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Abstract

In the last decades, the blossoming of experimental breakthroughs in the domain of elec-
tron energy loss spectroscopy (EELS) has triggered a variety of theoretical developments.
Those have to deal with completely different situations, from atomically resolved phonon
mapping to electron circular dichroism passing by surface plasmon mapping. All of them
rely on very different physical approximations and have not yet been reconciled, despite
early attempts to do so. As an effort in that direction, we report on the development of a
scalar relativistic quantum electrodynamic (QED) approach of the inelastic scattering of
fast electrons. This theory can be adapted to describe all modern EELS experiments, and
under the relevant approximations, can be reduced to most of the last EELS theories. In
that aim, we present in this paper the state of the art and the basics of scalar relativistic
QED relevant to the electron inelastic scattering. We then give a clear relation between
the two once antagonist descriptions of the EELS, the retarded dyadic Green function,
usually applied to describe photonic excitations and the quasi-static mixed dynamic form
factor (MDFF), more adapted to describe core electronic excitations of material. Using
the photon propagator in a material, expressed in the relevant gauges, as a tool to un-
derstand the interaction between a fast electron and a material, we extend this relation
to a newly defined quantity, the relativistic MDFF. The relation between the dyadic Green
function and the relativistic MDFF does depend only on the photon propagator and not
on the specifics of the particle (here, a fast electron) probing the target. Therefore, it
can be adapted to any spectroscopy where a relation between the electromagnetic and
electronic properties of a material is needed. We then use this theory to establish two
important EELS-related equations. The first one relates the spatially resolved EELS to the
imaginary part of the photon propagator and the incoming and outgoing electron beam
wavefunction, synthesizing the most common theories developed for analyzing spatially
resolved EELS experiments. The second one shows that the evolution of the electron
beam density matrix is proportional to the mutual coherence tensor, proving that quite
universally, the electromagnetic correlations in the target are imprinted in the coherence
properties of the probing electron beam.
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1 Introduction

Electron energy loss spectroscopy (EELS) performed in a (scanning) transmission electron
microscope ((S)TEM) analyzes the energy loss of fast electrons (with energy ranging typi-
cally from 30 to 300 keV) after their interaction with a target sample. It allows to probe a
wide range of excitations in solids such as phonons [1], plasmons [2], excitons [3], and core
electron-hole excitations [4] over a wide range of energies, typically from 40 meV to thou-
sands of eV. Moreover, the versatility of the electron optical set-ups allows to achieve either
high spatial resolution [5] (better than half an Ångström) or high momentum resolution [6,7]
(smaller than µm−1) or to probe directly the symmetry of the excitations [8]. This variety of
experimental configurations is illustrated in Fig. 1.
A similar diversity is found in the theoretical descriptions of EELS experiments depending on
how one treats the following aspects:

• The energy range of the probed excitations, usually dispatched in two classes, low-losses
(less than tens of an eV) or core-losses (more than a hundred of eVs).

• The classical or quantum character of the beam electrons, corresponding to a description
as either point charges or wave functions.

• The classical or quantum character of the target sample.

• The time-dependency of the electron wave function in the quantum formalism.

• The geometry of the experiment, especially whether the scattering events are analyzed
in real or reciprocal space

• The retardation in the electron-sample interaction and in the fields propagating within
the sample.

• The spatial overlap of the electron beam with the sample, e.g., the importance of bulk
versus surface effects.

Since the general description (including all of the above cases) to EELS seems hardly viable,
a plethora of different theories adapted to different sets of parameters have been developed.
For example, the low-loss characterization of electromagnetic surface excitations such as sur-
face plasmons is well interpretable assuming a classical character for both the electron beam
and the target [9–11]. In such models the EEL cross-section is proportional to a well-known
classical electromagnetic quantity, the (retarded) Green’s dyad of the system [12]. The Green’s
dyad description is heavily used in nano-optics, necessitating an accurate description of elec-
tromagnetic field propagation within complex geometries of dielectric media. On the opposite
side, core-electron excitations are usually described in a Fermi’s Golden rule approach rooted
in a quantum treatment of the inelastic scattering processes between the beam electron and
the target degrees of freedom [13]. This approach can be generalized by employing the mixed
dynamic form factor (MDFF) formalism introduced by Kohl and Rose [14] which typically ne-
glects retardation as well as many-body effects in the target beyond the mean field level, when
applied to core losses.

Both the Green’s dyad and the MDFF descriptions have been extended, thereby approach-
ing each other. For example, by using a fluctuation-dissipation approach the Green’s dyad
formalism has been adapted in order to take into account the quantum character of the elec-
tron [11]. Many-body effects, on the other hand, have been absorbed in the MDFF to de-
scribe low-loss volume excitations, such as plasmons (on the random phase approximation
level) [15,16] or excitons (employing Bethe-Salpeter approximations) [17] in condensed mat-
ter systems.
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Figure 1: Schematics representing the general experimental conditions considered in
this paper. A fast electron described by the density matrix ρi is scattered by a target to
the final density matrix ρ f . TEM analysis techniques (EELS, diffraction, holography,
...) allow to extract information contained in this final electron state. The gist of
our work is to derive the general kinetic equation connecting the initial to the final
electron beam state through an interaction kernel embedding all the physical details
(classical, relativistic or quantum) of the target.

The general relation between the two approaches, however, has still not been established,
which is unsatisfactory not only from an intellectual point of view but also concerning the
interpretation of EEL spectra in different experimental settings. Indeed, it raises unnecessary
conceptual walls between alternative descriptions of the electron beam, of the target excita-
tions, and of the electron to target interaction. For example, it has been demonstrated [18]
that the so-called magic angle, at which the dependence of the core-loss electron scattering on
the orientation of an anisotropic sample is canceled, strongly depends on the retarded charac-
ter of the electron to target interaction, which had been considered as negligible in core-loss
investigations before. Also, the description of the effect of interferences between inelastically
scattered electrons, otherwise speaking, coherence effects, has been long discussed in terms
of MDFF in the framework of inelastic holography of bulk plasmons [19] or EELS atomic
resolution mapping [20–22], while coherence effects in surface plasmon excitations relied on
Green’s Dyad approaches [23]. Even more, electron magnetic circular dichroism (EMCD) [24]
and phase-shaped EELS applied to plasmonics [8,23] relies physically on the same ingredients
- electron phase manipulation to mimick the action of an X-ray or optical photon - yet are
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described within totally different frameworks.
It is therefore not surprising that early on, researchers have sought for a comprehensive

description of EELS in the (S)TEM, or at least for a bridge between different approximations.
For example, Ritchie and Howie [25] could explain how the interferences of inelastically scat-
tered electrons are washed out by integrating over all scattering angles rendering the quantum
and classical descriptions of the electrons essentially equivalent for most of the experimentally
relevant low-loss STEM-EELS cases. In order to model dynamical scattering effects in diffrac-
tion, Dudarev, Peng and Whelan [26] drew a direct link between the density matrix of the
electron beam and the MDFF in the quasi-static case. Later on, Schattschneider et al. [15]
applied a similar approach to relate EELS to the MDFF, and to establish a clear link between
reciprocal and real-space representations of the electron-target interaction. Schattschneider
and Lichte [19] later used the MDFF formalism to properly describe coherence effects between
electrons in the quasi-static limit, following the pioneering work of Kohl and Rose [14]. Later,
García de Abajo proposed a fully relativistic description of low-loss EELS experiments, where
the quantum nature of the probe electrons could be taken into account [11, 23]. Neverthe-
less, no universal description of EELS in a (S)TEM has been provided, which implies that the
relation between the different approximations remained somewhat in the dark.

The present work is an effort towards the goal of giving such a description. By extending
and bridging several key works [11, 14, 15, 26] we provide a synthetic description of EELS
in a (S)TEM. This description is valid for any sort of classical or quantum description of the
electrons, arbitrary equilibrium description of the target object, any sort of excitations (low-
loss and core-loss, surface and bulk) and using retarded or non-retarded approaches alike.
Incidentally, we are formally establishing the link between the Dyad and the MDDF approach,
extending the latter to the retarded case, therefore widening the applicability of our work to
other spectroscopies not necessarily involving electrons.
Working out such a theory is challenging because both quantum and relativistic effects need
to be taken into account. As a consequence, the problem of computing the complete beam
electron-target interaction cannot be solved in a closed form and different approximation
schemes have to be employed, notably diagrammatic perturbation techniques. Accordingly, we
won’t consider effects connected to the finite temporal length of electron wavepackets [27–30].
In other words, the wavefunctions encountered throughout this paper do not represent quan-
tum wavepackets but rather electron beams in a steady-state illumination, in strict analogy
with photon wave optics [31]. With this in mind, we can synthesise the electron energy-loss
processes studied in this paper with a diagrammatic perturbation language roughly schema-
tized in Fig. 2.

Here, the inital and final beam electron state are represented by the wave functions
ψi, f (r , t) and the target by the wave functions ξi, f (r , t). (Virtual) photons, indicated by
wiggly lines, of arbitrary numbers and orderings are exchanged in the course of interaction.
In analysing the diagram, we first note that relativistic effects can emerge from both the probe
and the target [32]. Indeed, beam acceleration voltages in a TEM typically range from 80 to
300kV leading to electron velocities v between 0.5 and 0.78c, and variations of the Lorentz
factor

γ=
1p

1− v2/c2
(1)

between 1.16 to 1.59 [33]. Therefore, TEM electrons are relativistic, which translates into (A)
a modification of the kinetic properties of the electron such as re-normalized masses [34], (B)
retardation effects in the electromagnetic interaction [35], (C) Cherenkov losses [6, 36, 37],
and (D) sizeable current interaction effects. While (A) and (D) directly scale with the velocity
of the electron beam, the retardation effects in the interaction cannot be neglected anymore
when the length scale L of the charge density fluctuations associated with an excitation of
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wave diagram

ψi

ψ f ξ f

ξi

+ ...

+ ...

Figure 2: Diagram representation of the electron energy loss process: a beam electron
described by a wavefunction ψ(r, t) interacts with a target represented by a (many-
body) wave function ξ(r, t) by exchanging virtual photons. The target wave function
and photon propagators are generally dressed (renormalized) by interacting with the
various degrees of freedoms of the target (indicated by double lines). Processes in-
volving the emission of photons (represented by gray lines), such as Bremsstrahlung,
are not considered in this paper.

energy ω in the target become important, i. e. when ωL/c > 1 (see [32] and references
therein). This situation typically occurs in plasmonics which leads to a frequency red-shift, a
loss of spatial coherence or even to mode splitting [38].

The large energy of the beam electrons, however, also renders spin-orbit coupling effects
in the scattering process itself negligible [39, 40], hence a full quantum relativistic modeling
of the electron beam is not required. Indeed, approaches to EELS or electron diffraction based
on the Dirac equations have been developed [34,41–44] and give results comparable to what
the Klein-Gordon equations do [26,45–47].

In what follows we deliberately focus on EELS including all possible electron energy-
loss mechanisms. However, we do not explicitely compute (secondary) scattering events in-
volving the emission of photons (indicated gray in Fig. 2), should it be due to Cerenkov,
Bremsstrahlung or cathodoluminescence for example, in order to keep the length of the paper
at bay. However the perturbation technique used throughout is well suited to also describe
these events and may be easily extended. Most importantly, we will restrict the inelastic in-
teraction to the first order Born level, which, however, does not exclude to consider multiple
stacked first order Born events as in Sec. 6.
The basis for our considerations is the standard diagram perturbation technique as discussed
in, e.g., [48]. Accordingly, in order to properly take into account many body effects in the target
(e.g., inelastic interaction with the electron gas at the Fermi level) and partial coherence in
the beam (e.g., as produced via inelastic interaction) a generalization of the wave diagram in
Fig. 2 to a density operator diagram (i.e., in the language of second quantization) techniques
is in order (Fig. 3). The corresponding diagram is obtained by taking the tensor product of the
wave diagram (as indicated) and identifying the initial and final states of the target on both
sides, which follows from tracing over all target degrees of freedom.

Here, the gray loop generally contains all possible diagrams up to infinite order, i.e., the
exchange of (dressed) virtual photon lines in the target indicated in Fig. 2. It is referred
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density matrix diagram
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⊗
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MDFF (Secs. 2,4)

many-body pert.
(Sec. 5)

semiclassical
(Sec. 2)

retarded

quasistatic

Figure 3: Density (matrix) diagram representations of the inelastic scattering process
including various approximations: as the initial and final sample state are the same
on the left and right hand side of (a), the target side of the tensor product can be
connected forming a loop, i.e. a 4-point correlation (response) function or (general-
ized) two particle Green’s function (b). All ingredients of the resulting diagram are
subject to various approximations (c), all of which treated in the paper.

to as 4-point correlation function, two particle function, polarization propagator or general-
ized Green’s function in the literature. It represents the fundamental object encapsulating the
physics of the excitations of the target. It is well suited to encompass many-body interaction
effects (indicated gray) in the target, which particularly affect the low-loss regime. In this arti-
cle we will not elaborate on the various sophisticated strategies which have been developed to
compute the 4-point correlation function (typically relying on some infinite series expansions
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in the interaction). We will rather discuss the various descriptions of the beam electron, the
(virtual) photon exchange and the ramifications of relativity.

Indeed, all relevant descriptions of EELS may be identified with certain approximations
to the general diagram in Fig. 2. In particular neglecting many-body interactions (beyond
the mean field level) in the target corresponds to the MDFF used in core-loss computations,
whereas the Green’s dyad is a semiclassical version of the photon propagators including the
correlation function. Accordingly, Fig. 3 is well suited to provide an overview of what is treated
in this work. In Sec. 2 we give a more detailed account of the state of the art of EELS in terms
of experimental setups and pertinent theoretical descriptions, corresponding to various combi-
nations of approximations indicated in Fig. 3. In Sec. 3, we introduce the various conventions
and notations used throughout this paper. We also recall some results on free-space photon
propagators and their expression in different gauges.
In Sec. 4 we review electron scattering within the framework of scalar relativistic quantum
electrodynamic (QED). The main conclusion of this part is that in addition to the possibly re-
tarded Coulomb interaction (i.e., a charge-charge coupling term) also a magnetic interaction
(i.e., a current-current interaction) needs to be considered because of the relativistic veloci-
ties of the beam electrons. In Sec. 5 we focus on the 2-particle function (see Fig. 3). For
completeness and pedagogy, we first re-derive the expression for the MDFF and connect it to
the screened interaction. This way, we draw a parallel between the quasi-static formalism of
nano-optics with the one of core-loss spectroscopy. We then focus on the retarded case, where
we heavily rely on the fact that the interaction can be modeled in terms of correlation functions
and photon propagators (see Figure 3). Using a pedestrian approach of the QED, we calculate
the exact photon propagator in the presence of a polarizable material, taking special care of
the gauge choices. In complete analogy to what has been done with the MDFF in the quasi-
static case, we then connect this photonic kernel to the charge and current density correlation
functions of the scatterer. This makes it possible to introduce a fully retarded definition of
the MDFF as the spatial Fourier transform of the 4-susceptibility of the target. By doing that,
we introduce relations that bridge the world of solid-state physics and optics and that can be
applied well beyond the case of electron energy loss spectroscopy.
In Sec. 6 we then consider the electron probe part in detail. For reasons exposed earlier, we
model the electron propagation using the Schrödinger equation with a semi-relativistic cor-
rection, i.e. mass renormalization [47]. Following the seminal demonstration of Dudarev and
collaborators [26], we employ the Bethe-Salpeter equation in the ladder approximation in or-
der to calculate the electron density matrix propagation equation. We then consider separately
the quasi-static and the retarded interaction, which give the kinetic equation of Dudarev et al.
and its retarded counterpart, respectively.
Sec. 7 is dedicated to the contextualization of our developments and proposal of different ap-
plications. Particularly, by taking the appropriate limits, we demonstrate that our equations
encompass all previously obtained results.

As important applications of the formalism developed in this paper, we provide three im-
portant formulas. For the sake of pedagogy, we present them here, but they will be reproduced,
derived and discussed in length in this manuscript. The first is a concise and universal formula
for interpreting the most commonly performed EELS experiments and reads:

Γ (ω)∼∑
f

∫
dx dx ′ψ∗f (x )ψ f (x

′)Ĉ(x , x ′,ω)ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) . (2)

This formula relates directly, within the framework of Fermi’s golden rule (first order Born
approximation), the loss probability per unit time Γ (i.e., the EEL spectrum) to the incoming
electron wavefunction (ψi) at points x and x ′, the related scattered electron wavefunctions
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Table 1: Table synthesizing the different optical-condensed matter analogue quan-
tities and equations as well as the relations between them. The Mutual coherence
tensor Λi j denotes the central object of nano-optics from which any other impor-
tant quantity - such as the electromagnetic local density of states (EMLDOS) or the
cross-density of states (CDOS) - can be deduced, as done in Sec. 3.2.

Regime Quantity Optical description Connection Condensed matter description

Q
u

as
i-

st
at

ic Propagator
Screened Greens function

W(r , r ′,ω), (10)
(61)

Mixed dynamic form factor (MDFF)
S(k, k ′,ω), (15)

Correlation function
Potential correlation function
〈A0(r ′,ω)A0(r ′,ω)〉, (148)

(56)
Charge-Charge correlation function

χ(k ′, k,ω), (54)

Kinetic equation (145) (61) (14)

R
et

ar
de

d Propagator
Retarded screened interaction
Dµν(r , r ′,ω), (41) (148)

(45)
Relativistic Mixed dynamic form factor

Sµν(k, k ′,ω), (43)

Correlation function
Mutual coherence tensor
Λi, j(r , r ′,ω), (24)

(97)
4-Current correlation functions
χµν(k

′, k,ω), (43) (69)

Kinetic equation (151) (154) (45) (152)

ψ f , and the correlation function of the target Ĉ(x , x ′). The later can be calculated for the
relevant charge excitations such as bulk or surface phonons, plasmons, core-electrons, etc., in
either the quasistatic limit or retarded case, as discussed previously (see Fig. 3). It is therefore
the most general and synthetic formula for computing EELS. The second formula reads:

ρ f

�
r⊥, r ′⊥
�∼ 1

ω
Λzz(r⊥, r ′⊥, qz ,−qz ,ω) ρi

�
r⊥, r ′⊥
�

, (3)

where r = (r⊥, z) respectively denotes the transverse (orthogonal to the electron beam tra-
jectory) and longitudinal (along the electron beam trajectory) coordinates. Here, the mutual
coherence tensor [49,50] Λzz(r⊥, r ′⊥, qz ,−qz ,ω) relates the transition from initial to final den-
sity matrices, ρi

�
r⊥, r ′⊥
�

and ρ f

�
r⊥, r ′⊥
�
, of the probe electron by an energy loss process of

energy ℏω and characteristic momentum qz =ω/v. The zz indices hint at the tensorial char-
acter of Λ, which we can typically neglect in EELS because of the small scattering angles of
the fast beam electrons around the z-direction (paraxial approximation). This generalization
of the quasi-static work of Kohl and Rose [14] shows that quite universally, the electromag-
netic correlations of the target are imprinted in the coherence properties of the electron beam,
and makes straightforward the interpretation of holographic or phase-dependent experiments
regardless of how the target is described. The third formula reads:

Sµν(k, k ′,ω) = Im{−χµν
�
k, k ′,ω
�}= 2π
∑

f

〈i| jµ(k) | f 〉 〈 f | j†ν(k ′) |i〉δ(ω+ω f −ωi) (4)

and provides a definition of the relativistic MDFF Sµν as the imaginary part of the 4-susceptibility
χµν which can be expressed as a 4-current correlation function in the framework of the Kubo
linear response theory. This expression constitutes the root of the relations bridging the world
of condensed matter physics and optics. Finally, as guide for the reader, we summarized on ta-
ble 1 the main quantities and equations derived in this paper as well as their relation between
them.

For brevity, Hartree atomic units (ℏ= e = me = 1) and Lorentz-Heaviside units for the Maxwell
equations will be used from now on, unless otherwise specified. The 3-vectors are labeled by
roman letters and written in standard font as x ≡ xa = (x1, x2, x3). The 4-vectors are labeled
by greek letters and written in roman font as xµ = (x0, x1, x2, x3) = (ct, x ).
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2 State of the art

Most of quantum relativistic scattering theories for TEM electrons have been developed for
diffraction and holography [26, 34, 41, 42, 45, 46], i.e. elastic scattering, and only a few deal
with electron energy loss spectroscopy [43, 44, 47], i.e. inelastic scattering. In this section,
we will review the principal results and theories of the literature. For analyzing characteristic
energy-losses of electrons in a TEM (or EELS) the detector is typically placed in the energy-
dispersive plane of an energy filter in the far field of the sample, which allows to discriminate
the scattered electrons according to their energy loss and scattering angle. Alternative modes
excite the magnetic coils of the TEM such to image the achromatic plane of the filter or its
reciprocal on the detector, which can be used to record an energy-filtered diffraction pattern or
image. In the following we will focus on the conventional far-field setup, which allows probing
the dispersion of characteristic excitations such as plasmons or core-losses, typically yielding
the most interesting analysis of the solids electronic structure (e.g., including electron-energy-
loss linear dichroism (ELD), electron-energy-loss magnetic chiral dichroism (EMCD) [51]).

The most widespread theory of EELS of optical excitations [12] is built upon a semiclassi-
cal description of the scattering process founded in a point-like description of the beam elec-
trons. This notably implicates the initial and final electron states not being (stationary) energy
eigenstates, which distinguishes this semiclassical approximation from quantum perturbation
theory, where initial and final states are energy eigenstates. We recall that the most important
result of the semiclassical formalism is that the retarded electron energy-loss probability ΓR

appearing in the overall energy loss ∆E =
∫∞

0 ℏωΓR(ω)dω reads:

ΓR(ω) =
4
ℏ

∫
dr dr ′Im
n

J∗ (r ,ω)
↔
G
�
r , r ′,ω
�

J
�
r ′,ω
�o

, (5)

where
↔
G =

↔
G − ↔G0 is the screened electric Green dyadic of the classical Maxwell equations

defined through [11,52,53]:

∇×∇× ↔
G
�
r , r ′,ω
�− k2ε (r ,ω)

↔
G
�
r , r ′,ω
�
= − 1

c2
δ
�
r − r ′
�

(6)

and the free Green’s dyad:

∇×∇× ↔
G0

�
r , r ′,ω
�− k2

↔
G0

�
r , r ′,ω
�
= − 1

c2
δ
�
r − r ′
�

. (7)

Here ε is the frequency dependent dielectric function, which is a local quantity in this classical
setting (e.g., given by Drude-Lorentz theory). With the screened retarded Green’s dyad the
induced electric field is given by an external current source through

E ind (r ,ω) = −4πiω

∫
dr ′

↔
G
�
r , r ′,ω
�

Jext

�
r ′,ω
�

. (8)

Considering that the scattering predominantly occurs into very small angles around z−direction
and that the energy loss in the low-loss regime is small compared to the total energy of
the electron, we can write both the initial and final current as J(r ,ω) = ρ0(r⊥,−qz)eiqzz .
Here, qz = ω/v and ρ0(r⊥,−qz) denotes the Fourier transform of the density at t = 0 along
z−direction and we assume that it is a real quantity (i.e. symmetric along the z−axis). With
that the loss probability (5) can be further simplified to

ΓR(ω) =
4
ℏ

∫
dr⊥dr ′⊥ρ0 (r⊥, qz)ρ0

�
r ′⊥,−qz

�
Im
n↔
Gzz

�
r⊥, r ′⊥, qz ,−qz ,ω

�o
.
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This equation exhibits the familiar structure of the first order perturbative approach depicted
in Fig. 3. Indeed we can distinguish between the initial and final electron states and the (gen-
eralized) Green’s function. This structure is frequently encountered throughout regardless of
the actual derivation details (e.g., 1st order Born approximation, linear response, semiclassical
approximation), since all of them employ the notation of a weak interaction at a certain stage.
The quasistatic, non-retarded limit of the Green’s dyad is obtained by solving the longitudinal
part of the full Maxwellian response, Eq. (7), which corresponds to the solution of the first
Maxwell equation.
In 1987, Echenique and collaborators proposed a quantum version of the quasistatic transition
rate ΓQS

i→ f between initial and final beam electron state using a self-energy formalism [54]:

Γ
QS
i→ f =

2
ℏ

∑
f

∫∫
dr dr ′ψ f (r )ψ

∗
i (r )Im{−W(r , r ′,ω)}ψ∗f (r ′)ψi(r

′)δ(ε f − εi + ℏω) , (9)

which corresponds to Fermi’s golden rule as shown by García de Abajo [11]. Note that ψi and
ψ f are energy eigenstates of the electron probe with respective energies εi and ε f , which is
one difference between the quantum and the classical treatment. W is the screened Green’s
function for the electrostatic potential defined as:

ϕind

�
r ′,ω
�
=

∫
dr W
�
r ′, r ,ω
�
next (r ,ω) , (10)

where ϕind

�
r ′,ω
�

is the scalar potential induced at r ′ by a density of charges next (r ,ω) lo-
cated at r . The imaginary part of it, Im{W}, corresponds to the spectral density if the latter
is a real quantity in the energy representation, which is typically the case (exceptions will be
noted). The Green’s function W or its imaginary part contain all the quantum mechanical
information about excitations inside the target including valence as well as core excitations.
It can thus be applied both for describing low-loss [55–57] and core-loss EELS.

Using linear response theory, García de Abajo proposed1 an extension of Eq. (9) to the
retarded regime [11]:

ΓR
i→ f ∼ −
∑

f

∫∫
dr dr ′ψ f (r )∇ψ∗i (r )Im

�↔
G(r , r ′,ω)
	
ψ∗f (r ′)∇′ψi(r

′)δ(ε f −εi+ℏω) . (11)

This equation makes use of the paraxial approximation and has been used in several works
[23,58] in order to calculate the dichroism in the interaction between a vortex electron state
and a (geometrically) chiral plasmonic nano-particle. We will show below how to generalize
this equation making use of quantum propagators.

Although the above loss-probability and transition rate formulas are remarkably elegant
and intuitive, they do not provide information on the propagation of the wavefunction in the
microscope. However, a proper description of a phase-shaped EELS experiment requires the
precise description of the illumination and detection systems. Moreover, information on the co-
herence of the electron beam, which plays a crucial role in holography, is not explicitly present
in these expressions. They are therefore not sufficient to generally model EELS experiments
in the TEM and represent certain limiting cases where the above effects may be neglected.

In order to describe these situations, another fundamental object has to be considered. This is
the density matrix operator of the beam electrons, which in an energy eigenbasis {|ψn〉} reads:

ρ̂ =
∑

n

pn |ψn〉 〈ψn| , (12)

1To the best of our knowledge, there is no published demonstration of this formula.
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where pn are the occupation probabilities associated to each state vector n. Inserting the
completeness relation

∑
r |r〉 〈r| = 1, we obtain the fundamental tool for the description of

wave optical experiments: the energy-dependent density matrix. It is defined as [15,59] (see
also Eq. (100)):

ρ(r , r ′,ω) =
∑

n

pnψn(r )ψ
∗
n(r
′)δ(ω− εn) . (13)

This quantity is particularly rich in terms of information; for example I = ρ(r , r ) gives the in-
tensity at coordinate r in position space (typically identified with (conjugated) image planes in
the TEM). Even more importantly, the out-of-diagonal elements measure the mutual coherence
of the electron field between positions r and r ′ [16]. In other words, non-zero off-diagonal
terms entail electron interferences in the particular plane considered (which is defined by z
coordinate along the optical axis).

In 1993, Dudarev, Peng and Whelan [26] demonstrated (the different assumptions leading
to this formula will be reviewed in details in this paper) that, in the quasi-static limit, the
inelastic scattering of high energy electrons by a polarizable material can be described by the
so-called kinetic equation:

ρ f (r , r ′, E) =Fr ,−r ′

�
S(k, k ′,ω)

k2k′2

�
ρi(r , r ′, E + ℏω) , (14)

where F denotes the Fourier transform, ρi and ρ f are the density matrices of the electron
probe before and after the interaction and S(k, k ′,ω) is the so-called mixed dynamic form factor
(MDFF) [14] defined as :

S(k, k ′,ω) = 2π
∑

f

〈i|n(k)| f 〉 〈 f |n†(k ′)|i〉δ(εi − ε f + ℏω) , (15)

where k is a wave-vector, n is the electron density operator and | f 〉 is an eigenbasis of the
target electronic many-body state. Upon comparison with the quasistatic transition rate (9)
we note that the MDFF is the Fourier space (and many-body) version of the spatial integral
in said expression. It contains all the information on the correlation of the electronic charge
density of the scatterer [16].

S is a hermitian tensor, hence may be decomposed into a real-valued symmetric tensor
containig information about the non-chiral (i.e., non-magnetic) transitions and an imaginary
antisymmetric tensor (represesented by the vector S) containing the information about chiral
(i.e., magnetic) transitions, reading [60]

S
�
k, k ′,ω
�
= k · N(ω) · k ′ + i(k × k ′) · S(ω) (16)

in the dipole approximation (to be detailed further below). Note that the chiral transitions
introduce an imaginary component here, which marks one of the few cases, where the spectral
density is not a real object.

Remarkably, Eq. (14) shows that correlation are imprinted in the density matrix (and
hence mutual coherence) of the beam during the scattering process. It leads to a fundamental
principle of electron holography: generating interferences in order to trace back to the elec-
tronic correlations in the target. Indeed, EMCD experiments may be designed such to isolate
the second term of Eq. (16), hence allowing to characterize magnetic materials in the TEM. It
would be rather seducing to use such a formalism in the case of nano-optics and e.g. interpret
EELS interference effects on surface plasmons in terms of electric field correlations measure-
ments. The MDFF is particularly adapted to model core-loss spectroscopy as the measured
phenomena appear to be quasi-static. However, it gives an incomplete picture of nano-optical
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phenomena where retardation effects dramatically constrain the coherence properties of the
field. Therefore, the definition of a relativistic MDFF and its link to nanooptical quantities is
needed.

3 Preliminary remarks on the electromagnetic field

3.1 Gauge fixing and vacuum photon propagator

The Green’s function of the Maxwell equation in the form given in the Annex (Eq. (191)) is
the vacuum photon propagator Dµν defined by:

Aµ(x′) =
∫

dx Dµν (x
′, x)Jν(x) . (17)

In the following, we are using Einstein summation convention, with greek letters for covariant
indices and latin letters of spatial indices. For readability, all quantities and basic equations
have been defined in the Annex. In order to calculate Dµν one needs to invert the Kernel in Eq.
(191). Depending on the gauge, this task can require involved mathematical techniques as it
may be singular. In nano-optics, principally three gauges for the electromagnetic field [61] are
encountered in the literature: the Coulomb gauge, the (partial) Lorenz gauge and the tempo-
ral (or Weyl) gauge - each of them having different specific interests. We will therefore give
Dµν in these cases [62, 63] only, but keeping in mind that the vacuum photon propagator can
be expressed in arbitrary gauges:

• The Coulomb gauge corresponds to the condition:

∂iA
i = 0 . (18)

It is of particular interest in standard quantum electrodynamics as it enables a simple quantifi-
cation of the potentials and leaving the Coulomb interaction in its classical and non-retarded
form. In the Coulomb gauge the photon propagator reads [62,63]:

Di j =
4π

k2 − ω2

c2

�
δi j +

kik j

k2

�
D00 = −4π

k2

Di0 = 0

(19a)

(19b)

(19c)

• The temporal gauge corresponds to the condition:

A0 = 0 . (20)

It is particularly interesting because it drastically facilitates the calculation of conductivity in
linear response theory. In the temporal gauge the photon propagator reads [62,63]:

Di j =
4π

k2 − ω2

c2

�
δi j +

kik j

ω2/c2

�
D00 = 0

Di0 = 0

(21a)

(21b)

(21c)

• The Lorenz gauge corresponds to the condition:

∂µAµ = 0 . (22)
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Its main interest is to decouple the motion equation for the four components of the potential.
Indeed, in the Lorenz gauge, the propagator reads [63]:

Dµν =
4πgµν

k2 − ω2

c2

. (23)

3.2 Mutual coherence tensor, electromagnetic local and cross density of states

In Sec. 2, we introduced the Green dyadic
↔
G propagating a current source to an electric field as

a function of the photon energyω. From this propagator, as it is commonly done in condensed
matter [64], one can define a photonic spectral function (which in the case of optical fields is
a tensor), usually called the mutual coherence tensor [49,50] (MCT), as:

Λi j(r , r ′,ω) = −2ω
π

Im
¦↔
G i j(r , r ′,ω)
©

. (24)

From the fluctuation-dissipation theorem, the former quantity can be connected to the spectral
correlations of the electromagnetic field [65,66]:

E j
i (r , r ′,ω) = 1

2π

∫ +∞
−∞

dτ 〈E i(r , t +τ)E∗j (r ′, t)〉 e−iωτ

=
8ω2h

c2
Im
¦↔
G i j(r , r ′,ω)
©

.

(25)

The mutual coherence tensor is a pillar of nano-optics as it contains all the important infor-
mation about the optical field. Indeed, from the early work of Agarwal [67], we know that by
taking the trace of its diagonal elements (i.e. r = r ′), we obtain the electromagnetic density
of states (EMLDOS):

N (r ,ω) =
3∑

i=1

Λii(r , r ,ω) , (26)

where, for clarity, we made the summation explicitly appear. One can also consider partial
electromagnetic density of states by only taking one of the components e.g. for i ∈ {1, 2, 3}:

Ni(r ,ω) = Λii(r , r ,ω) . (27)

The EMLDOS is involved in the description of a wide range of phenomena such as the Purcell
effect [68] or the Casimir effect. In 2013, Cazé and collaborators introduced [69] the cross
density of states (CDOS):

N (r , r ′,ω) =
3∑

i=1

Λii(r , r ′,ω) , (28)

which of course allows the definition of a partial CDOS e.g. for i ∈ {1, 2, 3}:
Ni(r , r ′,ω) = Λii(r , r ′,ω) . (29)

From Eq. (25), it is clear that the CDOS measures the electromagnetic correlations between
two points in space at the energy ω. As extensively discussed in [50, 69, 70], this quantity is
particularly relevant to characterize the spatial coherence of optical field and study e.g. the
Anderson localization in random media.
It is also quite standard to normalize the CDOS by the EMLDOS, thus defining a new quantity:

C(r , r ′,ω) = N (r , r ′,ω)p
N (r ,ω)N (r ′,ω)

, (30)

14

https://scipost.org
https://scipost.org/SciPostPhys.10.2.031


SciPost Phys. 10, 031 (2021)

which, depending on the context and for historical reasons, is referred to as complex degree
of coherence [49] or mode connectivity [70]. Thanks to the Schwarz inequality, one can show
that 0≤ C ≤ 1 where the case C = 0 corresponds to uncorrelated points and C = 1 to the situa-
tion of strong connection [70]. Extension to polarization-dependent correlations is straightfor-
ward from Λi j and leads e.g. to the definition of a complex degree of mutual polarization [71].

No matter the plethora of quantities defined in the literature over the last decades, it is crucial
to state that they are all contained in the most general mutual coherence tensor Λi j .

4 Fundamentals of Scalar Relativistic Quantum Electrodynamics

In this section we shortly recapitulate the fundamentals of relativistic QED in order to ob-
tain very general covariant (i.e., fully retarded) expression for the inelastic transition matrix
elements and transition rates, which are then further detailed in the following chapter. For
the sake of clarity we explicitly note the elementary charge e to highlight the perturbation
order of the theory. Moreover, we employ upper and lower indices to indicated covariant and
contravariant vectors in this section.

As stated previously we can largely neglect the ramifications of the electron spin in the
inelastic scattering process as the spin-orbit coupling is small at the large electron velocities
considered here. A scalar relativistic formulation of the scattering process is therefore largely
sufficient for our purpose. The fundamentals of a scalar relativistic QED, i.e., the Feynman
rules following from a perturbative treatment of the Klein-Gordon field weakly coupled to the
electromagnetic field, �

∂ µ∂µ +m2
e

�
ψ= −ie
�
∂ µAµ + Aµ∂µ
�
ψ− e2AµAµ, (31)

are derived, e.g., in the book of Greiner [72].
Here, we only repeat the fundamentals of scalar relativistic perturbation theory important

for the following computations. First, we restrict ourselves to the first order of the perturbation
(i.e., scattering matrix terms linear in the interaction constant e2) as higher order terms such
as Vertex corrections can be expected to be very small (their relative strength corresponds to
those of the related Lamb shift). This allows us to neglect the quadratic coupling term on the
right hand side of Eq. (31). The same reasoning allows us to get rid of the quadratic term
occurring in the definition of the transition current:

Jµ = ieψ∗f
←→
∂ µψi − 2e2Aµψ

∗
fψi (32)

≈ ie
�
ψ∗f ∂µψi −ψi∂µψ

∗
f

�
,

which appears in the calculation of the vacuum photon propagator D (Eq. (17)). We finish
our preparations with noting the scalar product as employed within the framework of scalar
relativistic QED �

ψ f |ψi

�
=

∫
d3rψ∗f (r) i

←→
∂0 ψi (r) (33)

and introducing the scattering matrix

S f i = lim
t→+∞〈ψ f |U(t,−∞)|ψi〉 , (34)

which describes the transition of an initial beam electron state ψi to a final state ψ f under an
influence of the time evolution operator U(t2, t1) containing the actual physics of scattering
process. In other words we have

|ψ f 〉= S f i|ψi〉 (35)
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and
ρ̂ f = S f iS∗f iρ̂i (36)

for the transition of a state vector (i.e. wave function) and the density operator (i.e., density
matrix). The latter is the abstract retarded version of the kinetic Eq. (14) noted previously.
With these tools and the corresponding Feynman rules, we may now note the scattering matrix
for the first order scattering process depicted in Fig. 4(a)

S f i = −e

∫
drψ∗f
�←−
∂ µAµ − Aµ

−→
∂ µ
�
ψi (37)

= −ie

∫
d4rJµf i (r)Aµ (r) .

The first line contains the derivatives of the beam electron wave function reminiscent of a sym-
metric version of Garcia de Abajo’s formula Eq. (11). On the second line, the relation to the
transition current is highlighted, which provides an ab-initio ratio for to the current-current
coupling terms in the linear-response regime (Kubo formalism) discussed further below. In-
deed, the transition probability per electron into some final state reads

Γi→ f =
��S f i

��2 , (38)

which transforms into

Γi→ f = −e2

∫
drdr ′Jµf i (r)Aµ (r)A

∗
ν

�
r ′
�︸ ︷︷ ︸

Im{Dµν(r,r ′)}
J∗νf i

�
r ′
�

, (39)

upon inserting Eq. (37). Here we introduced a new abbreviation for the correlation of two
vector potentials. This quantity represents the central part (i.e., between the two outer ver-
tices) of Fig. 4(b) and hence may be directly related to the four-susceptibility (i.e., the central
loop the Feynman graph in Fig. 4(b)) :

χκλf i (r, r ′) = −ie2θ (r0 − r ′0)ξ∗i (r)
←→
∂ κξ f (r)︸ ︷︷ ︸
jκ(r)

ξ∗f
�
r ′
�←→
∂ λξi

�
r ′
�︸ ︷︷ ︸

j∗λ(r ′)

(40)

via

Dµν
�
r, r ′
�
=

∫
dudu′Dµκ(r− u)D∗νλ(r′ − u′)χκλ

�
u, u′
�

, (41)

where ξi ,ξ f respectively denote the initial and final states in the target. In the last expression
we summed over all final states, i.e., χ =

∑
f χ f i , to take into account every possible final

scattering state of the target while the initial state is taken as the fundamental state. The latter
expression may be transformed into reciprocal space taking into account the homogeneity of
the interaction in time, yielding

Dµν
�
k, k ′,ω
�
=

4πgµκ

k2 −ω2

4πgνλ
k ′2 −ω2

χκλ
�
k, k ′,ω
�

(42)

if employing the photon propagator in Lorentz gauge (Eq. (23)). Indeed, there is a one-to-one
relationship between the spectral representation of χ and D and the relativistic generalization
of the mixed dynamic form factor

Sµν(k, k ′,ω) = 2π
∑

f

〈i| jµ(k) | f 〉 〈 f | j†ν(k ′) |i〉δ(ω+ω f −ωi) , (43)
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where we introduced the 4-current operator jµ(k) in reciprocal space. The relationship can be

demonstrated by employing the Dirac identity
1

ω± i0+
= ∓iπδ(ω) +P 1

ω
yielding [73]

Im{−χµν
�
k, k ′,ω
�}= Sµν(k, k ′,ω) , (44)

and hence

Im{Dµν
�
r , r ′,ω
�}=F−1

r ,−r ′

¨
Sµν
�
k, k ′,ω
��

k2 −ω2
� �

k ′2 −ω2
�« . (45)

Note that we again made the assumption that the MDFF is a real quantity here. Indeed, this
assumption allows us to to drop the difference between causal Green’s functions appearing
in the diagrammatic perturbation theory (i.e., Feynman diagrams used in this section) and
retarded Green’s function in linear response formalism used further below. In the most general
case this difference must be treated carefully, leading, e.g., to a more complicated relationship
between retarded (and advanced) 4-susceptibility and the MDFF

i
2

�
χR
µν

�
ω+ i0+
�−χA

µν

�
ω+ i0−
��
= Sµν(ω) . (46)

The transition probability for a particular energy loss finally reads:

Γi→ f = 2π

∫
dr dr ′Jµf i (r ) J

ν∗
f i

�
r ′
�
F−1

r ,−r ′

¨
Sµν
�
k, k ′,ω
��

k2 −ω2
� �

k ′2 −ω2
�« . (47)

In Sec. 5 we will pick up these strands and further transform this expression to obtain a
generalized retarded expression of Eq. (11) noted previously. Additionally, we will show how
to derive the celebrated magic angle correction [74,75,75–77] in Appendix C.

(a)

ψi

ψ f ξ f

ξi

(b)

Figure 4: Diagram representation of the first-order inelastic electron-target scatter-
ing: (a) an electron of wavefunction ψ(r, t) interacts with a target represented by
a target many-body wave function ξ(r, t) by exchanging free virtual photons. (b)
the beam electron density matrix is modified through a modified photon propagator
containing the target correlation function.

5 Propagators for the electromagnetic field in presence of a po-
larizable medium

In this section, we focus on the propagator for the EM field in the presence of a polarizable
medium, e.g. a metallic nano-particle. For completeness, we first consider the quasi-static
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case and show that the screened interaction can be connected to the MDFF, see Sec. 5.1.1.
This way, we connect the standard formalism of EELS to optical quantities.

In Sec. 5.2, using a Dyson development, we calculate the exact photon propagator in the
presence of a polarizable material. In a complete analogy to what has been done with the
MDFF, we then connect this photonic kernel to the charge and current density correlation
functions of the scatterer.

5.1 Quasistatic approach: modification of the Coulomb propagator, electron
density correlation function

We first consider the quasi-static limit c→∞. In this situation, the calculation of the EM field
propagation simply reduces to the resolution of the Poisson equation. Thus, as illustrated on
Fig. 5, we simply need to consider the scalar potential and the electron charge density of the
target.

next(r ,ω)

ϕtot(r ′,ω)
W0(r , r ′) = 1

|r − r ′|

next(r ,ω)

ϕind(r ′,ω)
W(r , r ′)

Figure 5: Schematics illustrating the problem tackled in this section. The Green
function for the electrostatic potential in vacuum is simply the Coulomb propagator.
For our purpose (i.e., to compute the screened interaction), this Green function needs
to be modified.

In vacuum the potentialϕind induced in r ′ by an external charge ρext in r is simply given by the
Coulomb law. In other terms, the free-space EM propagator is simply given by
W0(r , r ′,ω) = 1/|r−r ′|. This law needs to be modified in the presence of a dielectric medium
in order to take into account e.g. the screening effect in the material. Particularly we expect
the new propagator W to be energy-dependent as, contrary to the vacuum, the target can be
dispersive.

In this section, we will derive the new propagator W and connect it to the mixed dynamic
form factor.

5.1.1 Linear response electrostatic susceptibility

In the following, we define the electronic charge density operator n for the target as n(r ) = en̂(r )
where n̂ is the particle number operator for the electrons. We first need to calculate the re-
sponse of the target of electronic density n(r , t) to an external perturbation ϕext(r , t) . The
electronic charge δ〈n(r , t)〉 ≡ nind(r , t) = 〈n(r , t)〉 − 〈n(r , t)〉0 induced on the target by this
electrostatic field can be calculated using the Kubo formula [78,79]:

nind(r , t) = −i

∫ ∞
t0

d t ′ θ (t − t ′) 〈[n(r , t), H(t ′)]〉0 e−η(t−t ′) , (48)
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where η→ 0+, t0 the starting time of the interaction and H(t) is the perturbation Hamiltonian
given by:

H(t) =

∫
R3

dr ′ n(r ′, t)ϕext(r
′, t) . (49)

Therefore, one can write:

nind(r , t) =

∫ ∞
0

d t ′
∫

R3

dr ′
¦− i

ℏ
θ (t − t ′) 〈[n(r , t),n(r ′, t ′)]〉0

©
ϕext(r

′, t ′)e−η(t−t ′) . (50)

Besides, the linear-response electric susceptibility χ is implicitly defined as:

nind(r , t) =

∫
dr ′
∫

d t ′ χ(r , r ′, t, t ′)ϕext(r
′, t ′) . (51)

Comparing equations (50) and (51), one can deduce the following expression for χ:

χ(r , r ′, t, t ′) = −iθ (t − t ′) 〈�n(r , t),n(r ′, t ′)
�〉0 . (52)

We retrieve the well-known linear response susceptibility at equilibrium in the real space. In
the spectral domain, the electrostatic susceptibility reads:

Im
�
χ(r , r ′,ω)
	
= −π

Z

∑
n,n′
〈n|n(r ) |n′〉 〈n′|n(r ′) |n〉 e−βℏωn

× �1+ e−βℏω
�
δ (ω+ωn −ωn′) .

(53)

The latter equation is valid for any temperature T = 1/ (βkB), with kB the Boltzmann con-
stant, as soon as we are at thermal equilibrium. We now take the limit of the latter expression
in the limit of null temperature T = 0. This is fully justified when the energy of the electronic
excitations are significantly greater than the thermal energy at room temperature kBT ≈ 25
meV. This will be the case in the following developments because e.g. the energy of SPs is typ-
ical energy of 1 eV. In equation (53), we can then replace 1

Z

∑
n 〈n|.|n〉exp(−βℏωn)→ 〈0|.|0〉

and β → 0 which gives:

Im
�−χ(r , r ′,ω)
	
= 2π
∑

n

〈0|n(r ) |n〉 〈n|n(r ′) |0〉δ(ω+ωn −ω0) . (54)

Therefore we see that the latter corresponds to the Fourier transform of the MDFF (15).

5.1.2 Connection between the mixed dynamic form factor and the screened interaction

Now, we are in position to calculate the screened electrostatic propagator W which is formally
defined such that

W(r , r ′,ω) =
∫

dr 1

∫
dr 2

χ(r 1, r 2,ω)
|r − r 1| |r ′ − r 2| , (55)

where we used the time-translation invariance of W0 and χ to simply express the Fourier
transform. The latter can be Fourier transformed with respect to r and r ′ which leads to:

W(k,−k ′,ω) = (4π)2χ(k,−k ′,ω)
k2k′2 . (56)

We used the identity [80]Fk

�1
r

	
= 4π

k2 where F denotes the Fourier transform. Nevertheless,
the screened potential and the electric Green dyadic are related in the quasistatic regime by
[81]:

↔
G(r , r ′,ω) = 1

4πω2
∇∇′W(r , r ′,ω) . (57)
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Moreover, Fourier transforming the latter gives:

↔
G(k,−k ′,ω) = 1

4πω2
kk ′W(k,−k ′,ω) . (58)

Therefore, using Eq. (56) we get:

↔
G(k,−k ′,ω) = 4π

ω2

k
k2

−k ′
k′2 χ(k,−k ′,ω) . (59)

We also need to calculate the imaginary part of the screened interaction as it is involved in
the definition of the loss probability (9). Therefore, taking the imaginary part of (55) and by
using Eq. (54), we get:

Im{−W(r , r ′,ω)}= 2π
∑

n

∫
dr 1

∫
dr 2
〈0|ρ(r 1) |n〉 〈n|ρ(r 2) |0〉
|r − r 1| |r ′ − r 2| δ(ℏω+ℏωn−ℏω0) . (60)

Finally using the latter equation combined together with Eq. (55) and (15), we get:

Im
�−W(r , r ′,ω)
	
=

2
π

Fk,−k′
�

S(k,−k ′,ω)
k2k′2
�

. (61)

A quick look to the latter formulate clearly indicates that, as expected, the kernel of Eq. (9)
and (14) are the same. Depending on the situation investigated, each of these kernels can be
interchangeably used:
•When ab initio calculations are required (typically in the case of core-loss spectroscopy), one
will preferably use the MDFF as it explicitly displays the quantum mechanical charge density
correlations.
•When classical photonic systems are investigated, one will preferably use the screened inter-
action as it can be simply calculated by e.g. boundary element method [82,83].

Finally, by using the definition of the mutual coherence tensor (24) together with Eq. (59),
we obtain:

↔
Λ(r , r ′,ω) = 4ω

π2
Fk,−k′
�

kk ′ S(k,−k ′,ω)
k2k′2
�

. (62)

This equation shows that, in the quasi-static limit, the CDOS and the EMLDOS are respectively
given by the MDFF and the dynamic form factor (DFF, [14]). In other words, in this limit,
the electric field correlations (encoded in the MCT) simply reproduce the electronic charge
correlations in the target (encoded in the MDFF). This result is of course expected as, in the
quasi-static limit, the electric field and the charge density are simply related through:

E(r , t) = −∇
∫

dr ′d t W (r , r ′, t, t ′)ρ(r ′, t ′) . (63)

Although intuitive, Eq. (61) and (62) have, to the best of our knowledge, never been derived.
It enables to put on the same level the MDFF formalism for the electronic correlations [15,16,
19] and the MCT formalism for the photonic correlations [65,69,84].

5.2 Retarded approach: Photon propagator and electron four-current correla-
tion function

We now turn to the retarded case where both the scalar ϕ and the vector potential A need to
be considered. In his wonderful review [11], García de Abajo suggested to use the Kubo for-
malism for the current density to derive a retarded form of the latter equations. However, we
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could not find such a demonstration in the literature; therefore, in this section, we will follow
this suggestion and derive a retarded version of the linear response formalism established in
the last section.

The main difficulty in the retarded regime is the choice of the gauge. The developments found
in the literature use different choices of gauge depending on the problem, so that a straightfor-
ward application is not possible. Some gauge choices are particularly convenient to calculate
the EM field in vacuum e.g. the Coulomb gauge. However, these choices may, on the other
hand, harden the calculation of the response function of the material. In order to avoid this
difficulty while keeping a compact formalism, we will carry, when necessary, the calculation
with four-vectors.

Jµext(r ,ω)

Aνtot(r
′,ω)

Dνµ(r , r ′,ω)

Jµext(r ,ω)

Aνind(r
′,ω)

Dνµ(r , r ′,ω)

Figure 6: Schematics illustrating the problem tackled in this section. The Green
function for the electromagnetic field in vacuum is simply the photon propagator
which expression depends on the gauge choice. For our purposes (i.e., to compute
the screened interaction), this Green function needs to be modified.

In vacuum, the 4-current Jνext at x will generate a potential Aµind at x′ which is related by the
vacuum photon propagator Dµν (x′, x), see Eq. (17). In the same way as in the quasi-static
regime, the presence of a polarizable material will modify the EM propagator. The goal of this
section is therefore to calculate the exact photon propagator Dνµ in the presence of the target as
illustrated on Fig. 6. However, contrary to the quasi-static case, we need to take into account
both the induced charge and current densities in the medium which are compactly represented
by the 4-current density Jµ.

5.2.1 Linear response electromagnetic susceptibility

The main interest of the previous quasi-static developments is that, now, the retarded case can
be straightforwardly treated by analogy. Particularly, the 4-current
δ〈Jν(r , t)〉 ≡ Jνind(r , t) = 〈Jν(r , t)〉−〈Jν(r , t)〉0 induced in the medium by an external pertur-
bation Aνext is given by the Kubo formula:

Jνind(r , t) = −i

∫ ∞
t0

d t ′ θ (t − t ′) 〈[Jν(r , t), H(t ′)]〉0 e−η(t−t ′) , (64)

where η is an infinitely small positive real number. The perturbation Hamiltonian is then given
by:

H(t ′) =
∫

dr ′Jµ(r ′, t ′)Aµ(r ′, t ′) . (65)
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Substituting the latter in the former, we get:

Jνind(r , t) = −iθ (t − t ′)
∫

d t ′
∫

dr ′

�

Jν(r , t), Jµ(r
′, t ′)
��

0Aext
µ (r

′, t ′) , (66)

we can then define a four-susceptibility χνµ as:

Jνind(r , t) =

∫
d t ′
∫

dr ′ χνµ(r , r ′, t, t ′)Aext
µ (r

′, t ′) (67)

from which we deduce the linear response four-susceptibility tensor:

χνµ(r , r ′, t, t ′) = −iθ (t − t ′)

�

Jν(r , t), Jµ(r
′, t ′)
��

0 . (68)

Note that gauge invariance and four-current conservation imply ∂ µχνµ = ∂νχ
ν
µ = 0 [73], a

property, which we will dwell upon in the following. The structure of (68) being exactly ana-
logue to (52), we can immediately deduce the spectral representation of the four-susceptibility
at T = 0:

χνµ(r , r ′,ω) = 2
∑

n

〈0| Jν(r ) |n〉 〈n| Jµ(r ′) |0〉
ω+ωn −ω0 + iη

. (69)

From Eq. (68), one can see that the linear-response four susceptibility has the following struc-
ture:

χνµ =


Cρ,ρ Cρ, jb

C ja , jbC ja ,ρ

 , (70)

where we recall that CÂ,B̂ denotes the correlator between two quantities Â and B̂ being ei-
ther/or ρ and j. The diagonal elements of this tensor are therefore the charge-charge and
current-current correlators while the out of diagonal elements correspond to charge-current
correlators.

Let’s stress an important semantic point. Both susceptibilities (52) and (68) are called re-
tarded as they involved retarded electronic Green functions defined as (189). Nevertheless,
let’s keep in mind that, in our case, the retardation needs to be understood in the sense of the
EM field, the regime is therefore defined by the value taken for c. To summarize:

• In the quasi-static regime (c →∞), the problem reduces to the Poisson equation and only
the scalar potential and charge densities play a role in the response of the system. The light-
matter interaction Hamiltonian is then taken to be (49) and the response function of the target
is determined, to the first order, by charge-charge correlations.

• In the retarded regime (c finite), both scalar and vector potentials need to be considered
and the light-matter interaction Hamiltonian is then (65). The problem essentially reduces to
a choice of gauge. If one is interested in e.g. the conduction properties of a metal, a suitable
choice would be to use the temporal gauge ϕ = 0 where the electric field is fully determined
by the vector potential E = −i(ω/c)A. In this case, the conductivity tensor defined as:

Ea(r , t) =

∫∫
dr ′d t ′ σa

b(r , r ′, t, t ′) jb(r ′, t ′) (71)

can be straightforwardly obtained by the Kubo formula and gives:

Re
�−σa

b(r , r ′,ω)
	
=

2πc
ω

∑
n

〈0| ja(r ) |n〉 〈n| jb(r ′) |0〉δ(ω+ωn −ω0) . (72)
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If one chooses a gauge where both A and ϕ are non-zero, both the temporal and spatial parts
of the Hamiltonian need to be considered and conductivity would include charge densities in
its definition.

However, although the temporal gauge seems to simplify the situation on the electronic level,
it complicates the expression of the photon propagators. In fact, in our case, where both
electrons and photon propagation needs to be taken into account, no gauge seems to give a
dramatically simpler solution.

5.2.2 Retarded electric Green dyadic

We are now in position to calculate the propagator for the EM field in presence of the polar-
izable medium. Thus, we consider the situation described in the introduction of this section:
an external source term represented by the four-current Jµext is positioned at r and we want to
calculate the total four-potential Aνtot induced at r ′. Like we did in the quasi-static case, we
apply the Born approximation (see diagram Fig. 6) and get the retarded screened interaction:

Dβα(b, a) = Dβµ (b, 2)χµν (2, 1)Dνα(1, a) , (73)

keeping in mind that there is an implicit summation on the repeated indexes.
In nano-optics, we commonly work with electric and magnetic fields so that the electric Green

dyadic
↔
G is one of the most important and fundamental object of the theory. These ob-

jects (fields and dyadic) have the advantage of being gauge-independent. However, so far
we worked with the potentials (ϕ, A) as they have simpler transformation laws and symme-
tries; moreover, they strongly facilitate the connection with the many-particle Kubo formalism.
Nevertheless, in this section, we will derive the electric Green dyadic using the results of the
previous section in order to obtain formula adapted to discuss nano-optical experiments.

Combining the definition of the Faraday tensor (193) and the one of the photon propagator
(17), we can write:

Fεγ(x′) =
∫

d4x
�
∂ ′εDγα(x′, x)− ∂ ′γDεα(x′, x)

�
Jα(x) , (74)

where the prime in ∂ ′ε indicates that the derivative is taken with respect to x′. Besides, from
the explicit form of the Faraday tensor (194), one can directly deduce that the component E i

of the electric field is given by:

E i = F i0 = −F0i = ∂ iA0 + ∂ 0Ai . (75)

Therefore, using (74) we get:

E i(x′) =
∫

d4x
�
∂ ′i D0

α(x
′, x)− ∂ ′0 Di

α(x
′, x)
�

Jα(x) . (76)

Now, we decompose the sums over α as:

Di
α(x
′, x)Jα(x) =Di

0(x
′, x)J0(x)−Di

a(x
′, x)Ja(x) (77)

and,
D0
α(x
′, x)Jα(x) =D0

0(x
′, x)J0(x)−D0

a(x
′, x)Ja(x) . (78)

Besides, one can write the continuity equation as:

∂µJµ = ( ∂t
c ,−∇).(cρ, j) = ∂tρ +∇. j = 0 . (79)
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Fourier transforming in time the latter gives:

−iωρ + ikaJ a = 0 , (80)

which finally gives:

J0 = cρ =
cka

ω
Ja . (81)

Fourier transforming in space equations (77) and (78) and using the latter equation, we get:

Di
α(k
′, k)Jα(k) =

c
ω
Di

0(k
′, k)k jJ

j(k)−Di
a(k
′, k)Ja(k) (82)

and,
D0
α(k
′, k)Jα(k) =

c
ω
D0

0(k
′, k)k jJ

j(k)−D0
a(k
′, k)Ja(k) . (83)

We now Fourier transform (76) and get:

E i(k′) =
∫

d4k
�
ik′i D0

α(k
′, k) +

iω
c

Di
α(k
′, k)
�
Jα(k) . (84)

We can inject Eq. (82) and (83) in the latter expression and by substituting the summation
index a→ j, we get the following:

E i(k′) =
∫

d3k dω
�

i
ω

k′i D0
0(k
′, k)k j− i

c
k′i D0

j (k
′, k)+

i
c
Di

0(k
′, k)k j− iω

c2
Di

j(k
′, k)
�
J j(k) , (85)

where we used d4k= d3k dω/c. A Fourier transform with respect to r and r ′ then gives:

E i(r ′,ω) =
∫

d3r dω
�
− i
ω
∇′i D0

0(r
′, r ,ω)∇ j − 1

c
∇′i D0

j (r
′, r ,ω) +

1
c
Di

0(r
′, r ,ω)∇ j

− iω
c2

Di
j(r
′, r ,ω)
�
J j(r ,ω) .

(86)

Besides, for any fields Φ and V the integration by part in R3 reads:∫
Ω

Φ∇.Vdr =

∫
∂Ω

ΦV .d s −
∫
Ω

V .∇Φdr , (87)

which can be applied to the latter equation in order to get:

E i(r ′,ω) =
∫

d3r dω
�

i
ω
∇′i∇ j D0

0(r
′, r ,ω)− 1

c
∇′i D0

j (r
′, r ,ω)− 1

c
∇ jDi

0(r
′, r ,ω)

− iω
c2

Di
j(r
′, r ,ω)
�
J j(r ,ω) .

(88)

We can now use the definition (8) in order to identify the screened Green dyadic and get:

G i
j(r
′, r ,ω) =

−1
4πω2

∇′i∇ j D0
0(r

′, r ,ω) +
i

4πωc

�∇′i D0
j (r
′, r ,ω) +∇ jDi

0(r
′, r ,ω)
�

+
1

4πc2
Di

j(r
′, r ,ω) .

(89)

To the best of our knowledge, this equation has never been derived so far. We can also Fourier
transform it back with respect to r and r ′ and get:

G i
j(k
′, k,ω) =

1
4πω2

k′ik j D0
0(k

′, k,ω)− 1
4πωc

�
k′i D0

j (k
′, k,ω) + k jDi

0(k
′, k,ω)
�

+
1

4πc2
Di

j(k
′, k,ω) .

(90)
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5.2.3 Reciprocity theorem and symmetry properties of the Green dyadic

We now impose the following condition:

S
�
G i

j(r
′, r ,ω)
�
= G j

i (r , r ′,ω) = G i
j(r
′, r ,ω) , (91)

where we define the operator S exchanging the indexes i ↔ j and coordinates r ↔ r ′.
This reciprocity condition [11] states that a current in r creating a EM field in r ′ is equivalent
to a current in r ′ creating a EM field in r . In some particular situations (e.g. chiral meta-
materials, moving media or topological materials), the latter condition is no longer true [85].
In this work, we only consider reciprocal media.

Therefore, in a reciprocal medium, the Green dyadic imposes (see appendix B for the detailed
derivation):

G i
j(r
′, r ,ω) =

1
4πc2

Di
j(r
′, r ,ω)− 1

4πω2
∇′i∇ j D0

0(r
′, r ,ω) , (92)

where the first term is a charge-charge correlator while the second term is a current-current
correlator. Therefore, the Green dyadic can be written, with the susceptibility tensor compo-
nents expressed in the Lorenz gauge, as:

G i
j(k
′, k,ω) =

4π

k2 − ω2

c2

� 1
4πω2

k′ik j χ
0
0 (k

′, k,ω) +
1

4πc2
χ i

j(k
′, k,ω)
� 4π

k′2 − ω2

c2

. (93)

This equation is probably the most important new result of the section as it generalises the
Kubo approach derived in the quasi-static case (59) to the retarded regime. Indeed by taking
the quasi-static limit c −→∞ we obtain:

G i
j(k
′, k,ω) =

4π
ω2

k jk
′i

k2k′2 χ
0
0 (k

′, k,ω) , (94)

which corresponds to the formula (59) that we derived in the quasi-static formalism with
χ = χ0

0 . Upon insertion of the screened Green’s function (93) into the loss probability (5) we
finally obtain a fully retarded version the electron energy loss probability

ΓR
i→ f = − 4

π

∑
f

∫∫
dr dr ′J i→ f (r )Im

�↔
G(r , r ′,ω)
	
J∗i→ f (r )]δ(ε f − εi + ℏω) . (95)

An alternative derivation of Γ R is based on inverting (92) using the divergence-free property of
the susceptibility [73]. The obtained D is then inserted in (47). Finally the charge component
is replaced using the continuity equation (79).

Eq. (95) may be transformed to Abajo’s expression Eq. (11) by replacing the screened
Green’s dyad Eq. (90) with the semiclassical one and noting that the transition currents read

J i→ f (r )≈ 2ikzψ f (r )ψ
∗
i (r ) (96)

≈ 2ψ f (r )∇ψ∗i (r )
in the paraxial case. Finally, by combining Eq. (45) and (92), we can directly connect the
mutual coherence tensor to the relativistic MDFF as:

Λi
j(r
′, r ,ω) =

1
4πω2

Fk,−k′
� kk ′ S0

0(k
′, k,ω)

(k2 −ω2)(k2 −ω2)

�
− 1

4πc2
Fk,−k′
� S i

j(k
′, k,ω)

(k2 −ω2)(k2 −ω2)

�
.

(97)
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5.3 Concluding remarks

In the nano-optics framework, one usually calculates the Green dyadic
↔
G as this is the sole

quantity required to describe the equilibrium properties of the electromagnetic field as demon-
strated by Agarwal [84] and recalled in Sec. 3.2. On the other hand, from a condensed matter
physicist point-of-view, the relevant quantity is the mixed dynamic form factor (or the suscep-
tibility) of the material because it encodes all the information on the space-time dependent
electronic correlations as demonstrated by Van Hove [86,87].

These two approaches are completely equivalent and based on the fluctuation-dissipation the-
orem which connects the response of the system (Green dyadic or susceptibility) to correlations
of the underlying fields (electromagnetic or electronic correlation). The essence of Sec. 5 was
to explicitly show this equivalence and demonstrate that, to the first order, the two propagators
χ and W (or χνµ and G j

i ) are simply connected by two vacuum photon propagators.

6 Kinetic equation for the electron density matrix

Following the logic of diagram (3), we will focus on the electron probe. Lets consider a fast
electron described by the wave-functionψ(r , t). We can then define the single electron density
matrix as:

ρ(r , t, r ′, t ′) =ψ(r , t)ψ∗(r ′, t ′) . (98)

In the following, we will also consider the case of a density matrix invariant by translation in
time ρ(r , t, r ′, t ′) = ρ(r , r ′, t − t ′). In this case, the corresponding Fourier transform reads:

ρ(r , r ′,ω) = 1
2π

∫
d(t − t ′)ρ(r , r ′, t − t ′)eiω(t−t ′) . (99)

If the Hamiltonian is time independent then the corresponding wavefunction becomes sepa-
rable ψ(r , t) =ψ(r )eiεt and the density matrix can be written:

ρ(r , r ′,ω) =ψ(r )ψ(r ′)δ(ω− ε) , (100)

which corresponds to the already defined above spectral one-electron density matrix. The goal
of this section is to calculate the kinetic equation for the density matrix i.e. the equation ruling
the evolution of the density matrix during elastic and inelastic scattering events. In the quasi-
static limit, this equation has been derived for the first time by Dudarev, Peng and Whelan [26]
and reads:

ρ f (r , r ′, E) =

∫
dr 1dr ′1 U0(r , r 1, E) U†

0(r
′, r ′1, E)Fr 1,−r ′1

�
S(k, k ′,ω)

k2k′2

�
ρi(r 1, r ′1, E + ℏω) ,

(101)
where U0 is the time evolution operator of the free electron. This equation has then been
introduced to EELS by Schattschneider and collaborators [15] and later applied to various sit-
uations such as EMCD [88], core-loss spectroscopy [22] or diffraction [89]. The goal of this
section is to adapt this formula to the case of a retarded interaction kernel. As a matter of
fact, apart from the final step, the derivation is essentially the same both in the quasi-static
and the retarded case. Therefore, this section is organized as follows. In Sec. 6.1, 6.2 and 6.3,
we review the seminal demonstration of Dudarev and collaborators with special emphasis on
the different approximations made. The result of the derivation is a kinetic equation in the
temporal domain valid for any weak interaction V . In Sec. 6.4, we use an explicit expression
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for V and derive the kinetic equation in the spectral domain in both the quasi-static and re-
tarded interactions case. To do so, we use the result of Sec. 5 and assume a steady-state of
illumination for the electron beam.

6.1 Schrödinger equation for the electron propagator

Without loss of generality, we consider a fast electron interacting with a target. The Hamilto-
nian of the total system {target+ e−} is then given by:

Ĥtot = Ĥt + Ĥe + Ĥint , (102)

where Ĥe describes the free propagation of the electron, Ĥt encodes the electronic properties
of the target only and Ĥint gives the interaction between the excitations in the target and
the impinging electron. We now separate the interaction potential into its thermodynamical
average and a fluctuating part:

Ĥint = 〈Ĥint〉+ V̂ . (103)

The thermodynamical average is taken over the ensemble of realizations of target states:

〈Ĥint〉= 1
Z

∑
n

〈n|Ĥint|n〉 e−βεn (104)

employing the same notations we used in Sec. 5. This term now encompasses elastic scattering
and static field contribution. To simplify the notation, we suppose that 〈Ĥint〉 = 0 which has
no consequence on the following derivation. A non vanishing average could be absorbed by
modifying the free electron Hamiltonian as:

Ĥ ′e = He + 〈Ĥint〉= − ℏ2

2m
∇2 + 〈Ĥint〉 . (105)

Besides, the time evolution operator Û0 of the free electron as well as the time evolution
operator for the total system T̂ follow the Schrodïnger equation:

i
∂

∂ t
Û0(t, t0) = Ĥe Û0(t, t0) +δ(t − t0)

i
∂

∂ t
T̂ (t, t0) = Ĥtot T̂ (t, t0) +δ(t − t0) .

(106a)

(106b)

Eq. (106a) can be straightforwardly integrated and gives:

Û0(t − t0) = −iΘ(t − t0)e
−iĤe(t−t0) . (107)

However, Eq. (106b) cannot be explicitly solved. To overcome this difficulty, we first define
the operator Û as:

Û(t, t0) = eiĤt(t−t0) T̂ (t, t0) , (108)

which corresponds to the evolution operator for the interacting electron. Moreover, we define
the Heisenberg representation of the fluctuating part of the interaction V̂ as:

V̂ (t − t0) = eiĤt(t−t0)V̂ e−iĤt(t−t0) . (109)

Combining Eq. (106b), (108) and (109), we get the Schrödinger equation for the time evolu-
tion operator of the interacting electron:

i
∂ Û(t, t0)
∂ t

=
�
Ĥe + V̂ (t − t0)
�

Û(t, t0) +δ(t − t0) . (110)

In the next section, we will use a perturbation approach in order to calculate a good approxi-
mation of this evolution operator.
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6.2 Dyson equation for the single electron propagator

We first integrate Eq. (110) in order to obtain the following integral representation:

Û(t, t0) = Û0(t, t0) +
1
i

∫ t
t0

d t1Û0(t, t1)V̂ (t1)Û(t1, t0) . (111)

The latter equation can be solved iteratively by writing:

Û(t, t0) = Û0(t, t0) +
1
i

∫ t
t0

d t1Û0(t, t1)V̂ (t1)Û0(t1, t0)

+
1
i2

∫ t
t0

d t1Û0(t, t1)V̂ (t1)

∫ t1

t0

d t2Û0(t1, t2)V̂ (t2)Û0(t2, t0) + . . . .

(112)

The latter equation can be diagrammatically schematized as:

(113)

Let’s now re-arrange the previous integrals by looking at the second term in (112) and for
brevity taking Û0 = Id, where Id denotes the identity operator. Separating the integral in two
parts and changing the integration variable leads to:∫ t

t0

d t1V̂ (t1)

∫ t1

t0

d t2V̂ (t2) =
1
2

∫ t
t0

d t1V̂ (t1)

∫ t1

t0

d t2V̂ (t2)

+
1
2

∫ t
t0

d t2V̂ (t2)

∫ t2

t0

d t1V̂ (t1) .

(114)

The integration limit of the integrals can then be all set to t0 and t if one introduces the proper
Heaviside functions:∫ t

t0

d t1V̂ (t1)

∫ t1

t0

d t2V̂ (t2) =
1
2

∫ t
t0

d t1

∫ t
t0

d t2 V̂ (t1)V̂ (t2)

× θ (t1 − t2) +
1
2

∫ t
t0

d t2

∫ t
t0

d t1 V̂ (t2)V̂ (t1)θ (t2 − t1) .

(115)

And using the definition of the time ordering operator (188), we finally obtain:∫ t
t0

d t1V̂ (t1)

∫ t1

t0

d t2V̂ (t2) =
1
2

∫ t
t0

d t1

∫ t
t0

d t2 T
�

V̂ (t1)V̂ (t2)
	

. (116)
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The same trick can be applied to all order but keeping in mind that the prefactor for the nth

order term is (1/n!). It enables to re-write Eq. (112) as:

Û(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t
t0

d t1 . . .

∫ t
t0

d tnT
�

Û0(t, t1)V̂ (t1)

× Û0(t1, t2) . . . V̂ (tn)Û0(tn, t0)
	

.

(117)

In order to use the linear response theory derived in Sec. (5), we now calculate the average
value of the exact electron propagator



Û(t, t0)
�≡ Û(t, t0):

Û(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t
t0

d t1 . . .

∫ t
t0

d tn

¬
T
�

Û0(t, t1)V̂ (t1)

× Û0(t1, t2) . . . V̂ (tn)Û0(tn, t0)
	¶

.

(118)

We now use the Isserlis-Wick theorem which states that for a set of Gaussian random variables
{X1, . . . , Xn}, any monomial of these variables satisfies:

〈X1X2 . . . X2m+1〉= 0

〈X1X2 . . . X2m〉=
∑

All possible
pairings

∏
i, j

Cov[X iX j] ,

(119a)

(119b)

where Cov denotes the covariance. And since by construction the mean value of V̂ is zero,
we have Cov[V (t i)V (t j)] = 〈V (t i)V (t j)〉 − 〈V (t i)〉 〈V (t j)〉 = 〈V (t i)V (t j)〉. Eq. (118) then
becomes:

,

(120)

where each dotted line represents a covariance product 〈V (t i)V (t j)〉. We now turn to the main
approximation of this development [90–92]: we only keep diagrams involving correlations be-
tween neighboring vertexes. For example, we therefore neglect terms (c) and (e) in Eq. (120).
This approximation can be interpreted in two equivalent ways:

• First, as pointed out in [26], this approximation consists in treating all the successive scatter-
ing events as single independent events which correspond to the Born approximation. Follow-
ing [26,93], to determine its condition of validity, we introduce the typical correlation length
rc of the excitations in the target, v the speed of the traveling electron and |V̂ | the order of
magnitude of the interaction. Then this approximation holds if:

ℏv
rc
≫ |V̂ | (121)
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In other terms, the correlation length should be short enough, or the interaction weak enough,
for no dynamical effects to appear. Nevertheless, this Born approximation applies to the fluc-
tuating part of the interaction only while the static part is included a priori. Thus, this approx-
imation is rather a distorted-wave Born approximation [26].

• One can also interpret this approximation in a quantum field theory fashion [94] as the
dotted lines can be regarded as a particle exchange. In this case, the approximation above
consists in not allowing two (or more) simultaneous excitations, which is valid in the weak
interaction limit. We exemplify it on the following diagram:

(122)

Thanks to the approximation made, Eq. (120) is dramatically simplified and can be factorized
as follow:

(123)

where Σ̂ is the self-energy of the probe electrons [95] and reads, in a synthetic form:

Σ̂= Û−1
0 − Û−1 ≈ 〈T {V̂ Û0V̂}〉 . (124)

Eq. (124) is the starting point of Echenique’s et al. formalism [54] that we will review at the
end of this section. The Dyson equation (123) can be re-written in its explicit form, in the time
domain, as:

Û(t, t0) = Û0(t, t0)−
∫ t

t0

d t1

∫ t
t0

d t2 Û0(t, t1)


T {V̂ (t1)U0(t1, t2)V̂ (t2)}

�
Û(t2, t0) . (125)

6.3 Bi-linear propagator for the single electron density matrix

We will construct the propagator of the single-electron density matrix. To do so, we will use
(125) to construct an average propagator K̂ of the exact density-matrix propagator K̂ . Starting
from the exact electron propagator Û , one can construct K̂ as a tensor product:

K̂ = Û ⊗ Û† . (126)
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Injecting the development (117) in the latter development, we obtain:

(127)

In the following, for brevity reasons, we will omit the ⊗ symbol in the diagrams. As we did for
the electron propagator, we now take the average value of K̂ . Using the Isserlis-Wick theorem,
we obtain the following expression for K̂:

(128)

At this point, we will make the same approximation as in the last section and neglect all di-
agrams with several simultaneous excitations, e.g., diagram (d) in (128). Diagrams like (f)
correspond to coherent back-scattering events which are typically sufficiently small to be ne-
glected [26]. This approximation is the so-called forward scattering approximation and is
standard in electron microscopy.

31

https://scipost.org
https://scipost.org/SciPostPhys.10.2.031


SciPost Phys. 10, 031 (2021)

Within these approximations, the expansion contains only two building blocks: the electron
self-energy term (c) and mutual correlations (b). We can of course encounter sequences of
these blocks like diagram (e). We can then partially re-sum the self-energy terms which leads
to:

(129)

The latter equation formally corresponds to a Bethe-Salpeter equation in the very specific
case where the two bound states correspond to ψ and ψ† and within the so-called ladder
approximation. This equation can be re-summed and reads:

(130)

Or in its explicit form:

K̂(r , t; r 0, t0|r ′, t ′; r ′0, t ′0) =Û(r , t; r 0, t0) Û†(r ′, t ′; r ′0, t ′0)

+

∫ t
t0

d t1d t ′1
∫ t

t0

dr 1dr ′1 Û(r , t; r 1, t1)Û†(r ′, t ′; r ′1, t ′1)

× 
T {V̂ (r 1, t1)V̂
†(r ′1, t ′1)}
�
K̂(r 1, t1; r 0, t0|r ′1, t ′1; r ′0, t ′0) .

(131)

6.4 The kinetic equation for the single electron density matrix

We are now in position to derive the master equation describing the propagation of the single
electron density matrix, i.e., the so-called kinetic equation. Thus let’s consider an incident
density matrix ρi(r 0, t0; r ′0, t ′0) and propagate it to the point (r , t; r ′, t ′). Taking into account
the interaction with the target and using the approximations detailed earlier, the final density
matrix ρ f (r , t; r ′, t ′) satisfies:

ρ f (r , t; r ′, t ′) =
∫

d t0 d t ′0
∫

dr 0 dr ′0 K̂(r , t; r 0, t0|r ′, t ′; r ′0, t ′0)ρi(r 0, t0; r ′0, t ′0) (132)
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plugging (131) in the latter, we finally get:

ρ f (r , t; r ′, t ′) = ρ0(r , t;r ′, t ′) +
∫

d t1d t ′1
∫

dr 1dr ′1

U(r , t; r 1, t1)U†(r ′, t ′; r ′1, t ′1)Ĉ(r 1, t1, r ′1, t ′1)ρi(r 1, t1; r ′1, t ′1) ,
(133)

where the correlation function reads C(r 1, t1, r ′1, t ′1) =


T {V̂ (r 1, t1)V̂ †(r ′1, t ′1)}

�
. Eq. (133)

is the kinetic equation in the temporal domain where the interaction Hamiltonian is not yet
specified. Let’s highlight that at this point, the latter equation is very general and can be ap-
plied to model, e.g., time-resolved spectroscopy experiments.

We now suppose that the electron beam is in a steady-state of illumination which is the case
in the standard EELS experiment we are describing here. In this case, the density matrix only
depends on the time difference. We now Fourier transform Eq. (133) with respect to t and t ′
therefore taking the limits of the integrals over t1 and t ′1 to be ±∞. We therefore obtain:

ρ f (r , E, r ′, E′) =ρ0(r , E, r ′, E′) +
∫

d te−iE t d t ′eiE′ t ′
∫

d t1d t ′1
∫

dr 1dr ′1 U(r , r 1, t − t1)

×U†(r ′r ′1, t ′ − t ′1)Ĉ(r 1, r ′1, t1 − t ′1) ρi(r 1, r ′1, t1 − t ′1) .
(134)

Changing the integration variables leads to:

ρ f (r , E, r ′, E′) =ρ0(r , E, r ′, E′) +
∫

d t1d t ′1
∫

dr 1dr ′1Ĉ(r 1, r ′1, t1 − t ′1) ρi(r 1, r ′1, t1 − t ′1)

×
∫

d te−iE(t+t1)d t ′eiE′(t ′+t ′1) U(r , r 1, t)U†(r ′r ′1, t ′) ,

(135)

which can be re-written as:

ρ f (r , E, r ′, E′) =ρ0(r , E, r ′, E′) +
∫

dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E′)

×
∫

d t1d t ′1Ĉ(r 1, r ′1, t1 − t ′1)ρi(r 1, r ′1, t1 − t ′1)e−iE t1 eiE′ t ′1 .

(136)

And we recognize a convolution product with respect to t1 − t ′1. Noting −ω the convolution
variable, we finally get:

ρ f (r , r ′, E) = ρ0(r , r ′, E) +

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

×
∫

dω Ĉ(r 1, r ′1,−ω) ρi(r 1, r ′1, E +ω) .
(137)

We now need to calculate the Fourier transform of the correlation function. We will distinguish
the quasi-static from the retarded case and denote the corresponding correlation functions with
ĈQS and ĈR, respectively.
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6.4.1 First case: Quasistatic interaction kernel

The quasi-static interaction V̂ QS between the electron and the target is given by the Coulomb
interaction:

〈ψ f | V̂ QS(r , t) |ψi〉= 〈ψ f |
∫

dr ′ n̂(r
′, t)

|r − r ′| |ψi〉 , (138)

where ρ̂ is the charge density operator for the target. Therefore, CQS reads:

ĈQS(r 1, t1, r ′1, t ′1) =
∫

dr 2

∫
dr ′2

〈0|T {n̂(r 2, t1)n̂†(r ′2, t ′1)} |0〉
|r 1 − r 2| |r ′1 − r ′2| . (139)

Writing explicitly the time ordering operator, we get:

ĈQS(r 1, r ′1, t1 − t ′1) =
�∫

dr 2

∫
dr ′2

∑
n 〈0| n̂(r 2) |n〉 〈n| n̂†(r ′2) |0〉
|r 1 − r 2| |r ′1 − r ′2| e−i(ω0−ωn)(t1−t ′1)θ (t1 − t ′1)

�
+
�
t1↔ t ′1
�

.
(140)

Writing τ= t1 − t ′1, the Fourier transform reads:∫
e−iωτĈQS(r 1, r ′1,τ)dτ=

�∫
dr 2

∫
dr ′2

∑
n 〈0| n̂(r 2) |n〉 〈n| n̂†(r ′2) |0〉
|r 1 − r 2| |r ′1 − r ′2|

∫
dτ e−i(ω+ω0−ωn)τθ (τ)

�
+

∫
e−iωτ
�
τ↔−τ�dτ ,

(141)

which gives:

ĈQS(r 1, r ′1,ω) =
�∫

dr 2

∫
dr ′2

∑
n 〈0| n̂(r 2) |n〉 〈n| n̂†(r ′2) |0〉
|r 1 − r 2| |r ′1 − r ′2|

��
πδ(ω+ω0 −ωn)

− iP
�

1
ω+ω0 −ωn

��
+
�
F
�∗

,

(142)

where P denotes the Cauchy principal value. Using the fact that for any complex number
z ∈ C we have z + z∗ = 2Re(z), we finally get:

ĈQS(r 1, r ′1,ω) = 2π

∫
dr 2

∫
dr ′2

∑
n 〈0| n̂(r 2) |n〉 〈n| n̂†(r ′2) |0〉
|r 1 − r 2| |r ′1 − r ′2| δ(ω+ω0 −ωn) . (143)

From Eq. (60), one can see that:

ĈQS(r 1, r ′1,−ω) = Im
�−W (r 1, r ′1,ω)

	
. (144)

Therefore, plugging it in (137), we finally obtain:

ρ f (r , r ′, E) = ρ0(r , r ′, E) +

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

×
∫

dω Im
�−W (r 1, r ′1,ω)

	
ρi(r 1, r ′1, E +ω) ,

(145)

which, thanks to Eq. (61), can also be identified to the result on Dudarev’s paper (14).
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6.4.2 Second case: Retarded interaction kernel

The retarded interaction V̂ R between the electron and the target is given by the minimal cou-
pling Hamiltonian:

〈ψ f | V̂ R(r , t) |ψi〉 = − e
m
〈ψ f |Aµ(r , t)pµ |ψi〉 (146)

= − ie
m
〈ψ f |Aµ(r , t)∂µ |ψi〉 , (147)

where Aµ is the 4-potential associated with the excitations in the target and pµ is the electron 4-
momentum operator. Note furthermore that we neglected again the (diamagnetic) e2A2-term,
which is of higher order in the perturbation expansion.
Moreover, within the linear response theory, the photon propagator can also be connected to
the 4-potential correlation function which gives [63]:

Dνµ(r , r ′, t, t ′) = −iθ (t − t ′) 〈0|[Aµ(r , t), Aν(r ′, t ′)]|0〉 , (148)

whereD is again the screened propagator of the EM field (taking into account the polarizability
of the medium) which has been introduced in Sec. 4 and 5. By strict analogy with Eq. (52)
and (54), we obtain:

Im
¦−Dνµ(r , r ′,ω)

©
= 2π
∑

n

〈0|Aµ(r ) |n〉 〈n|Aν(r ′) |0〉δ(ω+ωn −ω0) . (149)

The Fourier transform of CR can be done in the exact same way as in the quasi-static case and
leads to:

ĈR(r 1, r ′1,−ω) = Im
¦−Dνµ(r 1, r ′1,ω)

©
∂ µ∂ ′ν . (150)

Thus, plugging it in (137), we finally obtain:

ρ f (r , r ′, E) = ρ0(r , r ′, E) +

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

×
∫

dω Im
¦−Dνµ(r 1, r ′1,ω)

©
∂ µ∂ ′ν ρi(r 1, r ′1, E +ω) .

(151)

Using Eq. (45), one can express the latter equation in terms of relativistic MDFF:

ρ f (r , r ′, E) = ρ0(r , r ′, E) +

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

×
∫

dωFk,−k ′

¨
Sµν
�
k, k ′,ω
��

k2 −ω2
� �

k ′2 −ω2
�« ρi(r 1, r ′1, E +ω) ,

(152)

we can now expand the sums over µ and νwith respect to the spatial and temporal coordinates
as we did in Eq. (77) and therefore obtain four terms respectively involving D0

0, Di
0, D0

j and

Di
j . As we developed in Sec. 5.2.3 and appendix B, to the price of the hypothesis that the

medium is reciprocal, one can neglect the anti-symmetric terms Di
0 and D0

j . This being so, we
finally get:

ρ f (r , r ′, E) = ρ0(r , r ′, E)

+

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

∫
dω Im
�−D0

0(r 1, r ′1,ω)
	
∂ 0∂ ′0 ρi(r 1, r ′1, E +ω)

+

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

∫
dω Im
¦
D j

i (r 1, r ′1,ω)
©
∂ i∂ ′j ρi(r 1, r ′1, E +ω) .

(153)
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The second term is a Coulomb term analogue to the third term in (145) while the second one
is the retarded part of the interaction.

We now move to the temporal gauge ϕ = 0 where, as we explained in Sec. 3.1 and is detailed
in [62], the temporal part of the vacuum photon propagator cancels D0

0 = D0
j = Di

0 = 0. Using
the Dyson developments (73) and the expression of the dyadic Green function (89), Eq. (151)
can be directly reduced to:

ρ f (r , r ′, E) = ρ0(r , r ′, E) +

∫
dr 1dr ′1 U(r , r 1, E)U†(r ′r ′1, E)

×
∫

dω
↔
Λ(r 1, r ′1,ω)∇∇′ρi(r 1, r ′1, E +ω) .

(154)

All the quantities involved in the latter equation being gauge-independent, expression (154)
must be valid in the general case of arbitrary gauge. Eq. (145), (151) and (154) are the
essential results of this section. Before concluding, we will apply them to the case of electron
energy loss spectroscopy.

7 Single scattering approximation: application to electron energy
loss experiments

We now apply the previous result to the specific case of inelastic energy loss spectroscopy. We
will therefore make further approximations:

1. The first term of the right hand side of Eq. (137) describes the elastic part of the inter-
action. As we are going to discuss EELS experiments in the following, we will not consider
this term.

2. As done by Schattschneider, Nelhiebel and Jouffrey [15], we will consider a monochro-
matic electron, of energy ε0 and density matrix ρi , interacting a single time with the sample.
It enables us to replace U by the free space electron Green’s functions U0.

3. As we are now interested in energy-resolved quantity, we remove the integral over ω.

Under these assumptions Eq. (137) reads:

ρ f (r , r ′,ε f ) =

∫
dx dx ′ U0(r , x ,ε f ) U∗0(r ′, x ′,ε f )Ĉ(x , x ′,ω) ρi(x , x ′,ε f +ω) , (155)

where we intentionally do not specify the operator Ĉ in order not to lose generality as both
the quasi-static (144) and retarded (151) interactions can be used indifferently.

7.1 Electron energy loss probability

From Eq. (155), one can deduce the wave-optical EELS probability (9) and (11). To do so, we
first decompose the final density matrix as (13):

ρ f (r , r ′,ε f ) =
∑

n

pnψn(r )ψ
∗
n(r
′)δ(εn − ε f ) , (156)
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while the initial electron can be considered as a monochromatic pure state [15] i.e.:

ρi(x , x ′,ε0) =ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) . (157)

We multiply each side of Eq. (155) by ψ∗n(r )ψn(r ′), which leads to:

ρ f (r , r ′,ε f )ψ
∗
n(r )ψn(r

′) =
∫

dx dx ′ U0(r , x ,ε f )U
∗
0(r

′, x ′,ε f )

×Ĉ(x , x ′,ω)ρi(x , x ′,ε0)ψ
∗
n(r )ψn(r

′)δ(εi − ε f −ω) .
(158)

We now perform an integral over r and r ′ which leads to:∫
dr dr ′ρ(r , r ′,ε f )ψ

∗
n(r )ψn(r

′) =
∫

dx dx ′
�∫

dr U0(r , x ,ε f )ψ
∗
n(r )

�
�∫

dr U∗0(r ′, x ′,ε f )ψn(r
′)
�

Ĉ(x , x ′,ω)ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) .
(159)

Since the Green function U0 is symmetric with respect to the positions x and r , we have by
definition of the electron propagator:∫

dr U0(r , x ,ε f )ψ
∗
n(r ) =ψ

∗
n(x ) . (160)

Thus, we get:∫
dr dr ′ρ(r , r ′,ε f )ψ

∗
n(r )ψn(r

′) =
∫

dx dx ′ψ∗n(x )ψn(x
′)Ĉ(x , x ′,ω)

×ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) .
(161)

Coming back to the definition of the density operator (12), one can write:

ρ(r , r ′,ε f ) =
∑

m

pm 〈r |ψm〉 〈ψm|r ′〉δ(εn − ε f ) . (162)

Therefore, one can write:∫
dr dr ′ρ(r , r ′,ε f )ψ

∗
n(r )ψn(r

′) =
∫

dr dr ′
∑

m

pm 〈r |ψm〉 〈ψm|r ′〉 〈r ′|ψn〉 〈ψn|r 〉δ(εn−ε f ) .

(163)
Using
∫

dr |r 〉 〈r |= Id, we get:∫
dr dr ′ρ(r , r ′,ε f )ψ

∗
n(r )ψn(r

′) =
∫

dr
∑

m

pm 〈r |ψm〉 〈ψm|ψn〉 〈ψn|r 〉δ(εn − ε f ) , (164)

which leads to:∫
dr dr ′ρ(r , r ′,ε f )ψ

∗
n(r )ψn(r

′) =
∫

dr pn 〈r |ψn〉 〈ψn|r 〉δ(εn − ε f ) . (165)

Replacing the latest equation in (161), we obtain:∫
dr pn 〈r |ψn〉 〈ψn|r 〉δ(εn − ε f ) =

∫
dx dx ′ψ∗n(x )ψn(x

′)Ĉ(x , x ′,ω)

×ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) .
(166)
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Summing over n we finally obtain:

ρ(r , r ,ε f ) =
∑

n

∫
dx dx ′ψ∗n(x )ψn(x

′)Ĉ(x , x ′,ω)ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) . (167)

Finally, observing that ρ(r , r ,ε f ) is the probability of finding an electron at r with the energy
ε f , one can directly identify the integral as the total electron energy loss probability Γ (ω) and
get:

Γ (ω) =
∑

n

∫
dx dx ′ψ∗n(x )ψn(x

′)Ĉ(x , x ′,ω) .ψi(x )ψ
∗
i (x

′)δ(εi − ε f −ω) . (168)

Replacing Ĉ by either its quasi-static or the retarded form, one respectively obtains Eq. (9)
and (11).

7.2 Application to coherence measurements of optical fields

In the following, we will note p f and p i respectively the wave-vectors of the final and initial
electrons. The subscript z will denote the component of vectors parallel to the propagation
axis while the subscript ⊥ denotes the plane perpendicular to z. The vector k correspond to
the conjugate variable of r therefore indexing the reciprocal space. First of all, let’s calculate
the Fourier transform of Eq. (155) in the plane ⊥:

ρ f

�
k⊥, k ′⊥, r z , r ′z
�
=

∫
dx dx ′Fr⊥ {U0 (r , x )}F−r ′⊥

�
U∗0 (r , x )
	

Ĉ
�
x , x ′,ω
�
ρi

�
x , x ′
�

,

(169)
where for brevity we omitted the energy in the argument of the density matrices. The free
particle Green function reads [15]:

U0 (r , x ) = − 1
2π

eip f |r−x |
|r − x | . (170)

Therefore its Fourier transform is given by [15,26]:

Fr⊥ {U0 (r , x )}= −i
p f ,z

e−ik⊥.x eip f ,z(rz−xz) (171)

and we moreover have Fr⊥ {U0 (r , x )} =F ∗
−r ′⊥

�
U∗0 (r , x )
	
. The latter inserted in Eq. (169)

gives:

ρ f

�
k⊥, k ′⊥, r z , r ′z
�
=

1

p2
f ,z

eip f ,z(rz−r ′z)
∫

dx dx ′e−ip f ,z(xz−x ′z)e−k⊥.x ek ′⊥.x ′ Ĉ
�
x , x ′,ω
�
ρi

�
x , x ′
�

.

(172)
Now the Fourier transforms with respect to rz and r ′z become trivial and give:

ρ f

�
k⊥, k ′⊥, kz , k ′z
�
=

4π2

p2
f ,z

δ(kz − p f ,z)δ(k
′
z − p f ,z)

∫
dx dx ′e−ip f ,z(xz−x ′z)

× e−k⊥.x ek ′⊥.x ′ Ĉ
�
x , x ′,ω
�
ρi

�
x , x ′
�

.

(173)

We can integrate over kz and k ′z as they are not observed experimentally [15]:

ρ f

�
k⊥, k ′⊥
�
=

4π2

v2

∫
dx dx ′e−ip f ,z(xz−x ′z)e−k⊥.x ek ′⊥.x ′ Ĉ

�
x , x ′,ω
�
ρi

�
x , x ′
�

, (174)
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where we used p f ,z ≈ mv/ℏ. We now consider the case of the retarded interaction and make
use of the paraxial approximation but in a slightly different formulation:

ρi

�
x , x ′
�
=

1
L
ρe

i,⊥
�
x⊥, x ′⊥
�

eipi,z xz e−ipi,z x ′z , (175)

where L denotes the interaction length between the probe electron and the sample. Moreover
the incident electron kinetic energy being principally contained in its z-component, one can
write [11]:

∇ψi(r )≈ψi(r )iki ẑ =
imv
ℏ
ψi(r )ẑ . (176)

Plugging Eq. (175), (176) and the retarded form of K in (174), one gets:

ρ f

�
k⊥, k ′⊥
�
=

4π2

L

∫
dx dx ′Im
�−Gzz(x , x ′,ω)

	
ρi

�
x⊥, x ′⊥
�

e−i(p f ,z−pi,z)xz

× ei(p f ,z−pi,z)x ′z e−k⊥.x ek ′⊥.x ′ .

(177)

The integration over xz and x ′z gives:

ρ f

�
k⊥, k ′⊥
�
=

4π2

L

∫
dx dx ′Im
�−Gzz(x⊥, x ′⊥,ω)

	
ρi

�
x⊥, x ′⊥, q,−q,
�

e−k⊥.x ek ′⊥.x ′ . (178)

Using the definition of the MCT (24), one can then conclude that:

ρ f

�
k⊥, k ′⊥
�
=

2π3

ωL

∫
dx dx ′Λzz(x⊥, x ′⊥, q,−q,ω)ρi

�
x⊥, x ′⊥
�

e−k⊥.x ek ′⊥.x ′ , (179)

which simply reads:

ρ f

�
k⊥, k ′⊥
�
=

2π3

ωL
Λzz(k⊥, k ′⊥, q,−q,ω) ∗ρi

�
k⊥, k ′⊥
�

. (180)

Finally, one can come back in the real space and deduce the rather elegant formula:

ρ f

�
r⊥, r ′⊥
�
=

2π3

ωL
Λzz(r⊥, r ′⊥, q,−q,ω) ρi

�
r⊥, r ′⊥
�

. (181)

As we discussed earlier, Agarwal demonstrated [84], using the fluctuation-dissipation theo-
rem, that the MCT is proportional to the electromagnetic correlation function. Thus, Eq. (181)
shows that, when an electron is scattered by an optical field, the electromagnetic correlations
are imprinted in the coherence properties of the electron beam. Producing electronic interfer-
ences thus constitutes a measurement of these correlations.

We can now connect Eq. (181) to the standard theory of electron holography. Indeed, during
an inelastic interaction and for small scattering angles, the final and initial density matrices
can be connected by the relation [59]:

ρ f (r⊥, r ′⊥, E −ω) = T (r⊥, r ′⊥,ω) ρi(r⊥, r ′⊥, E) . (182)

Here, T (r⊥, r ′⊥,ω) denotes a general tensor which only depends on the scatterer and the en-
ergy loss ℏω and is usually referred to as the mutual object transparency (MOT). In 1985, Kohl
and Rose demonstrated that, in the quasistatic limit, the MOT corresponds to the MDFF [14]
but, so far no equivalent relation has been established for the retarded regime. Remarkably,
Eq. (181) constitutes the extension to the retarded case of their results and rigorously demon-
strates that in this case, the MOT corresponds to the Mutual coherence tensor.
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The formalism recalled or developed here is the building block of inelastic electron holog-
raphy. Such an experiment can be schematized in three steps:

1. We prepare an initial electron state which density matrix ρi(r⊥, r ′⊥, E) corresponds to a
pure state. In standard off-axis electron holography, it simply corresponds to a plane-wave
but, with modern phase-shaping techniques, it could corresponds to e.g. a vortex with a pure
OAM.

2. The initial electron state is scattered by the sample to a set of final states. After an energy loss
ℏω and for small scattering angles, the final density matrix is given by ρ f (E−ω) = T (ω) ρi(E)
where the mutual object transparency corresponds: (1) to electronic charge correlation in the
quasi-static regime or (2) to photon correlation in the retarded regime. In other words, the
scattering event imprints the signature of the correlations in the target onto the beam density
matrix. The final density matrix does not correspond to a pure state anymore but rather to
mixed electron states i.e. a partially coherent electron beam [59]. The off-diagonal elements
of the density matrix, which modulus gives the mutual coherence of the field [16], encodes
the correlations in the scatterer.

3. We produce interferences in order to retrieve these off-diagonal elements and therefore
obtain information on the electronic or photonic correlations in the target.

Our formalism thus paves the road toward electron holography of optical field as preliminary
investigated in the case of surface plasmon in e.g. [96].

8 Conclusion and perspectives

In this work, we have established a fully retarded formalism of fast electron inelastic scattering
which can be used to described any type of TEM spectroscopy experiments such as low-loss
and core-loss EELS, inelastic holography or energy-filtered 4D-STEM. Our work is built upon
general response tensors including both quantum and relativistic aspects. Also, we made no
assumptions on the peculiar details of the sample under consideration. Consequently, our for-
malism can be applied to a large set of systems and combined with any numerical methods
from ab-initio to classical electrodynamics simulations. The core of our work relies on the in-
troduction of a relativistic extension of the celebrated mixed dynamic form factor as the Fourier
transform of the 4-susceptibility. By connecting this new quantity to the mutual coherence ten-
sor - the central object of the theory of optical fields - we have drawn a formal and rigorous
connection between the condensed-matter and nano-optical approaches, thus encompassing
all the existing theoretical developments for EELS in an unique and general framework. Then,
taking a careful consideration of most of the possible approximations, we have demonstrated
that most of the approaches generally employed in the literature can be deduced from our
formalism.
Beyond this effort of synthesis and unification, we believe that our work paves the road to-
ward new experiments and interpretations. First of all, as thoroughly discussed in Sec. 7.2, by
introducing a relativistic form of the kinetic equation, our work enables to take into account
retardation effects in holographic experiments. This constitutes the key ingredient to design
and model new experiments enabling the measurement of the cross density of states [69,70]
directly at the nano-scale, following an original idea of García de Abajo [11]. Moreover, our
work now enables the application of all the powerful tools developed for electron hologra-
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phy [59, 97] to the nano-photonic domain. Particularly, recent developments in differential
phase contrast or ptychography for plasmonics should be described with this language. Sec-
ondly, our work bridging nano-optical and condensed-matter formalisms, we foresee a mutual
and beneficial exchange of concepts between these two approaches. On the one hand, intro-
ducing the retarded screened interaction to solid state systems, one could interpret core-loss
spectroscopy experiments in terms of X-ray photon exchange. This would give a natural in-
terpretation of the already known mathematical close identity between EELS and inelastic
X-ray scattering [98]. Such a comparison would be exactly similar to the standard analogy
between EELS and optical extinction experiments on surface plasmons [99]. On the other
hand, employing the relativistic MDFF to describe low-loss spectroscopy experiments directly
paves the way toward the ab-initio modelling of EELS experiments on nano-optical systems,
with potential and far-reaching applications in, e.g., quantum plasmonics [100] or exciton-
plasmon [101, 102] and phonon-plasmon coupling physics [101, 103]. Also, this should ease
bridging the antagonist descriptions of EELS phonon spectroscopy experiments, either quan-
tum [104–107] or classical, in the quasi-static [108, 109] or retarded [110] regimes, or at-
tempts to mix the two [111]. Besides, by putting the relativistic MDFF at the core of our
approach, we enable the extensive use of ab-initio methods for the modelling of EELS experi-
ment, in the same vein as the pioneering works employing density functional theory [112,113].
Finally, the introduction of the 4-current correlation function enables to employ the time-
dependent current-density-functional theory [114] to model TEM spectroscopy experiments,
which has never been done so far to the best of our knowledge. Such an approach would
be particularly well suited to model e.g. EMCD experiments or relativistic effects in core-loss
EELS.
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A Conventions, units, notations and Green functions

A.1 Conventions and notations

The metric gµ,ν for the Minkowski space M4 is chosen with the signature (+,−,−,−) i.e.

gµ,ν = gµ,ν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
Under this convention, the raising or lowering of a spatial index changes the sign of a tensor;
raising or lowering the temporal index leaves the sign unchanged. Unless otherwise specified,
we have always used in this paper the implicit Einstein summation on repeated indices:

xµx′µ ≡
4∑

µ,ν=0

gµ,νxµx′ν = c2 t t ′ − x .x ′ . (183)
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The Fourier transform in M4 is defined as:
f (x) =

∫
M4

d4k
(2π)4

f (k) eikµxµ

f (k) =

∫
M4

d4x f (x) e−ikµxµ

(184a)

(184b)

where the 4-wavevector is defined as kµ = (ω/c, k). We define the 4-gradient as:

∂µ =
∂

∂ xµ
=
�

1
c
∂

∂ t
,∇
�

. (185)

We can therefore define the 4-impulsion operator:

pµ = iℏ∂µ =
�

iℏ
c
∂

∂ t
, iℏ∇
�

(186)

and in presence of a EM field, one needs to perform the minimal substitution pµ→ pµ − qAµ,
q being the charge of the particle. Moreover, the 4-current associated with a wavefunction ψ
can be expressed as:

jµ = i
�
ψ∗∂µψ−ψ∂µψ∗

�
. (187)

A.2 Correlators and Green functions

The time ordering operator T between two fields A(x) and B(y) is defined as:

T {A(r , t)B(r ′, t ′)}= θ (t − t ′)A(r , t)B(r ′, t ′)
± θ (t ′ − t)B(r ′, t ′)A(r , t) ,

(188)

where a + sign applies for bosons and a − sign for fermions. For a scalar field A, one can also
define two different Green functions:
• The retarded Green function:

GR(r , r ′, t, t ′) = −iθ (t − t ′) 〈[A(r , t), A(r ′, t ′)]±〉0 . (189)

• The causal Green function:

GC(r , r ′, t, t ′) = −i 〈T {A(r , t)A(r ′, t ′)}〉0 . (190)

In each case, 〈.〉 represents the statistical average value at thermal equilibrium and [, ]± rep-
resents the fermion anti-correlator (resp. boson correlator).

A.3 Lagrangian form of the Maxwell equations

The four-potential defined as Aν = (ϕ/c, A) and the four-current defined as Jν = (cρ, j) are
connected by the equation of motion for the EM field:

∂ ν∂µAµ − ∂ µ∂µAν = −4πJν , (191)

where Aµ is defined up to a scalar gauge function Λ:

Aµ(x) −→ Aµ(x) + ∂µΛ(x) . (192)

The anti-symmetric Faraday tensor Fµν is defined as:

Fµν = ∂ µAν + ∂ νAµ , (193)
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which explicitly reads:

Fµν =

 0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (194)

For any anti-symmetric tensor T , we also introduce the Hodge dual as:

⋆Tαβ =
1
2
εαβµνTµν , (195)

where εαβµν is the Levi-Civita pseudotensor defined as:

εαβµν =


+1, for an even permutation of (0, 1, 2, 3)
−1, for an odd permutation of (0, 1, 2, 3)
0, otherwise

. (196)

The Maxwell equations then read: �
∂µFµν = Jν

∂µ(
⋆Fµν) = 0

(197a)

(197b)

The last equation can be derived from the Lagrange equation applied to the standard EM
Lagrangian density defined as L:

L= −1
4

�
∂αAβ − ∂βAα
� �
∂ αAβ − ∂ βAα
�− JαAα . (198)

The first term concerns only the EM field while the second is the field-source interaction.

B Reciprocity theorem and symmetry properties of the Green dyadic

The reciprocity theorem corresponds to the following condition:

S
�
G i

j(r
′, r ,ω)
�
= G i

j(r
′, r ,ω) , (199)

where the operator S exchanges the indexes i↔ j and coordinates r ↔ r ′. In this section,
we examine the symmetry of the four tensors involved in the definition of G (89) by the
application of S . We first remind that (at least in the three gauges considered in 3.1), the
vacuum photon propagators satisfy the property:

Di0 = 0 (200)

In other words, the temporal and the spatial components of the EM fields are not coupled in
vacuum. Moreover, we recall the definition of the retarded screened interaction (73):

Dβα(r
′, r ,ω) =

∫
dr 1dr 2 Dβµ (r

′, r 2)χ
µ
ν (r 2, r 1,ω)Dνα(r 1, r ) . (201)

Let’s consider the first term of Eq. (89) and examine its symmetry. The relation (200) leads
to:

D0
0(r , r ′) =
∫

dr 1dr 2 D0
0 (r , r 2)χ

0
0 (r 2, r 1)D

0
0 (r 1, r ′) . (202)
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The vacuum photon propagators can be straightforwardly reversed as D0
0 (r , r 2) = D0

0 (r 2, r )
and D0

0 (r 1, r ′) = D0
0 (r

′, r 1). From Eq. (69), the charge part can then be written:

χ0
0 (r 2, r 1,ω) = 2

∑
n

〈0| J0(r 2) |n〉 〈n| J0(r 1) |0〉Θ(ω+ωn −ω0) , (203)

where Θ(ω) = 1
ω+iη . One can then see that χ0

0 (r 2, r 1) = (χ0
0 (r 1, r 2))† because the lowering

and raising of 0 indexes won’t bring any sign changes. Finally, we notice that∇ j∇′i =∇′i∇ j be-

cause the raising of i and the lowering of j will give both a minus sign. Indeed,∇ j = δ j
i g i j∇ j = −∇ j

because g j j = −1 by definition of the metric we have chosen. Thus, we finally have:

S
�∇′i∇ jD0

0(r
′, r )
�
=∇′i∇ jD0

0(r
′, r ) . (204)

The same arguments leads to2:

S
�
Di

j(r
′, r )
�
=Di

j(r
′, r ) . (205)

We finally need to look at the last part of G i.e.:

M i
j (r
′, r )≡ ∂ jDi

0(r
′, r ) + ∂ ′iD0

j (r
′, r ) . (206)

We thus calculate:

S
�
M i

j (r
′, r )
�
= ∇′iD j

0(r , r ′) +∇ jD0
i (r , r ′) (207)

= −∇′iD j
0(r , r ′)−∇ jD0

i (r , r ′) . (208)

Moreover, the first photon propagator reads:

D j
0(r , r ′) =
∫

dr 1dr 2D0
0 (r , r 2)χ

0
a (r 2, r 1)D

j
a(r 1, r ′) , (209)

where we used Eq. (200). We can again reverse the vacuum photon propagators which are
obviously symmetric. However, the susceptibility term is antisymmetric. Indeed, it corresponds
to a charge-current correlator and lowering the time part will keep the sign unchanged, while
raising the spatial part will give a minus sign. Therefore:

D j
0(r , r ′) = −D0

j (r
′, r ) . (210)

And similarly:
D0

i (r , r ′) = −Di
0(r
′, r ) . (211)

We therefore finally have:

S
�
M i

j (r
′, r )
�
= −∇′iD0

j (r
′, r )−∇ jDi

0(r
′, r ) (212)

= −M i
j (r
′, r ) . (213)

The M tensor is therefore antisymmetric. To guarantee the symmetry of G, we must have:

M i
j (r
′, r ) = 0 (214)

Therefore, in a reciprocal medium, the Green dyadic reads:

G i
j(r
′, r ,ω) = − 1

4πω2
∇′i∇ j D0

0(r
′, r ,ω) +

1
4πc2

Di
j(r
′, r ,ω) , (215)

where the first term is a charge-charge correlator while the second term is a current-current
correlator.

2The only difference in this case is that the raising and lowering of indices in the electron part will give two
minus signs which cancel out.
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C Relativistic anisotropy in core-loss scattering

In the following lines we will further approximate the MDFF eventually ariving at a simpli-
fied description, which is useful in the core-loss regime. The final result has been previously
employed to explain the mismatch between experimentally measured and non-relativistically
predicted magic scattering angles. As stated in the main text, the transition probability ob-
tained from the Feynman diagram depicted in Fig. 4(b) can be rewritten as a spatial integral
inserting beam energy eigenstates (cf. Eq. (47))

Γi→ f = 2π

∫
dr dr ′Jµf i (r ) J

ν∗
f i

�
r ′
�
F−1

r ,−r ′

¨
Sµν
�
k, k ′,ω
��

k2 −ω2
� �

k ′2 −ω2
�« , (216)

with the relativistically generalized MDFF

Sµν(k, k ′,ω) = 2π
∑

f

〈i| jµ(k) | f 〉 〈 f | j†ν(k ′) |i〉δ(ω+ω f −ωi) . (217)

We first note that the time-component of the transition current can be explicitely evaluated to

J0 (r ) =
�
E f + Ei

�
ψ∗f (r )ψi (r )≈ 2Eiψ

∗
f (r )ψi (r ) . (218)

In a next step we take into account that (in)elastic scattering in the TEM is concentrated around
the incident beam direction z (paraxial regime). As a consequence, we may neglect all terms
containing current components in x− and y− direction. Additionally the z−component can
be approximated by

J3 (r )≈ �k f + ki

�
ψ∗f (r )ψi (r )≈ 2kiψ

∗
f (r )ψi (r ) . (219)

The above approximations are generally valid for TEM-EELS (i.e., employing fast electrons and
considering energy losses well below the beam electron energy). The following two approxi-
mations to S more specifically apply to the core-loss regime. We first consider non-relativistic
target atomic wave functions ξ, which are not subject to spin-orbit coupling or other rela-
tivistic corrections. In that particular case we can approximate the time-component of the
(relativistic) target transition current in the general expression (217) with the electron rest
mass:

〈i| j0(k) | f 〉 ≈ 2m 〈i| eikr | f 〉 . (220)

Moreover, we can employ the (non-relativistic) commutator p = im
�
Ĥ, r
�

to replace the pz
operator in the z− component of the transition current yielding

〈i| j3(k) | f 〉= imω 〈i| zeikr | f 〉 . (221)

Last but not least we use the dipole approximation to simplify eiq r ≈ 1+ iq r and zeiq r ≈ z,
i.e., only linear terms in spatial coordinates are kept in the strongly localized integrals of the
atomic wave functions. Inserting all these approximations into (216) and (217) we obtain:

Γi→ f = 2π

∫
dr dr ′ψ∗f (r )ψi (r )ψ f

�
r ′
�
ψ∗i
�
r ′
�
F−1

r ,−r ′

¨
SR
�
k, k ′,ω
��

k2 −ω2
� �

k ′2 −ω2
�« , (222)

with:
SR
�
k, k ′,ω
�
= SQS
�
k⊥, k ′⊥, kz − kiω/Ei , k′z − kiω/Ei ,ω .

�
(223)
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Accordingly, we obtained a simplified approximation for the retarded loss probability in the
core loss regime, which basically consists of rescaling the arguments in the non-retarded ex-
pression. Notably, the correction factor for the z-momentum (i.e., scattering angle) in the
MDFF reads

kiω

Ei
=
γmeviω

γme
= viω , (224)

(= viω/c
2 in SI units) which is exactly the correction of the z−momentum obtained in Refs.

[74–76]. The above MDFF (eventually including further approximations) is frequently used
in EELS computations of core losses.

D The self-energy approach

In 1987, Echenique and collaborators demonstrated Eq. (9) using a different approach based
on the calculation of the probe electron self-energy [54]. Their formalism have the advantage
to be compact and easily applicable although they did not provide details of the demonstration
in their paper. Here, we briefly demonstrate that their equation can be formally extracted from
our latter developments. In Sec. (6.2), we calculated the self energy Σ̂ of the electron and
obtained:

Σ̂(r , r ′, t, t ′) = Û0(r , r ′, t, t ′)Ĉ(r , r ′, t, t ′) , (225)

where we recall that Ĉ(r , r ′, t, t ′) = 〈T {V̂ (r , t)V̂ (r , t)}〉. Since all the quantities above only
depend on t − t ′, Fourier transform the latter expression will give the following convolution
product:

Σ̂(r , r ′, E) =

∫
dω Û0(r , r ′, E +ω)Ĉ(r , r ′,−ω) . (226)

Moreover, the Fourier transform of the electron propagator is simply [26]:

Û0(r , r ′, E +ω) =
1

E +ω− Ĥe + i0+
. (227)

Therefore, the self-energy in the spectral domain reads:

Σ̂(r , r ′, E) =

∫
dω

Ĉ(r , r ′,−ω)
E +ω− Ĥe + i0+

. (228)

The mean energy Σ0 of an electron of wavefunction |ψ0〉 and energy E0 is:

Σ0 = 〈ψ0|Σ̂|ψ0〉 . (229)

Inserting the completeness relation
∑

f |ψ f 〉 〈ψ f |= 1 for a basis of final states and two others
for the {|r〉} and {|r ′〉} basis, we obtain:

Σ0 =
∑

f

∫
dr dr ′

ψ0(r )ψ∗0(r ′)Ĉ(r , r ′,−ω)ψ f (r ′)ψ∗f (r )
E +ω− E0 + i0+

. (230)

Replacing Ĉ by its quasi-static form, we obtain the equations (3) of Echenique et al. [54].
Moreover, if we replace Ĉ by its retarded form, we obtain the retarded form of the self-energy
formalism of Echenique et al.
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