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Abstract

We discuss nonstandard continuum quantum field theories in 2 + 1 dimensions. They
exhibit exotic global symmetries, a subtle spectrum of charged excitations, and dualities
similar to dualities of systems in 1+ 1 dimensions. These continuum models represent
the low-energy limits of certain known lattice systems. One key aspect of these contin-
uum field theories is the important role played by discontinuous field configurations. In
two companion papers, we will present 3 + 1-dimensional versions of these systems. In
particular, we will discuss continuum quantum field theories of some models of fractons.
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1 Introduction

This paper is the first in a sequence of three papers (the other papers are [1,2]). Here we
will study systems in 2 + 1 dimensions and in [1, 2] we will consider similar systems in 3 + 1
dimensions. (A followup paper [3] explores additional models.) The goal of these papers is
to present a continuum quantum field theory perspective of some lattice models studied in
the condensed matter literature, and in particular of models of fractons. There is an extensive
literature on this subject and it is reviewed nicely in [4,5]. These reviews includes also many
references to the original papers. Below we will refer to the specific papers relevant to each
of the topics we discuss.
The main characteristics for a large class of fracton models include:

* The spectrum includes massive particles (fractons) of restricted mobility. Some parti-
cles are completely immobile, or can move only along a line, or along a plane. In our
treatment of these models we will focus on the low-energy theory. It does not include
such dynamical excitations. However, the effect of these massive particles is captures by
defects, whose locations are restricted. These defects can be thought of as deformations
of the Hamiltonian along lines (or strips) stretched along the time directions.

* The logarithm of the ground state degeneracy of a quantum system is its entropy. Typi-
cally it is proportional to the volume of the system, or it is a finite number. The gapped
fracton models have a ground state degeneracy proportional to the length of the sys-
tem.! Not only is such behavior surprising from a continuum quantum field theory point
of view, it is also infinite in the continuum limit. Specifically, in the X-cube model [7],
on a cubic lattice (with periodic boundary conditions) with L*, LY, L” sites in the three
directions, the logarithm of the ground state degeneracy is 2L* 4+ 2LY + 2L* — 3 and

'In some cases, as in Haah code [6], the dependence on the size is more complicated.
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therefore it diverges in the continuum limit in which L*,LY,L* — oo. Therefore, any
continuum field theory of this system should have an infinite number of ground states.

* These systems exhibit exotic global symmetries. Some of these global symmetries are
known as subsystem symmetries.> These are symmetries whose charges act only on a
subspace of the total space. Unlike the generalized global symmetries of [9], here the
value of the charge varies from subspace to subspace [10]. If the global symmetry group
is compact such as U(1) or Zy, this means that the charge operator can be discontinuous
as a function of the position.

These three characteristics seem impossible in the context of continuum quantum field the-
ory. For example, one aspect of the degeneracy is that some observables, e.g. some subsystem
symmetry generators, can be diagonalized in the space of ground states and their eigenvalues
can change discontinuously from one lattice site to another. Equivalently, low-energy observ-
ables depend on physics with arbitrarily high momentum. This means that the low-energy
physics (IR) is sensitive to some short distance physics (UV).

Despite these challenges, we will attempt to describe these systems using the framework
of continuum quantum field theory. Usually, a continuum quantum field theory gives us a
universal description of the low-energy physics, which does not depend on most of the details
of the microscopic model. One of our motivations is to find such a universal description.

Another motivation, following a broader view, is the pursuit of learning of quantum field
theory in its own right and in particular, exploring whether it can be generalized.

Our discussion here (and in [1,2]) will use a number of new elements:

* Not only will these quantum fields theories not be Lorentz invariant, they will also not
be rotational invariant. In this paper we will focus on 2 + 1-dimensional systems and
we will not preserve the full SO(2) rotation symmetry, but only its subgroup of 90 de-
gree rotations, Z4.> (We will denote its irreducible, one-dimensional representations 1,,
with n = 0,%1, 2 labeling the spin.) We will not impose parity or time reversal symme-
tries, although many of our models are invariant under them. In addition, we have the
continuous translation symmetries both in space and time.

* We will continue the investigation of [10], emphasizing the global symmetries of the
systems. The discussion of the symmetries is more general than the specific models that
we will study. We will also gauge these global symmetries.

* Perhaps the most significant new element is that we will consider discontinuous fields.*
The underlying spacetime will be continuous, but we will allow discontinuous field con-
figurations. Starting at short distances with a lattice, all the fields are discontinuous
there. In standard systems, the fields in the low-energy description are continuous.
Here, they will be more continuous than at short distances but some discontinuities will
remain.

Rather than giving a general treatment of arbitrary models, our approach will be to find
continuum descriptions of specific lattice systems. We start with a lattice with lattice spacing
a with L sites in the i direction. (In 2 + 1-dimensional systems the index i takes values x
and y and in 3 + 1-dimensional systems it takes the values x, y, and z.) The continuum limit

2Subsystem symmetries had figured earlier in various papers, see e.g. [8].

3In [1,2] we will study 3+ 1-dimensional systems and will preserve only their cubic symmetry group S, (ignoring
parity and time reversal).

“It is well known that the dominant configurations contributing to the Euclidean path integral are discontinuous.
The suppression due to their infinite action is compensated by the large number of such configurations. We do not
see a relation between this fact and the discontinuous configurations that we will study.
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is @ — 0 (with an appropriate limit of the coupling constants), L' — oo, while keeping the
physical size of the system ¢! = aL' fixed. Then, the low-energy physics is defined to be the
physics of modes with finite energy in that limit.

In our examples below, we will find some special states, whose energy scales in the con-
tinuum limit like % Normally, such states are neglected in the continuum limit. However, we
will encounter situations where it is meaningful to study them in the continuum limit. This
happens because these states are the lowest energy states that are charged under some global
symmetry.

A related discussion applies to the space of fields in our field theories. As we said, we
will allow discontinuous field configurations with certain discontinuities. These fields, despite
being discontinuous, have finite action. Therefore, such configurations must be included in
the functional integral.

We will also find it interesting to study discontinuous field configurations whose potential
term in the action is infinite and scales like % In continuum language, their action will be
proportional to a one-dimensional delta function §(0). Naively, such configurations should
be excluded. However, we will show that sometimes such configurations lead to states with
energy of order % of the kind mentioned above.

1.1 Exotic Global Symmetries

Our analysis of these systems will use as a guiding principle their exotic global symmetries. We
will follow and extend the discussion of [10] and characterize the systems by the properties
of their symmetries. We will start by analyzing global U(1) symmetries. Later we will also
consider Zy symmetries.
An ordinary global U(1) symmetry is associated with a conserved Noether current (J,,J')
satisfying
3o = 0.J°, (1.1)
with J, its time component and J' the spatial component, which is a vector of the spatial
rotation group. The conserved charge is an integral over all of space of the time component

of the current
Q= J Jy - (1.2)
space

The current conservation equation (1.1) guarantees that it is conserved.

We will generalize this symmetry in two ways.

First, we will be interested in situations where the conservation equation (1.1) has more
than one spatial derivative in the right hand side. In the simplest nontrivial case, there are
two derivatives and we will refer to the symmetry as a dipole global symmetry.®

Second, we will allow the time component of the current Jé to be in a nontrivial represen-
tation Ry of the rotation group, with I an Ry, index. This rotation group can be the full
continuous rotation group, or only a finite subgroup of it. Related to that, the spatial compo-
nent of the current JX will be in an appropriate representation Rypace Of the rotation group,
with K an Rg,,ce index. Then, the conservation equation (1.1) takes the form

doJd = 8,0 JKfI! (1.3)

with fIé] 7 an invariant tensor coupling the indices. We will refer to such a current as
(Rtime: Rspace)'

>In the literature of dipole global symmetry, the charge is usually an integral of the current multiplied by a linear
function of x!. Such an expression is only allowed in R”!, but not on more general manifolds. Our presentation
of the dipole symmetry will be based on the local conservation equation (1.3), and is insensitive to the details of
the manifold.
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One interesting aspect of these exotic symmetries is that for special choices of the conser-
vation equation (1.3), the conserved charge does not have to be integrated over the entire
space. We can have

Q' = J J; (1.4)
z

with ¥ a closed subspace, which can depend on the index I. For example, ¥ can be a line
along the x direction. Then, the charge Q! is a function of the remaining coordinates — y in a
2 + 1-dimensional system or y and z in a 3 + 1-dimensional system. Furthermore, as we will
see, sometimes the time component of the current satisfies another differential condition that
restricts the dependence on these coordinates.

In our examples the global symmetry will be U(1) (rather than R) and therefore the charges
are quantized. In that case, if the charge Q! is integrated over a subspace and it depends on
the other coordinates, it must be discontinuous. We will see examples where the charge Q' is
an integer changing from point to point and other examples where Q' is a linear combinations
of delta functions with integer coefficients.

As we said above, such behavior of global symmetry charges poses a challenge to a de-
scription in terms of a continuum quantum field theory.

1.2 Naturalness and Robustness

An essential issue in every quantum field theory is whether it is natural. This notion has two
different meanings, both of them related to the global symmetries of the system.

First, as is common in high-energy physics, we postulate a global symmetry (in the short-
distance theory) Gy, and demand that the UV Lagrangian includes all the terms that are
compatible with the global symmetry with coefficients of order one. Terms that violate the
global symmetry are “naturally” excluded. This notion of naturalness was articulated by 't
Hooft [11].

All our systems here and in [1,2] are natural in this sense. Our Lagrangians respect their
global symmetries and do not include more generic terms that violate them. However, as we
will discuss in Section 1.3, we exclude from the Lagrangian certain high derivative terms that
respect the symmetry and can affect the quantitative physical conclusions. They do not affect
the qualitative behavior.

In real condensed matter systems the short-distance model has very few global internal
symmetries. Typically, Gy is Z,, or U(1), or trivial. Let us consider the extreme case of
a trivial Gyy. In that case, the question of naturalness becomes a question of robustness.
We assume that by tuning the short distance parameters, we find a low-energy theory with
an emergent global symmetry G;z. Then, we deform slightly the short distance parameters
and ask whether the low-energy system still preserves the emergent symmetry G;z. This is
determined by an analysis of the operators in the low-energy theory and in particular, by those
operators in the low-energy theory that violate Gyp.

If the low-energy theory has relevant operators that violate G;z, then a generic deformation
of the short-distance system induces them in the low-energy system and breaks the symmetry
there. Then, some level of fine tuning will be needed in order to find a G; symmetric system
at low energies.

If, however, the low-energy system has no Gy violating relevant operator (or if it does not
have any local operator at all), then a small deformation of the short-distance system does
not ruin the symmetry at long distances. In that case the global symmetry of the low-energy
system is robust. It is referred to as an emergent global symmetry or as an accidental global
symmetry.®

A known example in high-energy physics is the conservation of the global U(1) symmetry of baryon minus
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It should be emphasized that when we discuss the global symmetries Gy, and Gz we
should take into account all the global symmetries, including standard ones, the higher-form
global symmetries of [9], and the more exotic ones of [10], this paper, and [1, 2]. Using
such generalized global symmetries, it is clear why when a gauge symmetry emerges at long
distances it is often robust.” See [12,13] for early related discussions.

A weaker notion of robustness is also useful. We can start at short-distances with a non-
trivial global symmetry G;,. Then, the global symmetry of the long-distance theory G;z can
have new symmetry elements that are not present in Gyy. Is this symmetry enhancement
robust? The low-energy theory can have relevant operators violating G;,. These operators
are naturally absent in the Lagrangian, because we impose Gy at short distances. However,
if the low-energy theory has relevant operators that preserve Gy, but violate G, then the
enhanced global symmetry is not robust. Conversely, if there are no such relevant Gz vio-
lating operators, the symmetry enhancement is robust. To summarize, the robustness of the
long-distance global symmetry G;z can depend on what the short-distance symmetry Gy is.

Not all of our models are robust. The long-distance theory might include relevant operators
violating some global symmetries. However, some of our models, and in particular, the model
of Section 7 and the models of [2] are both natural and robust. The latter ones are the low-
energy field theories for the 3 + 1-dimensional X-cube model.

Examples

Let us demonstrate this notion of robustness in some familiar examples.

In the 1+ 1-dimensional XY-model, the microscopic symmetry Gy is the U(1) momentum
global symmetry. The long-distance field theory is based on a compact scalar field.® Its global
symmetry G;r includes Gy and an emergent U(1) winding global symmetry. If the radius of
the scalar is large enough, the emergent winding symmetry is robust. However, if that radius is
small, then the emergent winding symmetry is not robust and is generically broken by relevant
winding operators. It is common and natural (in the technical sense) to impose that winding
symmetry on the low-energy theory even for small radius. Then the theory is gapless for every
radius and exhibits a duality, known in the string-theory literature as T-duality.

1+1-dimensional ordinary U(1) gauge theory has a one-form global symmetry [9], which is
referred to as electric. This global symmetry exists both in the lattice formulation of the system
and in its continuum field theory. We can change the system by adding to it massive charged
matter fields and then this one-form global symmetry is absent. However, this symmetry can
emerge in the low-energy theory. In this case Gyy is trivial and Gy is the electric one-form
symmetry.

This U(1) gauge theory is sometimes represented on the lattice in the Hamiltonian formal-
ism by imposing Gauss law energetically, rather than as a constraint. (This was reviewed from
the perspective we use here in [10].) Then, the lattice theory is not a gauge theory and one can
deform it further by adding lattice operators violating the gauge symmetry, e.g. a term linear
in the link variable. This lattice theory does not have the one-form global symmetry. However,

lepton number in the Standard Model. All the gauge invariant operators constructed out of the fields of the
Standard Model that violate this symmetry are irrelevant. And therefore, this is an emergent global symmetry of
the theory. In fact, all the renormalizable operators of the Standard Model preserve separately baryon number and
lepton number. But since the corresponding global symmetries are violated by instantons of the weak interactions,
we would not refer to these symmetries as accidental.

’We thank S. Shenker for many extremely stimulating discussions about this issue.

8Here and elsewhere in this paper we follow the high-energy physics terminology, where this means that the
field is circle-valued, regardless of its action. This is to be contrasted with the notion of a compact field in the
condensed-matter literature, which means that the lattice action does not preserve the winding symmetry.

6
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it is easy to see that if this deformation is sufficiently small, its effect on the low-energy theory
is negligible as the number of sites of the lattice L goes to infinity. Therefore, even though the
microscopic theory does not have the electric one-form symmetry, it emerges at long distances
as a nontrivial G and it is robust.

This system should be contrasted with three variants of it.

First, consider the 1 + 1-dimensional Z, gauge theory. One way to construct this theory
is by Higgsing the U(1) gauge theory by a charge N field. The presence of the charge N field
breaks the one-form U(1) global symmetry to Zy [9]. A convenient way to represent this
theory is as a BF-theory with the Lagrangian [9,14-16]

leA (1.5)
21

with B ~ B + 27 a circle-valued scalar field and A is a one-form gauge field. Alternatively, we
can formulate it directly as a Zy gauge theory either on the lattice or in the continuum. In all
of these formulations it has a robust electric Zy one-form symmetry.

This system also has a magnetic symmetry, which is an ordinary (zero-form) Z, global
symmetry. The local operators charged under it are often called twist fields and in the formu-
lation of the theory (1.5), it is represented by e®. The theory has N ground states in which
the expectation values of the twist field are e2mn/N with n = 0,...,N—1. This means that (1.5)
describes a spontaneously broken global Z,, symmetry.

If we start at short distances with an exact global Zy magnetic symmetry (as in the Ising
model), this symmetry remains exact at low energies. In the broken phase, the low-energy
system can be described by (1.5). In this phase the one-form Z, global symmetry emerges at
long distances and it is robust.

Alternatively, if we start with the lattice Zy gauge theory without the magnetic symmetry,
then the microscopic symmetry Gy is only the electric one-form symmetry. We can still end
up in a phase described by (1.5) with an emergent Zy ordinary global symmetry. However,
in this case the emergent global symmetry G;z is not robust. We can deform the low-energy
theory (1.5) by e and explicitly break the Zy magnetic global symmetry. This deformation
lifts the degeneracy between the N states.

As another variant of the 1 + 1-dimensional U(1) gauge theory, we can consider its 2 + 1-
dimensional version. Just like the 1+ 1-dimensional system, it has an electric one-from global
symmetry. This symmetry is robust. But unlike the 1 + 1-dimensional U(1) gauge theory,
it has a magnetic U(1) global symmetry, whose Noether current is J# = %e‘“’p 0,A,. This
symmetry is not present in the lattice formulation of the system, and we could ask whether it
is an emergent symmetry.

The simplest way to answer this question [17] is to dualize the gauge field to a free compact
scalar ¢ ~ ¢ +27m. Then the conserved magnetic current is J# ~ 9. The operators charged
under this symmetry are known as monopole operators (see the modern discussion in [18])
and are represented by e'?. If the short-distance theory does not have this magnetic symmetry
(i.e. Gyy includes only the one-form global symmetry) and the system is not fine-tuned, then
the long-distance theory is generically deformed by these monopole operators. This deforma-
tion breaks the magnetic symmetry and gaps the system. Therefore, the magnetic symmetry
is not robust. This is the 2 + 1-dimensional analog of the lack of robustness of the gapless
1+ 1-dimensional XY-model at small radius.

Finally, we discuss a 2 + 1-dimensional Z, gauge theory. It has known lattice and contin-
uum descriptions. One way to think about it in the continuum is by Higgsing the U(1) theory.
This description can be dualized to (1.5), this time with B a U(1) gauge field [9,14-16]. The
lattice system has an electric Zy one-form symmetry Gy, The symmetry G of the continuum
theory further includes a Zy one-form magnetic symmetry [9]. This emergent magnetic sym-
metry is different than in the 14+ 1-dimensional Zy gauge theory, where the magnetic symmetry
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is an ordinary (zero-form) global symmetry. Correspondingly, the operators charged under it

are not point-like. They are line operators el$B. Since they are not point-like, they cannot be
added to the Lagrangian and therefore, the emergent magnetic symmetry is robust.

1.3 Discontinuous Field Configurations and Universality

One of the reasons to look for a low-energy effective theory is that it is universal. This uni-
versality usually arises as follows. The high-energy theory has many (in fact infinitely many)
coupling constants, all of them affect the physical observables. When we focus on low-energy
observables, most of the dependence on the microscopic parameters is irrelevant. The low-
energy effective theory captures this fact as follows. It has a finite number of relevant and
marginal operators, whose coefficients affect the low-energy observables. The coefficient of
irrelevant operators are suppressed by the high-energy scale, which in our case is a power
of the lattice spacing a. Therefore, their effect on low-energy observables is negligible. As
a result, the low-energy effective theory allows us to organize the dependence of low-energy
observables on the parameters more efficiently — more universally. It exhibits the relevant
parameters and hides the irrelevant ones.

Let us demonstrate it in a standard Euclidean scalar field theory. The low-energy theory
includes terms like (8M¢)2. The effect of higher derivative terms in the Lagrangian on low
momentum processes is negligible. They lead to corrections suppressed by powers of a?k?
(where k is a characteristic momentum). This is equivalent to saying that the effective action
is a power series in derivatives and the higher derivative terms are irrelevant.

In the examples below we will see two notable exceptions to this general picture. First,
in some cases, certain low derivative terms will be absent. This can happen either by gauge
invariance or by imposing a global symmetry. Then, the most relevant term in the Lagrangian
is a higher derivative term. Usually such higher derivative terms are negligible, but in this case
they are not.

More important for us is the fact that in some of our examples the expansion in derivatives
is not valid. This happens when some low-energy observables receive contributions associated
with arbitrarily large momenta. This is another manifestation of the UV/IR mixing we men-
tioned above. In that case, we can compute the observable using the leading order terms in
the Lagrangian, but terms with more derivatives lead to equally important contributions.

Let us discuss it in more detail and for concreteness focus again on the Euclidean scalar field
theory. Starting at short distance with a lattice, the configurations in the functional integral
are discontinuous. The values of the field ¢ at different lattice sites are independent. As
we said, the continuum limit includes terms of the form (a“¢)2, which force the field ¢ to
be continuous. In some of our cases, such terms will be absent and we will be motivated to
explore discontinuous field configurations.

For such discontinuous configurations, the expansion in the number of derivatives is ques-
tionable. Indeed, if we have a configuration ¢ with discontinuities in x, then the derivative
0, ¢ is infinite. And then terms in the Lagrangian with higher powers of J,, which are nomi-
nally suppressed by powers of the lattice spacing a (or some other UV cutoff), are not small.
The effect of such terms on the various observables, might not be negligible and they might
ruin the universality of the computation in the low-energy theory.

Below we will demonstrate these issues in various cases.” We will study continuum La-
grangians focusing on the leading order terms, and ignoring higher derivative terms. Then,
we will discuss various discontinuous configurations, both with finite and with infinite action.
We will show that in some cases higher derivative terms can change the quantitative results

“We thank P Gorantla and H.T. Lam for helpful discussions about these points.
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obtained by using only the leading terms. However, in the absence of fine tuning, they will
not affect the qualitative features.

Finally, we relate this discussion to a comment we made at the beginning of Section 1.2
when we discussed naturalness. The higher derivative terms that we neglect are invariant
under all the symmetries of the problem. The assumption of naturalness forces us to add them
to the Lagrangian with appropriate coefficients. Since we neglected them, those models where
these terms can change the quantitative conclusions are not strictly natural.

All these subtleties will not arise in Section 8, when we will discuss a gapped model. We
will argue that in this case these higher derivative terms are indeed negligible. In fact, there
is no local operator respecting the symmetry in the continuum Lagrangian, and the results
obtained from that Lagrangian are universal.

1.4 Summary

In Section 2, we follow [19] and study a 2+ 1-dimensional XY-model with interactions around
plaquettes, the XY-plaquette model. After reviewing the lattice model, we discuss a continuum
Lagrangian for the system. It is based on a compact (i.e. circle-valued) scalar field ¢ ~ ¢ +21
with the Lagrangian [19-25] (related Lagrangians appeared in [26-28])1°

_ Mo 2 1 2

It has two dipole global symmetries, which we refer to as momentum and winding (see Table
1). As mentioned before, discontinuous configurations of ¢ will play an important role in
the analysis of this model. In particular, the discontinuities imply that we should also identify
¢ ~ ¢ +2nw*(x) + 2nw? (y) where w*(x), wY (y) € Z are two discontinuous, integer-valued
functions.

In Section 3, we study the continuum limit more carefully and explore the space of func-
tions of our theory.

Section 4 is devoted to the spectrum of the model. Plane waves with generic momenta lead
to a Fock space of states with energies of order one in the continuum limit. The states that
are charged under the global symmetries have energy of order zla with £ the physical length of
the system (£* or £7). In the standard continuum limit, a is taken to zero with fixed £ and the
energy of these states diverges. A conservative approach would simply discard these states.
But being ambitious, we will analyze them in detail.!

In Section 5, we perform a duality transformation on (1.6) to find a theory of a compact
field ¢*Y ~ ¢*Y + 27 in the spin-two representation of the rotation group Z, with the La-
grangian'?

£=2 G072 —(8,8,6™)?
2 24 1.7)
o = ﬁ’ 17:47'52110-
The duality exchanges the momentum and winding symmetries between (1.6) and (1.7) (see
Table 1).
Such an exchange of momentum and winding states is reminiscent of T-duality of a compact

scalar in 1+ 1 dimensions. This is particularly surprising in this 2 + 1-dimensional system

10See [29] for a similar model. It also exhibits a subsystem symmetry and the related UV/IR mixing.

10ne might also be interested in the limit £ — oo with fixed a. This is the large volume limit with fixed lattice
spacing. In this limit, these states have low energy and must be included.

12Since the rotation group Z, is finite and the system has a charge conjugation symmetry, we can combine a
90 degree rotation with charge conjugation and interpret ¢*” as having spin zero. Similarly, by combining parity
with charge conjugation we can take it to be parity even.
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Table 1: Global symmetries and their charges in the 2+ 1-dimensional scalar theories
¢ and ¢*Y. The energies of states that are charged under these global symmetries
are of order 1/a. Detailed explanations will be given in the body of the paper.

Lagrangian

%(80¢)2 - ﬁ(axa_y¢)2

P (809 ) — (8,0, ™)

dipole symmetry

momentum

winding

(1p,15) (Jo =100, J™ = _%3xay¢) (Jo= %3x3y¢xwaxy = ﬁaofﬁxy)
currents 9pJo = 0x 0, J*
charges Q*(x) = 9§ dyJo =D, NI6(x —x,)
Q' (y)=$dxJy= I Nﬁy5(y —Yp)
$dxQ*(x) = $dyQ”(y)
energy O(1/a)
number of sectors L+ LY —1

dipole symmetry

winding

momentum

(12, 1o) Uy =3:0707¢,J = 32000) | (Uy” =MoGod™,J =—%3x9y¢xy)
currents E)OJg Y =0%3YJ
charges QY (x)= 9§ dyJy” =2, WE6(x —x,)

Q) =§dxty” =3 W 6(y —yp)

$dxQy (x) = $dyQy (¥)
energy O(1/a)
number of sectors L*+LV—1
duality map Wo = 4% u =42,
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Table 2: Analogy between the ordinary 1+ 1-dimensional compact scalar theory and
the 2 4+ 1-dimensional ¢-theory. Detailed explanations will be given in the body of

the paper.

(14 1)d compact scalar (24 1)d ¢ theory
lattice XY-model XY-plaquette model
fields d~d+271 ¢~ ¢ +2nw (x)+ 2wV (y)

Lagrangian | £=5(3,@)?—£(5,2)* | L£=2(0¢)*— 2(2,3,¢)
momentum momentum dipole
820J0 == axe , aojo = 3x 3nyy

(Jo = 5:00®,J° = 520%®)| (Jo = podo,J > = —38%87 ¢)

global symmetry
winding winding dipole
Aol =0%J 0oy = 0,0,

(J¥=50%0,0 =5=0,8) | (Jy” =5=0%07¢,J = 5=0¢)

duality T-duality Self-duality
R—1/R 412Uy < U

because all these states have energies of order % The analogy between these 1+ 1 and 2+ 1-
dimensional systems is summarized in Table 2.

Section 7 studies a gauge theory associated with the dipole global symmetry [20, 22, 23,
30-33]. (Related models were discussed in [25,27,28,34-44].) In most of the papers about
tensor gauge fields, the spatial components of the gauge field is a symmetric tensor. Here, we
follow the global dipole symmetry above and have a single spatial field in the spin two of Z,
with the gauge transformation rule

AO g AO + 30(1 5
(1.8)
Ay Ay, +0,0,a
with a ~ a + 27. There are no A, and A, components.
The gauge invariant electric field is
Eyy = 0yAxy — 0x0,A. (1.9)

This gauge theory is similar to an ordinary U(1) gauge theory in 1+ 1 dimensions. It does not
have a magnetic field and it has a 6-parameter. The Lorentzian Lagrangian is

L= _2Exy + %Exy .
e

(1.10)
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body of the paper.
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(14+1)d U(1) gauge theory | (2+1)d U(1) tensor gauge theory

gauge fields A,~A,+0,a Ay ~Ay+ G
Ayy ~Ayy +0,0,a
field strengths E, = 0yA, — 0, Ag Eyy = 0Axy — 04 0,A¢

flux $dr§dxE, =2mn $dr§dyE,, =2m Y, ny(6(x —x4)
3§dr§dexy =2135n,56(y —¥p)
Lagrangian L= giin + %Ex L= gieiny + %Exy
EoM 8E, =0 9pEyxy =0
Gauss law 0,E, =0 0, 0yE,, =0

electric one-form

electric tensor

U(1) global symmetry 00Jy =0, 0 J5 =0

angy == 0, 3x3ngy =0
7 2 0
0= ZExt 2

Xy _ 2 A
JO - geZEX.Y + 27

Just as an ordinary 1+ 1-dimensional U(1) gauge theory is effectively a quantum mechan-
ical system of a single variable, the holonomy, this system is also lower dimensional. It is
effectively 1+ 1-dimensional. In particular, it has no local excitation in 2 + 1 dimensions. The
effective 1+ 1-dimensional system is quite peculiar. The energy of its states is of order £a. This
is to be contrasted with the charged states of the non-gauge theory (Section 4), whose energy
is of order ela In the standard continuum limit, a — 0 with fixed ¢, the energy of these states
goes to zero and the system has an infinite vacuum degeneracy.'®> The analogy between these
1+ 1 and 2 + 1-dimensional systems is summarized in Table 3.

In Section 8, we consider a Zy version of this U(1) tensor gauge theory. We present two
dual continuum Lagrangians of this system. First, we Higgs the U(1) gauge theory to Zy using
a scalar ¢. Then, we dualize ¢, as in Section 5, to ¢* and find a BF-type description of the
system.

13Alternatively, as in the non-gauge theory, we can consider the large volume limit, £ — oo with fixed a, and
then the energy of these states diverges. This signals the fact that the spectrum of local excitations is gapped.
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The spectrum of this theory has
entropy scales like the length of the system.

We also present two lattice models that lead at long distances to this continuum model.
One of them is based on a Zy tensor gauge theory and the other is a Zy; version of the lattice
XY-plaquette model of Section 2, also known as the plaquette Ising model (see [45] for a review
and earlier references).

NL*+L7=1 gtates. It is infinite in the continuum limit. Its

Table 4: Comparison between the ordinary 1 + 1-dimensional Z, gauge theory and
the 2 + 1-dimensional Zy tensor gauge theory. Detailed explanations will be given
in the body of the paper.

(1+1)d Zy gauge theory | (2+ 1)d Zy tensor gauge theory

lattice Zy lattice gauge theory Zy lattice tensor gauge theory
or Zy Ising model or Zy plaquettte Ising model
fields B~B+2m1 ¢ ~ ¢ + 2w (x) + 2w (¥)
AHNAM"raHa AONA0+80(X
Ayy ~Ayy, +0,0,a
. _ N = N g4xy
Lagrangian L= 5-BE, L=0"E,,

electric one-form

electric tensor

on a torus

exp[iB] expli¢p™”]
Zy global symmetry
& symmetry operator ordinary zero-form dipole
. . X
exp[i 99 dxA, ] expli fxlz dx 55 dyAy,]
. Y
expli ff dx fylz dyAy,]
Zy charged probe particles fractons
defect expl[i fc(d tAy + dxA,)] expl[i f_ozo dtAy]
exp[i f;lz dx fc(d t3Ag +dyAyy)]
ground state degeneracy N NL L1

As in the examples in Table 2 and Table 3, this 2 + 1-dimensional Zy tensor gauge theory
is analogous to a 1 + 1-dimensional ordinary Zy gauge theory. We summarize this analogy in
Table 4. It is nice to see the hierarchy between these three situations. The systems in Table
2 have gapless local excitations. The systems in Table 3 do not have local excitations. Their
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Table 5: Spectra of the continuum field theories discussed in this paper. Depending
on the order of limits a — 0 or £ — 00, the energy of the charged states goes to zero

or infinity.
(2+1)d Lagrangian spectrum
scalar theory ¢ () — ﬁ (0.0,¢)* gapless local excitations
charged states at order ﬁ , “O%
U(1) tensor gauge theory A éEJz(y + %Exy no local excitations — gapped
charged states at order gezéa
Zy tensor gauge theory ZN—nquy Eyy no local excitations — gapped
large vacuum degeneracy

excitations behave like those of a lower dimensional theory. And the systems in Table 4 have
only a finite number of states (which diverges as L' — 00). We compare these theories in
Table 5.

Finally, in Appendix A, we compute correlation functions of the XY-plaquette model in the
continuum limit and demonstrate the subtleties in the space of functions.

Throughout this paper our spacetime will be flat. Space will be either a plane R? or a two-
torus T2. The signature will be either Lorentzian or Euclidean. And when it is Euclidean we will
also consider spacetime to be a three-torus T2. We will use x with i = 1,2 to denote the two
spatial coordinates, x° to denote Lorentzian time, and 7 for the Euclidean time. The spatial
vector index i can be freely raised and lowered. When specializing to a particular component
of an equation, we will also use (t, x, y) to denote the coordinates with t = x° 2

L x=xhy=x2
When we will consider tensors, e.g. A;;, we will denote specific components also as A,

j>
1.5 Preview of [1,2]

We will continue this line of investigation in [1] and [2], where we will present
3+1-dimensional versions of the systems in this paper. Just as the examples here are analogous
to certain ordinary 1 + 1-dimensional systems, there will be analogies between the examples
in [1] and [2] and certain ordinary 2 + 1-dimensional systems.

In [1] we will discuss two non-gauge systems. The first is an XY-plaquette model, which
is described at long distances by a scalar field ¢. The discussion will be quite similar to the
analysis in this paper. The other non-gauge theory will be based on a dynamical field (;l; in the
tensor representation of the rotation group. More explicitly, we will limit ourselves to systems
whose rotation symmetry is the cubic group (just as we limit ourselves here to systems with a
Z4 rotation symmetry) and the dynamical field qg will be in the two-dimensional representation
of that group. As in this paper, we will find exotic momentum and winding global symmetries
and will explore the spectrum of states charged under these global symmetries.

We will then study two different U(1) gauge theories obtained by gauging the momentum
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symmetries of the ¢ and ¢; systems. We will denote the gauge fields by A and A, respectively:.
Certain aspects of the gauge theory of A have been discussed in [20,21,24,30-32] (see [22,23,
25,27,28,33-44] for related tensor gauge theories). The gauge theory of A is related to gauge
theories discussed in [20]. These two gauge theories have new exotic global symmetries,
analogous to the electric and the magnetic generalized global symmetries of ordinary U(1)
gauge theories [9] and [10]. And they have subtle excitations carrying these global electric
and magnetic charges. (This is similar to what we see in Section 7.)

We will also show that the non-gauge theory of ¢ is dual to the A gauge theory. Similarly,
the non-gauge theory of d3 is dual to the A gauge theory. In every one of these dual pairs the
global symmetries and the spectra match across the duality. This is particularly surprising given
the subtle nature of the states that are charged under the momentum and winding symmetries
of the non-gauge systems and the magnetic and electric symmetries of the gauge systems.

In [2] we will study a 3 + 1-dimensional version of the discussion in Section 8. We will
present three dual continuum Lagrangians of the Zy tensor gauge theory. (One of these
was discussed in [20].) We will analyze the global symmetries, the gauge invariant observ-
ables/defects, and the spectrum of the Hamiltonian. We will match these continuum models
with three different lattice theories, which are dual at long distances. One of these lattice
models is the celebrated X-cube model [7].

2 The XY-Plaquette Model

2.1 The Lattice Model

In this section we review the 2 + 1-dimensional XY-plaquette model and its analysis in [19].

We study the system on a spatial lattice with L* and LY sites in the x and y directions
and we use periodic boundary conditions. We label the sites by s = (%, ), with integer
x=1,---,L¥and y =1,---,LY. When we later take the continuum limit, we will use x = ax
and y = ay to label the coordinates and {* = aL* and £” = aL” to denote the physical size
of the system.

The degrees of freedom are phase variable e!?s (and therefore ¢, ~ ¢, + 27). Their con-
jugate momenta 7, satisfy

[¢s, T ] = ias,s’ . (2.1)

The 2n-periodicity of ¢, implies that the eigenvalues of 7, are integers. The Hamiltonian is

H = g Z(ns)z _KZ COS(Axy¢s)

Dy Pz g = Psi1,941 — Pre1y — Pryr1 T Psy -

(2.2)

This lattice system has a large number of U(1) global symmetries, which grows linearly in
the size of the system. For every point X in the x direction, there is a U(1) global symmetry
that rotates the ¢,’s on the Xj-column simultaneously:

U, : ¢s— P+, Vs=(X,7) with X =X, (2.3)

where ¢ € [0,27). Similarly, for every point j, in the y direction, there is a U(1) global
symmetry that rotates the ¢,’s on the ¥,-row simultaneously:

U(l)yo Do ds e, Vs=(X,3) with § = J,. (2.4)

There is one relation among these symmetries; the composition of all the U(1)y, is the same
as the composition of all the U(1); . It rotates all the ¢,’s on the two-dimensional lattice
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simultaneously. In total, we have L* + LY — 1 independent U(1) global symmetries. We will
refer to these symmetries as the momentum dipole symmetries.

Let us modify the XY-plaquette model by including the following interaction across two
links:

E elPir1y o 2ib2 g olde 1y | olbr 410~ 2id2 g olPr51 4 ¢ (..
%y

(2.5)

This model and its global symmetries have been studied in [46]. This modification breaks
most of the U(1) global symmetries (2.3),(2.4), leaving only the overall U(1) symmetry that
rotates all the ¢,’s by the same phase. If space is noncompact, there are also two additional
U(1) global dipole symmetries:

<>

U(l);: ¢s_)¢s+)%(px’ Vs=(%,¥), (2.6)
U(]-)_/y ¢s_>¢s+y<py> Vs=(%,7). .
with parameters ¢, ¢, € [0,27). These symmetries are absent if we add also a more generic
interaction of spins across a single link. We will discuss these symmetries in more detail when
we consider this model in continuum following (2.15).

In Section 8.4 we will discuss the Zy generalization of the XY-plaquette model.

2.2 First Attempt at a Continuum Theory

Here we present a first attempt for the continuum Lagrangian of the XY-plaquette model. Cer-
tain aspects of this field theory have been discussed in [19-25]. We will return to the more
subtle issues in Section 3.

Let ¢ be a 2m-periodic real scalar field. (See Section 3 for more details about its periodic-
ity.) The Lagrangian in Lorentzian signature is

_Hog e L 2
L="(2¢9) 2“(8x3y¢) , (2.7)

where ug, u are two parameters with mass dimension +1.
The equation of motion

1
o 02 + o axzay%p =0 (2.8)
implies a momentum dipole global symmetry with currents [23]:

1
Jog=Ugoyp, JV =—=0%07¢,
0= UoS P " ¢ 2.9)

30J0 == 3x8nyy .

The Z, representations of the currents are (Reme, Rgpace) = (10, 12)-

Naively, we can write J*¥ as a total derivative of !¢, and study a more elementary current
with three spatial derivatives in the conservation equation. However, in Section 3, we will
argue that 3'¢ is not a well-defined operator in the continuum limit, while %87 ¢ is.

The conserved charges of the momentum dipole symmetry are

Q' (x) = jg dyJo, Q'(¥)= § dxJo,
(2.10)

%dXQX(X) = é dyQ’(y).
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The momentum dipole symmetry shifts the scalar field by arbitrary functions of one spatial
coordinate:

P(t,x,y) = ¢(t,x,y) +c*(x)+c(¥). (2.11)

On a lattice with L! sites along the x' direction, the number of these charges is L* + LY — 1.
These are the continuum limits of the U(1);,, U(1)y, symmetries on the lattice in Section 2.1.
When the global form of the momentum dipole symmetry is U(1) (as opposed to R), the

charges f;f dx'Q!(x") € Z are integers at any interval [xi,xé]. Equivalently, the charges
1

Qi(x!) are linear combinations of delta functions with integer coefficients (see Section 4.1).
The continuum limit of the ordinary XY-model also has a winding symmetry (which is not

present on the lattice):
; 1 . 1
Jt=—20, J=—0,9,
0" 2m ¢ on 09 (2.12)
30.](1) == 81J .

As we will see in Section 3, the operator d'¢ is ill-defined in the XY-plaquette model, and
hence, the ordinary winding symmetry (2.12) does not exist in its continuum limit.

Even though the ordinary winding symmetry (2.12) does not exist, there is a winding dipole
global symmetry [23]:

1 1
Jy ' =-=0%0Y¢, J=-=0y9,
°  2r; ¢ 27 09

Ooy” =8%37J.

(2.13)

The Z, representations of the currents are (Reme, Rspace) = (12, 1p). This winding dipole sym-
metry cannot be integrated to (2.12) since 8'¢ is not a well-defined operator. The winding
dipole symmetry is a global symmetry of the continuum field theory, but not of the lattice
XY-plaquette model.

The charges of the winding dipole symmetry are

Q’;y(X)=§dyJ§y, Qﬁy(y)=jgde§y,
(2.14)
f dxQ (x) = § dyQ}’ ().

Again, when the global form of the winding dipole symmetry is U(1) (as opposed to R), the
charges ny (x!) are linear combinations of delta functions with integer coefficients (see Sec-
tion 3.2). On a lattice with L' sites along the x' direction, the number of these charges is
L*+LY—1.

Let us deform the Lagrangian (2.7) to:

L= - @801 - 5 (@20 + (32 2.15)
The last term is the continuum limit of (2.5). In the special case when u’ = 2u, the Lagrangian
is invariant under the full continuous SO(2) rotation group and not only its Z4 subgroup. (This
S0O(2) invariant model was studied in [27].) This deformation renders the continuum limit
of 9;¢p smooth. Hence, the ordinary winding symmetry (2.12) exists and the winding dipole
symmetry (2.13) becomes trivial.

The equation of motion of (2.15)

1 1
Uods +—0207¢ +—(85¢ +8,)¢)=0 (2.16)
u u
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means that the conserved momentum dipole current (2.9) is modified

Jo=uod®,

X 1 X xx 1 X X 1

JY =—23%3Y¢, J =——0%0"¢, Jyyz——,ayaw, 2.17)
u u u

OpJo = axaijy + 0,0, + 8y8nyy .

Now the Z, representations of the components are (Ryjme, Repace) = (19, 1o ® 15, @ 1,). (Since
0;¢ is a meaningful operator, we can also express it in terms of currents with a single derivative
and a conservation equation with three derivatives.)

The previously conserved charges (2.10) are no longer conserved. But the overall U(1)
charge

Q= § dxdy J, (2.18)

is still conserved. In addition, on R? we also have two conserved dipole charges, which are
integrated versions of (2.10) with a linear function of x':

g~ =§dxdny0,
(2.19)

q” =§dxdnyO.

They implement
P(t,x,y) = ¢(t,x,y)+C*x+Cy, (2.20)

with constants C*,CY € R. These dipole charges were studied in [27].
Note that although these dipole charges q*,q” are meaningful only on R?, the conserved
dipole current (2.17) is defined locally and it exists more generally.

3 The Fields

3.1 The Continuum Limit

In this section we carefully take the continuum limit of the XY-plaquette model.
As a warmup, let us start with the continuum limit of the XY-model. There is a phase
variable e'®s at every site s = (X, ¥). The interactions consists of terms across a link:

expliA, ¢ ] =explicgiry —idg s ],

3.1
explil, b,] = explids g1 —idhs 9] G-D

For a typical lattice configuration, the difference between two neighboring ¢, is order 1, i.e.
A;¢p, ~ 1. In the continuum limit, we consider smooth configurations, such that

Ay ~ % <1. (3.2)

Here a is the lattice spacing and { is a characteristic size of the system. Since A;¢, < 1, it is
clear how to resolve the ambiguity in assigning a real (as opposed to a circle-valued) A;¢; to
the link - take |A;¢,| < . Then we can define the derivatives

1

3i¢s = —ie_id)saiei% = %Ai(]bs ~ Z . (33)
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This definition makes sense even when ¢, is discontinuous as a real number, but is smooth as
a phase, i.e. e!%s varies slowly. By contrast, a typical lattice configuration has &; ¢, ~ %, which
is excluded from the continuum theory.
Equivalently, we cover the space with patches in which ¢, is a real number and the tran-
sition functions involve shifts of ¢; by 2nZ. Then, the derivatives are taken in each patch.
Now we turn to the XY-plaquette model. We have a phase variable e'%: at every site s and
the interactions are around plaquettes:

explil,, ] = expi(Pgi1 941 — i1y — Pryr1 + P2 g)] - (3.4)

For a typical lattice configuration, the difference between two neighboring ¢,’s is order 1, and
therefore A, ¢, ~ 1. In the strict continuum limit, we consider smooth configurations, such

that
2

Arybe~ g3 <1 (3.5)

and we define the double derivative as
1
axayqss = ;Ax}mj)s. (3.6)

2

Again, since A, ¢ ~ ;f—z < 1, itis clear how to resolve the ambiguity in assigning a real (as op-
posed to a circle-valued) A, ¢, - take [A,, ¢;| < 7. By contrast, a typical lattice configuration
has 9,0, ¢, ~ %, which is excluded from the continuum theory.

One new element here, which was not present in the previous case of the XY-model, is that

2 .

even if A, ¢s ~ ?—2, e!?s might not vary smoothly. For example, a configuration of ¢, which
depends discontinuously only on one coordinate, say x, has A, ¢, = 0. Since the changes in
¢, between neighboring sites are not small, there is no natural way to define the derivative

O Ps-
More precisely, we could try to define the derivative using the product across a link

expliad, ¢,] = explid(zi1,5)]lexpl—ig(z 5], (3.7)

but there is no natural way to define Jd, ¢, without an additive ZT”Z ambiguity. Therefore,
while the double derivative J, ) ¢, has a smooth continuum limit, the single derivative J;¢;
does not.'*

We can be more ambitious and study also more singular configurations. In the strict con-

tinuum limit, A, ¢ ~ ‘;—j, but we can also consider configurations with
a
Dyyps ~ 7 < 1. (3.8)

Here 9,9, ¢ includes terms of order 1/a, or equivalently, a single delta function. Again, since
Ay s ~ % < 1, it is clear how to resolve the ambiguity in assigning a real (as opposed to a
circle-valued) A, ¢; - take |A,, ¢4| < .

Let us consider a configuration whose A, ¢, ~ a/¢:

X

=V, (3.9)

d(x,y)=2m

where WY (y) € Z is an integer-valued, discontinuous function. We take it to be piece-
wise constant with a finite number of segments. ¢ (x, y) is continued periodically outside

“Because of this, we cannot write the double derivative as —id, (e 7' 3, e'%*).
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0 <x<{%,0<y <. Its second derivative 3,0, ¢ = 2nlixaywy (y) involves the infinite
function

oW (=T W+ @)W (]~ (3.10)

Note that A, ¢, = a?o, d,¢ ~ 7= < 1. The action of this configuration is of order 1/a.
When WY (y) is not piecewise constant, the action of this configuration can be higher than
order 1/a. Suppose the number of segments of WY (y) is of order 1/a, such a configuration has
action of order 1/a?. Even though its action is of the same order as a typical lattice fluctuation,
it carries nontrivial charges under a winding global symmetry (see Section 4.2).
In summary, as long as |A ., ¢| < 1 (either A, ¢ ~ ‘lf—i or A,y ¢; ~ 7), we can unambigu-
ously resolve the 27-periodicity of A, ¢, by assigning to it a real value A, ¢| < 7 and then

we can define the double derivative as (3.6). In the strict continuum limit, A, ¢ ~ ?—i and
this second derivative is finite. For A, ¢, ~ 7, it is infinite and scales like a one-dimensional
delta function.

As discussed in Section 1.3, higher derivative terms and terms with higher powers of ¢
could potentially ruin the universality of the answers we get for such configurations. Indeed,
the precise coefficient for the action of order 1/a can be modified by these terms. But these
higher derivative terms generically do not change the qualitative features of these configura-
tions.

We review the various classes of functions in the continuum limit of the XY-plaquette model:

* Typical lattice configurations have A, ¢, ~ 1. Since in the continuum limit, we take
the lattice parameter K in (2.2) to infinity, they are suppressed in the continuum limit.

. . . . 2 . .
* The configurations in the strict continuum limit have A, ¢; ~ 7z and hence have a finite
action. The corresponding states have finite energy. This set of configurations includes
discontinuous functions.

* We are also interested in configurations with A, ¢, ~ 7- Even though their action
is of order %, which is infinite in the continuum limit, it is smaller than the action of
the typical lattice configuration. Therefore, these configurations are distinct from the
generic lattice configurations. We will discuss this in more detail below.

3.2 Transition Functions

Above, we discussed the continuum limit of the XY-plaquette model and found that while
the continuum limit ,.d, ¢ exists, that of J;¢ does not. In this section we will give another
interpretation of these features from the continuum field theory point of view.

On the lattice, the fundamental variables are U(1) phases e'%s. In the continuum, it is more
natural to work with the R-valued field ¢. The field ¢ is subject to discrete gauge symmetry
and requires transition functions.

Locally, the real scalar ¢ is subject to the following discrete gauge transformation

o(t,x,y)~p(t,x,y)+2nw*(x)+ 21w’ (y), (3.11)

where w!(x!) € Z is any integer-valued, discontinuous function. In other words, we gauge
a Z momentum dipole symmetry, so that the momentum dipole global symmetry is U(1) (as
opposed to R). Because of this identification, operators such as 30q5,3x8y¢,ei¢ are well-
defined local operators, while ¢ and 8¢ are not.

Let us discuss some global issues. In standard situations, ¢ is a smooth function. Then,
the global structure is described using patches in which ¢ is a smooth real function and there
are transition functions in the overlap regions between patches. Let us try to imitate such a
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construction for our ¢, which is not smooth. A more detailed discussion will be presented
in [47].

We cover the manifold with patches I{, that are locally open rectangles. ¢(q) is single-
valued in each rectangle U,. At the overlap between two patches U;, U,, the ¢(q)’s from
neighboring patches can differ by a transition function g;5(x, y):

byt x,¥) = P)(t, x,¥) + g12(x, ¥),
ng(xa.y):27TW)1C2(X)+27TW{2(}/)> (an’)eulnuza

(3.12)

where wilz(xi) € Z are integer-valued, piecewise constant functions defined in &; NU,. On
the triple overlaps U; NU, N U5 between three patches, the transition functions are subject to
the cocycle condition:

812+ 823+ 831 =0. (3.13)

The transition function g,,(x, y) is generally also not a single-valued function, but is itself
a section that requires transition functions. Since the transition function can have its own
transition function, the ordinary winding charge 55 dx'8;¢ is not well-defined.

Let us make this more concrete for a rectangular 2-torus T? of lengths £*,¢”. The x,y
coordinates are periodically identified, x ~ x +£*, y ~ y +{”. We define the integral

1
c(p)= —§ dxf dyo,0,¢ (3.14)
27
over the spatial 2-torus T?. Note that c(¢) is the total winding dipole charge:

o($) = jg dxQ¥ (x) = jﬁ dyQ (). (3.15)

c(¢) is analogous to the characteristic class that measures how “twisted" the bundle is. More
specifically, c(¢) measures the winding of the transition function. In particular, if ¢ is a glob-
ally single-valued (possibly discontinuous) function, or if the transition functions are single-
valued, then this integral vanishes.

Let us explore different classes of configurations for ¢ in a hierarchical order.

1. ¢ is smooth in each patch. At the overlap between two patches, the transition function
is therefore a constant, g;5,(x,y) = 27n, n € Z. Such configurations have finite action
and are similar to the configurations in an ordinary theory of compact boson. A general
gauge transformation (3.11) would bring such a configuration outside this class.

2. ¢ is not necessarily smooth inside a patch, but 9,9, ¢ is well-defined and finite. For
example, ¢ depending only on x, i.e. ¢ = f(x) with periodic e!® = /) but with
discontinuous f(x). Such configurations do not carry winding dipole charge. Despite
the discontinuities, such configurations still have finite action since 0,9, ¢ is finite.

3. ¢ is not necessarily smooth in each patch and 6,9, ¢ can have a 6-function singularity
in x or in y, but not in both of them. Now the transition functions can be discontinuous,
g12(x,y) = 2nwi,(x) + 2nw}1'2(y). Furthermore, the transition functions might not
be single-valued and require their own transition functions. Such configurations have
infinite actions of order 6(0) ~ %, but we will argue that they are still meaningful in the
continuum field theory.

Let us contrast the above three classes of configurations for the continuum field theory with
a typical lattice configuration. @ On the lattice, ¢, is subject to the identification
¢s ~ ¢s +2nw(%,¥) for any w(X,§) € Z. A typical lattice configuration has A, ¢ ~ 1,
leading to a divergent action of order 1/a? in the continuum limit. In this limit, we exclude
such configurations, but we still study configurations whose A, ¢; ~ a or A, ¢, ~ a’.

We discuss two examples of configurations for ¢ that belong to the third class.
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Example 1 Consider

qb(t,x,y)=2n££ny(y)+27'c€lny(x) (3.16)

where Wi(x!) € Z. Across x = 0, the transition functions is gy (y) = 2nWY(y). Similarly,
across y = 0, the transition functions is g(,)(x) = 2rW*(x). At the quadruple overlap around
x =y =0, since Wi(x!) are single-valued, discontinuous functions, these transition functions
obey the cocycle condition automatically. The integral c(¢) vanishes for this configuration of

o.
Example 2 Consider the function on the two-torus

(3.17)

B(6,x,y) = 27| 70y —yo) + £O(x —x0)— - |

0xgy
for some 0 < xo < £¥ and 0 < y, < £”.'> We view (3.17) as a function of —e < x < {* +¢ and

—e < y < {Y + € for infinitesimal positive €. This function is not single-valued on the torus
and needs nontrivial transition functions on the overlaps across both x =0 and y =0

g () =d(x =L, y)—¢p(x=0,y) =210(y — yo),
g(y)(x) = ¢(X,y = W)—qb(x,y = 0) = 27'[@()( _XO)'

These transition functions are also defined for —e < x < {* 4+ ¢ and —e < y < ¢ + € and they
need their own transition functions, which satisfy a cocycle condition

(3.18)

)y =) — g (¥ =0) = g)(x =€) —gH(x =0) =27 (3.19)

As advocated previously, the ordinary winding charge, say in the x direction, is
ﬁ 3§ dxd,.¢ = O(y — yy), which is not single-valued and ill-defined. We will see that the
winding dipole charges are well-defined for this configuration in Section 4.2.

The integral c(¢) for this configuration is

i| =1. (3.20)

C(¢)—§dx§dy —6(y— yo)+—5(x xo)—My

More generally, c(¢) can be expressed in terms of the transition functions as

(@)= [g(x)(y—f )— 8y =0)]= n[g(y)(xzﬁx)—g(y)(XZO)]. (3.21)

4 Momentum and Winding Modes

In this section we discuss the spectrum of states of the continuum ¢-theory with the minimal
Lagrangian in (2.7) . In addition to states with energy of order one, we will also discuss states
with energy of order %, which become infinite in the continuum limit. More specifically, these
are the lowest energy states carrying a conserved charge.

Following the discussion in Section 1.3, we can further include higher derivative terms
respecting the global symmetry of the model. While such higher derivative terms do not affect
the generic plane waves, they do change the quantitative behaviors for the charged states.
Nonetheless, they will not affect the qualitative features such as the 1/a scaling of the energy
for these states.

When x, = 0 (and similarly for y, = 0), more care is needed. Unlike for generic x,, there is now a discon-
tinuity at x = 0, even taking into account of transition functions that shift ¢ by 2nZ. This discontinuity leads to
0,0,¢ =2m [%E(y —Yo)+ éiyé(x) Wy] which also gives c(¢) =1 (3.20).
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4.1 Momentum Modes

Let us consider a plane wave mode in R>!:
¢ — Ceiwt+ikxx+ikyy . (4.1)

The equation of motion (2.8) gives the dispersion relation

2_ 1 .50
w e kxky . (4.2)

For generic k, and k,, the spectrum is standard, but with a nonstandard dispersion relation.
We will discuss it in detail soon.

Classically, the zero-energy solutions w = 0 are those modes with k, = 0 or k, = 0.
In particular, there are classical zero-energy solutions with k, = 0 but arbitrarily large k,,
and vice versa. The momentum dipole symmetry (2.9) maps one such zero-energy classical
solution to another. For this reason we will call these modes the momentum modes. Therefore,
classically, the momentum dipole symmetry appears to be spontaneously broken. As we will
soon see, this picture is incorrect quantum mechanically.

Note also that the winding symmetry (2.14) vanishes on the plane waves (4.1) and there-
fore this symmetry does not act on the corresponding states.

Let us quantize the ¢ theory on a 2-torus of lengths £*,¢”7, so that the momenta are quan-
tized, i.e. k; = 275% with n; € Z. Written in momentum space, the Lagrangian is

2,2
. M o2 nin
L =100 Z ?anqsnx,nyaoqb—nx,—ny_de)nmnyd)—nm—ny B (43)

Ny,Ny €Z

where ¢nx,ny are the Fourier modes of ¢. The quantization of modes qbnx’ny with n, # 0
and n, # 0 is straightforward. Each such mode behaves as a simple harmonic oscillator with
ground state energy
_ T |nx ny'
VBl
On top of this ground state we have a Fock space of states of ¢ quanta. Other than the strange
dispersion relation, this part of the spectrum is standard.

Let us turn to the modes with n,n, = 0. As we said above, the momentum symmetry acts
on these modes and therefore we refer to them as momentum modes.

For these momentum modes the restoring force of the harmonic oscillator vanishes. There-
fore, the corresponding modes can make large field excursions and we need to take into ac-
count the identification (3.11). To make the identification manifest, we return to the position
space, and focus on the modes with either n, =0 or n,, = 0:

, ny#0,n,#0. (4.4)

qb(t,x,y):¢x(t,x)+¢y(t,y)+-~, (4.5)

where the --- are those modes with n, # 0 and n, # 0. ¢*(t,x), ¢” (¢, y) are point-wise 27
periodic by (3.11):

di(t, xD) = oi(t, xD) +2awi(x), wilx) ez (4.6)
They share a common zero mode, which implies the following gauge transformation

¢X(t7x)_)¢x(t9x)+c(t)9 ¢y(t:}’)_’¢y(t;J’)_C(t) (47)
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The Lagrangian of these momentum modes is

L:%[ﬁjgdx(¢5x)2+e"jgdy(¢3y)2+zj€dxsi;xjgdy(f)y} (4.8)

It is easy to check that it is consistent with the gauge symmetry (4.7).
The conjugate momenta are

nx(t) X) = nu’O (zyd.)x(t,x) +§ dY¢y(t,Y)) 5
(4.9
T (t,¥) = po (fxdiy(t,y) +§ dxdi"(t,X)) :

They are subject to the constraint:

fdxrcx(x) = é dyn?(y), (4.10)

which can be thought of as Gauss law from the gauge symmetry (4.7). In fact, the momenta
are the charges of the momentum dipole symmetry, Q!(x?) = mi(x!).

The point-wise periodicity of ¢! implies that their conjugate momenta ! are linear com-
bination of delta functions with integer coefficients:

Q) =m* =) N¥8(x—x,), Qy)=n"= > NJ5(y—yp),
a B

4.11)
N EZN;C :ZNy, NX,NJ €.
@ B
Here {x,} and {yg} are a finite set of points on the x and y axes, respectively.
The Hamiltonian is easily found to be
H =§ dxm*¢* +§ dym’¢? —L
(4.12)

:m [fx‘%dx(nx)2+€y§ dy(ny)z—(§ dxnx) (f dyny)} .

To check it, substitute (4.9) in (4.12) to express it in terms of qb to find the Lagrangian (4.8).
The configuration with the lowest momentum dipole symmetry charge is

nt=06(x—x0), 7 =08(y—Yo) (4.13)
for some x, yo. It has energy

1

More generally, the energy of the momentum mode (4.11) is

1

H=——
2uol* LY

5 (NE?5(0) + £ Y (N7)*5(0)—N? | . (4.15)
a B

We see that in the quantum theory, the energy of the momentum modes is infinite.
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To regularize this infinity, we can place the theory on a lattice with spacing a.'® Then the
energy of the momentum modes scales as

11
—_—. (4.16)
o La
In the continuum limit a — 0, the momentum modes are much heavier than the generic
modes (4.4) whose energies scale as 1/(uq??). In finite volume, the ground state is the unique
eigenstate whose t'(x!) eigenvalues are all zero, and the classically zero-energy configurations
with either n, = 0 or n,, = 0 are all lifted quantum mechanically.

In addition, there are momentum modes whose 7! includes infinitely many delta functions.
For example, if the number of delta functions is of order 1/a, the energy of such momentum
modes scales as 1/a? in the continuum limit. Even though it is of the same order as a typical
lattice excitation, the analysis of these modes in the continuum is still meaningful because they
carry nontrivial conserved charges.

Let us now consider the infinite volume limit. From the continuum point of view, it is
natural to first take a — 0, and then £ — oo. In this order of limits, the momentum modes are
all lifted, and the energies of the generic modes are brought down to zero as we take { — ©o.

We conclude that, in finite volume, the momentum dipole symmetry (2.9), which appears
to be spontaneously broken in the classical theory, is in fact restored in the quantum theory.
Not only is it restored, but all the states carrying its charge, have infinite energy in the strict
continuum limit. Yet, we can still make sense of them as in (4.15).

If instead we first take { — oo and then a — 0, the momentum modes are still heavier
than the generic modes, but their energies both go to zero.

4.2 Winding Modes

The most general winding configuration can be obtained by taking linear combinations of
(3.17):

X Y x Xy
¢t x,y)=2m | = (;W,{@(y—y,s)) +5 (Zajwa @(x—xa))—WW ,

(4.17)
— X _ Yy X Y
W= wr=>w, wrwl ez,
a B
where {x,} is a finite set of points between 0 and £*, and similarly for the yp’s.
This configuration realizes the winding dipole charges:
1

QY () = f dy2.8,6 = ) Wi (x—xo),

‘ (4.18)
(y)= = b dxa,d => W5
Qy (J’)—% xxy¢_ﬁ B (.y_.yﬂ)

The charges are sum of delta functions with integer coefficients. It has a nontrivial c(¢):

c(¢)=§dx§dy %(;Wg5(}/—yﬁ)) +£iy(za:wo’f 5(x—xa))—W€x1£y =W.

(4.19)

®Note that the underlying 2 + 1-dimensional system is in the continuum. Only the 1 + 1-dimensional system
(4.8) is placed on a lattice.
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The Hamiltonian of these winding modes is

= —}dx} d}/(é’xé’yql>)2

= T [U jg dx(W))*5(x —xq)* + l%dy(W,jy)%(y—yﬁ)Z—

2
My] (4.20)

ex 5 Z(WX)25(0) + 07 Z(wy)25(0) w2

The energy of the winding mode is infinite in the continuum limit. To regularize this infinity,
we can place the theory on a lattice with spacing a, then the energy of the winding state scales

as 1/(ufa).
There are also winding modes whose charges ny involve infinitely many delta functions.
Such winding modes have energy of order 1/a?.

5 Self-Duality

Let us rewrite the Euclidean Lagrangian for ¢ as

1 i~
Ly “2032 + B B 4 5B (00,9 —EB)+ E(a ¢ —B) (5.1)
where B, E, ,, E,B*Y are independent fields. We denote the Euclidean time as 7. If we integrate

out these fields, we recover the original Lagrangian (2.7) for ¢.
Instead, we integrate out only B, Eyy

1 =~
EE = E2 + ¢
812Uy 87

- i~ i~
2By B + B 0,0, + o —Ed:¢ (5.2)

Next, we integrate out ¢ to find the constraint
0.E =0,0,B". (5.3)

This can be solved locally in terms of a field ¢*” with spin 2 under the spatial Z,:

E=08.0,¢,
- v (5.4)
B =3 ¢ .
The Lagrangian becomes
/:zO 2 1 Xy\)2
=—(0, ™)+ —=(3,0,¢*7)", 5.5
§ (0077 + 5208, (5.5)
where
~ _ M ~_ 4.2
Ho—ﬂ, U=4n"ug. (5.6)
i

Hence the ¢ theory is dual to a theory of ¢*¥, which transforms in the spin 2 representation
of the spatial Z, symmetry.

Let us clarify why we refer to this as self-duality. Since the spatial rotation symmetry is
discrete, it can be redefined by discrete internal global symmetries. Both the ¢ and the ¢*”
theories have a charge conjugation symmetry, C : ¢ — —¢, C : ¢*¥ — —¢*Y. The unitary
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global symmetry is therefore Zg x Z,. Let R be the generator of the spatial Z, rotation, R* = 1.
¢ has spin 0 under R and ¢*” has spin 2 under R. However, if we say that the rotation
generator of the ¢*Y theory is R = RC, then ¢*¥ has spin 0 under R, i.e., the sels-duality
maps R «—» RC. More abstractly, the representations for ¢ and ¢*” are related by an outer
automorphism of the Zg x Z4 symmetry group. Similar nontrivial maps of representations by
outer automorphisms are common in dualities.

¢*7 is subject to the identification

¢M(t,x,y) ~ @™ (8, x,y) + 2nw* (x) + 21w’ (y), (5.7)

where w'(x!) € Z. Similarly, the local operators include dy¢*, 8, 2,9, e butnot d1¢*Y.
Just like the ¢ field, ¢~ is generally a section over a bundle with nontrivial transition func-
tions.

There is no ordinary winding symmetry of ¢*> because d'¢*¥ is not a well-defined op-
erator. Even though there is no ordinary winding symmetry, there is a dual winding dipole

symimetry:
1 1
Jo=—20.0,6"Y, JV=_—"0,p*
07 op X y e 2 b (5.8)

a()JO == ax %,JXJ’ N

with (Reme, Rspace) = (10, 12). This is dual to the momentum dipole symmetry (2.9) of ¢.
The equation of motion in the Lorentzian signature

1
~ 42 _ 242
Hody ™ = _ﬁax a9, (5.9)
implies a dual momentum dipole symmetry

1
Y =1p0yp™, J=—=0,0,¢",
0" = Hodo® 70 (5.10)

OoJy” =0%37J,

with (Riime> Repace) = (12, 1g). This is dual to the winding dipole symmetry (2.13) of ¢.
Under the duality, the momentum modes (4.11) of ¢ are mapped to the winding modes
(4.17) of ¢*V by N Oll — WO‘;. The momentum dipole charges and the winding dipole charges
are exchanged Ql — ny . Indeed, the Hamiltonian of the momentum modes (4.15) agrees
with that of the winding (4.20) under the above mapping and (5.6).
Our self-duality, which is wrong on the lattice, is true not only in the strict continuum limit,
but also for the charged states with energy of order %

6 Robustness and Universality

Since we consider discontinuous field configurations, higher derivative terms might not be
suppressed and the universality of the leading order terms in our Lagrangian (2.7) could be
affected. Let us discuss it in more detail.

We start with the momentum modes in Section 4.1. In addition to the leading order terms
in (2.7), we can add to the Lagrangian higher derivative terms. In the spirit of naturalness,
we limit ourselves to terms that preserve the momentum dipole global symmetry, e.g.,

g(300,¢)* . (6.1)

Since this term has more derivatives than the leading order term, its coefficient g will be taken
to be of order a®. Therefore, it has a negligible effect on any generic plane wave mode of finite
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energy in the a — 0 limit. This is not true for the momentum modes, where 7 ~ Jy¢ is a sum
of delta functions. Therefore, the contribution from the higher derivative term (6.1) to the
momentum modes is not suppressed by the additional power of derivative J,.. More precisely,
such a higher derivative term changes the energy of a momentum mode by order g/a® ~ 1/a.

We conclude that while the precise energy of these momentum modes is subject to correc-
tions from the higher derivative terms, their scaling in 1/a is universal. A similar conclusion
holds for the other heavier momentum modes involving infinitely many delta functions.

This example demonstrates that in this case the expansion in the power of derivatives
might not be valid. Logically, there could be a precise cancellation between different terms
each contributing at order 1/a. However, such a cancellation is not natural and depends on
fine tuning of the parameters.

Next, we discuss the effects of higher derivative terms on the winding modes in Section
4.2. To be concrete, let us consider adding

g(320,¢)> (6.2)

to the minimal Lagrangian (2.7), with the coupling g of order a®.!” As in the discussion
around (6.1), this term respects all the symmetries of the problem and it has negligible effect
on the generic plane wave modes of finite energy. The winding modes, by contrast, have
discontinuous ¢ and delta functions in 9,3, ¢, and therefore the correction to their energy
is not suppressed by the additional derivative J,. More specifically, the contribution to the
energy of a typical winding mode from this term is of order g/a® ~ 1/a. Therefore, as in
the discussion of the momentum modes, the precise, quantitative results for the energy of the
winding modes are not universal, but their qualitative scaling in 1/a is. A similar conclusion
holds for the other heavier winding modes involving infinitely many delta functions.

Finally, we discuss the robustness of the ¢ -theory (2.7). In the XY-plaquette lattice model,
we impose the (1j, 1,) momentum dipole symmetry as our microscopic symmetry Gyy. The
continuum field theory of ¢ has a larger global symmetry G;z that includes not only Gy,
but also the (1,,1,) winding dipole symmetry. The Gyy-invariant operators include e!®™,
which violates the emergent (1,, 1) winding dipole symmetry. Such operators can affect the
robustness of the theory. However, as discussed in Section 4.2, the state created by /¢ has
energy of order % Therefore, e/¢™ is a trivial operator in the low-energy limit. It is very
irrelevant and cannot affect the robustness. This is to be contrasted with the ordinary 1 + 1-
dimensional compact boson at small radius where the relevant winding operator destabilizes
the conformal field theory.

In fact, we will now argue that our low energy theory is even more robust. It is robust
even under deformations that violate the (1,, 1,) momentum dipole symmetry.

The simplest operators violating this symmetry are of the form e!?. They create momentum
modes with energy of order 1/a. Therefore, these operators are very irrelevant. (See Appendix
A, for a computation of the two-point functions of e'® which demonstrates it.) Therefore, de-
forming the low-energy theory by operators like e!? does not affect the long distance behavior.

One might question the robustness of the theory under deformations by operators of the
form 8, ¢, or by rotation invariant operators like (3, ¢ )+ (9, ¢ )2. From the low-energy point
of view, these operators are not well-defined, because they are not invariant under the gauge
transformation (3.11). Therefore, they are not allowed deformations.

However, one might still question the robustness under deformations of the underlying
lattice model by operators of the form

elPs+1y o~y , (6.3)

In fact, under the duality in Section 5, this higher derivative term is dual to the term g(8,0,¢)? (6.1).
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i.e., standard nearest neighbor coupling of the microscopic spins. This operator
violates the global symmetry, but it is a well-defined, gauge-invariant operator. In the
continuum limit of the standard XY model, this operator = becomes
el PCHay)e=i0(Y) = 1 4iad, p(x,y) +ia—228{¢(x, y)— a—;(3x¢>(x, ¥))?+0O(a®) and after renor-
malization flows to operators of the form J*¢. In our case, afqb are not a valid operators, but
the continuum limit of (6.3) should still make sense. It violates the momentum symmetry and
can ruin the low-energy theory.

We claim that the continuum limit of (6.3) is also very irrelevant. One way to understand
it is to note that the product of operators

ein¢(X,)’)ein/¢(x/,y/) (6.4)

does not have a standard operator product expansion starting with el(+1)9(x.y) The product
(6.4) carries different subsystem symmetry charges than el(1+1)9(x.Y) " Therefore, we cannot
define operators like d, ¢ using this separated points product. Related to that, the product
(6.4) creates states carrying the subsystem symmetry. Such states have energy of order 1/a and
therefore they are also very irrelevant. In Appendix A, we will study the two-point functions
of (6.4) and will check this assertion in more detail.

We conclude that we can start at short distances with an arbitrary theory without the
momentum symmetry. Then, we can fine tune the parameters to find at low energies the
¢-theory (2.7). Once we find this low-energy theory, small deformations of the UV theory
translate to small deformations of the IR theory. Since all these operators are irrelevant, the
IR theory is robust!

7 U(1) Tensor Gauge Theory

In this section we study a tensor gauge theory in 2 + 1 dimensions. Its gauge symmetry is
a local version of the global U(1) dipole symmetry we discussed above. As we will see, it
exhibits peculiarities that are not present in ordinary U(1) gauge theories. We will also see
that in many ways it is reminiscent of an ordinary U(1) gauge theory in 1 + 1 dimensions.
In [1] we will study a similar gauge theory in 3 + 1 dimensions.

We can gauge the (1,, 1,) momentum dipole global symmetry of the ¢ -theory by coupling
the currents to the tensor gauge field (Ag, A, ):

JoAg +J VA, . (7.1)

The current conservation equation J,J, = 9,0, J*” implies the gauge transformation

AO g AO + aoa 5
(7.2)
Ay, — Ay, +0,0,a.
The gauge invariant electric field is
Eyy = 0pAcy — 0x0)A, (7.3)

while there is no magnetic field.

7.1 Lattice Tensor Gauge Theory

Let us discuss the lattice version of the U(1) tensor gauge theory without matter. We have a
U(1) phase variable U, = el and its conjugate variable E, at every plaquette. The gauge
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transformation e'® is a U(1) phase associated with each site s. Under the gauge transforma-
tion,

U, - U, el Bxy % (7.4)

where A, a; is a linear combination of a, around the plaquette p.

. There are two types of gauge 1.nvar1ant operators. The first type. is an operath E, at a
single plaquette. The second type is a product of U,’s along the x direction at a fixed y, or
vice versa.

Gauss law sets
Go= D 6pE, =0 (7.5)
pos
where the sum is an oriented sum (€, = 1) over the four plaquettes p that share a common
site s. The Hamiltonian is

1
H= —2ZE2, (7.6)
g p

with Gauss law imposed by hand.

The lattice model has an electric tensor symmetry whose conserved charge is proportional
to E,. Clearly it commutes with the Hamiltonian, which depends only on E,. The electric
tensor symmetry rotates the phase of U, at a single plaquette, U, — el U,. Using Gauss law
(7.5), the dependence of the conserved charge Q,, on p is a function of % plus a function of j.

7.2 Lagrangian

Motivated by earlier papers about related models, this gauge theory was studied in [22, 23,
31,33]. The Lorentzian Lagrangian of the pure tensor gauge theory is
1

r=Ltp 0

—E,, .
gez xy U og Xy (7.7)

Note that g, has mass dimension % and 6 is dimensionless.
We will soon show that the total electric flux in Euclidean space is quantized
35 dtdxdyE,, € 2nZ, and therefore the theta angle is 27 periodic 6 ~ 6 + 2.
The equations of motion are
pEyy =0,

7.8
0*8”E,, =0, 7:8)

where the second equation is Gauss law.

7.3 Fluxes

We place the theory on a Euclidean 3-torus with lengths ¢*, ¢, (" and explore its bundles. For
that, we need to understand the possible nontrivial transition functions.

Recalling the winding configuration (3.17), we take the transition function at T = £" to be
a gauge transformation with

—orl Loy — Yol —x)— 2
g0x, ) = 27| 220y — yo) + 0L —x0)— 2, 7.9)
ie.
Axy(TZET:x;y):Axy(T=O:x:y)+axayg' (7.10)
For example, we can have
T[1 1 1
Ay (®x,3) =2 | 280 =30+ 80— x0) — s |. (7.11)
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Such a configuration gives rise to electric flux:

e)(x) = § drjg dyE,, =216(x —xq),
(7.12)
ey)(Y) = j( dfjg dxE,, =215(y — ¥o)-

With more general such twists we have
e(x)(x) = § dT} dyExy = 2”ana5(x —Xq),
e)(y) = % deé dxE,, = 2“2%/55(}’ —Yp)s (7.13)
B

ana:Znyﬁ, Ny Nyp €L
a B

or in its integrated form

X2
ex)(x1,x5) = j{ drf dx} dyE,, €27Z,
X1

Y2
e(y)()’l,)’z) = % d’rjg de d.yExy € 21Z.
1

These quantized fluxes and their associated transition functions have been previously discussed
in [23].

(7.14)

7.4 Global Symmetry

The equations of motion can be interpreted as the current conservation equation and a differ-
ential condition for an electric tensor symmetry:

8Jy” =0, 715)
0,0,J;7 =0, '
with the current in the spin 2 representation 1, of the spatial Z, group:
2 0
xy _ 4 v
Jy? = ggE” + om (7.16)

We define the current with a shift by 6 /27 so that the conserved charge is properly quantized
(see (7.32)). Note that there is no spatial component of the current. This is analogous to
the electric one-form symmetry of the ordinary 1 + 1-dimensional U(1) gauge theory whose
current is J§ = %EX + % obeying JyJ; =0 and 0d,J5 = 0.
There is an integer conserved charge at every point in space, which coincides with the
current itself:
Q(x,y)=Jy" =N*(x) +N(y), (7.17)

where Ni(x') € Z. The differential condition 2, ang Y = 0 constrains the charge Q to be an
integer function of x plus an integer function of y.
Up to a gauge transformation, the electric tensor symmetry acts on the gauge fields as

Ayy DAy + () + (). (7.18)
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As a symmetry, it maps one configuration of A, to another with the same electric field.

This conserved charge exists also on the lattice.

The charged objects under this electric global symmetry are the gauge-invariant extended
operators defined at a fixed time:

X2
W(x)(xl’xz):exp[iJ dxfdyAxy] 5
X1

Y2
W(y)(yl,yz)=eXp[ij€dXJ dyAxy:| -
N

Only integer powers of this operator are invariant under the large gauge transformation of
the form (7.9). We can refer to such operators as Wilson strips. Note that gauge invariance
restricts the allowed positions of the strips. The symmetry operator U(f;x,y) = efQxy)
obeys the following commutation relation with the Wilson strip

(7.19)

UB;x,y) Wiy (xq,x2) = eiﬁW(x)(xl,xz)Z/{(ﬂ;x,y), if x; <x<x,

. ' (7.20)
UPB;x, Y)W (1, ¥2) = elﬁW(y)(}’b}’z)U(ﬂ;X,)’), if y1<y<ys.

These strip operators are the continuum version of the lattice operators constructed as
products of U, along a line.

7.5 Defects as Fractons

We now discuss defects that are extended in the time direction. The simplest kind of such a

defect is
o
exp |:1J thO] . (7.21)
—0o0

In Euclidean signature with compact time direction, the exponent is quantized by a gauge
transformation a = 27 that winds nontrivially in the time direction. This describes a single
static charged particle. Importantly, a single particle cannot move in space by itself. Gauge
invariance makes it immobile.

While a single particle cannot move in isolation, a pair of them with opposite charges —
a dipole — can move collectively. Consider two particles with charges %1 at fixed x; and x,
moving in time along a curve C in the (y,t) plane, y(t). This motion is described by the
gauge-invariant defect

X2
W (xy, x5,C) = exp |:1J dxj (dtaxA0+dyAxy)] (7.22)
X1 C

Note that the integrand fc (d t0Ag+dyAy, ) is gauge-invariant for any curve C without end-
points, e.g. running from the far past to the far future. Similarly, we can have a pair of particles
separated in the y directions moving collectively in the x direction.

Finally, the operators (7.19) are special cases of these defects where C is a closed curve
independent of time.

The restricted mobility of these probe particles is the hallmark of fractons.

7.6 An Effective Theory and the Spectrum

We place the system on a spatial 2-torus with lengths £*,£” and study its spectrum.
We pick the temporal gauge A, = 0 and then Gauss law tells us that

0*3E,, =0. (7.23)
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It is solved, up to a time independent gauge transformation, by

Ay = elyf"(t,x) + eixfy(t,y), (7.24)

where the normalization was picked for later convenience. Note that there is no mode with
nontrivial momenta in both the x and y directions. This is analogous to the ordinary 1+ 1-
dimensional U(1) gauge theory where there is no propagating degrees of freedom.

Only the sum of the zero modes of [ly f*(x) and élx fY(y) is physical. This implies a gauge
symmetry:

FX(t,x) = fX(t,x)+ £ c(t),

(7.25)
e y) - fr (e, y)— (o).
To remove this gauge ambiguity, we define the gauge-invariant variables f! as
£x X 1 y
fHex)= (6, x)+ = P dvf (t,y),
1 (7.26)
Frey)y=F(t,y)+ e—yjé dxf*(t,x).
The price we pay is that these variables are subject to a constraint
;de"(t,X) = jg dyf¥(t,y). (7.27)

By performing a gauge transformation a of the form (7.9), we obtain the following two
identifications on f*: ) )
X x) = fX(t,x) +216(x — xo),

_ _ 7.28
Pt y) = (6 )+ 218(0), (728

for each x,, and ) .
fE(t,x) = (¢, %),
Frey) = fr (6 y) +218(y — yo) — 216 (y),

for each y,. On a lattice with L' sites in the x' direction, we can solve the first (7 = 1) in
terms of the other coordinates using (7.27), then the remaining L* + LY — 1 f’s have period-
icities f ~ f + 27”

The Lagrangian for these modes is

. . . . 0 .
L= gezﬂley |:Kx§ dx(fx)2+£y}5 dy(fy)z—(§ dxfx) (}5 dyfy)]nLﬂjgdxfx.
(7.30

Let I1¥(x) and I17(y) be the conjugate momenta of fi. The delta function periodicities
(7.28) and (7.29) imply that [T!(x') have independent integer eigenvalues at every x'. Due
to the constraint (7.27) on f!, the conjugate momenta [T’ are subject to a gauge ambiguity
generated by the constraint:

(7.29)

M (x) ~TT*(x) + 1,

()~ (y)-1.

The charge of the electric global symmetry (7.17) is expressed in terms of the conjugate
momenta as

(7.31)

2 o . -
Q(x:y):?Exy'i_%:H (x)+Hy(J’) (732)

e

33


https://scipost.org
https://scipost.org/SciPostPhys.10.2.027

Scil SciPost Phys. 10, 027 (2021)

The Hamiltonian is
2 2 0. \2
H=% [KY§ dx(ﬁx—ﬁ) +W§dy(ny__y)
4 21 21
X 0 93’

where 6, + 6, = 6. One can show that the Hamiltonian only depends on the sum of 6,,6,,
but not the difference.

Let us regularize this Hamiltonian on a lattice with L*, LY sites in the x,y directions,
respectively. We will label the lattice site as (X,y) with X = 1,---,L¥ and § = 1,---,LY
and let a be the lattice spacing. The conjugate momenta I1(%!) have independent integer

eigenvalues at each site X'. The Hamiltonian is

2

L LY 2
H:gza Ey;(ﬁx(fc)_ZGX) E(HY(J,)__)

(7.34)

L* LY
+2a (I:Ix()“c)— 5—;) Z (ﬁY(y) - 5—;)

x=1 y=1

States with finitely many nonzero IT!(%) have very small energies of order a, which vanish in
the continuum limit. This is to be contrasted with the ¢ theory where the classically zero-
energy modes are lifted quantum mechanically. We also have states with order L nonzero
IT{(%). For example, in the continuum notation, IT*(x) = ©(x —x;) —O(x — x,) with x; < x,.
The energies of such states are of order 1.

7.7 Robustness and Universality

As in the ¢-theory, we now discuss the effects of higher derivative terms on the states in the
gauge theory. For example, consider

8(:Ey,)*, (7.35)

with the coefficient g taken to be of order a®. As we discussed, states with finitely many
nonzero I ~ E,, have energy of order a, which goes to zero in the continuum limit. The term
(7.35) shifts their energy by an amount of order g/a ~ a. Therefore, the energy of these states
remains zero in the continuum limit. States with order 1/a nonzero IT have energy of order one
and they receive corrections of order one from terms like (7.35). Therefore, the computation
of their energy using the original Lagrangian (7.7) is not universal. To conclude, while the
zero-energy states are not lifted by these higher derivative terms, the finite energy states do
receive quantitative corrections. Nonetheless, the qualitative features of these charged modes
are universal.

Let us discuss the robustness the global symmetry. On the lattice, there is an electric tensor
global symmetry Gy, (7.15), which coincides with the symmetry Gz of the low-energy field
theory. Similar to the ordinary 1+ 1-dimensional U(1) gauge theory discussed in Section 1.2,
there is no relevant operator violating this symmetry. The effect of adding massive charged
particles at short distances is similarly negligible in the continuum limit. We conclude that the
electric tensor symmetry Gy is robust in the 2 + 1-dimensional U(1) tensor gauge theory.
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8 Zy Tensor Gauge Theory

In this section we discuss a Zy version of the tensor gauge theory of Section 7. The lattice
version of this theory is simply a Zy version of the lattice model of Section 7. A continuum
version of this theory can be obtained by coupling the U(1) theory to a scalar field ¢ with
charge N that Higgses it to Zy. This 2 4+ 1-dimensional Z, tensor gauge theory is in many
ways analogous to the 1 4+ 1-dimensional Zy gauge theory.

8.1 Lagrangian

The Euclidean Lagrangian is:

i i
Ly =5—£(8,8,¢ —NAy)+ 5 —B(0:¢ —NAL), (8.1)

where (A;,A,,) are the U(1) tensor gauge fields and ¢ is a 2nt-periodic real scalar field that
Higgses the U(1) gauge symmetry to Zy. The gauge transformations are

¢~¢+Na,
A, ~A +0.a, (8.2)
Ay ~Ayy, +0,0,a.

The fields £*Y and B are Lagrangian multipliers. The equations of motion are

8,0, —NA,, =0,
aT¢ _NAT = O> (8-3)
EY=B=0.

We can dualize (8.1) by integrating out ¢. This leads to the constraint
8,0, —8,.B=0, (8.4)
which is solved locally in terms of a spin-two field ¢*¥
B =3¢, B=0,0,¢. (8.5)

The winding modes of ¢ mean that the periods of EX¥ and of B are quantized, corresponding
to ¢*Y ~ ¢*¥ +2m. Then, (8.1) becomes

i i
Lp= %N(pxy(arAxy - axayAT) = ﬂNd)xyExy : (8.6)

The Lagrangian is analogous to the BF-type Lagrangian of the 1 + 1-dimensional Z, gauge
theory (1.5). The equations of motion are

o:9* =0,
2,8,6™ =0, 8.7)
E., =0.
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8.2 Global Symmetry

Let us track the global symmetries of the system. The scalar field theory ¢ has a global U(1)
momentum dipole symmetry (2.9) and a global U(1) winding dipole symmetry (2.13). The
momentum symmetry is gauged and the gauging turns the U(1) winding dipole symmetry
into Zy. Under the duality, the Zy winding dipole symmetry of ¢ becomes the Z, momen-
tum dipole symmetry of ¢*. In addition, the pure gauge theory has an U(1) electric global
symmetry (7.15) and the coupling to the matter field ¢ breaks it to Zy. Altogether, we have
a Zy dipole global symmetry and a Zy electric global symmetry.

Let us discuss the gauge-invariant operators at a fixed time. The gauge-invariant local
operator

el?” (8.8)

is the symmetry operator that generates the Zy; electric global symmetry. In addition, we have
the gauge invariant strip operators

X2
W(x)(xl,xz) = exp [lJ dx} dyAxy:| ,
X1

Y2
W(y)(yl,yz)=exp[ij£dXJ dyAxy:| .
Y1

that generate the Zy dipole global symmetry. The exponents in (8.8), (8.9) are quantized
because of the periodicity of ¢*” and gauge invariance. These operators satisfy

eNe™ = wl=1 (8.10)

8.9

and therefore they are Z, operators.
The operators (8.8) and (8.9) do not commute
ei(bXY(x’y)W(x)(xbxz) = ezm/NW(x)(XbX2)6i¢xy(x’y) , o if xp <x <X,

o . . (8.11)
l® y("’”W(y)(yl,yz) — ezm/NW(y)(yl,yz)eld) Y(x,y)’ if y1<y<ys,.

As we will see, the spectrum is in a representation of this Heisenberg-like algebra.'®

8.3 Defects as Fractons

The defects of the Zy tensor gauge theory are similar to those in the U(1) tensor gauge theory
in Section 7.5. The simplest type of defect is a single static particle

oo
exp|:inf thO}, n=1,---,N. (8.12)

—0Q
While a single particle cannot move on its own, a pair of them — a dipole — can move collectively
along the direction transverse to their separation. The motion of a pair of particles separated
in the x direction is described by the defect

X2
exp[inJ dxf (dt@xA0+dyAxy)], n=1,---,N. (8.13)
X1 C

Here C is a curve in the (y,t) plane. There is a similar defect describing a pair of particles
separated in the y direction.

In the special case, where C is at fixed time it has to be closed. Then this operator is the
generator of the symmetry operators (8.9).

18 At the risk of confusing the reader, we would like to point out that this lack of commutativity can be interpreted
as a mixed anomaly between these two Z, symmetries. See [9] for a related discussion on the relativistic one-form
symmetries in the 2 + 1-dimensional Z, gauge theory.
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8.4 Lattice Tensor Gauge Theory and the Plaquette Ising Model

The Zy tensor gauge theory arises as the continuum limits of two different lattice theories, the
Zy; lattice tensor gauge theory and the Zy plaquette Ising model. In this sense, the two lattice
models are dual to each other at long distances. This is analogous to the IR duality between
the ordinary 1 + 1-dimensional Zy lattice gauge theory and the Zy Ising model.

Plaquette Ising Model

The Zy plaquette Ising model (see [45] for a review) is the Zy version of the XY-plaquette
model in Section 2.1. There is a Zy phase U; and its conjugate momentum V, at each site. They
obey the commutation relation U,V, = ¢*™/NV.U,. The Hamiltonian includes the plaquette
interaction and a transverse field term:

— -1 —1
H=-K Y UsyUsl JUsh Ussr g —h )V, +euc.. 8.14)
X,y s

We will assume h to be small.
The conserved charge operators are products of V, along either the x or y directions:

LJ/
W@ =] [Ves,
y=1 (8.15)

LX
WiH(3) = l_[Vfc,y .
£=1

In the continuum, they become the dipole global symmetry operator (8.9). While the Zy
dipole symmetry is present on the lattice, the Zy electric tensor symmetry (8.8) is broken by
the >, V; term in the Hamiltonian.

Lattice Tensor Gauge Theory

The second lattice model is the Zj lattice tensor gauge theory. There is a Zy phase vari-
able U, and its conjugate variable V, on every plaquette p. They obey U,V, = e?m/N V,U,. The
gauge transformation 7), is a Zy phase associated with each site. Under the gauge transfor-
mation,

Up = Up Mg M g Mx g1 Mit1,941 (8.16)

where the product is over the four sites around the plaquette p.

Gauss law sets
G =] Jovpr=1 (8.17)

p3s

where the product is an oriented product (¢, = +1) over the four plaquettes p that share a
common site s. The Hamiltonian is

H=—hZVP+C.C., (818)
p

with Gauss law imposed by hand.
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The conserved charges are the V), at each plaquette. They become the Zy electric tensor

symmetry generators (8.8) ¢!?"” in the continuum. While the Z electric tensor symmetry is
present on the lattice, the Zy dipole symmetry is broken by the Hamiltonian.
Alternatively, we can relax (8.17) and impose Gauss law energetically by adding a term to

the Hamiltonian ~
H=—KZGs—hZVp+C‘C“ (8.19)
s p

When h and h are both zero, we see that (8.19) becomes the Hamiltonian (8.14) of the
plaquette Ising model if we dualize the lattice and identify U, <« V,,V, < U 1. At long
distances, they both flow to the Zy tensor gauge theory (8.6).

8.5 Ground State Degeneracy

Let us study the ground states of the Zy tensor gauge theory from the Lagrangian (8.1). Using
the equations of motion (8.3), we can solve all the other fields in terms of ¢, and the solution
space reduces to

{¢}/¢~¢+Na. (8.20)

Almost all configurations of ¢ can be gauged away completely, except for the winding modes:

Xy

— X Yy Y x
$(t,x,y)=2m e—x;wﬁ O —yp) + 7 2, Ol —xa) =W

(8.21)
Y _ _ Yy
wiwiez W_ng_;wﬂ
a

If we regularize the space by a lattice, these winding modes are labeled by L* + LY —1 integers.
Similarly, the gauge parameter a can also have the above winding modes. Therefore, there
are N1 +1"~1 winding modes that cannot be gauged away with their W*, WY valued in Zy.
These lead to N*"+"~1 ground states.

Next, we will reproduce the ground state degeneracy using the second presentation (8.6)
of the Zy tensor gauge theory. In the temporal gauge A, = 0, the phase space is

[#7 @A) | 28,67 =0, Ay~ Ayl +adatn ). 622

The solution modulo gauge transformations is

Aey = T+ 70,

) . (8.23)
¢* =00+ £,(y)
The effective Lagrangian for f and f is
N A - A -
Leps =i~ [§ dx f, (t,x)0f* (¢, x) +§ d}’fy(t,}’)aofy(t,y)] ; (8.24)

where f*, f¥ are defined in (7.26) subject to the constraint (7.27). The modes f*, f¥ have
delta function periodicities (7.28) and (7.29).
The identification (5.7) implies that the modes f,, f, are pointwise 27 periodic:

Fo(0) ~ fio() + 2w (x),

. X (8.25)
)~ f,(y)+2mw) (y),
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where wi(x!) € Z. fx and fy share a common zero mode, which leads to the gauge symmetry

F() > fe() +e,
£, =, —c.

On a lattice with spacing a, we can solve fy (¥ = L”) in terms of f,(%) and the other fy ()
using (7.27). The remaining, unconstrained L* + L¥ — 1 f’s have periodicities
fi(x) ~ fi(x") 4+ 2m/a for each *!. On the other hand, we can use the gauge symme-
try (8.26) to gauge fix fAy(j/ = 1Y) = 0. The remaining L* + LY — 1 f’s have periodicities

(8.26)

fi(fci) ~ ﬁ-(fci)+27'c for each *'. The effective Lagrangian is now written in terms of L* + LY —1

pairs of (f;(x1), fi(&)):

L* LY—1
N A A rX A £ A r A
Lesp =iz —a E:fx(t,x)aof (£, %)+ E:fy(t,y)aofy(t,y) : (8.27)
%=1 y=1

Each pair of ( fi(fci), f i()?i)) leads to an N-dimensional Hilbert space.

One way to understand these states is the following. The analysis of the spectrum of the
U(1) tensor gauge theory (see Section 7.6) involved L* 4+ LY —1 rotors f, whose quantization
led to states carrying U(1) electric tensor symmetry charges. Here, the momentum conjugate
to these rotor, f is compact and therefore, only charges modulo N are meaningful — states
whose charges differ by N are identified. We end up with N%"*"~1 ground states.

The ground state degeneracy can also be understood from the Z global symmetries. On
a lattice, the commutation relations between the Z, dipole and electric global symmetries
(8.11) are isomorphic to L 4+ LY —1 copies of the Zy Heisenberg algebra, AB = ¢>™/NBA and
AN = BN = 1. The isomorphism is given by

Ay =97 O, By =W»(%), £=1,---,L%,

(1 o N . (8.28)

A_f/ :el¢ Y(1,7) ip y(lal)’ B_f/ :W(_y)(.y)3 h% :2’ ,Ly’
where W(,)(X) = exp [ia2 Zf,yzl Ayy (%, j/)] is a strip operator along the y direction with width
a, and similarly for W(,)(¥). The minimal representation of the Zy Heisenberg algebra is N-

dimensional. Therefore, the nontrivial algebra (8.11) forces the ground state degeneracy to
be NL*+L7—1 19

8.6 Robustness

Let us discuss the robustness of the Zy tensor gauge theory. The global symmetry G;p of the
low-energy Zy tensor gauge theory consists of the Zy electric tensor symmetry and the Zy
winding dipole symmetry

As discussed in Section 8.4, the low-energy Zy tensor gauge theory (8.6) can be realized
either from the Zy Ising plaquette theory, or from the lattice Zy tensor gauge theory. In the
former short distance realization, the Zy dipole symmetry is present on the lattice and will
be taken to be our Gyy. If we impose this microscopic symmetry Gy, then there is no Gyy -
invariant relevant operator at long distances that violates G;z. Hence Gy is robust.

In fact, there is no Gy -invariant local operator at all in the continuum Lagrangian (8.6).
The only local operator ! is charged under Gy, and Jy¢p*” , 0,0, @™ as well as their
derivatives are set to zero by the equations of motion. Therefore, the results obtained from
the Lagrangian (8.6) are universal when the global symmetry G is imposed.

%For ordinary 2 + 1-dimensional Zy gauge theory on a 2-torus, the electric and magnetic one-form global sym-
metries give rise to 2 pairs of Zy Heisenberg algebra. Hence the ground state degeneracy is N2.
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Instead, if we start with the lattice Zy tensor gauge theory, then the Zy dipole symmetry is
absent at short distances. Since the Zy dipole symmetry is not imposed, one is allowed to add
local gauge-invariant operators such as /¢ to the Lagrangian. Such perturbations generically
lift the ground state degeneracy and break the Zy dipole global symmetry explicitly.?° Hence,
the emergent Zy dipole symmetry (and therefore G;z) is not robust. This is similar to the
ordinary 1 + 1-dimensional Z, gauge theory in Section 1.2 (see Table 4 for the analogy).

Finally, our discussion in Section 6 leads to interesting consequences about the phases
of the Zy Ising plaquette model. Consider the XY-plaquette model close to the continuum
limit where we scale a to be parametrically small and the other lattice couplings accordingly,
at the same time keeping the system size finite. We perturb the short-distance theory by an
operator of the form eN% and thus break the U(1) symmetry to Zy. When the coefficient of
this operator is small enough, we can analyze its effect by perturbing the low-energy theory by
the corresponding operator. However, as we discussed in Section 6, this operator is infinitely
irrelevant in this range of parameters. As a result, the low-energy theory is not perturbed and it
has an emergent U(1) global symmetry. More generally, this means that the Zy Ising plaquette
model has a range of coupling constants, such that its low-energy behavior is gapless! This
gapless theory is described by the continuum theory of Section 2.2. Furthermore, the range
of coupling constants with gapless behavior in of co-dimension zero, i.e., it is not fine-tuned.
This situation is similar to the existence of a range of parameters with a robust gapless phase
in the 1 + 1-dimensional Zy clock models with N > 5. Note that in our case, this happens for
all N.
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A Correlation Functions
In this appendix we consider correlation functions of the continuum theory based on (2.7).

In [19], related correlation functions have been analyzed for the microscopic lattice model.
In Euclidean signature, the equation of motion is

1
uoafqb—;afafqb =0, (A1)

where 7 is the Euclidean time. The two-point function of ¢ is

1 S eiwr+ikxx+ikyy
(p(7,x,y)9(0)) = @n) J_Oo dwdkxdkyW' (A.2)
Ugw + u

2011 [2], we will discuss the 3 + 1-dimensional Z, tensor gauge theory, which is the low-energy limit of the
X-cube model. In this theory, all the gauge-invariant operators are extended objects as opposed to local operators.
Therefore the ground state degeneracy and the Z, global symmetries are robust.
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The w integral can be done by deforming the contour and applying the residue theorem:

XyITI

(p(7,x,y)9(0)) = n )2\170.[0 dk, f dky Kk cos(kyx)cos(kyy). (A.3)

The integrals diverge in the IR region k, — 0 or k,, — O reflecting the many states there. Even
if we place the system in finite volume, i.e. on a two-torus of lengths £*,¢”, the modes with
k, =0 and the modes with k, = 0 lead to a divergence even for generic 7, x, y.

The two point function of d,¢ is

oo oo Kok
(0:¢(7,x,y)3:9(0)) =— f dk, f dk, e 5 "Ik k,, cos(kyx) cos(k, ).
0

(A4)

3
(27‘[)2 ,U,%‘U,g

It is convergent unless x =y = 0.

The case of x = y = 0 is interesting because this two point function computes the norm of
a state created by acting with d_¢ on the vacuum. In order to analyze it more carefully, we
place the theory on a two-torus of lengths £, £”. The momenta are quantized, k; = 27[ { with
n; € Z. Then, the two point function is a convergent, discrete sum

oo o0

2 (2m)? T
(0:9(5.0.0)2:9(0) =~ 20 ZOZ ST I (as)
wIpd =

Hence the norm of the state created by J, ¢ is finite when the space has finite volume. The
discrete sum can be evaluated to be (note that only modes with n, n, # 0 contribute)

o0 1 oo
nyn,e T =2
Z 4 Z smh(nT/Z)2 (A.6)
My,Ny =1 n=
where T = \/3_215'” When T is small, the sum receives contribution from large n, and we can
approximate the sum by an integral in n, with an IR cutoff at n = 1. This gives
- 1
x T R
) ;_1 nen,e "y T2 [log(2/T)+O(1)]. (A.7)
X0ty T

Hence in the small T limit (i.e. large torus area compared to 72), the norm is?!
2 1 [T 24
(8. (7,0,0)2,$(0)) = i flog (=)o) e
Uo

T (2n)? 72 7]

Note that the norm has an IR divergence as we take the area of the torus £*¢” to infinity.
Let us study the two point function (e!?e™?). Since the exponential operators carry the
momentum symmetry (2.10), the two operators have to be at the same spatial point

(e!?(700)=10(0)y = exp ((¢(7,0,0)¢(0))) . (A.9)

We need to study (A.2) more carefully and regularize it as

1 [e3e} LX-1LY-1 ein
($(7,0,0)6(0) = WJ 4 2, ) G - (A.10)
—00 n,=0n,=0 w + —u,u,o(fxly)z +e€

21Recall that in Euclidean signature, reflection positivity states that the two-point function of an operator with
an index in the time direction 7 is non-positive, i.e., (O%(—7,x")O"(1,x")) < 0.
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Here ¢ — 0 regularizes the integral over w and as above, we placed the system in a box.

__(m?
The terms with n,n, # 0 are exponentially small at large || - they are O (e VIR lT').

So let us focus on the other terms

( ) 1 . y oo pleT
¢(7,0,0)¢(0)) = s— —— (L + 1L _1)f do——g+
27'5,(1106’%3; oo 1 w?+e (A11)
= (4L —1)— ———— L+ LY =)t + -,
2ul* Ly e( ) ZMOEXKJ’( Il

where we neglected terms that vanish as € — 0. Substituting this in (A.9), the first term,
which is time independent, can be absorbed in wave function renormalization. The second
term leads to exponential decay and is associated with the lowest energy state that contributes
to the two point function. Its energy is

;(£+g—1) (A12)
2uplxly \a  a ' '

This agrees with the lowest energy state with the quantum numbers of ¢'? (4.14).

This computation also confirms the assertion in Section 6 that the operator e'? is highly ir-
relevant. Repeating this analysis in the dual version of this theory it also confirms the assertion
there that e!®"” is highly irrelevant.

Next, we consider the properties of the product (6.4), where the two operators are near
each other. For simplicity, we set, as in (6.3),n=—n'=1

01 (x0,0) =i (0,0) (A.13)
As discussed in Section 6, this composite operator is well defined. It might be thought of as
a way to define aqu in the continuum limit, but this interpretation is misleading. The reason

is that the ordinary operator product expansion does not apply here. One way to understand
it is to note that (A.13) carries a momentum dipole symmetry charge (2.10):

Q(x) =6(x—x0)—6(x), Q¥(y)=0. (A.14)

We are going to consider the two-point function of (A.13). Using Wick contractions:

(ei¢>(7,x0,0)—i¢(r,0,0) e—i¢(0,x0,0)+i¢(0,0,0)>

~ €xp |:<¢(T> Xo> 0)¢(O) Xo0> O)) - (¢(T, X0, O)¢(05 0) 0)) (A].S)
— (¢(7,0,0)$(0, %o, 0)) + (¢ (7,0,0)$(0,0,0)) |.

Here we did not include contractions like (¢ (7, x(,0)¢(7,0,0)), which do not affect the ©
dependence of the answer. Hence, the symbol ~ in the equation.

We place the system in finite volume and regularize the UV by a lattice. Then we should
consider x, = ma with integer m. Being interested in the limit of small x,, we take the
continuum limit with fixed m. The correlation function simplifies in the large || limit:

10g<ei¢(T,xo,O)—irb(T,O,O)e—i¢(0,x0,0)+i¢(0,0,0)>

1*-1 0o .
1 27n elw?
~————— |2L¥—-2-2 COS( xx) do———+---
2mugl* ey an::1 gx 70 oy | WA €2 (A.16)
1 2L% 1
@L))|r|+---.

T 2ugli Y € 2uglrey
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The first term is again absorbed into the wavefunction renormalization. The second term is
associated with the lowest energy state that contributes to the correlation function. Its energy

1S
;(%) (A17)
ZMOEXEJ’ a ’ ’

This agrees with the energy (4.15) for the state with charge (A.14).

The fact that these correlation functions reproduce the energy of these states, is a highly
nontrivial check of our treatment of the discontinuous fields and it demonstrates that our
analysis is meaningful for these infinite energy states.

These computations also confirm that charged operators of the form ! and e!#(*-%o,0—¢(z,
are infinitely irrelevant in the continuum limit.

0,0)
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