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Abstract

The algorithm for Monte Carlo simulation of parton-level events based on an Artificial
Neural Network (ANN) proposed in Ref. [1] is used to perform a simulation of H → 4`
decay. Improvements in the training algorithm have been implemented to avoid nu-
merical instabilities. The integrated decay width evaluated by the ANN is within 0.7%
of the true value and unweighting efficiency of 26% is reached. While the ANN is not
automatically bijective between input and output spaces, which can lead to issues with
simulation quality, we argue that the training procedure naturally prefers bijective maps,
and demonstrate that the trained ANN is bijective to a very good approximation.
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1 Introduction

Monte Carlo (MC) simulations of high energy particle collisions play a central role in particle
physics. Interpretation of large data sets that will be collected in the upcoming runs of the
Large Hadron Collider (LHC) will demand MC samples of unprecedented size and accuracy.
Improving the efficiency of numerical algorithms used in MC simulations is an important and
timely task, see e.g. [2]. In this paper, we focus on the most basic task of an MC simulation:
generating a set of points distributed according to a known probability distribution function
(pdf) on a target phase space. The application we have in mind is generation of parton-level
events, and the pdf is the fully differential cross section (or decay width) which we assume to be
known either analytically or numerically prior to the simulation.1 Today’s general-purpose MC
tools, such as MadGraph [4], Herwig [5], and Sherpa [6], rely on improved versions of the
original VEGAS algorithm [7,8] to perform this basic task. Recently, it has been suggested that
machine learning algorithms, in particular those based on artificial neural networks (ANN),
can offer significant advantages [1,9–17]. In Ref. [1], two of us (MDK and MP) have demon-
strated that in simple applications, including processes with resonances and infrared/collinear
singularities with up to three particles in the final state, an ANN-based MC algorithm achieved
significantly higher unweighting efficiency (up to a factor of 10 improvement) compared to
existing general-purpose tools. Another important advantage of the ANN-based approach, also
demonstrated in [1], is that features such as resonances do not need to be aligned with any of
the chosen coordinate axes on phase space to be simulated efficiently, in contrast to grid-based
algorithms such as VEGAS. In cases containing multiple features that cannot be simultaneously
aligned with the grid, such algorithms require the use of supplementary techniques such as
multi-channeling [18–20]. The ANN-based algorithm, however, can flexibly adapt to multiple
features of various shapes simultaneously.

The goal of this paper is to build upon Ref. [1] to further develop and demonstrate the
ANN-based approach to MC simulation. The previous work dealt with simulations of toy-
model processes. Here, we consider a fully realistic example of high relevance at the LHC,
namely the Higgs decay to four charged leptons. Experimentally, this process has been crucial
in confirming the quantum numbers of the Higgs, and provided a sensitive measurement of
the Higgs coupling to the Z boson [21–24]. We show that the ANN-based MC algorithm can
provide an efficient and accurate simulation of this decay, including a faithful representation
of its non-trivial resonance structure.

Before presenting the results, let us comment on the relation of our work to some of the
recent papers on ANN-based MC algorithms. The literature can be divided into two classes.
One approach [10–12, 17] is to start with an existing MC sample, generated for example by
a general-purpose tool, train a neural network (typically a Generative Adversarial Network or
GAN) to reproduce this sample, and then use the GAN to generate a larger sample at a lower
computational cost. In this case, the GAN is used to essentially inter/extrapolate the distri-
bution generated by another tool. For a discussion of potential limitations of this approach,
see [25,26]. Another approach [1,9,13–15] is to perform a self-contained first-principles sim-
ulation, by taking the invariant matrix element as an input and populating the phase space
according to |M|2. In this paper, we follow the self-contained route and generate MC samples
based on explicitly known matrix elements with no need for a prior independent MC simula-
tion.

Refs. [14, 15] pursue an approach similar to ours, but use normalizing flows, rather than
fully-connected ANNs, to perform the simulation. An important advantage of this algorithm is
that the mapping used in the simulation is automatically bijective. In our setup, bijectivity is

1Our approach to parton-level simulation would work equally well if the target pdf were instead chosen to
obtain a sample of weighted events optimized for a specific analysis, as suggested in Ref. [3].
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not guaranteed. Lack of bijectivity can lead to issues with phase space coverage, accuracy of
unweighting procedure, etc. To address this issue, we have developed techniques to test the
trained ANN for bijectivity a posteriori. Using these techniques, we confirmed that the trained
ANN in the example considered in this paper is indeed bijective to a good approximation.

While both of the normalizing flow studies [14,15] find marked improvement in efficiency
over VEGAS for processes with three particles in the final state, the reported performance drops
to a level comparable with VEGAS upon adding a fourth particle. These studies represent some
of the earliest attempts in this direction, and further study is certainly warranted and likely to
result in continued improvement. However, in this work we will consider a process with four
final state particles, and show that substantial improvement over VEGAS is obtained straight-
forwardly. Although further study would be needed to rigorously characterize the performance
of these various techniques, we will briefly make note of one basic feature of the normalizing
flow approach which they have in common with VEGAS. In both cases, the map from the in-
put space onto phase space is composed of a finite number of discrete intervals with a fixed
order interpolation used in each interval. In VEGAS this is all there is. In the normalizing
flow approach, there are several layers of such maps, with each acting on a different subset of
coordinates, and with the parameters of each map controlled by an ANN trained to minimize
the error. This approach is clearly much more flexible than VEGAS. Nevertheless, the ability to
represent the target distribution must ultimately be limited by the finite number of intervals
that are used, and this may be exacerbated as one goes to larger numbers of phase space di-
mensions. In contrast, our method is fully continuous (see, for example, the discussion in [1]),
and in that sense may not suffer from the same kind of limitations as the normalizing flows.

The rest of the paper is organized as follows. In Sec. 2, we review the basic structure of
ANN-based MC algorithm introduced in Ref. [1], and discuss improvements in the training
procedure necessary to handle issues that arise for a 4-body phase space. Sec. 3 describes
a systematic way of parametrizing a 4-body phase space as a 5-dimensional hypercube, the
natural choice for ANN output space. Sec. 4 contains the results of ANN-based simulation of
the on-shell Higgs decay into four charged leptons. In Sec. 5, we discuss issues related to the
bijectivity of the map represented by the ANN. Finally, we conclude in Sec. 6.

2 Neural Network Setup and Training

Our Monte Carlo algorithm is based on an artificial neural network, which can be thought of
as a highly non-linear, adjustable map from an input space I to the target space T ; see Fig. 1.
In our application, the target space is identified with phase space. Both input and target spaces
are unit hypercubes with dimensionality equal to the number of relevant phase space dimen-
sions. The dimensionality of input and target spaces matches the number of nodes in the input
and output layers of the ANN. The main idea is to train the ANN so that it maps a uniform
sample of the input space points {x} into a set of phase space points {yw(x)} distributed ac-
cording to the known target pdf f (y). The target pdf is the differential cross section or decay
width of the process at hand, i.e. a product of the invariant matrix element-squared |M|2, and
phase space volume factor in the coordinate system used to parametrize T . The phase space
density induced by the ANN is given by

py(y)≡ py(yw(x)) =

�

�

�

�

∂ yi

∂ x j

�

�

�

�

−1

. (1)

Training the ANN consists of adjusting its parameters2 w such that py(y)∝ f (y). To achieve
this, the loss function is defined to be the Kullbeck-Leibler (KL) divergence between the two

2The adjustable parameters for a fully-connected ANN include weights and biases.
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x y
input I target T

Figure 1: The ANN is a map yw(x) between a uniformly sampled input space and a
target space on which it induces a non-trivial pdf. During training, the parameters w
of the ANN are adjusted to minimize loss function L(w), the KL divergence between
the induced and target pdfs. From Ref. [1].

Uniform 
random sample 
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Figure 2: Diagram representing an ANN-based Monte Carlo generator. From Ref. [1].

distributions:

LKL(w) = DKL[py(y); f (y)]≡
∫

py(y) log
py(y)

f (y)
dy . (2)

At each step (or “epoch”) in the training process, the gradient of the KL divergence with re-
spect to w is evaluated numerically using a batch of random input space points. The gradient
is then used by the Adam algorithm [27] (a variant of the gradient-descent method) to update
the parameters. Repeating this process iteratively yields a numerical solution to the minimiza-
tion problem for the loss function, which corresponds to the best possible approximation to
py(y)∝ f (y).

After training is completed, the ANN parameters w are frozen, and the ANN is used as
the engine for an MC generator described in Fig. 2. The sample of “raw” phase-space points
produced by the ANN is further improved by the unweighting procedure, which discards some
of the generated points to achieve better representation of the target pdf. Specifically, for
each point in a large sample of size N generated by the ANN, we compute a raw weight
wr(y) = f (y)/py(y). If the probability distribution py induced by the ANN overestimates
the target distribution f in the neighborhood of some point in the sample, we will have
wr < 1. In order to rectify this, only a fraction of points proportional to wr in that region
should be retained. On the other hand, if in some region the ANN underestimates the tar-
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Figure 3: (a) During training, sampling of a region with f (y) ≈ 0 leads to a sharp
jump in the gradient norm |∇LKL(w)|, a subsequent rise in the loss function, and a
division-by-zero attempt, causing the code to crash. (b) After gradient clipping is
introduced, the numerical instability is eliminated and training proceeds smoothly
until the minimum of the loss function is found.

get distribution so that wr > 1, one must keep all points there and scale down the retained
fraction in other regions in order to maintain the correct shape of the distribution. There-
fore every generated point should be retained with a probability equal to the rescaled weight
w(y) = wr(y)/max(wr), where max(wr) is the maximum raw weight that was observed in the
sample. This unweighting process corrects the output of the ANN at the expense of inefficiency
due to computational resources wasted in creating the discarded points. This is quantified by
the unweighting efficiency, the fraction of points in the raw sample that are retained after un-
weighting, which is given by the average value of the rescaled weight over the whole sample

E = 1
N

∑

{yi}

w(yi). (3)

If the ANN’s distribution exactly matches the target then all raw weights will have the same
value giving E = 1. We therefore use the unweighting efficiency as a measure of how well the
trained ANN reproduces the desired phase space distribution.

The simulations presented in this paper use a fully-connected ANN architecture, with 6
hidden layers of 64 nodes each, implemented in MXNet [28]. We use the exponential linear
unit (ELU) as the activation function and the soft clipping function (SCp) introduced in [1]
as the output function. The input and output layers have 5 nodes each, matching the num-
ber of non-trivial dimensions in the 4-body phase space of the h → 4` decay. The ANN is
trained with batches of 1,000 points each, drawn uniformly from the input space. Our earlier
study [1] used a batch size of 100 for 2 non-trivial dimensions in the 3-body phase space. We
found that due to the increase in dimensionality in the 4-body case a larger batch size was
necessary to adequately sample phase space in each training epoch. This allowed the train-
ing to obtain a lower minimum in the loss function. A batch size of 10,000 was also tested.
However, this reduced the training speed in the initial phase of training (the first downward
slope in Fig. 3 (b)). The size of the batches was therefore determined by a compromise be-
tween the need to comprehensively sample the phase space at each epoch and the available
computational resources.

An additional complication may arise if the target pdf vanishes along some sub-manifold
of phase space, leading to a numerical instability in the evaluation of the loss function. (In our
example, the target pdf vanishes along one of the phase space boundaries due to a coordinate
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Figure 4: Two decompositions of a 4-particle decay into 2-particle decay chains for
the definition of various kinematic invariants.

singularity; for details, see Sec. 3. Such singularities did not appear in the two- and three-body
final states studied in Ref. [1], and hence the instability was not encountered in that work.)
During training, the ANN may be in a state such that it induces non-zero probability density
in a region where f (y) is very small. When that region is sampled during training, the loss
function and its gradient with respect to the weights at that point will be very large, according
to Eq. (2). The training algorithm will then make a very large change in the ANN weights,
which can take the ANN far away from the desired state. Such sudden jumps often cause the
ANN to sample points so close to the phase-space boundary that f (y) = 0 within machine
precision, resulting in a division by zero error. We illustrate this behavior in Fig. 3(a), which
shows the gradient norm and the loss function for the last 100 epochs before this error occurs.
The gradient norm increased more than one order of magnitude at about 10 epochs before the
error, and the loss function increased subsequently.

To avoid this instability, we modified the training algorithm by imposing an upper limit
on the norm of the gradient |∇LKL(w)| used in each training step. Any gradient with a norm
greater than the limit, which we set at 104, is rescaled down in order to avoid sudden jumps
in the ANN parameter space, while its direction is preserved. With this modification, the
training procedure is stable and good agreement of the trained ANN with the target pdf can
be achieved. The loss function of a typical training run of the ANN after imposing gradient
clipping is shown in Fig. 3(b). We find that the training converges after 104–105 epochs. The
loss function remains stable throughout the training process.

3 Phase Space Parametrization

The ANN maps a uniform distribution on a unit hypercube onto a non-trivial distribution on
another unit hypercube which represents the phase space for the process under consideration.
As such, an important feature of our setup is the way in which phase space is coordinatized in
terms of the natural coordinates of the hypercube. Since we would ultimately intend for this
ANN algorithm to form part of a general-purpose MC generator, this should be done in a way
which is agnostic to the process and easily generalizable to any number of final state particles.
Such a prescription was given in [1]. In this section we will review this prescription and give
its detailed form as applied to the 4-particle case.

Given N particles in the final state of some decay or scattering process, we form N − 2
subsets: {{1, . . . , N − 1}, . . . , {1,2}}. The invariant masses of these subsets will serve as N − 2
of the phase space coordinates. Then 2N − 5 relative angles can be chosen between the mo-
menta of various final state particles. Lastly, an overall rotation can be specified by choosing
three Euler angles. In total, this prescription provides (N − 2) + (2N − 5) + 3 = 3N − 4 co-
ordinates needed to parameterize N -particle phase space in three spatial dimensions with the
constraint of energy-momentum conservation. Finally, the coordinates can be rescaled so that
each ranges from 0 to 1, projecting the phase space onto a unit hypercube.
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For a 4-particle final state, our prescription dictates that we choose the invariant masses of
one triplet, which we can take to be {2, 3,4}, and one pair, for example {3,4}. This corresponds
to the decomposition shown in the left panel of Fig. 4. (Note that the internal lines in this
figure do not necessarily correspond to physical resonances.) The phase space weight then
contains the product of several 2-body factors in terms of the intermediate invariant masses
corresponding to the chosen decomposition:

dΠ4 = m−1
X λ(mX ; m1, m234)λ(m234; m2, m34)λ(m34; m3, m4)dm234 dm34 dΩ(X ) dΩ(234) dΩ(23) ,

(4)
where dΩ(S) represents the uniform measure on the sphere in the rest frame of particle or
system S, and m−1

X λ(mX ; mY , mZ) is the phase space volume for 2-body decay with mother
mass mX and daughter masses mY and mZ . The form of λ(mX ; mY , mZ) is given in (16). Note
that the phase space volume element is independent of the angular coordinates.

We must specify how these coordinates are to be mapped onto the output hypercube of
the ANN. The ranges of the two invariant mass coordinates m234 and m34 are given by

m234 ∈
�

m2 +m3 +m4,
p

s−m1

�

, m34 ∈
�

m3 +m4, m234 −m2

�

, (5)

where s is the square of the total center of mass energy of the process. We then assign these
ranges uniformly to two coordinates x1 and x2 on the unit hypercube. The differential dm234
in the phase space (4) then becomes dm234 = (mmax

234 −mmin
234)dx1, and similarly for dm34 and

x2. Note that when m234 = mmin
234, the range of m34 shrinks to zero. Thus the phase space

weight in terms of the hypercube coordinate x2 is zero when x1 = 0 (corresponding to the
minimum value of m234). However, this is handled well by our training algorithm thanks to
the clipping procedure introduced in Section 2.

For the purposes of mapping the angular coordinates onto the output hypercube, we fix
the orientation of particle 1 in an arbitrary direction. This fixing corresponds to two angles of
overall rotation represented by dΩ(X ) in (4). Specific values may be chosen later if desired for
generating simulated events3. Particle 2 makes some angle with respect to particle 1 in the
(234) frame. It is natural to use the cosine of this angle as a coordinate because it appears
in the measure on the sphere in this frame dΩ(234) = dcosθ (234)

12 dψ. We fix the azimuthal
rotation of particle 2 around particle 1 in an arbitrary direction, which corresponds to the last
overall rotation angle ψ that we left free. In the next stage of the decomposition, we must
specify the orientation of particle 3 in the (34) frame. This can be done in terms of the cosine
of the polar angle with respect to particle 2, cosθ (34)

23 , and an azimuth φ measured from the
plane defined by the direction of particle 1 in this frame. This choice corresponds to the factor
dΩ(23) in (4). Having defined our angular coordinates in this way, the ranges [−1,1] of the
cosines of θ (234)

12 and θ (34)
23 and [0, 2π] of the azimuthal angleφ can be mapped uniformly onto

the three remaining coordinates on the unit hypercube.
Although the phase space weight only depends on two invariant masses, important features

in the matrix element such as resonances or collinear singularities may appear in terms of the
invariant mass of any set of final particles. We therefore need a simple way to compute the
invariant mass of any pair in terms of our phase space coordinates. These relations are given
in Appendix A.

In Appendix B we present an alternative method of sampling the three angular coordinates
that is symmetrical and in which all angles are defined in the same frame.

3Because we are considering only the decay of an on-shell Higgs, there is no intrinsic direction in the problem,
and so the phase space measure with respect to dΩ(X ) is uniform. However, if the overall orientation of the event
is correlated with some direction such as the accelerator beam, this could be included.
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4 Results: Higgs Decay to Four Leptons

In this section, we present the results of an ANN-based simulation of the on-shell Higgs decay
into 4 leptons µ+,µ−, e+, e− with two intermediate Z bosons. We label the µ+ as particle 1, µ−

as particle 2, e+ as particle 3, and e− as particle 4. The differential decay width of this process,
using our parametrization of the 4-body phase space, can be written as

dΓ = m−1
h |M|

2 dΠ4 , (6)

where mh is the Higgs mass, |M|2 is the spin-summed invariant matrix element-squared, and
dΠ4 is the phase space volume element given above. Assuming the leptons are massless, the
tree-level matrix element of this process is given by [29]

|M|2 = |M+−+−|2 + |M+−−+|2 + |M−++−|2 + |M−+−+|2

M+−+− =
2e3 g+f1 f2

g+f3 f4
µW

c2
WsW

〈k1k3〉∗〈k2k4〉
(m2

12 −µ
2
Z)(m

2
34 −µ

2
Z)

M+−−+ =
2e3 g+f1 f2

g−f3 f4
µW

c2
WsW

〈k1k4〉∗〈k2k3〉
(m2

12 −µ
2
Z)(m

2
34 −µ

2
Z)

M−++− =
2e3 g−f1 f2

g+f3 f4
µW

c2
WsW

〈k2k3〉∗〈k1k4〉
(m2

12 −µ
2
Z)(m

2
34 −µ

2
Z)

M−+−+ =
2e3 g−f1 f2

g−f3 f4
µW

c2
WsW

〈k2k4〉∗〈k1k3〉
(m2

12 −µ
2
Z)(m

2
34 −µ

2
Z)

,

(7)

where cW and sW are the cosine and sine of the weak mixing angle, and 〈kik j〉 is the spinor
bracket with |〈kik j〉|= mi j . The complex masses of the Z and W bosons µZ and µW are given
by

µ2
V = M2

V − iMV ΓV , V = Z,W , (8)

where MV are the physical masses and ΓV are the decay widths. The coupling constants g±f f
are given by

g+f f = −
sW

cW
Q f , g−f f = −

sW

cW
Q f +

I3
W, f

cWsW
, (9)

where Q f is the electric charge of the fermion f and I3
W, f is the third component of its weak

isospin.
The ANN is constructed and trained as described in Sec. 2. A set of 107 events is generated

by the trained ANN, and the unweighting procedure is performed on this set. The unweighting
efficiency is 26%, an improvement of about a factor of three compared to 8% efficiency for
the same process acheived by MadGraph. Distributions shown in Figs. 5 and 6 are based on
the set of 2.6 × 106 unweighted events. Invariant mass and angular distributions generated
by the ANN, shown in Fig. 5, are in excellent agreement with MadGraph results. (We also
checked that ANN distributions agree precisely with those generated by uniform sampling of
phase space, an extremely inefficient but reliable Monte Carlo technique.) Furthermore, the
two-dimensional density plots in Figs. 6 show that the ANN simulation reproduces the ex-
pected resonance structure. This includes both a resonance in the kinematic variable aligned
with one of the target-space coordinates (m34), and one in the variable not aligned with any
of the target-space coordinates (m12). The ability of the ANN to reproduce such non-aligned
resonances is an important advantage of this approach, which may become increasingly im-
portant for simulating processes with more complex structure of resonances and singularities,
for example at higher orders in perturbation theory.
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Figure 5: Kinematic distributions of h→ 4` decays in the five coordinates chosen to
parametrize the final-state phase space (a-e) and in the invariant mass m12, which
is not aligned with any of the chosen coordinates but contains a resonance (f). The
coordinates have been rescaled from the unit hypercube back to their original val-
ues. The output of the ANN-based simulation (after unweighting) is represented
by orange solid histogram. For comparison, distributions generated by MadGraph
are shown by black lines. Residuals are shown beneath each plot. The grey bands
are statistical uncertainties from random sampling of the phase space and event un-
weighting.
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Figure 6: Density plots of 2.6 × 106 points generated by the ANN (after unweight-
ing). Plotted kinematic variables are aligned with coordinates on the target-space
hypercube, with the exception of m12, m13, m24.

5 Bijectivity of the ANN Map

The map I 7→ T defined by a fully-connected ANN is not automatically guaranteed to be
bijective4. Lack of bijectivity can cause significant issues in the context of MC simulation:

• If the map is not surjective, there will be regions in phase space where no events are
generated, regardless of the sample size.

• If the map is not injective, i.e. the map T 7→ I inverse to yw(x) is multi-valued, a small

4A bijective fully-connected network can be constructed, see e.g. [30], but bijectivity requires the same number
of nodes in all layers, which does not appear to be well-suited to the problem at hand.
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Figure 7: An example of a non-injective region in the “comparison sample” map
generated by an ANN trained with a loss function that favors foldings, see Eq. (13).
Points in two distinct regions in the input space (a) map onto the same region in the
output space (b).

region in T may be populated by points within two or more clusters in I , as illustrated for
example in Fig. 7. In this case, the phase space density computed according to Eq. (1) at
each yi is incorrect, potentially invalidating both our training algorithm and unweighting
procedure.

Fortunately, training with the KL distribution loss function tends to naturally prefer bijec-
tive (or at least approximately bijective) maps:

• Surjectivity: Note that the integral of the induced pdf over the target space is fixed:
∫

T
dy py(y) =

∫

T
dy

�

�

�

�

∂ x j

∂ yi

�

�

�

�

= VI = 1. (10)

If the target pdf is normalized to integrate to one as well, a non-surjective map would
necessarily result in mismatched normalization between induced and target pdfs in the
region of phase space covered by the map. The minimum of the loss function, LK L = 0,
is reached when the two pdfs have the same normalization, i.e. for a surjective map. If
the target pdf is not normalized, it can always be rewritten as f (y) = C fN (y), where fN
is a normalized pdf and C is a constant. Using (1) and (10), it is easy to show that the
minimum of the loss function in this case is given by LK L = − log C , and is reached when
py = fN and the map is surjective.

• Injectivity: Since the map defined by the ANN is always continuous, lack of injectivity
necessarily results in some phase space regions with very small Jacobians and thus very
large induced probability density (see Fig. 8 for an illustration in 1 dimension). Since the
target pdf is generic in these regions, such features are generally strongly penalized by
the loss function. Training would therefore tend to “smooth out” the foldings, resulting
in an injective map.

We rely on the above features to produce a bijective map through training, and test the
trained ANN for bijectivity a posteriori. The rest of this section describes the tools used for this
test, and the results showing that the ANN trained to simulate h→ 4` decays is bijective to a
good approximation.
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Figure 8: A one-dimensional illustration of why a non-injective region (“folding”) in
the map necessarily gives rise to a small Jacobian.

5.1 Surjectivity

While unweighting efficiency is a common measure of simulation quality, it cannot be used
to test surjectivity. The unweighting efficiency is evaluated using only points present in the
sample. If those points follow the shape of the target distribution perfectly in the portion of the
phase space that is covered, unweighting efficiency would be equal to one, even if there are
regions of phase space with non-zero target pdf that remain completely uncovered. To assess
surjectivity of the map, we instead use the value of the pdf integral implied by the generated
sample:

IMC =
1
N

∑

yi

wr(yi) , (11)

where the sum is over the N points in the sample, and wr(yi) = f (yi)/py(yi) are the raw
weights. The “true” value of the integral Itrue can be found for example by using uniform
sampling of phase space, which is very inefficient as an MC generator but is guaranteed to
cover the full phase space. Lack of surjectivity is indicated by IMC < Itrue. For the h → 4`
simulation presented in Section 4, we find IMC/Itrue = 0.993, indicating that the trained ANN
map is surjective to a good approximation. The remaining small regions not covered by the
ANN map lie at the phase space boundaries, which accounts for the discrepancy between ANN
and MadGraph in the very last bin of the cosθ (34)

23 distribution in Fig. 5 (d).

5.2 Injectivity

Lack of injectivity means that disparate clusters in the input space get mapped into the same
phase space region, see Fig. 7. We refer to this situation as “folding.” To diagnose whether
foldings are present in a trained ANN map, we divide the output space T into a large number
of small hypercubes. For each small hypercube, we calculate the covariance matrix of the
coordinates of the points in the input space that map into it. Eigenvalues of the covariance
matrix are then found, and the ratio R of the largest to second-largest eigenvalue is used as an
indicator of possible folding. For a bimodal distribution such as in Fig. 7, the separation of the
two clusters defines a preferred direction which will be associated with a large eigenvalue. In
this case the R-value is expected to be large, while for an injective map it is generally of order
one. An exception may occur if an injective map happens to project an oblong (but singly
connected) region in I into the same hypercube, as shown for example in Fig. 9. Nevertheless,
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Figure 9: Input space points that map into the hypercube with the largest R-value in
the main sample, R = 54. (a) Oblong shape of the distribution is responsible for the
large R value. (b) Pairwise distances among the input-space points show no evidence
for a bimodal distribution.

the R-value provides a useful diagnostic for foldings, in particular because it can be evaluated
efficiently with modest CPU time requirements. For hypercubes with R-values above some
threshold, we further evaluate the bimodal coefficient b for the pairwise-distance distribution
of points in the input space, defined as [31]:

b =
g2 + 1

k+ 3(n−1)2
(n−2)(n−3)

, (12)

where g is the sample skewness, k is the sample excess kurtosis, and n is the sample size.
A flat distribution would give b = 5/9, with larger b indicating a bimodal distribution. (A
perfectly bimodal distribution with two delta-function clusters gives b = 1.) The bimodal
coefficient clearly distinguishes between “clustered” and “oblong” distributions5, but is more
computationally expensive than the R-value. Finally, for a limited number of hypercubes where
folding is suspected based on both R and b, histograms of pair-wise distances between points
in input space (such as for example in the right panel of Fig. 9) can be manually examined.

As a test of this diagnostic tool, it was applied to a sample of 107 h→ 4` events generated
by the trained ANN described above. A comparison sample was generated by using the same
setup, but training the ANN with a different loss function:

L(w) = LKL(w) + Lint(w)

Lint(w) = −C exp

�

−
(IMC − Itrue)2

2a2

�

,
(13)

where IMC is the integral defined in Eq. (11), and a and C are constants.6 The target space
was divided into 105 hypercubes with side length of 0.1. To avoid noisy data from sparsely
populated phase space regions, hypercubes with fewer than 20 points were discarded. The
distribution of the R-values in the main and comparison samples is shown in Fig. 10. The
comparison sample contains hypercubes with very large values of R, indicating lack of in-
jectivity. Examination of input-space distributions in boxes with high R-values confirms that

5However, see Ref. [32] for a discussion of limitations of the bimodal coefficient.
6This alternative loss function was originally explored as a way to improve surjectivity by including the integral

explicitly in the training procedure, but was ultimately not used due to its adverse effect on injectivity.
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Figure 10: Distribution of R-values in the main sample (hatched) and the comparison
sample (orange).
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Figure 11: Distribution of the bimodal coefficient for hypercubes with the largest
R-values (20 and above) in the main sample. No significant deviations from the flat-
distribution value b = 5/9 (shown by a dashed line) are observed, indicating absence
of foldings.

foldings are indeed present; for example, this is clearly visible in Fig. 7 for a cube with the
largest R value in the comparison sample, R = 670. In contrast, the main sample contains
few hypercubes with large R. The maximum R-value in this sample is 54, and results from an
oblong input-space distribution rather than folding, see Fig. 9. The values of b for the 120
boxes with largest R-values in the main sample, shown in Fig. 11, cluster narrowly around the
flat-distribution value, so there is no indication of foldings from this measure. As an additional
test, we manually examined the pairwise input-space distances in boxes with largest b, and
did not find any evidence of folding. Based on this data, we conclude that while the map used
to generate the comparison sample is clearly not injective, the main sample shows no sign of
deviations from injectivity.

While this conclusion is reassuring, foldings may of course still occur in the main sample at
length scales shorter than 0.1. In general, foldings at smaller scales have progressively smaller
effect on the quality of the simulation, while also being more computationally expensive to
diagnose. We plan to address this issue more fully in future work.
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6 Conclusion and Outlook

In this work, the ANN-based Monte Carlo generator proposed in [1] has been applied to sim-
ulate the Higgs decay to four charged leptons, a process of great interest for the LHC exper-
iments. A convenient parametrization of the four-body phase space, mapping it into a unit
hypercube which is a natural output space for ANN, was developed for this application. A
numerical instability was encountered during the training process. This instability arises due
to the structure of the four-body phase space. The training algorithm was supplemented with
“gradient clipping,” which allows to avoid the instability and achieve stable convergence of the
training process. The trained ANN was then used to generate a large sample of h→ 4` events.
The ANN simulation was shown to achieve high unweighting efficiency of 24% (compared to
8% for “off-the-shel” MadGraph simulation), and the integrated decay width in this channel is
accurate to within 0.7%. The ANN simulation reproduced Z-boson resonances in both lepton
pairs, including the one whose invariant mass was not aligned with any of the chosen phase
space coordinates. The ability of the ANN to reproduce such non-aligned features offers a
potentially powerful advantage over existing grid-based algorithms.

The map defined by a fully-connected ANN used in our algorithm is not automatically
bijective, which may cause issues with simulation validity. Nevertheless, we have argued that
the training algorithm prefers bijective maps. We developed numerical tools to check bijectivity
a posteriori, such as the R-values and bimodal coefficients to identify phase space regions
where lack of injectivity (“foldings”) may occur. Using these tools, we did not find any sign of
significant non-bijectivity in the trained ANN used on our h→ 4` simulation.

The results presented here add to the evidence for the promise of ANN-based MC genera-
tion as a viable alternative to traditional algorithms such as VEGAS. In principle, the current
algorithm can be applied to simulate any parton-level process, with arbitrary number of parti-
cles in the final state. To explore this further, it would be interesting to automate the ANN setup
and training and to interface it with the matrix element generator. Another interesting direc-
tion would be to apply the algorithm to simulations beyond the leading order. Compared to
the tree level, loop corrections to matrix elements have a more complicated analytic structure
which includes branch cuts as well as poles, and the inherent ability of the ANN generator
to find and reproduce features not aligned with coordinate axes may provide an important
advantage in this case.

Funding information This research is supported by the U.S. National Science Foundation
through grant PHY-1719877. MDK acknowledges support by the Samsung Science & Technol-
ogy Foundation under Project Number SSTF-BA1601-07, and a Korea University Grant.

A Computing Kinematic Invariants

In this appendix, we show how kinematic invariants that may enter the differential cross sec-
tion/decay width may be expressed in terms of the subset of invariants and angles which were
used to parametrize phase space for the ANN. We will make use of the “kinematic bracket”
defined as

[A, B, C] =
m4

A+m4
B +m4

C − 2(m2
Am2

B +m2
Bm2

C +m2
Am2

C)

4m2
B

, (14)

which gives the squared magnitude of the 3-momentum of either of the two particles with
mass mA and mC involved in a 2-body decay in the rest frame of the third particle with mass
mB:

|pA|2 = |pC |2 = [A, B, C], pB = 0. (15)
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B may be the mother, in which case pA and pC point in opposite directions, or it may be a
daughter, in which case they point in the same direction. The bracket is obviously symmetric
under the exchange A ↔ C . The 2-body phase space volume Π2 can also be expressed in
terms of the bracket as

mBΠ2 = λ(mB; mA, mC)≡
p

[A, B, C]
4π

. (16)

Suppose we have chosen to decompose the final state as shown in the left panel of Fig. 4,
as we did in defining the coordinates for the ANN. Our two invariant mass coordinates are
m34 and m234. Invariant masses are of course the same in any frame, and so we may choose
to compute them in the most convenient frame. For example, we can easily find m23 and m24
by working in the rest frame of the (34) system. Using Eq. (14), we obtain the momenta

|p3|2 = |p4|2 = [3, 34,4], |p2|2 = [2,34, 234]. (17)

We chose one of the three angles required in our parametrization to be the angle θ (34)
23 between

particles 2 and 3 in this frame. Thus we have

m2
23 = m2

2 +m2
3 + 2

�

E2E3 − |p2||p3| cosθ (34)
23

�

(18)

m2
24 = m2

2 +m2
4 + 2

�

E2E4 + |p2||p4| cosθ (34)
23

�

(19)

making use of the fact that particles 3 and 4 are back-to-back in this frame. Similarly, we can
move to the (234) frame and find

|p2|2 = [2,234, 34], |p1|2 = [1,234, X ]. (20)

Using the angular coordinate θ (234)
12 , the invariant mass m12 can be immediately computed.

It only remains to compute m13 and m14, but these are complicated in our current de-
composition because the two particles in these invariants are separated in the decay chain by
particle 2. Of course this is just an artifact of our choice of decomposition and we could just as
well use the alternative illustrated in the right panel of Fig. 4. The last two invariant masses
then follow in analogy with Eq. (18) and Eq. (19) in terms of the angle θ (34)

13 . However, this
was not one of the coordinates we originally selected. It can be found using the spherical
law of cosines in terms of our last angular coordinate φ if we also know the angle between
particles 1 and 2 in the (34) frame. This can be extracted from m12 as

cosθ (34)
12 = −(|p1||p2|)

−1

�

m2
12 −m2

1 −m2
2

2
− E1E2

�

. (21)

In computing m13 and m14, we also need to know the value of m134 which is again not one of
our original coordinates. However, by energy-momentum conservation, we know

m2
134 =

�

pµ1 + pµ3 + pµ4
�2
=
�

pµX − pµ2
�2

= m2
X +m2

2 − 2
�

EX E2 − |pX ||p2| cosθ (234)
12

�

.
(22)

In the last step, we choose to work in the (234) frame where |p1| = |pX | and we can use
Eq. (20).
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B Symmetric Phase Space Sampling

In Sec. 3, we described a method of sampling the angular coordinates in terms of the natural
flat coordinates on the sphere at each stage of the decay. In the first stage, we sampled ac-
cording to a flat distribution in cosθ (234)

12 . In the second stage, we sample according to a flat

distribution in cosθ (34)
23 and φ. However, for computing kinematic invariants, which are likely

to be important for the evaluation of the matrix element, it is necessary to have cosθ (34)
13 as

well. This can be computed from given values of cosθ (34)
23 and φ, but in this appendix we de-

scribe a way to sample phase space directly in terms of cosθ (34)
13 and cosθ (34)

23 . In the following

we will always work in the (34) frame, and drop the superscript. We also convert cosθ (234)
12

into the (34) frame using Eq. (21). We indicate these three angular coordinates by c12, c23,
and c13.

It is straightforward to show that the measure on the sphere in the (34) frame can be
written as

dc23 dφ =
dc23 dc13

q

1− c2
12 − c2

23 − c2
13 + 2c12c23c13

= dc23 dc13 D−1/2 , (23)

where

D =

�

�

�

�

�

�

1 c12 c13
c12 1 c23
c13 c23 1

�

�

�

�

�

�

. (24)

This formulation has the advantage that it is symmetric among the three angular coordinates.
However, not all choices of (c12, c23, c13) ∈ [−1, 1]3 are physically possible. The condition for
physical values of the coordinates is equivalent to requiring that the phase space weight is real,
that is, D > 0. One may therefore sample these three angular coordinates in the 3-dimensional
hypercube, discarding any points for which D < 0, and including the factor D−1/2 in the target
function.
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