.3; then, for larger values, small fluctuations on the fourth digit of the energy,
are visible, possibily indicating that the scaling regime moves to larger values of ξ (or D),
not reachable within our current possibilities. Still, the quality of the results is sufficient to
obtain reliable extrapolations for ξ→∞. Our calculations show that the expected scaling is
not limited to the unfrustrated case, but persists in the whole antiferromagnetic region, thus
corroborating the ideas put forward in Refs. [41,42]. One remarkable feature is that, while for
small values of D (i.e., for D = 2 and 3), the correlation length ξ clearly increases by increasing
J2/J1, for larger values of D (i.e., for D = 4, 5, 6, and 7), it is essentially constant, or even
slightly decreasing with J2/J1. This aspect will be discussed in connection to the magnetization
curve that is presented below.

Then, we move to the central part of the present work, which deals with the magnetization,
see Fig. 5. Here, we report m2(ξ) for different values of J2/J1 (including 0.5) for D ranging
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Figure 4: Finite correlation-length scaling of the energy per site for the C4v-
symmetric U(1) iPEPS Ansatz with bond dimensions D = 3, . . . , 7 (denoted by tri-
angles, hexagons, pluses, diamonds, and crosses in the same order). Continuous
lines are linear fits in 1/ξ3 which is the expected scaling in the magnetically ordered
phase [41].

12

https://scipost.org
https://scipost.org/SciPostPhys.10.1.012


SciPost Phys. 10, 012 (2021)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
1/

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m
2

0.00 0.25 0.50 0.75 1.00 1.25 1.50
1/

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m
2 J2=0.0

J2=0.05
J2=0.1
J2=0.15
J2=0.2
J2=0.25
J2=0.3
J2=0.35
J2=0.4
J2=0.45
J2=0.5

Figure 5: Finite correlation-length scaling of the magnetization for the C4v-
symmetric U(1) iPEPS Ansatz with bond dimensions D = 2, . . . , 7 (denoted by cir-
cles, triangles, hexagons, pluses, diamonds, and crosses in the same order). The
magnetization is plotted as a function of 1/ξ, expected in the magnetically ordered
phase [41]. Linear (quadratic) extrapolations of magnetization, excluding D = 2
data, are reported in the top (bottom) panel, except for J2/J1 = 0.5.
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Figure 6: Magnetization (square) as a function of the frustrating ratio J2/J1 as ob-
tained from Fig. 5. The exact result for J2 = 0 is shown [4]. For comparison, the
data from coupled-cluster [13], DMRG [17], and VMC [47] are also included. The
inset shows the region 0.39< J2/J1 < 0.49.

from 2 to 7. Furthermore, the raw data for D = 7 are also shown in Table 2. In the unfrustrated
case, we get m2(D = 7) = 0.0994 and m2(∞) = 0.0948(2), to be compared with the exact
value m2

QMC = 0.0942(2) [4]. In Fig. 5, we attempt both linear and quadratic fits. As in the
case of energy extrapolations, we exclude the results with D = 2 from the fitting procedure,
since they are clearly off, especially for intermediate and large values of J2/J1. According to
our fits, the linear one looks more trustable than the quadratic one, which serves to give an
upperbound to the value of the magnetization. Within the linear fit, we observe vanishing
magnetization for J2/J1 ≈ 0.46(1), giving rise to a continuous transition to a magnetically
disordered phase, whose nature is beyond the scope of the present work. We would like to
emphasize that the results for J2/J1 = 0.5 are clearly incompatible with a smooth behavior in
1/ξ, strongly suggesting that at this point the ground state is already outside the magnetically-
ordered phase. The final magnetization curve is shown in Fig. 6.

For comparison, the results obtained by coupled-cluster approximation [13], DMRG [17],
and VMC [47] (based on Gutzwiller-projected fermionic states) are also shown. In the latter
case, a quantum critical point for J2/J1 ≈ 0.48, separating the antiferromagnetic phase and
a gapless spin liquid, has been reported. The present results are expected to improve the ac-
curacy of the magnetization (e.g., the accuracy of m2 for the unfrustated case is smaller than
1%). Still, these two independent calculations give very similar behavior, with almost com-
patible values for the location of the quantum critical point. We would like to mention that,
recent numerical calculations, including DMRG [18], neural-network approaches (based upon
restricted Boltzmann machines on top of fermionic states) [23], and finite size PEPS calcula-
tions [48] also pointed out that the Néel phase survives up to J2/J1 in the range 0.45÷ 0.47,
a value that is considerably larger than the one predicted by linear spin-wave theory [49].

Finally, we would like to comment on the J2-dependence of the correlation length, which
is clearly different at small (i.e. D = 2,3) and larger (i.e. D = 4, · · · , 7) bond dimensions.
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Figure 7: Longitudinal correlation length ξL , as extracted from the spin-spin correla-
tions, as a function of the transverse one ξ for different values of J2/J1 at D = 3, . . . , 7
(denoted by triangles, hexagons, pluses, diamonds, and crosses in the same order).

A possible explanation of the rapid increase of ξ, for D = 2 and 3, when approaching the
critical point, may be attributed to the fact that, for these very small bond dimensions, the
antiferromagnetic state is poorly approximated as a “dressed” product state, having a finite
magnetization but lacking the correct transverse (Goldstone) fluctuations. When approaching
the phase transition, the magnetization decreases and the state starts to build up long-range
entanglement (for D = 3 a short-range resonating-valence bond state can be constructed [50]).
Therefore, a larger correlation length can be attained. Once the basic (low D) structure of ten-
sor a is established, optimizing at increasingly higher D further improves the description of
the antiferromagnetic state and allows correlation length to grow, becoming large even in the
presence of significant frustration. Then, no appreciable change of ξ is detected when ap-
proaching the quantum critical point. In this respect, we expect that ξ → ∞ in the whole
Néel phase, including the critical point. Remarkably, despite optimized iPEPS being finitely
correlated, the correct exponent of the power-law decay of transverse spin-spin correlations,
i.e., 〈S x

0 S x
r 〉 ' 1/r (assuming magnetization along z-spin axis), can already be obtained, see

Appendix C for the case with J2 = 0. As mentioned above, ξ corresponds to the correlation
length of transverse spin-spin correlations. In addition to that, it is possible to evaluate, by a
direct fitting procedure of the correlation function itself, the correlation length ξL of the longi-
tudinal correlations. We find also this quantity to be relatively large, i.e., ξL ≈ ξ/2, see Fig. 7.
Moreover, as for transverse spin-spin correlations, the short-range behavior of the longitudinal
correlations reveals their power-law decay (see Appendix C), which then becomes rapidly cut
off above the finite-D induced length scale ξL . These findings show that our optimized iPEPS
are even able to approximately capture the power-law behavior of transverse and longitudinal
spin-spin correlations of the Néel phase.
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4 Conclusions

In this work, we have investigated the antiferromagnetic phase of the spin-1/2 J1 − J2 model
on the square lattice, evaluating with unprecedented accuracy the energies and magnetiza-
tions for J2/J1 ≤ 0.45. The results point towards the existence of a quantum critical point
at J2/J1 ≈ 0.46(1), which separate the Néel antiferromagnet and a quantum paramagnet,
whose nature is beyond the scope of the present study. From the methodological side, we
combined state-of-the-art optimization techniques (based upon the AAD scheme [39]), clever
parametrizations of the tensor network (based upon the underlying residual U(1) symmetry
that exists in the Néel phase), and recently developed extrapolation analyses (based upon the
correlation-length scaling [41,42]). In particular, the construction of U(1)-symmetric tensor is
pivotal to a straight optimization procedure and correlation-length scaling to solid extrapola-
tions to thermodynamic limit. With these tools in hand, it is possible to get reliable estimations
for the ground-state energy but, most importantly, also for the magnetization within the frus-
trated regime, for which no exact methods can be applied. Therefore, the main outcome of
the present work is to provide the magnetization curve for the spin-1/2 J1 − J2 model on the
square lattice up to relatively large values of the frustrating ratios. In particular, the magne-
tization curve shows a smooth behavior, which strongly suggest the existence of a continuous
phase transition towards a quantum paramagnet.

Here, our calculations have been limited to the magnetically ordered phase, where rel-
atively entangled states have been achieved. Indeed, rather long correlation lengths are ob-
tained, indication that the tensor network may approximately describe the existence of gapless
excitations (i.e., Goldstone modes). The magnetically disordered phase still remains elusive,
most probably because of its high-entangled nature due to fractional excitations (spinons and
visons). Although the present optimization of U(1)-symmetric iPEPS can be readily extended
beyond J2 > 0.45, there is a priori no justification for the choice of U(1) charges as inferred
from the Néel phase to also describe the best variational states of the disordered phase. More-
over, due to the tendency of unrestricted optimizations to develop nematic order at large values
of frustration one cannot extract the relevant U(1) charges from such states. In this respect, the
recently-developed method to directly impose SU(2) symmetry [36, 51] would be beneficial
to the final understanding of the full phase diagram of the spin-1/2 J1 − J2 model.
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Figure 8: Linear extrapolation in 1/D for the C4v-symmetric U(1) iPEPS Ansatz
with bond dimensions D = 2, . . . , 7 denoted by circles, triangles, hexagons, pluses,
diamonds, and crosses in the same order (D = 2 data is excluded from the fit). Data
is the same as in Fig. 5.

A Smith normal form

The Smith normal form of matrix M is needed to solve the linear system introduced in Sec. 2.1.
For a n×m integer matrix M the Smith normal form is defined as

LMR= S, (18)

with L and R being integer matrices with unit determinant and n×m integer matrix S. The
only non-zero elements of S are Si, j = siδi,i for 1 ≤ i ≤ r where r ≤ m. These so-called in-
variant factors si satisfy divisibility relations si|si+1 for 1 ≤ i < r. The Smith Normal form
conveniently reveals the vectors of integer charges (~u and ~v) spanning the m − r dimen-
sional kernel of the constraint system M as the last m − r columns of matrix R. Let us re-
mark that such kernel vectors are unique up to an arbitrary multiples of trivial charge vectors
~K0 = [1, 1,0, . . . , 0] and ~K1 = [0,0, 1, . . . , 1], as these merely move the constant N . In detail, a
set of tensor elements as

uldr satisfying M ·(~u, ~v) = 0 is identical to the set of elements satisfying
M · [(~u, ~v) +α~K0 + β ~K1] = α+ 4β with α,β ∈Z.

B 1/D extrapolations

In Fig. 8, we report the results of the magnetization as a function of 1/D. In this case, the mag-
netization cannot be described by a simple linear function in 1/D with appreciable accuracy.
Considerable deviations are present, especially for larger bond dimensions across the studied
range of J2/J1, preventing a smooth extrapolation in the D→∞ limit.
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C Spin-spin correlations in the J2 = 0 limit

In Fig. 9, assuming magnetization along z-spin axis, we show the decay of both transverse
〈S x

0 S x
r 〉 and longitudinal 〈Sz

0Sz
r 〉 correlations for J2 = 0 and D = 2, . . . , 7. Due to imposed U(1)

symmetry the transverse correlations along x and y spin axes, 〈S x
0 S x

r 〉 and 〈S y
0 S y

r 〉, are identi-
cal. The extrapolated values are obtained by performing, for each distance r, an extrapolation
in 1/ξ of the finite-D results using the three largest available bond dimensions D = 5, 6, and
7. Then, the extrapolated correlations are fitted in the short-distance region r ∈ [2, 11] (ex-
cluding the nearest-neighbor case) with a power law f (r)∝ r−β . The final result gives an
exponent β ≈ 1.02(1) for transverse and βL ≈ 1.90(5) for longitudinal correlations.
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Figure 9: Transverse (longitudinal) spin-spin correlations at J2 = 0 are shown in the
upper (lower) panel, for D = 2, . . . , 7. Linear extrapolations in 1/ξ, up to r = 20,
are performed using the D = 5,6, 7 data. The dashed lines are power-law fits to
short-distance behavior, see text.
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