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Abstract

We investigate the generation of a gluon screening mass in Yang-Mills theory in the
Landau gauge. We propose a gauge-fixing procedure where the Gribov ambiguity is
overcome by summing over all Gribov copies with some weight function. This can be
formulated in terms of a local field theory involving constrained, nonlinear sigma model
fields. We show that a phenomenon of radiative symmetry restoration occurs in this the-
ory, similar to what happens in the standard nonlinear sigma model in two dimensions.
This results in a nonzero gluon screening mass, as seen in lattice simulations.
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1 Introduction

The similarities between the nonlinear sigma (NLσ) model in d = 2 spacetime dimensions
and Quantum Chromodynamics (QCD) in d = 4 have been reported long ago. Both theories
exhibit asymptotic freedom [1–4]. Moreover, their low-energy excitations are gapped, while
their microscopic descriptions involve massless fields. In the case of the NLσ model, this ap-
parent change of spectrum is a consequence of the radiative restoration of a symmetry as we
now recall in the simplest O(N)/O(N − 1) case. The NLσ model can be interpreted as de-
scribing the ordered phase of a N component vectorial model, where the radial fluctuations
are frozen. The theory therefore involves N − 1 massless Goldstone modes. However, the
Coleman-Mermin-Wagner theorem [6, 7] states that no such ordered phase exists in d = 2.
The true spectrum of the theory involves, instead, N degenerate massive modes, with an ex-
ponentially small mass m ∼ µexp(−const./g), with µ an ultraviolet (UV) scale and g the
(running) coupling constant [5]. This symmetry restoration phenomenon is best understood
in the Wilson functional renormalization-group (RG) approach, where one follows the evolu-
tion of the effective potential as modes above a RG scale k are progressively integrated out [8].
For k of the order of the microscopic scale of the theory, one starts with an O(N)-symmetric
potential, strongly peaked around a nonzero value, which ensures that the radial modes are
frozen and that only the transverse, pseudo-Goldstone degrees of freedom (d.o.f.) contribute.
These massless modes lead to large infrared fluctuations which, in d = 2, are strong enough to
result in an effective symmetry restoration: the minimum of the effective potential decreases
with decreasing k and eventually vanishes below some scale kr . One can picture that regime
as an incoherent collection of regions of broken symmetry of size 1/kr . On infrared scales, the
symmetry in internal space is effectively restored and all modes are massive and degenerate.

A somewhat similar situation occurs in Yang-Mills theories, where, despite the fact that the
microscopic d.o.f. of the theory (the gluons) appear massless on UV scales, the long distance,
physical excitations are massive glueballs. Not only that: it is, by now, well-established [9–12]
that, in the Landau gauge, the gluon propagator actually reaches a finite nonzero value at
vanishing momentum, corresponding to a nonzero screening mass. It is not clear at the mo-
ment whether this results purely from the nontrivial infrared dynamics between the massless
degrees of freedom of the Faddeev-Popov (FP) action, or if it originates from a deformation of
the latter due to the gauge-fixing procedure on the lattice, in particular, the way the Gribov
ambiguity is dealt with [13–15].

In Ref. [16], a gauge-fixing procedure was proposed in the Landau gauge, where Gribov
copies are averaged over with a nontrivial weight, which provided an intriguing novel con-
nection with the physics of the NLσ model described above. First, the continuum formulation
of this procedure involves a set of auxiliary NLσ fields and, second, the existence of super-
symmetries in the NLσ sector effectively reduces the number of spacetime dimensions by 2, a
phenomenon similar to what happens (for sufficiently large number of dimensions) in disor-
dered systems in statistical physics, known as the Parisi-Sourlas dimensional reduction [17].
Just like the Higgs’ phenomenon [18], the coupling of these constrained NLσ fields to the
gluon gives a mass to the latter. The main point of Ref. [16] was to actually explore the pos-
sibility to explain the observed gluon mass on the lattice in this way. However, the proposed
scenario relied on a questionable inversion of limits and was, thus, not completely satisfactory.

An attempt to circumvent that problem was proposed in Ref. [19] in an extension of the
procedure of Ref. [16] to the class of nonlinear Curci-Ferrari-Delbourgo-Jarvis gauges. It was
shown there that a gluon mass is indeed dynamically generated due to collective effects at large
distances. Unfortunately, the latter tends to zero in the Landau gauge limit. In the present
paper, we come back to a simpler setup by considering a slight deformation of the original
proposal of Ref. [16], directly in the Landau gauge. We show, first, that there exists some
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values of the gauge-fixing parameters for which the symmetry of the NLσ sector is radiatively
restored and, second, that, whenever this happens, this results in a nonzero gluon mass at tree
level.

2 Gauge fixing

In this Section, we describe our gauge-fixing procedure and its formulation in terms of a local
field theory with auxiliary fields. We concentrate on the Landau gauge, for which lots of
information were obtained by lattice simulations. In practice, when a gauge configuration
Aµ = Aa

µ ta (with ta the generators of the group in the fundamental representation) has been
selected, one has to find a gauge transformation U such that

∂µAU
µ = 0 , (1)

where the gauge transformation reads AU
µ = UAµU†+ i

g U∂µU†. The gauge can be equivalently
fixed by imposing that U extremizes

f [A, U]≡
∫

dd x tr
�

AU
µ

�2
, (2)

at fixed Aµ. As first stressed by Gribov [13], there exists in general many solutions Ui , called
Gribov copies, to this problem. To characterize unambiguously the gauge-fixing procedure,
it is necessary to supplement the condition given in Eq. (1) with a rule describing how to
deal with these Gribov copies. The general strategy put forward in Ref. [16] is to sum over
the different copies, with a nonuniform weight function P[A, U]. The gauge-fixing procedure
applied to some operator O is then:

〈〈O[A]〉〉 ≡
∑

i O[A
Ui ]P[A, Ui]

∑

i P[A, Ui]
, (3)

where the sums run over all Gribov copies. As it should be for a bona fide gauge fixing, a
gauge-invariant operator is not modified by this procedure, 〈〈Oinv〉〉 = Oinv, thanks to the
denominator appearing in Eq. (3). This implies in particular that the average of a gauge-
invariant observable does not depend on the particular choice of weight function P .

In this article, we use

P[A, U]≡
Det(F[A, U] + ζ1)
|Det(F[A, U])|

e−β f [A,U], (4)

where F[A, U] is the Hessian of the functional (2) on the group manifold at fixed A,
that is, the FP operator in the Landau gauge F[A, U]=F̂[AU], with
F̂ ab[A; x , y] ≡ −∂µ[∂µδab + g f acbAc

µ(x)]δ
(d)(x − y). Here, β and ζ are two gauge-fixing

parameters of mass dimension 2. For ζ= 0, the ratio of functional determinants on the right-
hand side reduces to the sign of the determinant of the FP operator and the weight (4) identifies
with the one proposed in Ref. [16]. In this case, the resulting local field theory (see below) is
of topological nature with the important consequence that the corresponding auxiliary fields
give no loop contributions. A nonzero ζ relaxes those topological constraints and allows for a
richer structure, in particular, the possibility of radiative symmetry restoration.

It is also interesting to note that the gauge-fixing proposed here, although very differ-
ent in spirit, shares some qualitative similarities with the renown (refined) Gribov-Zwanziger
(GZ) approach [13, 14, 20, 21]. In the latter, the integral over gauge field configurations is
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restricted to the first Gribov region—where the FP operator is positive definite—which even-
tually strongly favors configurations near the first Gribov horizon—where the FP operator has
its first zero eigenvalue. The present approach involves copies over all Gribov regions but the
weight in (3) can be engineered so as to favor similar configurations as in the GZ approach.
With the choice (4), for ζ 6= 0, the numerator favors the copies near the Gribov horizons1

whereas the exponential factor suppresses the contribution from higher-than-the-first Gribov
regions. It may be tempting to try to connect the various gauge-fixing parameters of mass
dimension 2 involved in both the GZ and the present approaches but these are really different
gauge-fixings and such a precise connection is certainly nontrivial.

Rewriting the gauge-fixing procedure proposed here in terms of a continuum field theory
is standard [16] and involves introducing auxiliary fields. The numerator of Eq. (3) can be
rewritten as

∑

i

O[AUi ]P[U i] =

∫

DUDcDc̄DhO[AU]e−Sgf[AU,c,c̄,h] , (5)

where U is a matrix field living in the gauge group (the integral implicitly involves the cor-
responding Haar measure), c, c̄, and h are, respectively, a pair of Grassmann (ghost and
antighost) fields and the Nakanishi-Lautrup field which ensures the Landau gauge condition,
all taking values in the Lie algebra, and2

Sgf[A, c, c̄, h] =

∫

dd x
�

∂µ c̄a(∂µca + g f abcAb
µcc) + ζ c̄aca + iha∂µAa

µ +
β

2
(Aa
µ)

2
�

. (6)

These auxiliary fields can be conveniently merged into a superfield [16]

V(x ,θ , θ̄ )≡ ei g(θ̄ c+c̄θ+θ̄θ h̃)U(x), (7)

where θ and θ̄ are (anticommuting) Grassmann variables. Here, the algebra-valued fields
which appear without color index are implicitly contracted with the generators of the algebra,
e.g., c = ca ta, and h̃= ih− i g

2 {c̄, c}. The superfield V takes values in the gauge group and, for
SU(N), satisfies V†V = 1. The gauge-fixing action simply rewrites

Sgf[A
U, c, c̄, h] = eSgf[A,V] = 1

g2

∫

x

∫

θ

tr
�

(DµV)†(DµV) + 2ζθθ̄∂θ̄V
†∂θV

�

, (8)

where
∫

x =
∫

dd x ,
∫

θ
=
∫

dθdθ̄ (βθ̄θ − 1) and the covariant derivative is defined as

DµV = ∂µV + i gVAµ. Our conventions are such that
∫

θ
1 = β and

∫

θ
θ̄θ = −1. Note the

invariance of the action (8) under the gauge transformation

eSgf[A,V] = eSgf[A
U ,VU−1] , (9)

where U(x) is an arbitrary element of the gauge group.
We treat the denominator in Eq. (3) with the replica trick, summarized by the identity

1/a = limn→0 an−1. We introduce n − 1 copies of the integration variable V defined above

1The weight (4) is singular for configurations on Gribov horizons, where the FP determinant vanishes. We see
no obvious sign of such singularity in the continuum formulation presented below and we shall simply assume that
it does not lead to any pathology under the path integral. It could be that such singular configurations are, in fact,
of zero measure (note, however, that this would question the qualitative analogy with the dominant configurations
in the GZ approach mentioned in the text). Another possibility is that for those configurations, the singularity in
P[A, U] cancels out between the numerator and the denominator in Eq. (3). Let us also stress that the choice (4)
leads to a renormalizable continuum theory, as discussed below. The possible singularities due to the denominator
in (4) could be smoothened by nonrenormalizable terms which are expected to play no role for the large distance
physics.

2The FP action corresponds to the case β = ζ= 0, that is, to a uniform weight in Eq. (4).
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which, together with the numerator, give n replicas Vk=1,...,n of the supersymmetric field and
we have to take the limit n→ 0 at the end of any calculation. Once the gauge-fixing procedure
is realized, we average over the gauge field configurations, with the Yang-Mills weight:

〈O[A]〉=
∫

DAe−SYM[A]〈〈O[A]〉〉
∫

DAe−SYM[A]
= lim

n→0

∫

DA
�∏n

k=1 DVk

�

e−SYM[A]−eSgf[A,Vk]O[AU1]
∫

DA
�∏n

k=1 DVk

�

e−SYM[A]−eSgf[A,Vk]
, (10)

where the second expression exploits the replica trick. At this level, all replicas are trivially
equivalent. We can now factorize the volume of the gauge group by absorbing the dependence
of the integrand in one of the replicated matrix fields, say, U1. Changing the integration vari-
ables to Aµ → AU1

µ , Vk → VkU−1
1 , it is straightforward to check that the functional integrands

in Eq. (10) are now independent of U1 and one can factor out the volume of the gauge group
∫

DU1. As usual, this step is what allows for a well-defined gluon propagator. The choice of
the replica k = 1 is, of course, arbitrary here and, as explained in Ref. [16], the permutation
symmetry between replicas remains intact. We end up with the following gauge-fixed action

S = SYM[A] + Sgf[A, c, c̄, h] +
n
∑

k=2

eSgf[A,Vk] , (11)

which involves the gluon field A, a pair of ghost/antighost fields c and c̄, a Nakanishi-Lautrup
field h, which all live in the Lie algebra of the group, and n−1 supersymmetric fields Vk, which
take values in the gauge group.

It was shown in Ref. [16] that, in the case ζ = 0, the (super)symmetries of the replica
sector guarantee that all closed loops of the replica fields vanish. Also, the gauge-fixed action
(11) was proven to be perturbatively renormalizable in d = 4 in that case. The case ζ 6= 0
simply adds operators of mass dimension 2, which should not spoil renormalizability, although
we leave the study of that precise point for later. This, however, spoils the supersymmetries
mentioned above and, as we shall see explicitly below, the replica sector now yields nontrivial
loop contributions. The latter are crucial for the possibility of radiatively induced symmetry
restoration mentioned in the Introduction.

3 Symmetry restoration

The auxiliary superfields Vk introduced above take values in the SU(N) gauge group and, as
already mentioned, resemble closely the constrained fields of a NLσ model in 2 dimensions,
which are known to display the phenomenon of symmetry restoration. To make the discussion
simpler we focus in the remainder of the article on the SU(2) gauge group. The generators of
the algebra in the fundamental representation are given by ta = σa/2, with σa=1,2,3 the Pauli
matrices, and the group elements are conveniently written in terms of unit four-component
fields Nα=0,1,2,3, as Vk = Nαk Σ

α, where Σα = {1, iσa}. Here and below, latin indices run from 1
to 3 and the greek indices at the beginning of the alphabet run from 0 to 3 and are associated
with the group structure. The gauge-fixing action (8) in the replica sector reads

eSgf[A,Vk] =

∫

x

β

2
(Aa
µ)

2 +
2
g2

∫

x

∫

θ

¦

(∂µNαk )
2 + g f aαβAa

µNαk ∂µNβk + 2ζθθ̄∂θ̄Nαk ∂θNαk
©

, (12)

where we have used V†V = N2 = NαNα = 1 in the first term on the right-hand side and where
we introduced the tensor f aαβ = − i

4 tr{σa[(Σα)†Σβ − (Σβ)†Σα]}. The latter is antisymmetric
in its last two indices and is fully characterized by f a0b = δab and f abc = εabc . We mention
the identity f aαβ f bαβ = 4δab.
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Let us pause a moment to describe qualitatively the scenario we want to explore here.
The action (12) involves a (supersymmetric) O(4)/O(3) NLσ model coupled to the gluon
field. Qualitatively, this corresponds to the broken phase of a (supersymmetric) Higgs model,
hence the appearance of a mass term for the gauge field. All replicas k = 2, . . . , n in Eq. (11)
contribute the same to the gluon mass term. Together with the replica k = 1, included in
the second term on the right-hand side of Eq. (11), the total tree-level gluon square mass is
β + (n− 1)β = nβ , which vanishes in the limit n→ 0. However, another scenario is possible.
From the usual Higgs model, we expect the contribution to the mass of the gauge field from
the replica sector to vanish in the symmetric phase. In that case, the gluon square mass only
receives a contribution β from the replica k = 1, which is nonzero in the limit n→ 0.

To investigate the possibility of symmetry restoration, we follow the approach of Refs. [22,
23] and relax the constraint of unit length on the (super)fields Nαk by introducing Lagrange
multiplier (super)fields χk for the replica k = 2, . . . , n in Eq. (11) as

eSgf[A,Vk]→ eSgf[A, Nk,χk] = eSgf[A,Vk] +
2
g2

∫

x

∫

θ

iχk

�

N2
k − 1

�

. (13)

Integrating over the real superfields χk imposes the hard constraints N2
k = 1 under the path

integral. The main purpose of using the action (13) is that one can then perform exactly the
Gaussian integration over the (unconstrained) fields Nαk and study the effects of the corre-
sponding fluctuations on the other fields. In practice, we shall thus integrate out the Nαk fluc-
tuations exactly, while treating the other fields at the classical (tree-level) order, as described
in the Appendix A.

We then study the equations of motion for the (real) averaged fields χ̂k ≡ 〈iχk〉 and
N̂αk ≡ 〈N

α
k 〉. For the present purposes, it is sufficient to consider field configurations inde-

pendent of spacetime and Grassmann coordinates. We also choose them independent of the
replica index, χ̂k(x ,θ , θ̄ ) = χ̂ and N̂αk (x ,θ , θ̄ ) = N̂α, assuming that the permutation symmetry
between the replicas k = 2, . . . , n is left unbroken. At the order of approximation considered
here, the relevant equations of motion, 〈δS/δχk〉=




δS/δNαk
�

= 0, read

∫

θ




N2
k − 1

�

= 0 and χ̂ N̂α = 0. (14)

The second equation only receives a purely classical contribution whereas the first one involves
both a classical contribution from the average N̂α and a loop contribution given by the integral
of the Nαk propagator over momentum, over the Grassmann coordinates θ , and summed over
the index α. At the considered order of approximation, this propagator is given by its tree-level
expression, where both χ̂ and χ̂+ζ appear as square masses of propagators and are therefore
restricted to be nonnegative. This yields the equation

β

2 ḡ2

�

N̂2 − 1
�

+ Tχ̂ − Tχ̂+ζ = 0 , (15)

where we have introduced the dimensionless coupling ḡ = gµ−ε, with d = 4− 2ε and µ is an
arbitrary mass scale. In dimensional regularization, the tadpole loop integrals are given by

Tm2 ≡ µ2ε

∫

dd p
(2π)d

1
p2 +m2

= −
m2

16π2

�

1
ε
+ 1+ ln

µ̄2

m2
+O(ε)

�

, (16)

where µ̄2 = 4πe−γµ2, with γ the Euler constant. As expected, the loop contribution in Eq. (15)
vanishes at ζ = 0. This implies that the loop-divergence is proportional to ζ and thus only
logarithmic, a manifestation of the dimensional reduction mentioned above.
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Figure 1: The classical field χ̂r,sym as a function of the gauge parameter ζr for in-
creasing (top to bottom) values of βr/ ḡ2

r (in units of µ̄2). The dashed curve is the
case βr/ ḡ2

r = 0. For positive values of this parameter (curves below the dashed one),
solutions of the gap equation (22) with χ̂r,sym ≥ 0 only exist in a range of parameters
limited by the inequalities (23).

The system of equations (14) and (15) has two solutions, with either χ̂ = 0 or N̂α = 0.
The one with χ̂ = 0 corresponds to the phase of broken O(4) symmetry, with the constraint
N̂2

brok = const. As already mentioned, χ̂ plays the role of a square mass for the bosonic com-
ponents of the superfield Nαk , which are nothing but the Goldstone modes in that phase. We
have, from Eq. (15),

N̂2
brok = 1+

2 ḡ2

β
Tζ. (17)

For ζ= 0, the (superfield) loop contribution in Eq. (15) vanishes, leaving the broken phase
with the tree-level constraint N̂2

brok = 1 as the only solution. In constrast, the case ζ > 0 allows
for the other solution to Eq. (14), with N̂α = 0. In the absence of the coupling to the gauge field
this would correspond to a restored O(4) symmetry. In the following, we refer to this solution
as the symmetric phase. It is characterized by massive modes with square mass χ̂ = χ̂sym > 0,
solution of the gap equation

β

2 ḡ2
= Tχ̂sym

− Tχ̂sym+ζ =
1

16π2

�

ζ

ε
+ ζ+ (χ̂sym + ζ) ln

µ̄2

χ̂sym + ζ
− χ̂sym ln

µ̄2

χ̂sym

�

. (18)

The above equations are UV divergent and require renormalization. We introduce the
renormalized fields and parameters as

Nαk =
p

ZN Nαk,r , χ =
Æ

Zχχr , β = Zββr , ζ= Zζζr , ḡ = Zg ḡr . (19)

Note that the first (classical) term on the left-hand side of Eq. (15) receives an overall factor
Æ

Zχ . Also, at the present order of approximation, we can set all renormalisation factors
Z → 1 in the tadpole (one-loop) integrals. We eliminate the UV divergence in Eq. (15) with
the choices

Æ

ZχZβ Z−2
g = Z−1

N = 1+
ḡ2

r

8π2

ζr

βr

�

1
ε
+ 1

�

. (20)

The broken phase solution (17) rewrites

N̂2
r,brok = 1−

ḡ2
r

16π2

ζr

βr
ln
µ̄2

ζr
, (21)
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massive

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.2

0.0

0.2

0.4

0.6

ζr

8 π2 βr

gr
2

Figure 2: The phase diagram of the theory in terms of the parameters βr/ ḡ2
r and

ζr (in units of µ̄2). The orange line separates the phase of broken symmetry (white
region), where there is no generation of a gluon mass at tree level, from that of
restored symmetry (shaded resion), with N̂α = 0, where a nonzero gluon mass is
generated at tree level. The transition between the two phases is continuous. In
the massive phase, the renormalized tree-level square gluon mass is βr . The shaded
region with βr < 0 is thus excluded in a perturbative setting.

whereas the gap equation (18) in the symmetric phase becomes

8π2βr

ḡ2
r
= (χ̂r,sym + ζr) ln

µ̄2

χ̂r,sym + ζr
− χ̂r,sym ln

µ̄2

χ̂r,sym
. (22)

The right-hand side is a monotonously decreasing function of χ̂r,sym so there exists a unique
solution if and only if

8π2βr

ḡ2
r
≤ ζr ln

µ̄2

ζr
≤
µ̄2

e
, (23)

where the second inequality is a bound for all values of the parameter ζr . The behavior of
χ̂r,sym as a function of ζr is presented in Fig. 1. For completeness, we show results for positive
and negative values of βr/ ḡ2

r . We mention though that, when a solution χ̂r,sym > 0 exists, the
parameter βr plays the role of the renormalized tree-level gluon mass (see below) and is thus
restricted to be nonnegative in a perturbative setting. The broken-symmetry vs. symmetric
phases discussed here only coexist when Eq. (21) yields N̂2

r,brok = 0 or, equivalently, when
Eq. (22) is satisfied at χ̂r,sym = 0. This happens for values of the parameters which saturate
the first inequality in Eq. (23). The phase diagram of the theory is shown in Fig. 2.

4 Mass generation

Having established the phenomenon of radiative symmetry restoration, we now check the
expectation that the contribution to the gluon mass from the replica field indeed vanishes in
this phase. To this end, we consider the effective action of the theory Γ [Â, χ̂, N̂], where Â= 〈A〉.
Integrating out the superfields Nαk exactly and treating the other fields at tree level, we get, in
terms of bare quantities (see Appendix A),

Γ [Â, χ̂, N̂] = SYM[Â] +

∫

x

β

2
(Âa
µ)

2 + (n− 1)

∫

x

§

β

2
(Âa
µ)

2 +
2β
g2
χ̂
�

N̂2 − 1
�

ª

+ (n− 1)
¦

TrLn
�

−∂ 2 + χ̂ + i gÂµ∂µ
�

− Tr Ln
�

−∂ 2 + χ̂ + ζ+ i gÂµ∂µ
�

©

+ loops,

(24)
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where we have introduced the matrix field (Âµ)αβ = −iÂa
µ f aαβ and where the neglected con-

tributions (loops) involve the fluctuations of the fields A, c, c̄, and χk. Here, the first line is
simply the classical action and the trace-log terms in the second line are the (loop) contri-
butions from the Nαk fluctuations. As expected, the loop contribution from the replica sector
identically vanishes for ζ = 0. The part quadratic in Âa

µ gives the inverse gluon propagator of
the theory. Writing the latter in momentum space as

δΓ

δÂa
µ(q)δÂb

ν(−q)

�

�

�

�

�

Â=0

= δab
�

q2δµν − qµqν + βδµν +Π
rep
µν (q)

�

, (25)

where Πrep
µν is the contribution from the loop of replica fields Nαk , as represented in Fig. 3. At

the present approximation order, a straightforward calculation gives

Πrep
µν (q) = (n− 1)βδµν + (n− 1) ḡ2

�

I χ̂+ζµν (q)− I χ̂µν(q)
�

, (26)

with the integral

Im2

µν (q) = µ
2ε

∫

dd p
(2π)d

(2p− q)µ(2p− q)ν
[p2 +m2] [(p− q)2 +m2]

= 2δµνTm2 +
�

q2δµν − qµqν
�

Fm2(q2). (27)

In the second equality, we have defined

Fm2(q2) = −
1

48π2

�

1
ε
+

8
3
+ ln

µ̄2

m2
+

8m2

q2
− 2

�

1+
4m2

q2

�3/2

ln

�

q
2m
+

√

√

1+
q2

4m2

��

. (28)

We observe that the only UV divergence in Eq. (26) is momentum independent, another con-
sequence of the effective dimensional reduction mentioned above. This divergence is the one
of the gap equation and can be absorbed in the same way. We rewrite Eq. (26) as

Πrep
µν (q) = (n− 1)δµν

�

β − 2 ḡ2
�

Tχ̂ − Tχ̂+ζ
��

+
�

q2δµν − qµqν
�

π(q2), (29)

with

π(q2) =(n− 1) ḡ2
�

Fχ̂+ζ(q
2)− Fχ̂(q

2)
�

= −(n− 1)
g2

48π2

�

ln
χ̂

χ̂ + ζ
+

8ζ
q2
+F

�

q2

4χ̂

�

−F
�

q2

4(χ̂ + ζ)

��

, (30)

where

F(x) = 2
�

1+
1
x

�3/2

ln
�p

x +
p

1+ x
�

. (31)

The function π(q2) is regular at q2 = 0 and the effective gluon mass, defined from the
vertex function (25) at q = 0, thus reads

m2
g = β + (n− 1)

�

β − 2 ḡ2
�

Tχ̂ − Tχ̂+ζ
��

= β
�

1+ (n− 1)N̂2
�

, (32)

where we have used the gap equation (15) in the second equality. We thus see that, in the
symmetric phase, the loop and tree-level contributions to the gluon screening mass exactly
cancel each other in the replica sector (even before the limit n→ 0), so that m2

g = β . In that
case, it is necessary to take the corresponding contribution of the replica loops into account
at tree level for the gluon propagator (the momentum dependent part is O(g2) and is to be
treated as a loop contribution, at the same level as gluon and ghost loops). In the broken phase,
instead, we have m2

g = nβ +O(g2) so the replica loops have to be completely considered as
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Figure 3: The loop contribution from the Nαk superfields to the gluon two-point vertex
function.

loop effects and the effective tree-level gluon mass is m2
g = nβ → 0. The two, massive vs.

massless phases of the theory are summarized in Fig. (2).
It is worth emphasizing that the phenomenon of mass generation described here differs

somewhat from the more usual cases of, say, the fermion masses in the electroweak theory
or the constituent quark masses in QCD. In both cases, the generated mass is controlled by
a dynamically determined quantity, typically a condensate. In the present case, the gluon
mass is controlled by a parameter of the Lagrangian and it may seem that it can take any
value. We stress, however, that the mass is nonzero only for specific values of the parameters—
corresponding to the massive phase—and its value is not completely arbitrary, being bounded,
at tree-level, as 0 < m2

g < β; see Eq. (32). Also, the fact that the generated gluon mass is
directly given by the gauge-fixing parameter β is of no particular worry since it is a gauge-
dependent quantity. For instance, the gluon screening mass observed in lattice calculations
depends on the particular way the Gribov problem is handled, that is, in fine, on the choice of
gauge [12,15].

5 Conclusions

To summarize, we have studied the relation between the Gribov ambiguity issue and the gen-
eration of a gluon (screening) mass in Yang-Mills theories in the Landau gauge. We have
used a gauge-fixing procedure that mimics some aspects of the minimal Landau gauge, widely
used in lattice simulations, where a random Gribov copy is selected in the first Gribov region.
The main advantage on the latter is that our procedure can be formulated in terms of a local
gauge-fixed action. It is a slight generalization of the proposal put forward in Ref. [16], where
Gribov copies are averaged over with a weight expected to typically favor the first Gribov re-
gion. The extension proposed here adds some weights on copies near the first Gribov horizon,
a feature shared with the GZ quantization procedure.3 Overall, this involves two gauge-fixing
parameters, β and ζ, of mass dimension 2.

The corresponding gauge-fixed action contains a set of n supersymmetric NLσ models
which effectively behave as two-dimensional. Due to their coupling to the gauge field, these
all contribute a tree-level gluon square mass β , much alike the Higgs phenomenon, giving
a total square mass nβ which vanishes in the physically relevant limit n → 0. One of these

3We mention that an asset of the present construction is that it treats consistently all Gribov copies as opposed to
the GZ approach which, by restricting to the first Gribov region, deals only with the so-called infinitesimal copies.
Our approach, however, requires that the Gribov copies correspond to extrema of some functional. This is the case
of the Landau gauge and, for example, of the class of Curci-Ferrari-Delbourgo-Jarvis gauges [34, 35], which have
been studied in terms of a similar averaging procedure in [36]. Unfortunately, this does not apply to linear gauges
which are not easily expressed as an extremization procedure but for which interesting progress has been made
both in lattice simulations [37,38] and in the GZ approach [39].
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replica fields is singled out to factor out the volume of the gauge group as required for properly
defining a perturbative gluon propagator. The remaining replica fields exhibit a phenomenol-
ogy reminiscent of the standard NLσ model in two dimensions, namely, a phase of radiatively
restored symmetry. In the symmetric phase, the underlying gauge symmetry guarantees that
the contribution from the NLσ sectors to the tree-level gluon mass vanishes. The permuta-
tion symmetry between the replica is spontaneously broken and only the replica singled out
to factor out the volume of the gauge group now contributes a tree-level gluon square mass
β , which remains in the limit n→ 0.

Of course, one must keep in mind that the gauge-fixing procedure proposed here is not the
same as the minimal Landau gauge used in most lattice simulations. But it provides an explicit
example where a nonzero gluon mass term is generated from the gauge-fixing procedure, in
particular, from the treatment of the Gribov copies. The resulting gauge-fixed theory resembles
the perturbative Curci-Ferrari model [24] which has been recently applied with success to
describe a variety of lattice results both in the vacuum and at finite temperature [25,27–29].
Eventually, on top of the gluon mass term present in that model, here, with square mass β ,
our gauge-fixed action features a ghost mass term with square mass ζ, as well as a set of
massive fields with square masses χ̂sym and χ̂sym+ζ, self-consistently determined through the
gap equation (22). We stress that the presence of massive ghosts is not directly in conflict
with lattice results, where the ghost propagator is seen to diverge as that of a massless field
at infrared momenta. This is because, what is actually measured on the lattice is not directly
the ghost propagator but the averaged inverse FP operator 〈F̂−1[A]〉, see Eq. (4). The latter
coincides with the ghost propagator in the FP implementation of the Landau gauge but that is
not the general case, as the present proposal shows.

We shall discuss these aspects further in a future work. For instance, it is of interest to
compute the propagators of the various fields in the present gauge fixing at one-loop order and
compare with the results of the Curci-Ferrari model and with lattice simulations. In particular,
the massive ghosts will play a role through loop contributions. Other interesting aspects to be
investigated are the renormalizability of the present gauge-fixed theory and its renormalization
group trajectories.
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A Approximation scheme

We detail the mixed approximation scheme used in this work, where we have treated the fields
A, c, c̄, h, and χk at tree-level while exactly integrating out the fields Nαk . As explained in the
main text, the aim is to investigate the possibility that the corresponding fluctuations yield a
phase with 〈Nαk 〉 = 0, which we refer to as the symmetric phase. When this happens, some
loop contributions to the total effective action effectively contribute at tree level and must,
therefore, be systematically included.

To simplify matters, we consider a simpler model with two (nonsupersymmetric) fields
ϕ, to be treated at tree-level, and n, to be integrated out and which only appears quadrati-
cally in the microscopic action. The derivation presented here easily generalizes to the model
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developed in the main text. The generating functional for field correlators W is defined as

eW [J , j] =

∫

DϕDn e−S[ϕ]− 1
2 n·G−1[ϕ]·n+ j·n+J ·ϕ (33)

∝
∫

Dϕ e−S[ϕ]− 1
2 TrLnG−1[ϕ]+ 1

2 j·G[ϕ]· j+J ·ϕ, (34)

where the action S[ϕ] and the operator G−1[ϕ] are a priori arbitrary. In the second line, we
have explicitly performed the Gaussian integration of the field n, thus, treating the correspond-
ing loops exactly. Keeping the source j 6= 0 at this level is essential to be able to describe n
field correlators, in particular, the possibility of a nonzero one-point function 〈n〉.

At tree level, the functional integral (34) is given by the saddle-point approximation, that
is, up to a field-independent contribution,

W [J , j] = −S[φ]−
1
2

TrLnG−1[φ] +
1
2

j · G[φ] · j + J ·φ + (ϕ − loops) , (35)

where the saddle point φ = φ[J , j] is given by

δ

δϕ

�

S[ϕ] +
1
2

TrLnG−1[ϕ]−
1
2

j · G[ϕ] · j − J ·ϕ
�

ϕ=φ
= 0 (36)

and where the neglected terms involve loop diagrams due to ϕ-fluctuations (we recall that the
pure n-fluctuations are included exactly in the one-loop trace-log term). The corresponding
effective action for the average fields φ̂ = 〈ϕ〉 and n̂= 〈n〉 is given by the Legendre transform

Γ [ϕ̂, n̂] = −W [J , j] + J · ϕ̂ + j · n̂ , (37)

with

ϕ̂ =
δW
δJ
= φ + (ϕ − loops) (38)

n̂=
δW
δ j
= 〈G[ϕ] · j〉= G[ϕ̂] · j + (ϕ − loops). (39)

One obtains

Γ [ϕ̂, n̂] = S[ϕ̂] +
1
2

n̂ · G−1[ϕ̂] · n̂+
1
2

TrLnG−1[ϕ̂] + (ϕ − loops), (40)

where the first two terms on the right-hand side simply correspond to the original classical
action and the third, trace-log term is the exact contribution from loops of n-fields. When
applied to the action (12)–(13) with ϕ ≡ (A, iχk) and n ≡ Nαk , this procedure yields the
effective action (24).
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