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Abstract

We derive the simplest commutation relations of operator algebras associated to M2
branes and an M5 brane in the 2-deformed M-theory, which is a natural set-up for Twisted
holography. Feynman diagram 1-loop computations in the twisted-holographic dual side
reproduce the same algebraic relations.
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1 Introduction and Conclusions

In[1], Costello and Li developed a beautiful formalism, which prescribes a way to topologically
twist supergravity. Combining with the classical notion of topological twist of supersymmetric
quantum field theory [2, 3], we are now able to explore a topological sector for both sides
of AdS/CFT correspondence. It was further suggested in [4] a systematic method of turning
an Q-background, which plays an important roles [5-10] in studying supersymmetric field
theories, in the twisted supergravity.

A topological twist along with Q-deformation enables us to study a particular protected
sub-sector of a given supersymmetric field theory [11-14], which is localized not only in the
field configuration space but also in the spacetime. Interesting dynamics usually disappear
along the way, but as a payoff, we can make a more rigorous statement on the operator algebra.

The topological holography is an exact isomorphism between the operator algebras of
gravity and field theory. In this paper, we will focus on a particular example of topological
holography: the correspondence of the operator algebra of M-theory on a certain background
parametrized by €,, €,, which localizes to 5d non-commutative U(K) Chern-Simons theory
with non-commutativity parameter €, !, and the operator algebra of the worldvolume theory
of M2-brane, which localizes to 1d topological quantum mechanics(TQM). In particular, [18]
proved that two operator algebras are Koszul dual [18] to each other.

The important first step of the proof was to impose the BRST-invariance of the 5d U(K) CS
theory coupled with the 1d TQM. The 5d CS theory is a renormalizable, and self-consistent
theory [17]. However, in the presence of the topological defect that couples the 1d TQM and
the 5d CS theory, certain Feynman diagrams turn out to have non-zero BRST variations. For the
combined, interacting theory to be quantum mechanically consistent, the BRST variations of
the Feynman diagrams should combine to give zero. This procedure magically reproduces the
algebra commutation relations that define 1d TQM operator algebra, A ., . Intriguingly, one
can extract non-perturbative information in the protected operator algebra from a perturbative
calculation.

In fact, both the algebra of local operators in 5d CS theory and the 1d TQM operator algebra
Ae, ¢, are deformations of the universal enveloping algebra of the Lie algebra Diff. (C) ® gl
over the ring C[[e;]]. Deformation theory tells us that the space of deformations of
U(Diff,,(C) ® glk) is the second Hochschild cohomology HH?(U(Diff, ,(C) ® glg)). Although

!The 5d CS theory that appears in this paper is always meant to be a certain variant of the usual 5d CS theory
with a topological-holomorphic twist and with non-commutativity turned on in the holomorphic directions.


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

this Hochschild cohomology is known to be hard to compute, there is still a clever way of
comparing these two deformations [18]: notice that both of the algebras are defined com-
patibly for super groups GLk g, and their deformations are compatible with transition maps
GLkrr < GLg1Rr+1|r+1, SO there are induced transition maps between Hochschild cohomolo-
gies HHZ(U(DiffEZ((C) ® glkir+1jR1)) — HHZ(U(Diffez((C) ® glg4grr)), hence the equivalence
class of deformations are actually elements in the limit

Jim HH(U(Diff,, (C) ® gliczjz)); )

and the limit is well-understood 2, it turns out that the space of all deformations is essentially
one-dimensional: a free module over C[x] where « is the central element 1 ® Id,. Hence the
algebra of local operators in 5d CS theory and the 1d TQM operator algebra are isomorphic
up to a k-dependent reparametrization

WA @)
i=1

where f;(x) are polynomials in .

Later, in [19] the same algebra with K = 1 was defined using the gauge theory approach,
and a combined system of M2-branes and M5-branes were studied. Especially, [19] interpreted
the degrees of freedom living on M5-branes as forming a bi-module M., . of the M2-brane
operator algebra, and suggested the evidence by going to the mirror Coulomb branch algebra
[20,21] and using the known Verma module structure of massive supersymmetric vacua [22,
23]. Appealing to the brane configuration in type IIB frame, they argued a triality in the M2-
brane algebra, which can also be deduced from its embedding in the larger algebra, affine
gl(1) Yangian [24-27].

Crucially, [19] noticed U(1) CS should be treated separately from U(K) CS theory with
K > 1, since the algebras differ drastically and the ingredients of the Feynman diagram are
different in U(1) CS, due to the non-commutativity. As a result, operator algebra isomorphism
should be re-assessed.

Our work was motivated by the observation, and we will solve the following problem in a
part of this paper.

* The simplest algebra A, ., commutator, which has €; correction.
The problem will be solved by two complementary methods:
(1) Direct calculation by definition.
(2) Using Feynman diagrams whose non-trivial BRST variation lead to the commutator.

Next, we will make the first attempt to derive the bi-module structure from the 5d U(1)
CS theory, where the combined system of the M2-branes and the M5-brane is realized as the
1d TQM and the 3 —y system®. Especially, we will answer the following problems.

* The commutator of the simplest bi-module M., ., of A, . , which has €; correction.
Again, this will be solved by two complementary ways:

(1) Direct calculation by definition.

2The actual computation in [18] is more subtle, and will not be used in this work.

30ne way to understand the appearance of —y system is to go to type IIA frame, where the M5-brane maps to a
D4 brane and the 11d supergravity background maps to a D6-brane. D4-D6 strings form 4d A/ = 2 hypermultiplet.
Under the Q-background, the 4d N = 2 hypermultiplet localizes to Sy system [11].
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(2) Using Feynman diagrams whose non-trivial BRST variation leads to the commutator of
bi-module M

€1,€2°

Our work is only a part of a bigger picture. The algebra A, ., is a sub-algebra of affine
gl(1) Yangian [19], and there exists a closed-form formula for the most general commutators,
which can be derived from affine gl(1) Yangian. One can try to derive the commutators from
5d U(1) CS theory Feynman diagram computation.

Going to type IIB frame, the brane configurations map to Y-algebra configuration [28].
Here, the general M2-brane algebra is formed by the co-product of three different M2-brane
algebras related by the triality. The local operators supported on M5-branes form a generalized
Wi 400 algebra [28]. The 3 —y Vertex Algebra that our M5-brane supports is the simplest ex-
ample of this generalized W, . ~,. Hence, we are curious if our story can be further generalized
to the coupled system of the 5d U(1) CS theory and the generalized W, o, algebra.

1.1 Structure of the paper

After reviewing the general concepts in section §2, we show the following algebra commutator
in §3.1.
[¢[2,1],¢[1,2]]., = €1€,t[0,0] + €;€5[0,0]¢[0,0], (3)

where [e]. is the O(e,) part of [e], t[m,n] € A, .,. The detail of the proof is shown in Ap-
pendix A.1. The commutation relation was successfully checked by 1-loop Feynman diagram
associated to 5d CS theory and 1d TQM. This is the content of section §4. We collected some
intermediate integral computations used in the Feynman diagram in Appendix B.1.

Next, we show the following algebra-bi-module commutator in §3.2.

[t[2, 1], b[zl]c[zo]]e1 = €,6,t[0,0]b[2°]c[2°] + €, €,b[2°]c[2°], 4

where b[z™], c[z™] € M., ., . The detail of the proof can be found in Appendix A.2. We re-
produced the commutation relation using the 1-loop Feynman diagram computation in the 5d
CS theory, 1d TQM, and 2d By coupled system. This is the content of section §5. We collected
some intermediate integral computations used in the Feynman diagram in Appendix B.2 and
Appendix B.3.

Note added: recently, complete commutation relations for the algebra A., ., was proposed
in [29].

2 Twisted holography via Koszul duality

Twisted holography is the duality between the protected sub-sectors of full supersymmetric
AdS/CFT [31-33], obtained by a topological twist and 2-background both turned on in the
field theory side and supergravity side. The most glaring aspect of twisted holography* is an
correspondence between operator algebra in both sides, which is manifested by a rigorous
Koszul duality. Moreover, the information of physical observables such as Witten diagrams in
the bulk side that match with correlation functions in the boundary side is fully captured by
OPE algebra in the twisted sector [37].

This section is prepared for a quick review of twisted holography for non-experts. The
idea was introduced in [1] and studied in various examples [4, 15, 18, 19, 38, 39] with or
without Q-deformation. The reader who is familiar with [4] can skip most of this section,

*A similar line of development was made in [34, 35], using twisted Q-cohomology, where Q is a particular
combination of a supercharge Q and a conformal supercharge S [36]. In the sense of [11], Q-cohomology is
equivalent to Q, -cohomology, where Q, is the modified scalar supercharge in 2—deformed theories.

4
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except for §2.2, §2.3, and §2.7, where we set up the necessary conventions for the rest of this
paper. These subsections can be skipped as well, if the reader is familiar with [19]. Also, see
a complementary review of the formalism in the section 2 of [19].

After defining the notion of twisted supergravity in §2.1, we will focus on a particular
(twisted and Q2—deformed) M-theory background on R, x szvc xC, xC,, xC,,, where NC
means non-commutative, and €; stands for Q—background related to U(1) isometry with a de-
formation parameter €; in §2.2. N M2 branes extending R, X C,, leads to the field theory side.
As we will explain in §2.3, a bare operator algebra isomorphism between twisted supergravity
and twisted M2-brane worldvolume theory is given by an interaction Lagrangian between two
systems. Due to this interaction, a perturbative gauge anomaly appears in various Feynman
diagrams, and a careful cancellation of the anomaly will give a consistent quantum mechanical
coupling between two systems. Strikingly, the anomaly cancellation condition itself leads to a
complete operator algebra isomorphism, by fixing algebra commutators. This will be described
in §2.5. To discuss holography, it is necessary to include the effect of taking a large N limit
and the subsequent deformation in the spacetime geometry. We will illustrate the concepts in
82.6. In §2.7, we will explain how to introduce M5-brane in the system and describe the role
of M5-brane in the gravity and field theory side. In short, the degree of freedom on M5-brane
will form a module of the operator algebra of M2-brane. Similar to the M2-brane case, the
anomaly cancellation condition for M5-brane uniquely fixes the structure of the module.

2.1 Twisted supergravity

Before discussing the topological twist of supergravity, it would be instructive to recall the
same idea in the context of supersymmetric field theory and make an analog from the field
theory example.

Given a supersymmetric field theory, we can make it topological by redefining the generator
of the rotation symmetry M using the generator of the R-symmetry R

M — M =M+R. (5)

As a part of Lorentz symmetry is redefined, supercharges, which were previously spinor(s),
split into a scalar Q, which is nilpotent

Q*=0, (6)

and a 1-form Q- Because of the nilpotency of Q, one can define the notion of Q-cohomology.

Following anti-commutator explains the topological nature of the operators in Q-cohomology—

a translation is Q-exact

{Q,Qu}=P,. (7)
To go to the particular Q-cohomology, one needs to turn off all the infinitesimal super-translation
€ except for the one that parametrizes the particular transformation 5, generated by Q.

More precisely, if we were to start with a gauge theory, which is quantized with BRST
formalism, the physical observables are defined as BRST cohomology, with respect to some
Qgrst- The topological twist modifies Qgrsy, and the physical observables in the resulting
theory are given by Qj,¢-cohomology

Qprst — Qprer = QarsT + Q. ®

As an example, consider 3d N = 4 supersymmetric field theory. The Lorentz symmetry
is SU(2);,, and R-symmetry is SU(2)y x SU(2)., where H stands for Higgs and C stands for
Coulomb. There are two ways to re-define the Lorentz symmetry algebra, and we choose to
twist with SU(2), as this will be used in the later discussion. In other words, one redefines

M —> M =M+R;. 9


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

The resulting scalar supercharge is obtained by identifying two spinor indices, one of Lorentz
symmetry a and one of SU(2), R-symmetry a

Qu — Qu> (10)

and taking a linear combination

Q=Q}; +Qy;- (b

This twist is called Rozansky-Witten twist [40] and will be used in twisting our M2-brane
theory.

One way to start thinking about the topological twist of supergravity is to consider a brane
in the background of the “twisted” supergravity. If one places a brane in a twisted supergravity
background, it is natural to guess that the worldvolume theory of the brane should also be
topologically twisted coherently with the prescribed twisted supergravity background.

Given the intuition, let us define twisted supergravity, following [1]. In supergravity, the
supersymmetry is a local(gauge) symmetry, a fermionic part of super-diffeomorphism. As usual
in gauge theories, one needs to take a quotient by the gauge symmetry, and this is done by
introducing a ghost field. As supersymmetry is a fermionic symmetry, the corresponding ghost
field is a bosonic spinor, q. Twisted supergravity is defined as supergravity in a background
where the bosonic ghost q takes a non-zero value.

It is helpful to recall how we twist a field theory to have a better picture for presumably un-
familiar non-zero bosonic ghost. One can think the infinitesimal super-translation parameter
€ that appears in the global supersymmetry transformation as a rigid limit of the bosonic ghost
q. For instance, in 4d A/ = 1 holomorphically twisted field theory [41-44], with Q paired with
€., the supersymmetry transformation of the bottom component ¢ of anti-chiral superfield
¥ = (¢,, F) transforms as

Sp=¢&y, Sy =ie,0p+ie_d¢+éF. (12)
As we focus on Q-cohomology, we set e, =1, e_ = é = 0, then the equations reduce into
5¢=0, SY=id¢. (13)

In the similar spirit, in the twisted supergravity, we control the twist by giving non-zero VEV
to components of the bosonic ghost g.

Indeed, [1] proved that by turning on non-zero bosonic spinor vacuum expectation value
(q) # 0 with qal“ﬁ P qp = 0 for a vector gamma matrix, one can obtain the effect of topological
twisting. We can now compare with the field theory case above (6): Q% = 0 with Q # 0. One
can think of € as a rigid limit of q.

The operator algebra of twisted type IIB supergravity is isomorphic to that of Kodaira-
Spencer theory [46]. The following diagram gives a pictorial definition of the two theories,
which turned out to be isomorphic to each other. Notice that the topological twist in the first
column of the picture is the twist applied on the worldsheet string theory®, whereas in the
second column is the twist on the target space theory.

Lastly, there are two types of twists available: a topological twist and a holomorphic twist,
and it is possible to turn on the two different types of twists in the two different directions of
the spacetime. The mixed type of twists is called a topological-holomorphic twist, for example,

>We thank Kevin Costello, who pointed out that the arrow from Type IIb string theory to B-model topological
string theory is still mysterious in the following sense. In Ramond-Ramond formalism, as the super-ghost is in the
Ramond sector and it is hard to give it a VEV. In the Green-Schwarz picture surely it should work better, but there
are still problems there, as the world-sheet is necessarily embedded in space-time whereas in the B model that is
not allowed.


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

Type 1IB String Theory

o
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N String field limit ™ Type |IB Supergravity
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AY

\

Topological-.
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B-model Topological String Theory | Twisted IIB Supergravity

X

~

String field Iir"l"n‘if"‘n‘_‘

/

Kodaira-Spencer Theory

Figure 1: Starting from type IIB string theory, one can obtain the same theory by
taking two operations— 1. String field limit, 2. Topological twist- in any order.

[47]. Different from a topological twist, a holomorphic twist makes only the (anti)holomorphic
translation to be Q-exact; after the twist we have Q and Q, such that

{Q,Q.} =P;. (14)

Hence, the holomorphic translation is physical(not Q-exact), and there exist non-trivial dy-
namics arising from this. [1,4] showed that it is possible to discuss a holomorphic twist in the
supergravity. It is important to have a holomorphic direction to keep the non-trivial dynamics,
as we will later see.

2.2 Q-deformed M-theory

Similar to the previous subsection, we will start reviewing the notion of 2-deformation of
topologically twisted field theory. To define Q-background, one first needs an isometry, typ-
ically U(1), generated by some vector field V on a plane where one wants to turn on the
Q-background. Q-deformation is a deformation of topologically twisted field theory. Physical
observables are in the modified Q cohomology, which satisfies

Q%/ = LV, where QV = Q + iVMQH 5 (15)

where Ly is a conserved charge associated with V, and iy is a contraction with the vector
field V#, reducing the form degree by 1.

As the RHS of (15) is non-trivial, Q; cohomology only consists of operators, which are fixed
by the action of Ly such that L,;O = 0. Hence, effectively, the theory is defined in two fewer
dimensions, if the isometry group is U(1). More generally, one can turn on Q-background in
the n planes, and the dynamics of the original theory defined on D-dimensions localizes on
D — 2n dimensions.

[4] proposed a prescription for turning Q2-background in twisted 11d supergravity; we
need a 3-form field eC, along with U(1) isometry generated by a vector field eV, where
€ is a constant, measuring the deformation. Similar to the field theory description, in this
background({(q), C # 0), the bosonic ghost g squares into the vector field, eV to satisfy the 11d
supergravity equation of motion

q2 = qa(raﬁ)uqﬁ = ev,u . (16)

7
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The Q-background localizes the supergravity field configuration into the fixed point of the U(1)
isometry. From now on, we will call Q-background with parametrized by €; as ., background.
More generally, one can turn on multiple 2, -backgrounds in the separate 2-planes, which we
will denote as Ce,.

The topologically twisted and Q—deformed 11d background that we will focus in this paper

is
11d SUGRA: R, x C3 X C¢, X TNye ¢, (17)

where TNy, ., is Taub-NUT space, which can be thought of as S;Z xR x C,,. The twist is

implemented with the bosonic ghost chosen such that holomorphic twist in szvc directions ©

and topological twist in R, x C. x TNy, .. directions’. The 3-form is
C=VIAndZ AdE,, (18)

where V¢ is 1-form, which is a Poincare dual of the vector field V on C,, plane, and z1,z, are
holomorphic coordinates on CIZVC.

The twisted holography is the duality between the protected subsector of M2-brane and
the localized supergravity, due to the Q-background. We first want to introduce M2 branes
and establish the explicit isomorphism at the level of operator algebras. Place N M2-branes
on

M2-brane: R, x {-} x C., x {-}. (19)

For the concrete computation, it is convenient to go to type Ila frame by reducing along an
M-theory circle. We pick the M-theory circle as 5612: which is in the direction of the vector field
V.

After reducing on S;Z, the Taub-NUT geometry maps into one D6-brane and N M2-branes
map to N D2-branes.

type Ila SUGRA : R, x C3. X C., X R X C¢,
D6-brane : R, x Cy. x C,, (20)
D2-branes : R, x xCe,,

and 3-form C-field reduces into a B-field, which induces a non-commutativity [2;,%5] = €5 on
Chc
B = e,d%; AdZ,. 21)
There are two types of contributions to gravity side: 1. closed strings in type Ila string the-
ory and 2. open strings on the D6-brane. It was shown in [4] that we can completely forget
about the closed strings. The reason is in the presence of the non-commutativity,the holomor-
phically twisted supergravity background(B-model) is the same as the topologically twisted
background(A-model) equipped with a B-field. As we are working in the supergravity limit,
where there is no instanton effect, we can also ignore the effect from a B-field. Hence, for
closed string, the background becomes topological A-model, which is trivial. Therefore, the
open strings from the D6-brane entirely capture gravity side.
D6-brane worldvolume theory is 7d SYM, and it localizes on 5d non-commutative U(1)
Chern-Simons on R, x (Clz\, ¢ due to Q. -background on C,, [48]. The 5d Chern-Simons theory
is not the typical Chern-Simons theory, as it inherits a topological twist in R, direction and a

NG stands for Non-Commutative. This will become clear in the type Ila frame.

7 As remarked, if one introduces branes, the worldvolume theory inherits the particular twist that is turned on
in the particular direction that the branes extend.

8For a different purpose, to make contact with Y-algebra system, type IIb frame is better, but we will not pursue
this direction in this paper.
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holomorphic twist in (szvc direction, in addition to the non-commutativity. As a result, a gauge
field only has 3 components

A:Atdt +A§1d£1 +A£2d§2, (22)
and the action takes the following form.

1 2
S=— dzldzz(A*dA+ gA*A*A). (23)

€1 Jr xc2,

The star product *., is the standard Moyal product induced from the non-commutativity of
(czzvc: [21,2,] = €5. The Moyal product between two holomorphic functions® f and g is defined
as

12 1 3 2 2 2 5
f*eg fg+6 el]a f_g+ 222' lljleizjz(azil azizf)(azjl aijg)+O(6 ) (24)

The gauge transformation A € Q°(R x (szvc) ® gl;'? acting on the gauge field A is
A A+dA+[A,A], where [A,A]=Ax,, A—Ax. A. (25)

The field theory side is defined on N D2-branes, which extend on R, x C, . This is the 3d
N = 4 gauge theory with 1 fundamental hypermultiplet and 1 adjoint hypermultiplet. Since
the D2-branes are placed on a topologically twisted supergravity background, the theory inher-
its the topological twist, which is the Rozansky-Witten twist. We will work on A/ = 2 notation,
then each of A = 4 hypermultiplet splits into a chiral and an anti-chiral ' = 2 multiplet. We
denote the scalar bottom component of the fundamental chiral and anti-chiral multiplet as I,
and J, and that of adjoint multiplets as Xj and Y,', where a and b are U(N) gauge indices.
Those scalars parametrize the hyper-Kahler target manifold M, which has a non-degenerate
holomorphic symplectic structure. This structure turns the ring of holomorphic functions on
M into a Poisson algebra with the following basic Poisson brackets:

{I,J°} =065, {x{,v5}=5455. (26)

It is known that the gauge-invariant combinations of Q-cohomology of Rozansky-Witten twisted
N = 4 theory is equivalent to the Higgs branch chiral ring. The elements of Higgs branch chiral
ring are gauge invariant polynomials of I, J, X, and Y:

IS(X™y™J, TrS(X™MY"), 27)

where S(e) means fully symmetrized polynomial of the monomial e.
Upon imposing the F-term relation'?

[X,Y]+1J = €,6, (28)

°The Moyal product is extended to a product on the Dolbeault complex 2%*(C?) by the same formula, except

that the product between two functions becomes a wedge product between two forms.

10g], Lie algebra factor comes from the simple fact that the theory is U(1) gauge theory. For now, there is no
essential difference between Q°(R x €)% and Q°(R x C)% . ® gl;; however, having gl rather than gl, makes a
huge difference in the Feynman diagram computation, which will be discussed in §4.

Hphysically, one needs to impose the F-term relation, as it is a part of defining condition for the supersymmetric
vacua, as a critical locus of our specific 3d A = 4 superpotential. Algebraically, the F-term relation forms an ideal
of the ring of holomorphic functions on M.
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one can show two words in (27) are equivalent'? up to a factor of €,'2, and the physical
operators purely consist of one of them. Let us call them as

t[m,n] = elTrSXmY” . (30)
1
In the Q. -background, the Higgs branch chiral ring is quantized to an algebra and the sup-
port of the operator algebra in 3d A/ = 4 theory also localizes to the fixed point of the Q, -
background. Therefore, the theory effectively becomes 1d TQM(Topological Quantum Me-
chanics) [23,49,50].

In summary, two sides of twisted holography are 5d non-commutative Chern-Simons the-
ory and 1d TQM. Until now, we have not quite taken a large N limit and resulting back-reaction
that will deform the geometry. The large N limit will be crucial for the operator algebra iso-
morphism to work and we will illustrate this point in section §2.6.

2.3 Comparing elements of operator algebra

As 5d CS theory has a trivial equation of motion: F = 0, all the operators have positive ghost
numbers. Also, since R, direction is topological, the fields do not depend on t. As a result,
operator algebra consist of ghosts c(z;,2,) with holomorphic dependence on coordinates of

(szvo %1, 2o. The elements are then Fourier modes of the ghosts

c[m,n]= 8ZT82';C(0, 0). (31)

The non-commutativity in szv ¢ planes induces an algebraic structure in the holomorphic func-
tions on (szvc defined by the Moyal product

b d b d d b >
(225, 2525 ] = Gafe]) we, (52— (i) v, (i) = D foie Vs (32)
m,n

At the classical level (e; = 0), the operator algebra A, _( ., of 5d CS theory is generated by
ghost fields c[m, n] with anti-commutativity relations, together with BRST differential 6. As
a graded associative algebra, Ay ., is isomorphic to A* ((C[Z],Z2]€2) = A* (Diffez(C), note that
here we identify z; as J,, using the Moyal product. The BRST differential & is the dual of
the Lie bracket, thus A, — ., is the Chevalley-Eilenberg algebra of cochains on the Lie algebra
g = Diff, C ® gl;, denote by C*(g). Note that here we treat the algebra A, — ., as an algebra
over the base ring C[eq,€5], so €1, €, are algebraic parameters. At the quantum level, the
operator algebra A, _ ., receives deformations, we will denoted it by A, .

On the other hand, the elements of the algebra of operators in 1d TQM in the large N
limit consist of t[m,n]. The defining commutation relations come from the quantization of
the Poisson brackets deformed by Q. -background:

[1,0°]=€180, [X&Y5]=€,6455. (33)
We will write the F-term relation with explicit gauge indices as follows.

XY X5V + LT = e85} (34)

12They are related by following relation:

IS(X™Y™)J = e, TrS(X™Y™). (29)

13Note that the e, factor, which was previously introduced as a measure for the non-commutativity in the 5d CS
theory, acts as an FI parameter in the 3d N = 4 gauge theory.
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We will call the algebra generated by t[m, n] with relations (33), (34) as ADHM algebra or
Ae, ¢, Note that here we treat the algebra A, ., as an algebra over the base ring C[e,, €, ].
This may seems to be strange at the first glance since t[m, n] is a priori defined over (C[ei‘, €51,
nevertheless the commutators between those t[m,n]’s only involve polynomials in €;, so the
algebra A, ., is well-defined over C[eq, €;].

There is a one-to-one correspondence between c[m,n] and t[m,n], and [18] proved an
isomorphism between !Ael’62 = U, (g) and A, ., as C[ey,€,]-algebras for 5d U(K) Chern-
Simons theory coupled with 1d TQM with K > 1, where !Ael,62 is a Koszul dual of an algebra
Ac e, 14 The proof consists of two parts. First, one checks two algebras’ commutation relations
match in the O(e;) order. Next, one proves the uniqueness of the deformation of the universal
enveloping algebra U(g) by €, that ensures all order matching. It worth mentioning that in the
classical limit €; — O the algebra A, . does not agree with the classical operator algebra of
the ADHM mechanics, since the definition of the algebra A, ., involves 1/¢€, in other word,
the isomorphism holds only at the quantum level.

One of our goals is to extend the O(e;) order matching to K = 1. It may seem trivial
compared to higher K, but it turns out that it is more complicated. We will give the proof in
84, §5. The uniqueness of the deformation applies for all K including K = 1, so we will not
try to spell out the details in this work.

2.4 Koszul duality

Let us explain why in the first place we can expect the Koszul duality between 5d and the large
N limit of 1d operator algebra. Further details on Koszul duality can be found in[19,39,51,52]

The 5d theory is defined on R; x (C12VC, where R, is topological and (CIZVC, and 1d TQM
couples to the 5d theory along R,. As explained in (7), there is a scalar supercharge Q and
1-form supercharge 6 that anti-commute to give a translation operator P,. We can build a

topological line defect action using topological descent.

Pepr [5,x(t)], (35)
where
x(t) = clm,nltlm,n]. 36)

The BRST variation of (35) vanishes if x(t) satisfies a Maurer-Cartan equation:
[Q x]+x*=0, 37)

and if x € A® 'A for some A, the Maurer-Cartan equation is always satisfied. Hence, it is natural
to expect the Koszul duality between A, ., and A, . . So, the coupling between the 5d ghosts
and gauge invariant polynomials of 1d TQM is given by

&m=f t[m,n]c[m,n]dt. (38)
R,

Now that we have three types of Lagrangians:

Ssd ¢s +S1d Tom + Sint - (39)

We need to make sure if the quantum gauge invariance of 5d Chern-Simons theory remains to
be true in the presence of the interaction with 1d TQM. Namely, we need to investigate if there
is a non-vanishing gauge anomaly in Feynman diagrams. Along the way, we will derive the
isomorphism between the operator algebras, as a consistency condition for the gauge anomaly
cancellation.

"It is known that for A, _, ., = C*(g), the Koszul dual ‘A, _, ., is U(g) [45].
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2.5 Anomaly cancellation

To give an idea that the cancellation of the gauge anomaly of the 5d CS Feynman diagrams
fixes the algebra of operators in 1d TQM that couples to the 5d CS, let us review 5d U(K)
Chern-Simons example shown in [18]. Consider following Feynman diagram.

[N
£[0, O\ \nsapans

AT, I E < il
AVAVITATA AV VaVay; V1
/A !

VARY,

to,0)| * P T,

Figure 2: The vertical solid line represents the time axis. Internal wiggly lines stand
for 5d gauge field propagators P;, and the external wiggly lines stand for Fourier
components 5d gauge field.

The BRST variation(6A = dc¢) of the amplitude of the above Feynman diagram is non-zero.
e1€;j(9,AN)(2;,c"IKT< £, £l £[0,0]¢e[0, 01, (40)

where K, fy. are a Killing form and a structure constant of u(K), and t[m,n] is an element
of ADHM algebra with gauge group G = U(N), and flavor group G = U(K).

To have a gauge invariance, we need to cancel the anomaly, and the gauge variation of the
following diagram has exactly factors like €; j(aziAa)(azjcb):

#[1,0] 8, A t0,1]. 8., A

//'/“\ ,’\\/f/\'\.\/ AV Vi O W //\\ J'/\\/{ (VAVANA VAW oWV

[0, 1] d., A t[1,0] 9., A

/ '/\\ /”\\/f,\\‘\//\u/\;"‘-/\ S NN // \'\/ f\\/{ .\'~/A\/\-"‘\’,\\/\/ RS
Figure 3

The BRST variation of the amplitude is

€1€:;(, A8, cPIK “ f5, fo[£[1,0], [0, 1]]. (41)

12


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

Imposing the cancellation of the BRST variation between (40) and (41), we obtain

[t[1,0],¢t[0,1]] = €,t[0,0]t[0,0]. (42)

This is very impressive, since we obtain the ADHM algebra from 5d Chern-Simons theory
Feynman diagrams!

We will see that if K = 1, some ingredients of Feynman diagram change, but we can still
reproduce ADHM algebra with G = U(N), G = U(1).

2.6 Large N limit and a back-reaction of N M2-branes

Although we have not discussed explicitly about taking large N limit, but it was being used
implicitly in the construction of the algebra A, ., which makes it a crucial step towards the
holography. However, it is important to notice that large N is not necessary for Koszul duality,
but it is important for holography.

Here we explain some detail of taking large N limit. First notice that there are homo-
morphisms L]’\\,’/ : O(T*Vg nr) = O(T*Vg y) for all N > N induced by natural embedding
cN — (CN/, where

Vi v = gly ® Hom(CK,C"), (43)

so that T*Vy y is the linear span of single operators I,J,X,Y, and the algebra O(T*V y) is
the commutative (classical) algebra generated by these operators (with no relations imposed).
Then we define the admissible sequence of weight 0 as

{fy € O(T*Vie )N N (fiy) = fi ), (44)

and for integer r > 0, a sequence {fy} is called admissible of weight r if {N~" fy} is ad-
missible sequence of weight 0 (e.g. the sequence {N} is admissible of weight 1), and define
(’)(T*VK,.)G]“ to be the linear span of admissible sequences of all possible weights. It’s easy to
see that O(T*VK’.)G“ is an algebra. Next we turn on the quantum deformation which turn the
ordinary commutative product to the Moyal product ., and it’s easy to see that for admissible
sequences {fy} and {gy}, {fy *, v} is also admissible. In this way we obtained the quantized
algebra O, (T*VK,.)GI“ .
The action of gly on Vi y induces a moment map

pigly = O (T"Viy), El o Xky]—xivk+17. (45)
We want to set the moment map to €, times the identity, so we consider the shifted moment
map: . . 4 _
be, toly = O (T*Vin), El - XY =X\ vF+ 107 —e,6), (46)
which is GLy-equivaraint. Together with the Moyal product on O, (T*Vg ), Ue, gives rise to
a GLy-equivaraint map of left O, (T*Vg y)-modules
Pe, : Oc (T*Vg n) ® gly = O (T* Vg ). (47)

Taking GLy-invariance, we obtain the quantum moment map

Bey (O, (T*View) @ gl ) = O (T Vie ). 48)
It is easy to verify that the image of u, is a two-sided ideal. Similar to O, (T *VK’.)GLg we can
define admissible sequences in (O, (T*VK,N)®g[N)GLN and call this space (O, (T*VK,,)®g[.)GL°.
Quantum moment maps for all N give rise to

.u‘ez : (Oel(T*VK,-) ® g[o)GL‘ d Oel(T*VK,o)GL.: (49)

1We thank an anonymous referee who made this point.
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and the image is a two-sided ideal, so we can take the quotient of O, (T*VK’,)GI“ by this ideal,
this is by definition the large-N limit denoted by OEI(M;?. .
From the definition above, we can write down a set of generators of (961(/\/1;2. :

{N} and {I,S(X"Y™)JP} for all integers n, m > 0. (50)

Note that Costello also defined a combinatorial algebra A‘é‘l’“;'z’ in section 10 of [18], which
depends on K but not on N. This is related to O, (Mff.) in the sense that generators of Ag"“e‘b

> 1-€2
are

{N} and {llaS(X”Ym)Jﬁ} for all integers n,m > 0, (51)
€1

when €; # 0 '°. Under the aforementioned correspondence between generators, A‘é‘l’neﬂz’ is
isomorphic to O, 1(./\/llfé_) (Proposition 13.4.3 of [18]) when €, is invertible.

The general philosophy of AdS/CFT [31] teaches us that the back-reaction of N M2-branes
will deform the spacetime geometry. In our case, since the closed strings completely decouple
from the analysis, the back-reaction is only encoded in the interaction related to the open
strings. More precisely, the back-reaction is already encoded in the 5d-1d interaction La-
grangian (38), a part of which we reproduce below.

Sback = J t[O, O]C[O) O]dt (52)
R,

Here, we can explicitly see N in t[0,0], as

t[0,0]=1J /e = ;116 /ey =N-2, (53)
€1

where in the second equality, we used the F-term relation.
After taking large N limit, N becomes an element of the algebra A, . , which is coupled
to the zeroth Fourier mode of the 5d ghost, c[0, 0].

2.7 Mb5-brane in 2—deformed M-theory

We want to include one M5(D4)-brane in the story, and review the role played by the new
element coming from the bi-module on M5(D4)-brane in the boundary and the bulk.

Table 1: M2, M5-brane

| o1 2] 3 4 5 6[7 8 9 10]

Geometry | R, | C,, szvc Ce, R Sel2
M2(D2) X X X
M5 X X X X X X
D4 X X X

In the boundary perspective, it intersects with the M2(D2)-brane with two directions and
supports 2d N = (2, 2) supersymmetric field theory with two chiral superfields, whose bottom
components are ¢, @, arising from D2— D4 strings. This 2d theory interacts with the 3d V' = 4
ADHM theory with a superpotential

W=0¢Xp, (54)

16In the notation of [18] they correspond to D(#) and Sym(D(a |, 1", |, 8 1)) for all integers n, m > 0, respec-
tively.
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where X is a scalar component of the adjoint hypermultiplet of the 3d theory.

7'\
\\\
/*/ 1
Yy \
Y gp /// //
A
e e
Pl // \\\\‘\ el
P T B
/ / // \\7 i N
\\ \)(\ ‘: N ,‘ N 1
X e
AN 4

o
Figure 4: 3d N = 4 ADHM quiver gauge theory with G = U(N), F = U(1), decorated
with 2d N = (2,2) field theory. X, Y are scalars of adjoint hypermultipet, and I, J
are scalars of (anti)fundamental hypermultiplet. The triangle node encodes the 2d
theory. ¢ and ¢ are 2d scalars. In type ITIA language, the circle, square, and triangle
node correspond to D2, D6, D4 branes, respectively.

A naive set of gauge invariant operators living on the 2d intersection are
IX"Y"3, XY, oX™Y"@. (55)
The superpotential reduces [19,22] the above set into
M, e, ={b[z"]=1Y"Q, c[z"]=Y"J}. (56)

The set of 2d observables M, ., forms a bi-module of the ADHM algebra A, ..
The difference between left and right actions of the algebra A on M, ., is encoded in the
form of a commutator:

[a,m]=m', wherea€ A, mm eM,,,. (57)

To verify (57), we need to establish the commutation relations between the set of letters {¢, ¢}
and {X,Y,1,J}. Those are given by
IP(p,$) =P(p,P)I
JP(p,$)=P(p,¢)]
XiP(p, ) =Py, §)X]
Y/P(¢,9) = P(o, P} + ¢'¢))
XjpiP(p, ) = —€18;,P(¢, §)
XipP(p, ) = —€10,P(0, ).

(58)

Again, the non-trivial commutation relations in the last three lines originates from the effect
of the particular superpotential V. For the derivation, we refer the reader to [19,22].
In the Q. -background, 2d NV = (2, 2) theory localizes to a point, which is the origin of R,.
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Figure 5: Left figure repres‘ents a coupled system of 3d M = 4 ADHM theory(the

cylinder) and 2d N = (2, 2) theory(the middle disk in the cylinder) from D2 branes
and a D4 brane. In the Q. -background, the system localizes to 1d + 0d system.

Hence, the resulting system is ADHM algebra A, ., and bi-module M, ., of the algebra.

To study the bulk perspective, we need to study what degree of freedoms that M5-brane
support in the 5d spacetime R; x (szvc and how the M5-brane interacts with 5d Chern-Simons
theory. 5d CS theory is defined in the context of type Ila, and M5-brane is mapped to a
D4-brane. The local degree of freedom comes from D4-D6 strings, which are placed on
{} xCeR, x (Clzvc. These 2d degrees of freedom are actually coming from 4d N' = 2 hy-
permultiplet, as the true intersection between D4 and D6 is C x C, . In the Q. -background,
the 4d A/ = 2 hypermultiplet localizes to a 5 —y system [11]. Hence, we arrive at 3 —7y Vertex
Algebra on C C (CIZV c

Table 2: Bulk perspective

| o[ 1 2] 3 4 5 6|7 8 9]

Geometry | R, | C,, (CIZVC Ce, R,
1d TQM X
2d By X X
5d CS X X X X X
The 3 — y system minimally couples to 5d Chern-Simons theory via
f B(O +Ax)y. (59)
C

The observables to be compared with those of field theory side: b[z"] and c[2"] can be natu-
rally compared with the modes of 3 and y: 8,'3, 3"y, and the Koszul duality manifests itself
by the coupling between two types of observables:

J 3;;1/5~b[zk1]+f o5y - clz], (60)
{0} {0}

where z = z,, and the integral on a point is merely for a formal presentation.
The following figure depicts the entire bulk and boundary system including the line and
the surface defect, and describes how all the ingredients are coupled.
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1DADHM QM- Asa 5
R, x C,
0D Bi-Module ® By
Gllalle
R,

Figure 6: 5d Chern-Simons(R, X szvc , 1d generalized Wilson line defect(R,), and
2d surface defect(C C szvc)'

As explained in section §2.5, we need to make sure if the introduction of the 2d system is
quantum mechanically consistent, or anomaly free. Imposing the anomaly cancellation condi-
tion of the 5d, 2d, 1d coupled system, we should be able to derive the bi-module commutation
relations defined in the field theory side. This is the content of §5.

3 M2-brane algebra and M5-brane module
In this section, we will provide a representative commutation relation for the algebra A, .,
[a,a’]=ap+ €101 +€3ay+..., wherea,a’,a; € A, ,, (61)

and a representative commutation relation for the algebra A, . and the bi-module M
for A. ,

€1,€2

[a,m]=mg+e€eym; + efmz +..., wherea€ A, ., mmeM, ., . (62)

We first recall the notation for a typical element of A, . and M, . :

1 1
tfm,n]= —TrS(X"Y") = —IS(X"Y")J € A, ,
€1 €1€9

1 -
b[z™] = 6—1me EM, (63)
1
n 1 n
c[z"]=—pYTeM,,-
€1
For the convenience of later discussions, we also introduce the notation:

€ 1

T[m,n]= 2TrSX™Y") = —ISX"Y" ) € A, . (64)
€1 €1 |

Our final goal is to reproduce the A, ., algebra from the anomaly cancellation of 1-loop Feyn-

man diagrams in 5d Chern-Simons theory. So, it is important to have commutation relations

that yield O(e;) term in the right hand side, where €, is a loop counting parameter in 5d CS

theory.
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3.1 M2-brane algebra

Since we have not provided a concrete calculation until now, let us give a simple computation
to give an idea of ADHM algebra and its bi-module. It is useful to recall G = U(N), G = U(K)
ADHM algebra, which serves as a practice example, and at the same time as an example that
explains the non-triviality of G = U(N), G = U(1) ADHM algebra, compared to K > 1 cases.
It was shown in [18] that following commutation holds for G = U(N), ¢ = U(K) ADHM
algebra
[t[1,0],t[0,1]] = €,t[0,0]t[0,0] or [IXJ,IYJ]=¢€,(1J)(1J). (65)

This does not work for G = U(1). It is instructive to see why.
[TrX, TrY]=[Xii,Yj]]=5§51].el =5§61 =Ne;. (66)
Multiplying both sides by e% / e%, we can convert it into T[m, n] basis:
[T[1,0],T[0,1]]=€,T[0,0]. (67)

The RHS of (67) is different from (65) crucially in its dependence on ¢;. The RHS of (67) is
0(6(1)), but that of (65) is O(e;). While it was sufficient to consider this simple commutator to
see the e; deformation of the algebra for G = U(K) with K > 1, we need to consider a more
complicated commutator to see O(e;) correction in the RHS.

In Appendix §A.1, we will derive a set of relations that will determine all other relations,
of which the simplest ones are:

[t[3,0],t[0,3]]=9¢t[2,2]+ %(O'Zt[O,O] — o5t[0,0]t[0,0])
(68)
[e[2.1], ¢[1,2]] = 3¢[2, 2] — %(ozt[0,0] — o4t[0,0]¢[0,0]),

where
Oy = e% + e% +e€1€65, O3=—€1€65(€;+6€5). (69)

To compare the commutation relation to that from 5d Chern-Simons calculation, we need
to make sure if the parameters of ADHM algebra A, . are the same as those in 5d CS theory.
From [18], the correct parameter dictionary'” is

1
(€1)apam = (€1)cs» (62 + 561) = (€2)cs - (70)
ADHM

Hence, the commutation relation that we are supposed to match from the 5d computation is
3

[¢[2,1], ([1,2]] = 3¢[2,2] — %((e% n zef)t[o,m T (ere2— %)t[0,0]t[0,0]). (71)

There is one term in the RHS of (71) that is in O(e;) order:
1
[[2,1],¢[1,2]]1= O(eD — 5elegt[o,O]t[o, 0]+ O(eD). (72)
We will try to recover the O(e;) term from 5d Feynman diagram calculation'® in section §4;

the general argument that gauge anomaly cancellation leads to the Koszul dual algebra com-
mutation relation is given in §2.5.

7We thank Davide Gaiotto, who pointed out this subtlety.
8The basis used in the Feynman diagram computation is T[m,n], not t[m,n]. However, the change of basis
does not affect any computation because the O(e;) term in (72) is quadratic in t.
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3.2 Mb5-brane module

We will use the commutation relations (33), (34), (58) to compute the commutators between
a€ A, ., and me M, . ,which are defined in (30), (56). When one tries to compute some
commutators, one immediately notices some normal ordering ambiguity in a general module
element m, which can be seen in following example

[1XJ, U @) pN)] = [1X17, 1,600 ] (73)

Assuming that the order of letters is consistent with the order of fields in the real line R,, it
is obvious that we need to place $%p, together, as they are defined at a point {0} € R,'°.
However, it is ambiguous whether we put I, J? in the right or left of $%p,, as I, J® are living
on R,. We will try to fix this ambiguity to prepare a concrete calculation.
Considering following normal ordering when writing a module element (IY ¢)(¢J) will
be enough to fix the ambiguity
|S5j<Pk|IiJkYij- (74)

We simply choose other letters like X, Y, I,J to be placed on the right side of ¢ and .
Still, there is an ordering ambiguity. For instance between two words:

|PpllJY vs |pplJIY. (75)

We simply choose an alphabetical order to arrange letters. In other words, we use the commu-
tation relations until the letters in the word have an alphabetical order. When the word has
an alphabetical order, we contract the gauge indices to form a single-trace word and omit the
gauge indices. For instance,

(g) :=1@ ¢;]
QL CHES A NS (76)
(IG) (I )LT) =@ ol LTI
As a consequence, some more steps are needed for the following:

@7 ppl LTI (77)

That is, we need to commute I; through J to contract with Ji. While doing this, we necessarily
use [I;,J¥] = 615{.‘ +J*I;, which produces two terms.
Having fixed the ordering ambiguity, there is a few things to keep in mind additionally:

¢ We use F-term relation and the basic commutation relation between X and Y in maxi-
mum times to get rid of X’s in the word, since the module only consists of ¢, ¢, I,J, Y.

* To use F-term relation, we first need to pull the target XY(or YX) pair to the right end,
not to ruin the gauge invariance, and pull it back to the original position in the word.

* To use the superpotential relations(X ¢ = €,95 or X ¢ = €,9,,), we need to bring X right
next to ¢ or @.

9Recall that ¢, ¢ are chiral multiplet scalars that are localized at the interface(between the line and the surface).
In the Q. -background, the interface localizes to a point. Hence, ¢, ¢ are localized to be at a point on the line.
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Given the prescription, we would like to find a € A, ., and m € M, . such that the value
of [a, m] contains O(e;) terms. To illustrate the prescription, let us consider following simple
example, which will not produce O(e;) term.

Example: [IXJ,(IY $)(pJ)]

It is much clear and convenient to use closed word version for the algebra element. We will
recover the open word at the end by simply multiplying €, on the closed words

[TrX,(IY¢)e])]=X)-(UY $) (@) —TY ) (pJ]) - (X). (78)
Compute the first term:

X1GL @I YT =|@P oI (6,68 + YaxX0)I¢

b . - (79)
= e1]@ @I+ TV P)(pJ) - (X).
So,
[TrX, (IY §)(9J)] = €11 G e |15J¢ 80)
=e1(Ip)(@J).
After normalization, by multiplying i—% both sides, we get
1
[T[1,0],b[z]c[1]] = e5b[1]c[1]. (81)

There is no O(e;) correction. So, we need to work harder.
The first bi-module commutator that has an e; correction with some non-trivial depen-
dence on €, is [T rS(X%Y),(IY ¢)(@J )]. After properly normalizing it, we have

[T[2,1],b[=]c[1]] =(— gezT[O, 1]+ eﬁb[l]c[l])

+ el(—ezb[l]c[l]T[0,0]—l-gezb[l]c[l])

(82)

+ ef(— gb[l]c[l]T[0,0])
+ ef(— %b[l]c[l]b[l]c[l]).

Here, we used the re-scaled basis T[m, n] for A, .,. This is a better choice to be coherent with
the form of the bi-module elements, since b[z"] =IY"¢ and c[z"] = ¢Y"J explicitly depend
on I and J. ?°We have shown the proof in Appendix §A.2.

4 Perturbative calculations in 5d U(1) CS theory coupled to 1d QM

In this section, we will provide a derivation of the G = U(N), G = U(1) ADHM algebra Ac e,
using the perturbative calculation in 5d U(1) CS. We will see the result from the perturbative
calculation matches with the expectation (72). The strategy, which we will spell out in this
section, is to compute the O(e;') order gauge anomaly of various Feynman diagrams in the

20gimilar to the algebra case, there might be a shift in parameters €; and €, in 5d CS side; here, we simply
assumed that there is no shift: (€;)sy = (€1)14—24> (€2)sq4 = (€2)14—2q4- If there were a shift in the e, dictionary, the
tree level term may be a potential problem.
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presence of the line defect from M2 brane(R! x {0} c R! x (Clz\, ¢)- Imposing a cancellation of
the anomaly for the 5d CS theory uniquely fixes the algebra commutation relations.

Purely working in the weakly coupled 5d CS theory, we will derive the representative
commutation relations of the ADHM algebra (72):

* Algebra commutation relation
[[2,1],¢[1,2]]=...+€,€5t[0,0]¢[0,0] +..., (83)

where t[n,m] is a basis element of A, ..

As we commented in §3.1, the algebra basis used in the Feynman diagram computation is
T[m,n], which is related to t[m, n] by rescaling with €,. The effect of the change of basis is
trivial in (83), so we will interchangeably use t[m,n] and T[m, n] without loss of generality.

4.1 Ingredients of Feynman diagrams

To set-up the Feynman diagram computations, we recall the 5d U(1) Chern-Simons theory
action on R; x (CIZVC

1 2
S=— dz1dzy | Axe, dA+ -Ax . Ax. A, (84)
€1 JRr,xc?, 3
with |e;| <|€e,] < 1. In components, the 5d gauge field A can be written as
A=A dt+A; d3 +A; dZ,, (85)

with all the components are smooth holomorphic functions on R x CIZVC.
Now, we want to collect all the ingredients of the Feynman diagram computation. It is
convenient to rewrite (84) as

1 2
S=— dz,dz, (AdA-i- gA(A*62 A)) . (86)

€1 RIxCZ .

(86) is equivalent to (84) up to a total derivative. From the kinetic term of the Lagrangian,
we can read off the following information:

* 5d gauge field propagator P is a solution of
le A\ dZZ AN dP = 5t221=2:2=0‘ (87)
That is,

Z19dW1od iy —WipdZ1pdtyp + t15dZ10dWe,
5
dy,

P(vy,vy) = (A(v1)A(Vy)) = s (88)

where

V= (ti)zi)wi)a d;; = ti2j+|zij|2+|wij|23 t; (89)

ij = :ti—t

J Jjr
From the three-point coupling in the Lagrangian, we can extract 3-point vertex. This is not
immediate, as the theory is defined on non-commutative background. Different from U(N)

CS, where the leading contribution of the 3-point vertex was AAA, the leading contribution

21


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

of the 3-point coupling of the U(1) gauge bosons starts from O(€,)Ad, Ad,,A. The reason is
following:

fdzAdeAA(A*ezA)
=JA/\((Atdt +A;dz +Aydw) * (A dt +Azdz +Aydw))
:f dz Adw AAN[dtANdZ (A xA; — Az *A) +...] (90)
:Jdz/\dw/\A/\[dtAd§(0+262(8ZAt3WA§—BWAtﬁzAg))+~~-]
= 2ezf dz Adw AANA[dt AdZ(8,A:8,A; — 8,A.0,A;)]+ O(e3).

Note that for U(N) case, SU(N) Lie algebra factors attached to each A prevents the O(eg) term
to vanish. Still, U(1) c U(N) part of A contributes as O(e,), but it can be ignored, since we
take e, < 1.

Hence, in U(1) CS, the 3-point AJ,AJ, A coupling contributes as

* Three-point vertex Zs,,:
T3pe = €2dz Adw. o1

Now, we are ready to introduce the line defect into the theory and study how it couples to
5d gauge fields. Classically, t[n;,n,] couples to the mode of 5d gauge field by

J t[nl, le]az?l 3222Adt . (92)
R

The last ingredient of the bulk Feynman diagram computation comes from the interaction
(92).

* One-point vertex I‘l“pt:

(93)

" {t[nl, n316¢ 2, 2, if 3;;1 EZ';ZA is a part of an internal propagator
1pt — .

t[ny, nZ]EZT BZZZA if 3;11 82';2A is an external leg

Lastly, the loop counting parameter is €;. Each of the propagator is proportional to €; and
the internal vertex is proportional to e;l. Hence, 0-loop order(O(e;°)) Feynman diagrams may
contain the same number of internal propagators and internal vertices and 1-loop order(O(e;))
diagrams may contain one more internal propagators than internal vertices.

Until now, we have collected all the components of the 5d perturbative computation (88),
(91), (92), and (93). With these, let us see what Feynman diagrams have non-zero BRST
variations and how the cancelation of BRST variations of different diagrams leads to the ADHM
algebra A, . .

4.2 Feynman diagram

The goal of this section is derive the O(€;)-term of [t[2,1], t[1,2]] by Feynman diagrams. We
interpret the commutator [t[2,1],t[1,2]] as the following difference between two tree level
diagrams
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t[1,2] 0,04 A

N N\ AL
7N\ Jf AVAVAVAVAS AV W eV

t[2,1] 020, A

\ N
/’/\ /’\ VAVAVANAS A VAV Ve ¥

#[1,2] 9,02 A ¢[2, 1] 820, A

. N
e \ - , A WaVAV VY VYV,
L/ \\\ /\\/} VAVA VYA YW\ N\ \/ VU Y o et §

Figure 7: There is no internal propagators, but just external ghosts for 5d gauge
fields, which directly interact with 1d QM. The minus sign in the middle literally
means that we take a difference between two amplitudes. In the left diagram ¢t[1,2]
vertex is located at t = 0 and t[2,1] is at t = €. In the right diagram, t[1,2] is at

t=—cand t[2,1]att =0.

The amplitude of the diagram is

[¢[2,1],¢[1,2]1878,,413;,32A,, (94)
so the BRST variation of the amplitude is proportional to
[t[2,1],t[1,2]] aj1 8,,A10,, ajzc2 +[t[2,1],¢[1,2]] aj1 8,,¢10,, 8222A2 ) (95)

Note that the BRST variation on A fields is QgrsrA = dc. At O(e;) level, this diagram will
cancel all anomalies coming from one-loop diagrams with two external legs coupled to 8221 0,,A

and J,, 322A respectively. Let’s enumerate those diagrams, there are two types of diagrams:

(1) See figure 8.

N

t[m, n] AN AR
Y,
P

zé
2
S
<

L~ 2A A A N
ZAVAVATAVA AV, VAVaV.

02,0, A

i

N

Figure 8: A diagram, which has a vanishing amplitude.

(2) See figure 9.
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b

\ / \‘f 'Vf\‘-'\df\r\f-v/v\g ‘\. ]
\/ >

t[m, n]

t r.s 'f“a N _‘"‘l‘\'\ VAV AVAVAVZ ¢TI
5 vVTip o v
3 v L/L/ \

A

'x/‘L.f-L/IV ai' a: A

Figure 9: The vertical solid line represents the time axis, where 1d topological defect
is supported. Internal wiggly lines stand for 5d gauge field propagators P;, and the
external wiggly lines stand for 5d gauge field A.

For the first diagram, we claim that the amplitude is always zero. This can be seen as follows.
Let U(1) act on 2z and w by rotation with weight 1, then propagators has weight —2. For the
interaction vertex, it contains the integration measure dz A dw together with J, and J,, in the
interaction term, so the total weight of the interaction vertex is zero. Each external leg is of
weight 3. Hence, the total weight of the amplitude is —2 —m —n < 0, i.e. it’s not invariant
under the U(1)-rotation symmetry, so the amplitude must be zero.

For the second diagram, we will follow the approach shown in [30] and show that the
diagram has a nonvanishing amplitude if and only if m =n =r =s = 0. And in the case that
it is nonzero, it has a nonvanishing gauge anomaly consequently, under the BRST variation
QprsTA = Oc.

Let’s do the same analysis on the second diagram as the first one, i.e., let U(1) act on z and
w by rotation with weight 1, then the total weight of the amplitude is —n —m —r —s. Hence,
the diagram is nonzero only if m = n = r = s = 0. In the following discussion, we will focus
onhecasem=n=r=s5=0.

We first integrate over the first vertex (P, 622 J,A P,) and then integrate over the second
vertex(Py 0, 3]3A Ps).

First vertex(P; 823,A P,)

First, we focus on computing the integral over the first vertex:
€1 6% J dwy Adzy A Gy, Py (v, v1) A 8,,0,, Po(v1, Vz)(szl azzl O, A) . (96)
V1

Note that 3, and 9, comes from the three-point coupling at v;:

€2AN G, AN, A, 97)
and d,, comes from the 3-pt coupling at v,:

€2AN G, AN, A. (98)

We will consider g, later when we treat the second vertex.
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The factor zlwlaza A is for the external leg attached to v;, which is ¢[2,1]. In short,
this is an ansatz, and we can start without fixing m,n in ¢[m,n]. However, we will see that
the integral converges to a finite value only with this particular choice of (m,n). For a simple
presentation, we will drop 8221 9w, A, and recover it later.

After some manipulation, which we refer to Lemma 1 in Appendix B.1, (96) becomes

|21 |2 w2 Zz(ledfz—tlzdwz)

5 499
d01d12

—f dt]_dzldgldwld _1 (99)
V1

The integral 99 can be further simplified by using the typical Feynman integral technique,
which can be found in Lemma 2 in Appendix B.1. We are left with

2 2 2,2
CoW5  C3%5  C4ZyW5
) (100)

Zo(Wodty — todwy) ( +
s ds dgz dgz dgz
with ¢; being a constant. Note that all terms in the parenthesis have a same order of divergence.
Therefore, it suffices to focus on the first term to check the convergence of the full integral(we
still need to do v, integral.)
We will explicitly show the calculation for the first term, and just present the result for the
second, third, and fourth term in (193). They are all non-zero and finite. We will denote the
first term as P, which is 1-form.

Second vertex(P 3221 3,,A P3)

Now, let us do the integral over the second vertex(v,). The remaining things are organized
into

22wy

f P/\aWZPB(VZ,Vg)/\dZZAdWZ(ZzW 1?) 32A), (101)
V2

where we dropped forms related to v3, as we do not integrate over it. J,,, comes from the 3-pt
coupling at v,:
€2AN 0, AN, A. (102)

The factor zzwza 82 A is for the external leg attached to v,, which corresponds to c[1,2].
Again, this is an ansatz. We will see that only this integral converges and does not vanish. We
will drop 2, ajzA and recover it later.

The integral (101) is simplified to

4

Z w

f %d tdedededeZ (103)
12 02723

The intermediate steps can be found in Lemma 3 in Appendix B.1.
Now, it remains to evaluate the delta function at the third vertex and use Feynman tech-
nique to evaluate the integral. By Lemma 4 in Appendix B.1, we are left with

(const)elezt[O 0]¢[o0, 0]8 o, Alé’zllﬁziAz. (104)
The BRST variation of the amplitude is
(const)elezt[O 0]t[o, 0]8 o, Ala;lajzcz. (105)

This indicates that the theory is quantum mechanically inconsistent, as it has a Feynman dia-
gram that has nonzero BRST variation. However, as long as there is another diagram whose
BRST variation is proportional to the same factors We can cancel the anomaly.
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Hence, imposing BRST invariance of the sum of Feynman diagrams, we bootstrap the pos-
sible 1d TQM that can couple to 5d U(1) CS.

An obvious choice is the tree-level diagram where (3, A)(J,,A) appears explicitly:

By equating (105) and (95), we get

[[2,1],t[1,2]] = €,€2t[0,0]¢[0,0] +... (106)

Therefore, we have reproduced the O(e,) part of the ADHM algebra A, ., commutation re-
lation from the Feynman diagram computation:

[t[2,1],¢[1,2]], —6162 t[0,0]t[0,0], (107)

where [—,—], is the O(€;)-part of the commutator.

5 Perturbative calculations in 5d U(1) CS theory coupled to 2d 3y

In this section, we will provide a bulk derivation of the ADHM algebra A, ., action on the
bi-module M., ., of the ADHM algebra A, ., using 5d Chern-Simons theory. The strategy is
similar to that of the previous section. We will compute the O(e;!) order gauge anomaly of var-
ious Feynman diagrams in the presence of the line defect from M2 brane(R! x {0} c R xC? C)
and at the same time the surface defect from M5 brane on ({0} x C c R! x CIZV c)- Imposing a
cancellation of the anomaly for the 5d gauge theory uniquely fixes the algebra action on the
bi-module.

We will confirm the representative commutation relation between ADHM algebra and its
bimodule (108) using the Feynman diagram calculation in 5d Chern-Simons, 1d topological
line defect, and 2d By coupled system.

* The algebra and bimodule commutation relation

[t[2, 1], b[zl]c[zo]]e1 = €16, t[0,0]c[2°]b[2°] + €165 c[2°]D[2°], (108)

where c[2z"] and b[z™] are elements of the bi-module.

5.1 Ingredients of Feynman diagram

Generators of the 0d bimodule b[z"], c[z™] couple to the mode of 3, y through

j 85 - bz ] + f gy [z, (109
{0} {0}
where z = z,. The coupling is defined at a point, so the integral is only used for a formal
presentation.

From the coupling, we learn another ingredient of the 5d-2d Feynman diagram computa-
tion:

* One-point vertices from (109):

6 b[zX15, % if EZ’Z B is a part of an internal propagator
lpt = [zk]aZZ B ifof B is an external leg ’
(110)
7 c[zk]5 if 3ky is a part of an internal propagator
1pt = c[zk] if 3")/ is an external leg

In the case of multiple ﬁ, y internal propagators flowing out, we prescribe to keep only
one &, function.
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The By—system also couples to the 5d Chern-Simons theory in a canonical way:

1
— B8, — Az, *e,)Y (111)

€1 (sz

from which we read off the last ingredients of the perturbative computation:

* The fy propagator Pg, = (By) is a solution of

352P/5}, - 6ZZ=0 . (112)
That is,
dz
Py, = (By) ~ —2. (113)
ZP)

* The normalized three-point(f3,Asy,y) vertex :

T =1. (114)
Note that we are taking the lowest order vertex in the Moyal product expansion of (111), and
normalize the coefficient to 1 for simplicity in the following computation. Each 3y propagator
contributes €;, and each BAy vertex contributes e; .

Recall that there was a gauge anomaly in the 5d CS theory in the presence of the topological
line defect. Similarly, the bi-module coupled to By-system provides an additional source of
the 5d gauge anomaly, since v system has the nontrivial coupling (111) with the 5d CS
theory and is charged under the 5d gauge symmetry. For the entire 5d-2d-1d coupled system
to be anomaly-free, the combined gauge anomaly should be canceled. The bulk anomaly
cancellation condition beautifully fixes the action of the algebra on the bi-module.

The simplest example involving the bi-module is akin to the first example of §4; notice the
similarity between Fig 2 and Fig 11. As a result, the calculation in this section resembles that
of §4.2.

From the ingredients provided above, we can interpret the commutator [t[z, 1], b[z! ]c[zo]]
as the difference between two tree-level diagrams:

Figure 10: Feynman diagrams representing the commutator [t[2,1], b[z!]c[2°]].
The vertical straight lines are time axis, and fy lives on the gray planes. Sy only
flows out of the time axis, but not flowing along the time axis. Note that there is no
internal propagators of any sort. All types of lines are external legs, they are modes
of B, v, A

As Fig 10 does not involve any loops, the amplitude is simply

[¢[2,1], =" 1c[2°1](8728,A)(8,B)r » (115)
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and its BRST variation is proportional to

[¢[2,1],b[2"1c[2°1](820,c)(8, B )7 - (116)

At O(e;) level, it will cancel the anomalies coming from all possible one-loop Feynman dia-
grams with three external legs coupled to BZZEWA, Y, and 9,3, respectively, so the only pos-
sibilities are Figure 11 and Figure 12, which we will call the diagram I and the diagram II,
respectively.

920, A

Figure 11: The Feynman diagram I. The vertical straight lines are the time axis, and
the gray plane is where y-system is living. The internal horizontal straight lines are
By propagators and the external slant straight lines are modes of y. Note that no
By propagates along the time axis. The $Ay three-point vertex is restricted to the
PBr-plane, but the AAA three-point vertex can be anywhere in the bulk.

82,0y, A

Figure 12: The Feynman diagram II.

Before we start doing concrete computations, we make a similar analysis to the ADHM
algebra case, i.e., let U(1) rotates the z and w coordinates with weight 1, then 3 —y propagator
has weight 0, Chern-Simons propagator has weight —2 and all interaction vertices have weight
zero. It follows that the Feynman diagram I has a total weight of —m —n, and the Feynman
diagram II has a total weight of 0. Hence, the amplitude for the Feynman diagram I is nonzero
only if m =n =0, so in the later discussions we will impose the condition that m =n = 0.
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5.2 Feynman diagram I

In this subsection, we will show that the amplitude of Fig 11 is
(const) €, ajaWAazﬁ y c[2°]1b[2°]t[0,0]. 117

The factor 22w, 928, A is for the external leg attached to the top 3-point vertex, v,. The factor
2W2%, Yw, 2

corresponds to t[2,1]. For the convenience of presentation, We will drop 8222 d,,A and recover
it in the final result.

Along the way, we also show the constant factor in front of (117) finite only if the external
legs are 322 0,A8,By. For simplicity, we will abbreviate the leg factors during the computation.

First vertex

First, we focus on computing the integral over the first vertex:
J 3, P1(vo, v1) A (widwy) A (z2dz) A O, Po(v1,v3). (118)
V1

Note that 3, and J,, comes from the three-point coupling at v;:
€2AN G, AN, A. (119)

In Lemma 5 in Appendix B.2, we showed how to evaluate (118) and arrive at following
expressions.

1 2 21, 1232 2 2 2 -
d
_ J ixVxA=x) f R i 1 Y e 1Y A (120)
0 21

(21 2w [2 + €5 + x (1 — ) (|22 +]w, |2 + £3))7

where [dV;] is an integral measure for v; integral. We see from (120) that it was necessary
to choose c[m,n], B, to be c[2,1], ;. Otherwise, the numerator of (120) would contain
holomorphic or anti-holomorphic dependence on z; or wy, and this makes the z; or w; integral
to vanish.

Moreover, we can drop the term proportional to |2,|?, since there is a delta function at the
second vertex that evaluates z, = 0. So, (120) simplifies to

1 4 2 .20, |2 =
_J do /—x(l—x)7f [dv,] |21 1" (lwq|* + x*[w,|*) todwy (121)
0 Vi

(2112w 2 + 62 + x(1 = x)(|zo |2+ w2 + £2))7

This is evaluated to X
City | Cotalwy|

> (122)
3 5
dgy doy
where ¢; and ¢, are 1-forms of v,. Let us call them as 77(}2 and 7732 respectively.
Second vertex
Now, compute the second vertex integral using the above computation:
1
J (73(])'2 + 7)32) A dWZW_(W2)5(ZZ = 0, ty = 6)
Vo 2
g c
= €1J(—é+—§) rdrd6 (123)
rsoor

= 4nte, ( ! + ! ) .
43200]e|  57600]e|?
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We can rescale € to be 1, so the integral converges. Reinstating Gamma function factors, we
finally obtain

(const) = r(7/£§;27/2)4”4 (43500 i 57200) N ;2775[ ' (129
Hence, the amplitude for the Feynman diagram is
(const)e e t[O0, O]b[zo]c[zo](azzé’wA)(ﬁwﬂ)}/. (125)
Its BRST variation is
(const)ejeyt[0, O]b[zo]c[zo](ﬁzzawc)(awﬂ)y. (126)

By equating (126) and (116), we reproduce from the 5d gauge theory (with Sy-system) the
calculation part of the algebra action on the bi-module, which is

[t[2, 1], b[zl]c[zo]] = €,6,t[0,0]1b[2°]c[2°] +... (127)

5.3 Feynman diagram II
In this subsection we will reproduce the remaining O(e;)-term in (108)
[¢[2,1], b[z"1c[z°]]

by using the Feynman diagram II, see Figure 12.
The amplitude of the diagram is

=...+6162b[zo]c[zo]+... , (128)

€1

(const)e,e;b[2°]c[2°], (129)

since there are 4 internal propagators(e?) and 3 internal vertices(ef’), one of which is AJAGA
type vertex(e,). We will explicitly show that (const) does not vanish and hence the diagram
has nonzero BRST variation, which completes the RHS of (127).

First vertex(Pg, 9, 8 J,,P15)

First, we focus on computing the integral over the first vertex:
1
W—(WldW1)5(t1 = 0,2, =0) A G,,P15(v1, v2). (130)
v 1

Note that J,,, comes from the three-point coupling at v,:
€2AN G, AN, A. (131)

This integral evaluates to

27(tod2e + 2od )z,

5 (132)
54/ to+]z,|2
We presented the details in Lemma 6. in Appendix B.3.
Third vertex(Pg, v J,,,P23)
Second, we focus on computing the integral over the third vertex:
1
J W—(dW3)5(f3 =0,23=0)A3,,P(vy,v3). (133)
vy 73
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Note that J,,, comes from the three-point coupling at v,:

€2AN B, AN D, A. (134)

This integral evaluates to

T 2 5|W2|2+2t§+2|22|2

2 3 2 5
t5+|z,]? V ta 1zl 2+ w2

We presented the details in Lemma 7. in Appendix B.3.

2
—(tydZy —25dt 135
(tpdz, — 2, 2)15 (135)

S
[\CR V]

Second vertex(d,,P15 97 ,,A 8, P23)

Now, combine (132) and (135), and compute the second vertex integral; here zjw?' denotes
the external gauge boson leg

f dW2 A de A\ (tzdiz _52d tz) A (tzdéz + 22d t2)£2
V2

2 2 2 2
y 4 zawy 2 _5|w2| + 2t5 + 2|2,]
5 3 5
75w2/ i 1z|2 \ 4/ 2+, 2 v o+ 122]2+ w2
B 472t 5|2, |2 2 Slwol* + 262 + 2|z,|?
= J sz/\de/\de/\dtz 2| 2| 3 3— 2 S
v, 75Wa/ 2 +lmal2 \ {2 +zs2 3z 2w, 2

(136)
We inserted (n,m) = (2, 1) for the external gauge boson leg. Then, z§ pairs with 23, and w,
combines with 1 /w% to yield 1/w,. Since we do not have dw,, the integral is a holomorphic
integral. If (n, m) were other values, the integral will simply vanish.
In Lemma 8. in Appendix B.3, we show (136) is convergent and bounded as

c; < (136) < ¢y, (137)

where cq, ¢, are some finite constants.
Hence, the amplitude of the Feynman diagram is

(const)elezb[zo]c[zo](é’zz@WA)(awﬁ)y. (138)
Its BRST variation is therefore nonvanishing:>!

(const)6162b[zo]c[zo](ﬁzzé’wc)(awﬁ)y. (139)
This completes the remaining part of the algebra-bi-module commutation relation:

[t[2, 1], b[zl]c[zo]]61 = €,6,t[0,0]b[2°]c[2°] + €1, b[2°]c[2°]. (140)

6 Conclusion

In this paper, we studied the simplest possible configurations of M2 and M5 branes in the
Q—deformed and topologically twisted M-theory. In particular, we showed the operator al-
gebra living on the M2 branes acts on the operator algebra on M5 brane, and computed the

*'We hope there is no confusion between the ghost of the 5d gauge field 325,c and the module element c[2°].
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simplest commutators. As the M2 and M5 branes are embedded in Q2—deformed and topo-
logically twisted M-theory, the field theories on the branes have twisted holographic duals in
the twisted supergravity. The dual side is interestingly captured by the 5d non-commutative
Chern-Simons theory coupled to a topological line defect and a vertex operator algebra. By
computing several Feynman diagrams and imposing BRST invariance of the coupled system,
we demonstrated that the gravity dual computation can reproduce the operator algebra com-
mutator in the field theory. Lastly, we would like to end the paper with some open questions
for future research.

First of all, the derivation of the 5d Chern-Simons theory as a localization of Q—deformed
and topologically twisted 11d supergravity is via the type IIA/M-theory relation. We wonder
how one can derive the 5d Chern-Simons theory by a direct localization of 11d supergravity.
We hope to study this point in the future.

Second, the system we are considering in this work is the simplest configuration that be-
longs to the more general framework [19]. We can introduce M 2;-branes on R, xC,, and M5;-
branes on CxC; x Cy, where i € {1,2,3}, (j, k) € {(1,2),(2,3),(3,1)}, and I = {1,2,3}\{j, k}.
Using the M-theory / type IIB duality, we can map the most general configuration to “GL-
twisted type IIB” theory [53], where each M2-brane maps to (1,0),(0,1),(1,1) 1-brane, re-
spectively, and each Mb5-brane maps to D3-brane whose boundary is provided by
(1,0),(0,1),(1,1) 5-branes.

At the corner of the tri-valent vertex, so-called Y-algebra [28], which comes from D3-brane
boundary degree of freedom [54, 55], lives. This Vertex Algebra is the most general version
of our toy model fy system and is labeled by three integers N;, N,, N3, each of which is the
number of D3-branes on the three corners of the trivalent graph. Therefore, in principle, one
can extend our analysis related to the M5-brane into Y-algebra Vertex Algebra. The Koszul
dual object of the the Vertex Algebra was called as universal bimodule BQ{QZ’NB in [19].

Moreover, our ADHM algebra from M2;-brane has its triality image at M2,-brane and
M25-brane. It was proposed in [19] that there is a coproduct structure in M2;-brane algebras
in the Coulomb branch algebra language®?. Hence, one can generalize our analysis related
to the M2-brane into the most general algebra, obtained by the fusion of three M2;-brane
algebras. This was called as universal algebra AZ}:Z;’HB in [19].
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A Algebra and bimodule computation

In this appendix we derive some of the commutation relations for the algebra A, . and the
bi-module M, ..

A.1 Algebra

In this subsection we will take a closer look at the algebra A, ., . We begin with a formal

definition of the truncated version of the algebra: the (C[ef, €,]-algebra AN is generated by
{X;,lfjl,fi,JJ|1 <1i,j < N} with relations
—

YT+ LT = €388, [X, Y 1= e16}6% , [V, ;1= e16] , [XL,X[1=[Y],¥}]=0
IiJfS(X”Y’")§ =(IS(X"Y™\J),

(141)

_ . . .
where f(X,Y,I,J) means rearranging the expression f(X,Y,I,J) intheorder ] <J <X <Y,
(--+) means fully contracting all indices, the symbol S means symmetrization. Similarly we
. # . . .
define f(X,Y,I,J) as rearranging the expression f(X,Y,I,J) inthe order Y <X < I < J. The
ADHM algebra A, ., is the large N limit of A®) where the limit is taken in the sense of the
procedure in section 2.6. The first relation is the F-term relation, and the following lemma is
an obvious consequence of the F-term relation:

Lemma 1.
(ISXMY™J) = e5(SX"Y™)). (142)

From now on we will use t, ,,, to denote (S(X"Y™))/€,, note that these generators are denoted
by t[n, m] in the rest of this paper, but here we use the subscript to make the presentation more
compact. The following is clear

Lemma 2.

[t0,0, tnm] =0, [t1,0, tnm] =Mty m_1, [to1, tam] =Nty m

(143)
[tZ,O: tn,m] = 2m-tn-kl,m—l s [tl,la tn,m] = (m - n)tn,m 5 [tO,Z’ tn,m] = _Zntn—l,m+1 .

This means that t, q is central, the linear span of t; , t; 1, t( 5 is isomorphic to sl,, and the
linear span of t,, , with m+n = L is a representation of sl, of spin L/2.

Lemma 3.
[X, Y”]} = nez(Y”_l)} — Z (IY“)j(YbJ)‘ (144)
a+b=n—1
[X, 7" =ne,(Y" D= > (1v9),(rty) (145)
1) J - 2 ] ] .
a+b=n—1
In particular, [X, Y]j. =[X, Y]j..
Lemma 4.
n myi _ (yn myi _ __ a+myicyb
(Y"XY™L—(Y"XY™): =—¢, (Y&™L(Y®) (146)
J J j
a+b=n—1
(Y"XY’”);. — (Y"XY’”); =€ Z (Y“)(Yb+”);. . (147)
a+b=m—1
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Combine Lemma 3 and 4, we immediately see that

XY =Y — (VX)) + (Y"X))
=ne,(Y"i— > (r)(rt) +e; Y. (¥ (148)
a+b=n—1 a+b=n—1
=ne,(Y"i— DT (Uv)(rt) +e; > (YY)
a+b=n—1 a+b=n—1
Proposition 1.
YD) (YPT) = (Y );(YPI) + e (Y)Y ") — e (Y)Y P)s. (149)

Proof.

(Y );(YPT) = (IY ), (Y 0) = LI (Y)Y ), — (YO (Y B), ™
= (™, (YY), ]

=[x, Y I, (Y)Y )]

= (YY) IX, YT = X, Y IR (Y )Y o)L,

= (Y°[X, Y]y ), = (Y°[X, YY),

where in the third line we used the F-term relation and in the fourth line we used the equation
[X,Y]"=[X,Y]" (cf. Lemma 3). Then the result follows from Lemma 4. O

Proposition 2.

(YY) (Y P0) = (IY (Y P I) + ey (Y)Y ) — e (Y )i (Y ) (150)
(IYa)k(Y”J)l(YC)ﬁ? = (1Y ),(YPI) + el(Y“)(Y”“);. — el(Ya“)(Yb);.. (151)
Proof.
' b 1k ‘ b 1k k(yb byk
(YOLAYD,(YPI)F = (¥ ((IYa)j(Y It e (YD) — e (Y)Y )j)
.
= (IY);(YP*T) + e (YOS (YP) — e (Y (Y P+
= (IY);(YP ) + e (Y)Y P) — ey (Y (YD),
where we used Proposition 1 to move the direction of arrows back and forth. O

Proposition 3.

xym) 1 S Ky po a1k
- —tl,m+—m+1kzzo(k+1)(Y )Y ) (152)
y'x) 1. kvroma1k
=t —m+1kZ:(:)(k+1)(Y )Y ). (153)
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Proof.
Xym 1
i+ D& ey, == ST @, vIr?)
€1 €1 a+b=m
— Z (Yr)(Ys+t) .
r+s+t=m—1
Similarly for the other one. O

The Key Commutation Relation

There is a SL,-symmetry on the algebra A™) under which (X,Y) transforms as a vector.
We will use the following particular transform

P X=X, Y=Y +aX,

where a is a formal parameter. Consider

A= > (Y, XT¥X) + (XY[X, YPT) = - g (KY™) + (Y"X)) — 2n(XY"'X)
da

a+b=n—1

(154)
This leads to
d
3A+2n([X, V"X D) + 2n(X YL X]) = 3— o (XY™) + (Y"X)) — 2€4 [ 30, o 0]
da T (155)
= 6nety 1 —2€1[t30,t0,]
It follows that
3A
=3nty— 5 — (Y X]) - (XY X))
€1 €1 €1
3A
=3ty =5 —+n D1 (Yt - (rhx))
€1 a+b=n—2 (156)
3A u+1
=3ty —o—+n D, XY, 42ne; DT — o (YY)
€1 a+b=n—2 u+v+w=n—3 uTrv
3A —1)(n—2
= 3nt2,n_1 —-—+ (f%wto’,«l_g + ne; Z (Yu)(Yv)(Yw) .
261 2 u+v+w=n—3
We have the following assertion which will be proven in the end of this subsection
Lemma 5.
n—3 n
A=ey(€e,+€5) Z(m +D)(n—2+m) (Y)Y ™) —e,(e; + 62)(3)(Y”_3)
m=0 , (157)
2( 1 n—3 2n61 u v w
reil 5 ) =7 >THr).
u+v+w=n—3
Plug it into equation 156 and we obtain the following
Proposition 4 (The Key Commutation Relation). Let 0, = e%+e§+elez and 03 = —€€5(€1+€5),

then

30, (n 304 3
[tg’o, to’n] = 3nt2’n_1 + TZ(B)tO’n_B + TB Z (m + 1)(77. -2+ m)to’m to’n_g_m . (158)

m=0
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Proposition 4 together with Lemma 2 actually determine all other commutation relations as
following: first of all, we have

1
[t3,0,tam] = wadgo([fa,o’ to,neml)
m

2nm!
30'2 m
= 3mtn+2,m—1 + T 3 tn,m—3
a+b+1)(m+n—a—b—2)

4 303 '"Z_::)’Zn:( 1 ( a+1 n—a+l
T a+ )(Tl —a+ 1) n+m ta,b tn—a,m—S—b >
b=0a=0 ( m )

then for a + b = 3, [ty tyn] is obtained by applying ad, , to [t3,ty ] Suppose that
[tqp> tn,m] is obtained for all a + b < k and all pairs (n,m), then [t o, t, ,] can be obtained
by applying ad,, , to [ty_; 1, tn,]. Hence, the general [t,, t, ] is obtained by induction on
k. ’
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Proof of Lemma 5.

A= Z (Y4, Xx]Y°x) + (XY°[X,Yb])

a+b=n—1
—
= > ( DAY (Y UYX —ae, (Y ) —e; Y, (Yf)(Ys“’x))
a+b=n—1 \s+t=a—1 s+t=a—1
e
+ > (bez(XY”_Z)—i—el PR CGUENDY X;(IYS)i(Yf+“J)J)
a+b=n—1 s+t=b—1 s+t=b—1
_—
= > > LAY —aey (YR —e; D (YO(YTX)
a+b=n—1 \s+t=a—1 s+t=a—1
_
+ > (bez(XY”_2)+61 PIECIAD (O EEDY Ile(YSXY”“);‘)
a+b=n—1 s+t=b—1 s+t=b—1

(@D re Y (@Y -(rr)

r+s+t=n—2

+ > LI —ee, YL (YR

r+s+t=n—2 r+s+t+u=n—3
—ere, . (rHt+2)X)YY)
r+s+t=n—3 (159)
— Z Ile(IYr+S)l(Yt+uJ)k _ Z SEZIkJI(Yr+s+t—1);<
r+s+t+u=n—3 r+s+t=n—2
+er . (XY™ —(YH(YHX))
r+s+t=n—2
n—3 n
=es(er +e2) D m+ D=2+ M) — ey + ) ()
m=0
+er . (XYY —(r)(YHX))
r+s+t=n—2
n—3 n
—esfer-+en) Y (m D=2+ mTM ) — ep(e + )5 )r)
m=0
+el D [t (WD1+2¢2 >0 (w+ DY)
r+s+t=n—2 u+v+w=n—3
n—3 n
—es(er +e2) D (m+ D=2+ M) — ey + ) V)
m=0
2
+ ef(g)(yH) + 2? ST,

u+v+w=n—3

Some explanation: from the 5th equality to the 6th equality, the essential computation is the
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following:
>o o nJiayrty etk = YT RII itk
r+s+t+u=n—3 r+s+t+u=n-3
= > LIJJTI T e, > RISyl
r+s+t+u=n—3 r+s+t+u=n—3
= 2 WETET—a 3 WSO e
r+s+t+u=n—3 r+s+t+u=n—3

ter Y. LISyl
r+s+t+u=n—3

= €,5(€1 +€3) Z (Yrﬂ)(YHu)—Gzel(n)(yn_g)-

r+s+t+u=n—3 3

Then we define m = r +s, then there are m+ 1 ways of decomposing m as r +s, similarly there
are n—3—m+ 1 ways of decomposing n—3 —m as t +u, hence the result can be simplified to

n—3
exer +€) D (m+1)(n—2+m)(Y™)(Y" 3 — ezel(g)(yn—3). (161)
m=0
0
A.2 Bi-module
Simplest algebra, bi-module commutator that has €; correction in the RHS is
[T[2,1],b[z]c[1]] =( - EEzT[O, 1]+ 6§b[1]C[1])
+ el(—ezb[l]c[l]T[0,0] + iezb[l]c[l])
3
4 (162)
+ ef( — gb[1]c[1]T[0,0])
1
+ ef( — 5b[1]c[1]b[1]c[1]).
We will prove it in this section.
Let us expand the LHS
[S(X?Y),(IY $)(pJ)] =%(XXY +XYX +YXX)-(IY@)(pJ)
(163)

— %(IY@)(«,@J) C(XXY +XYX +YXX).

38


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

Compute the first term:

(XXY)-(IY $)pJ) = XX, |BP @I, YT Y + XX, 167 0. 32 0ol VT

=3P 11,X%(e16165 + YEXDIYE + €. X0|¢0 (5L o + B30I Vi

=€113 0 | LX2TYE + €113P 0 11,(€1698% + YAXNXITYE + €113 0ol [, XY I
+ 1|3 @ 1, (XY

=e1(—e))UYT) +€1|¢ 0 [T X, Y5 + (Y $) @I )XPY) + (—e1)er (IY )
+ 1|3 @ |1, (€1 5% + V(X))

=—elex(V) +e,(IXY 3) () + (1Y §)(pJ) - (XXY) — €2e,(Y)
+ej(I3)(@]) +e,(IY @) (pJ)(X)

=—2e3e,(Y) +e,(IXY @) () + IY @)(J) - (XXY) + €2(1$)(pJ)
+e,(IY @) (0 )(X).

(164)

Therefore,

[(XXY),(IY $)(@J)]=—2€2e5(Y) + e,(IXY $)(pJ ) + €3(I$)(pJ)

6
+e,(IYP)(pJ)(X). (165)

Next,

XYX)-(IY ) @) =XV, |0 ,(€,5268 + VX2
=€1|@2 @ 10XV, T + €113 0 31 oo | 16X T + @0 o 1, XY, YIX2T*
S (CRITRCAENI i €0 60 eV
=e1(IXY @)(0J) + €1(—e1)((G)UT) + (IF) ()
+H BP0, (1696 + YeXD)I YV, X2 + (—e1)(1° 0ol I YEX 3T O+ GP o |1, YT (X))
=e1(IXY $)(@J) — e} (¢ )IT) — eI G)(0]) + €113 | 11T Y, XT
+IY PN @)XYX) — €@ 0olI,(—€, 6357 + XV —e,(IY $) (9 )(X)
=e1(IXY @) (p]) — e3(g)IT) — €7 $)(0J) + €1|@ @ 1T (—e1N 6§ + X5 Y,))
+{IY ) N)XYX) + €3(p)IT) — €1 (—€,)IY )
=e;(IXY @)(@J) — e7(I@)(@0J) — NI G)(@J) — €3(IVI) + €7(IYJ)
+(IY §)(9))XYX)
=e1(IXY $)(@J) — €7 @) (@J) — eINIF) (@) + (Y $) (0 )XY X).

(166)

Therefore,

[(XYX),IY$)p])]=e,(IXY @) () — 2(I$) () — 2N(I$)(pJ). (167)

39


https://scipost.org
https://scipost.org/SciPostPhys.10.2.029

Scil SciPost Phys. 10, 029 (2021)

Next,
(YXX)- (1Y $)(pJ) = Y| G o |[.X, (616565 + YiXE)I©
=€, Y2 32 IoXaT + Y2 3P ¢ 1, (6161 6% + YAXD)X2J*
=e1(—e))IYI) + €1 YL ¢ o [LXET+] 3P 0. 3001 [T, YEXIX2TC + (1Y $)(pJ ) (Y XX)

=—€2e5(Y) +e1(IXY @) (pJ) + e1(=Ne))(I$)(pJ)

+ €113 0P 1L XIT H G 0 001 |1, (—€1856 7 + X2V IX2TC + (IY ¢)(pJ ) (Y XX)

=—€2e5(Y) +e1(IXY @) ) —Ner(I13)(pJ) + e1(—e1) ()T $)(pJ)
+e1(—e)(@)IT) —€,|¢ 0 3Oy [ILX2I

+ (=€) (18P Pl Yy GO+ G 1 Yo X3T ) + (IY )0 )(YXX)

=—e2ey(Y) +6,(IXY @) (9J) —Nef(Ig)(pJ) — e3(gp)I ) (0]) — e3(G9)(1J)
—e1(—e)I @) pJ) —€1(—€1)(@p)UIT) —e1(TY §)(@J)(X)
—e1(—=e1N)I§)(pJ) — €1(=€)TYT) + (IY §)(pJ )Y XX)

=e,(IXY $)(pJ) — e1(IY $) (@I )(X) + e2(I3) (@] ) — €3(¢ )T $)(pJ)
+ Y @) pJ)YXX).

Therefore,
[(YXX),(IY $) ()] =€,(IXY $)(pJ) — e,(IY $)(pJ)(X) + €3(I$)(pJ)
—e2(FP)IP)pJ).
Collecting the above, we have
[S(XZY),(IY@(W)] - %( —262e,(¥) + e (IXY 3 (@) + 21 $)(0d)
+e,(IY @) p)(X) + e,(IXY $)(pJ) — €3I $)(pJ ) — e2N(13)(pJ)
+e(IXY @) (0J) —e1(IY @)@ )(X) + e%(w)(w)—e%(saso)(w)(w))
= L UXY )9~ 2 E3es(V) — SENUFN9I) — X GRIF)H9))
+2edUB)p)).
We are not done yet, since (IXY ¢)(pJ) is reducible by the F-term relation
€1|¢70<Pc|11JCX;Y02 =€1|S5090c|11JC(X§Y21 —(IJ? _6255))
=e1(—e))IYT) = €1]3% (T, — €180 + €16,(IG) ()
=—ef(YI)— €116 |IoJ + €161 + €5 3)(9J)
+e165(I@)(@J)
=—e2(IY))— (I (@ )IT) — e2()IT) + €3(I)(pJ)
+e1ex(IP)(@J).
Plugging this into (170), we get
[SCX2Y),(IY @) (@) ] = (—e3(IYT) — e,(I@) (@I Y1) — e2($p)IJ) + €21 $)(pJ)

+e16IP)(9I) — Selen(V) — 2GRN 0))

— ZENUG) )+ 5EUF)9)).
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After normalization, by multiplying % both sides, and using the identity **
1

(Bp)es = (I)(@J),

we have

[T[2,1],b[z]c[1]] :( — gezT[O, 1]+ egb[l]c[l])
+ el(—ezb[l]c[l]T[0,0] + gezb[l]c[l])
+ ef( - gb[l]c[l]T[0,0j)
+ ef( - %b[l]c[l]b[l]c[l]).

B Intermediate steps in Feynman diagram computation

B.1 Intermediate steps in section 4.2

Lemma 1.
We will compute the following integral

616% J dWl A le A azlpl(VO, Vl) A 322 8W1P2(V1, Vz)(Zleazzl ﬁwlA) .
V1

Computing the partial derivatives, we can re-write it as

Z1 W _
6163 (d—;d—drl(wlzlzz)) [P(vg,v1) Adwy Azydzy AP(vy,v3)] .
01 912

Note that we ignore all constant factors here. We see that

dz,dw,dt,

5 45
d01d12

P(vo,v1) AP(vy,vp) = (Z01W12d ty — Zg1t12d Wy + Wo1 t12d2,
— Wo1212d g + to1212d Wy — to1W12d2,) .

Including Adw; A (2;d21)A, we can simplify it:

P(vy,v1) AP(vy,v) A(widwq) A(z1d21) = dzdz dwidwqdty (|Z1|2|W1|252) X

[8— (501W12d ty —Zo1t12d Wy + Wy t19dZy —Wo1Z12d L5 + L1 Z12d Wy — Lo W12d 215
2

5 49
d01d12

0z, (Z01W12d ty — Zg1 t12d Wy + W1 £12dZy — Wo1212d g + Lo1212d Wy — g1 W12dZ 1)

5 49
d01d12

174)

(175)

(176)

Q77)

(178)

179)

By integration by parts, the the integral over ¢, 21, 21, w;, w; of all terms in the first two lines

vanishes.

ZThe identity can be derived using the F-term relation:

¢"([X, Y+ — 626{)(,0]» =0

(V)= +IE)NeJ)—ex(Pp) =0
(I@)pJ) = €e5(¢9).
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Therefore, we are left with

|21 12 |wq 222 (W1od ty — t10dWy)
5 19 :
dg,dp,

—f dtldzldildwldwl (180)
V1

Lemma 2.

We can use Feynman integral technique to convert (180) to the following:
1 _ - -
J f dx I'(7) V31— x) |21 2wy P2 (W1ad ty — t1dW))
V1 0

I'(5/2)r(9/2) (1 — x)(Iz1 12 +w1 > + t%) + x(|215]2+|wqa]% + t%z)y
_ f Jl » (T factors)y/x3(1 — x)7 |2 |2 |wy |22, (Wyad ty — t1,d0y)
v JO (|Z1

— x2o|2+|wy — xw |2 + (£ — xt3)? + x(1 — x)(|22] >+ |wo | + £3))7

(181)

Shift the integral variables as
21— %1+ X2y, W] Wp+XW,, t]—t;+Xt,. (182)
Then the above becomes
f Jl dx I'(7) V31— x)|z; + xz,|wy + xw,|*2,
wJo o T(5/2)T(9/2) (21 12+ w2 + £ + x (1 — x)(|25 2+ wo |2 + £3))7 (183)
X (Wy + (c—Dwy)dty — (t; + (x — 1)ty)dw,).

Drop terms with odd number of t; and terms that has holomorphic or anti-holomorphic de-
pendence on z; or wy:

J Jl e T ABA=P (P +2laPWwa P + 2wy oy (Grad s — tadiy)
v JO

I(5/2)r(9/2) (21 P+wy 2 + ¢ + x (1 — x)(|22]2+|wo |2 + £3))7
(184)
After doing the v; integral using Mathematica with the integral measure
dtldzldileZdiz, we get
2 2 2,2
c CoWs €325  Ca25W
gz(wzdcz—tzdw2)(d—51+ i 2) (185)
o2 oo dos dos
Lemma 3.
We will compute the integral over the second vertex
f P A 8y,P3(va,v3) Adzy A dW2(Z2W%322 ajzA)
5 Vo (Zo3dWodty — WozdZadty + tozdZ,dw,) (186)
Wo(Zy3dw —WysdZ Zodw
=JPA223 20ty 23722 230520Wa) \ dw, A dz,.
vy d23
Now, compute the integrand:
Zo(Wodty — tydWy )Wy (Zy3dWodty —WosdZydty + tyzdzrdw
2(Wadty — tad Wy )Wy(Zo3 5272 230290ty T 1y3d2y Z)Adwz/\dzz
dgydas
20y, |4
ty—t3—t
:|Zz| lwo|*(£5 — t3 Z)dtzdizdv'vzdwzdzz
d>,d’
02423
o 14 (187)
|zl wy fsd d5divsdw-d bsti e th
__5—d7 trazo,aw,dw,ydz, substitute t3 = €, then,
dgydys
|2 [wa*e o
=— Wd tZdZZdwdeZdzz .
0223
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We can rescale € — 1, without loss of generality, then it becomes

. |22]% wo|*

5 37
d02d23

dtzdézdﬂ/dedeZ . (188)

Lemma 4.
Now, it remains to evaluate the delta function at the third vertex. In other words, substitute

w3 —0, 230, ty—e=1, (189)
and use Feynman technique to convert the above integral into

1) e VA3 = x5z, w*
L(5/2)0(7/2) )y J,, (e(z3 + w3+ (t3—1)2) + (1 — x)(z2 + w3 +t3))°

r(6) Lo V31— x|z, 2w, |4

=——— | dx 190
r(s/2)r(7/2) J, ), (253 + w3+ (ty —x)2 + x(1—x))° (190)
o T®) [ [ /PO xPlllw,l
[G/207/2) J, ), G +wi+ E+x(1—x)6
In the second equality, we shift t, to t4 + x.
After doing v, integral, it reduces to
1
[() T dxx(1—x)? = [©) T (191)
r(5/2)r(7/2) 2880 J, I'(5/2)r(7/2) 2880
Finally, re-introduce all omitted constants:
. r'(6) r'(7) ) 2 T
FirstT = 2 21) ——. 192
(FirstTerm) = w772 1620072 2 @™ 3880 (192)
Similarly, we can compute all the others without any divergence
r'(6) r'(7) 9 5 T
S d T = 2 27m) ——
(Second Term) = & - oy TG 72 2™ Y™ 5760
. r'(6) r'(7) 9 5 T
Third T = 2 2m) —— 193
(Third Term) = F o 772y TG /2re72) 2 2™ 8620 (193)
r'(6) r'(7) 9 5 T
Fourth T = 2 2 .
(Fourth Term) =+ 2y TG r2r0/2) 2 @™ 20160
Hence, every terms in (185) are integrated into finite terms.
B.2 Intermediate steps in section 5.2
Lemma 5.
We want to evaluate the following integral.
J azlpl(VO, V]_) A (W]_dWl) A (Z%dzl) A 3W1P2(V1, Vz) . (194)
V1

Substituting the expressions for the propagators, we get

21122 w1 (W1 —W3) - _ - - -
f 7 d (Zo1W12dty —Zo1 t12d Wy + Woy t12d%; — Wo1Z12d
2! 01412 (195)
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We already know that the terms proportional to w, will vanish in the second vertex integral,
so drop them. Evaluating the delta function at v, the above simplifies to

|Z1|221|W1|2 z - d _ di - dz V5o d
———— (= ZWypdty + Z1t1dWy — Wit 2d%) + W2 d t)
v dgydy, (196)
—_ tlilzde + tlwlzdiz)dildwldtldzldwl .

Note that the integrand with the odd number of t; vanishes, so

2 2

Z11721|W _ _ _ _ _ _ _ _

f %(_lelzd tz —Z tdez + wq t2d22 + lelzdtz)dzldwldtldzldW'l . (197)
151 01712

Now, apply Feynman technique and omit the Gamma functions, to be recovered at the end

1 2 2 - _ _ _ _ _
7 2112w |#21 (=21 Wqod ity — 21 todWo + W1 todZy + W1 Z1od t
fdx /—x(l—x)f |21 %W %21 (=2, W1od t; — 21 trd Wy 102025 1212d t5)
0 v

(e(lz [P+ w1 [P+]61]2) + (1 = x)(|2122+ w122 +[t12]2))7

1 2 2 _ - _ _ _ _ - -
7 21|12 |Wq [?21 (=21 W1odty — 21 todWy + WqtodZ, + W1Z1od t
:f dx /—x(l—x) |1||21| 1( 1122 2 1222 1t2d2y 2112 22)2 .
0 v (21 = xz52+[wq —xw|? + (£ — xt3)? + x(1 — x)(|z22+ w2 + £5))7
(198)

Shift the integral variables as
21 =21+ X2y, W= W;+XWw,y, t;—t]+Xxtsy. (199)

Then the above becomes

1
7
J dx4y/x(1—x) J dzldéldwldﬁ/ldtl(lzllz+x2|zz|2)(|w1|2+x2|w2|2)(zl +x2,)
0 %1

(—(21 + x29)(Wq + (x — Dwy)d ty — (21 + xZ5)tod W, (200)
(21 +lw1 |2 + €5 + x (1 — ) (|22 +]w, |2 + £3))7
(Wq 4+ xWwy)tydZy + (Wy + xwy) (21 + (x —1)%,)d tz)
(21 +lw1 |2 + €5 + x (1 — ) (|22 +lwo |2 + £3))7
The terms with (anti)holomorphic dependence on complex coordinates drop:
1
J dx4/x(1 —x)7f dz,dzdwidw,dt;(Jz1]? + %2252 (w12 + x2|w,|?)
0 v
(_|Zl|2t2d‘7l’2 + x|z1 PWodty — x|z, 2 (x — Dw,dt, (201)
(121 124w ]2 + 6§ + x (1 = x) (|22 2+ wo |2 + £3))7

—X2|Zz|2t2dﬁ/2 + XZZZV_VztzdeZ + x2|22|2ﬁ/2(x - 1)d tz)
(21 +wy 2 + ¢ + x (1 — x)(|z2]2+|wo |2 + £3))7

We can be prescient again; using the fact that the second vertex is tagged with a delta function
6(z5=0,t, =€) o< dz,dZ,dt,, we can drop most of the terms.

1 .
_f dx\/m7f [dvl](|21|2+X2|22|2)(|W1|2+x2|W2|2)(—|21|2—x2|22|2)t2dW2
0 Vq

(Iz1124+Iw1 ]2 + 2 4+ x(1 — x)(|22 >+ w2 + 3))7

_ Jl P s J v, Iz + X225 (i [ + 22| ") tpd 0
0 V1

|21 [24w1 |2 + 62 4+ x(1 — x)(|zo 24|y |2 + £2))7°

(202)
where [dV;] is an integral measure for v; integral.
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B.3 Intermediate steps in section 5.3

Lemma 6.
We will evaluate the following integral

1
J W—(WldW1)5(f1 = 0,21 =0) A G,,P15(vy,v2).
v, 1
Substituting the expressions for propagators, we get

2 —% o o
J —5— (Z10dWyad iy — WipdZ1pd by + t15dZ1pdWyp)dw, 6(t; =2, = 0)
V1 12

d7

:f o (ZodWw,dty + todZzydwy)dw6(t; =21 = 0)
1 12

= (tzdéz + £2dt2)

dwldW15(t1 = Zl = O)

V1 \/t%2+|212|2+|W12|2

= (tzdgz +§§2dt2)f dWld]/I_/l %2

21122 2/
\/t2+|zz| +wy —wyl

2 _ 27'C(t2d£2 +§2dt2)£2
2 77 2 >
V|2 + 12 54/ t5+(z,/?

where the first equality comes from the fact that §(t; =2z, = 0) o< dt,dz;d2;.
Lemma 7.
We will evaluate the following integral

)

= - (tzdzz +22dt2)f rdrd@

1
j W—(dW3)5(t3 =0,23 =0) A J,,P(vy,V3).
vy 73
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Substituting the expressions for propagators, we get

w _ _ _ _
J Vi—d(223dW23dt23 WogdZy3dtys + ty3dZysdwys)dws6(ts = 23 = 0)
V3 3

7

:J P27 (2 divadiy + tadZsdiv)dws5(ts = 23 = 0)
vy W3lpg

Wy — W3

:(tzdéz —gzd tz) dV_ngW35(t3 =23 = 0)

Ivs w3 \/t§3+|223|2+|W23|2

(wy —ws)/ws

r
:(tzdéz—ézdtz) dWBdVT/B

2 22 2
\/t2+|22| +wy —ws|

—ws/(ws +w,)

5112 2/
AP

- —w3(1—ﬂ+2l—§—...)
:(tzdéz_ézdtz) dWBdVT/B (206)

J < 2 2 27
[ws|<|w,| Wo t2+|22| +|W |

1 2
y(1- 3 )

r
=(t2d22_4‘22dt2) dW3dV_VS
J

+ (tadzy — 2,dt,) dwsdws 7
[ws|=[ws| W3 t%+|22|2+|W3|2
_ o _ —lws*
—(tdez_sztz) dWBdW3 O+ 7 +0+0+...
[ws|<|w,| w3 vV t5+z5 2+ ws 2
2y _r2
:(tdez—sztz)J rdrd@ 5 . > 27
0 w4/ tytlza2 + 7
2 5|W2|2"‘2t§‘i‘2|22|2

=—(tod3; —32,d tz)

5
15W2 Ve £2-+]z5 2w, |2

Lemma 8.
We will evaluate

412t 5|2,]? 2 B Slwyl? + 262 + 2|z, |?

- 5 (207)
T5way/ t2+zs|2 \ /2 +Hzl2 2|z 2w,

f dwy Adzy Adzy Adt,
V2

Assuming the w, integral domain is a contour surrounding the origin of w, plane or a path
that can be deformed into the contour, we may use the residue theorem for the first term of
(207). After doing w, integral we have

oo
412 t,|2,|? 2 2m3
dtzf d*z, : = - (208)
3 2
Je 75 Az Rl 22¢

Combining with the other diagram with the second vertex in the t € [—00,—€], we get

3 3 3
27 _( 27 ) 47 (209)

225¢2  \ 225¢2)  225¢2°
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Re-scaling € — 1, this is finite.

For the second term of (207), let us choose the contour to be a constant radius circle so that
r(0) = R. We need to use an unconventional version of the residue theorem, as the integrand
is not a holomorphic function, depending on |w,|?. Let wy, = Re'?, then for a given integrand
f (wy,w,), we have

27
I:f d(Re'?)f (Re!?,Re?). (210)
0
Then, w, integral is evaluated as
_F“ d(Re’®) 4mPtylzy|* SR®+265+25°  8mdinylzy|* SR +2t5 + 2z
0 R g5 [BimP OGP 750t P JOrmP iR
(211)

Before evaluating z, integral, it is better to work without R. using the following inequality is
useful to facilitate an easier integral:

813it, 2,12 [ 5R%+2t2 +2|z,|? (8m3it,|2.|%)(2t2 + 2|2,]%)
0< 212 2 1772 | ¢ 272 2~ 72 7 (212)

5 5 2 2)5
754/ t2+1z,12 \ 4/ t2+]z,]2 + R2 75(t5+z]%)

Here we used R € Real™. The left bound is obtained by R — oo, and the right bound is
obtained by R — 0. We only care the convergence of the integral. Therefore, let us proceed
with the inequalities

4n 8n%i 1 873it,|z,|2 [ SR%+2t2 +2|z,|?
l f dtzf %z, 22| 2 772 <o, (213)

102 75 €8 5
t2+|z2|2 \/ t5+2,|% + R2

After rescaling e — 1, we have a finite answer. Combining with the other diagram with the
second vertex in the t € [—00,—¢], we get the left bound as

3 . 3 . 4 .

_4_758751_(4_7187‘51)=_n1 . (214)
192 75 192 75 225¢€3
After rescaling €; — 1, this is also finite.
Hence, combining with (209) we get the bound
3 4; 3

AT T o7y < (215)

225€2  225€3 225¢2
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