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Abstract

We study double soft theorem for the generalised biadjoint scalar field theory whose
amplitudes are computed in terms of punctures on CP¥~1, We find that whenever the
double soft limit does not decouple into a product of single soft factors, the leading
contributions to the double soft theorems come from the degenerate solutions, otherwise
the non-degenerate solutions dominate. Our analysis uses the regular solutions to the
scattering equations. Most of the results are presented for k = 3 but we show how they
generalise to arbitrary k. We have explicit analytic results, for any k, in the case when

soft external states are adjacent.
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1 Introduction and Summary

Our understanding of the scattering amplitudes has improved manifolds in the last couple of
decades. That the formulae for amplitudes simplify significantly if we use the spinor helicity
formalism dates back to the mid-eighties [1-3]. However, recent interest in this direction
came from the twistor formulation of the N' = 4 super-Yang-Mills theory [4, 5], leading to
the BCFW formulation of the scattering amplitudes [6-8]. The representation of the N = 4
super-Yang-Mills theory in terms of Grassmannians [9-11] as well as polytope realisation of the
scattering amplitudes [9,12-24], and the Cachazo-He-Yuan(CHY) formulation of the scattering
amplitudes [25-30] gave further impetus to unraveling their underlying structure.

The space of Mandelstam invariants of n massless particles is isomorphic to the moduli
space of CP! with n marked points, the CHY formulation therefore naturally involves the
punctured Riemann surfaces and in particular, for tree level n-point amplitudes they were
written in terms of the integral over the moduli space of n-punctured sphere CP!. The CHY
amplitudes were generalised in different ways, which led to developments such as the am-
bitwistor string theory [31-39], and the positive Grassmannian formulation [9, 10,40-42] of
string theory and field theory amplitudes. Recently one of the promising generalisations in-
volved replacing CPP! by CP*~! [43,44]. This generalisation, in some sense, is straightforward
from the Grassmannian point of view but is not at all obvious from the field theory point of
view. In other words, going from Gr(2,n) to Gr(k,n) seems like a natural thing to attempt
from the Grassmannian picture, but it is not clear what kind of field theories for which this
generalised formulation of scattering amplitudes applies. In fact, it was known that N“"2MHV
amplitudes can be written in terms of Gr(k,n) [45] well before this generalization [43, 44]
was proposed, which indicates that this formulation could be useful in unravelling the struc-
ture of loop amplitudes. Nevertheless, the generalization of the biadjoint scalar theory with
CP*! kinematic space begs for a field theory formulation, which presumably would give a
better insight and provide more physical methods for dealing with these amplitudes. There
has been some progress in understanding these amplitudes for k > 2 in terms of planar arrays
of Feynman diagrams [46-48].
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In this paper, we will study double soft limits of amplitudes in the generalised biadjoint
scalar field theory. In [49] it was shown that single soft limits of the (k,n) amplitudes admit
identification with the (2, k + 2) amplitudes. Whether such an identification can be gener-
alised to multiple soft limits is an interesting question to explore. Here we will take the first
step in this direction by computing double soft factors in the generalised biadjoint scalar the-
ories. Since (k, k + 1) amplitudes are trivial by a gauge choice, the first non-trivial single soft
limit is applicable to (k,k + 2) amplitudes. Naturally, the first non-trivial case of soft limit
with m number of soft external legs can be applied to (k,k + m + 1) amplitudes. Using the
Grassmannian duality these amplitudes are related to (m + 1,k + m + 1) amplitudes. In par-
ticular, for the double soft (m = 2) factors, we naturally expect them to be related to (3, k + 3)
amplitudes. In addition note that as the dimension of the moduli space for (k,n) amplitudes
is (k —1)(n — k — 1), the multi soft limits mentioned above probe the maximal codimension
boundaries of the m(k — 1) dimensional moduli space.

With the motivation given above, we will explore the structure of double soft factors in
arbitrary (k, n) case. We will, however, give a more comprehensive account of our results for
k = 3 case, i.e., when the amplitudes are described as punctures on CP?, and then generalise
them to arbitrary k. We will, however, not explicitly use the positive Grassmannian formulation
here. Single and multiple soft theorems in a variety of theories including gluons and gravitons
have been worked out using the CHY formalism [50-58]. The biadjoint scalar field theory has
been the main arena for exploration, both in the CHY formalism as well as its generalisation to
higher k [43,44]. By virtue of being a biadjoint field, its amplitudes are parametrised in terms
of two sets of adjoint indices, we will denote them as a and 3, respectively. The amplitudes
can have independent color ordering with respect to these two adjoint indices. Throughout
this work, we will choose both a and f3 to be the canonical ordering, that denoted as I, we
will use this notation for the sake of brevity.

The solutions to scattering equations for k > 3 can be categorised into two types, regular
and singular solutions, based on the behaviour of kinematic determinants in the soft limit.
We will exclusively be focusing on the regular solutions. In addition, in this work we will be
interested in the leading contribution to the soft theorem and hence we will pay attention to
those configurations that give dominant contribution to the single or double soft limit. We
find that, in the double soft limit, those configurations that do not factorise into a product
of two single soft configurations have dominant contributions coming from the degenerate
solutions. In all these cases, the non-degenerate solutions lead to subleading contributions
and hence, in this paper, we do not take these cases into account. The non-decoupling double
soft configurations for arbitrary k occur when two soft particles in the amplitude are such that
separation between them, for the canonical ordering, is not more than k — 2. For example,
for k = 2, they must be adjacent external states, whereas for k = 3 they can be adjacent or
the next to adjacent. For any configuration with index separation larger than this leads to the
double soft factor which is a product of two single soft factors.

The double soft limit contains two main cases, simultaneous double soft limit and consec-
utive double soft limit. In the simultaneous double soft case, two external states are taken
soft at an equal rate, and in the latter case, one state becomes soft at a faster rate than the
other. The leading contribution to the simultaneous double soft limit comes from the degen-
erate solutions which have singularities corresponding to collision of two soft punctures or
corresponding to collinear limit of two soft punctures with a hard puncture. In the latter case,
two soft states scale differently with either 7; < 7, or 71 > 7,, where soft limit corresponds
to 7; — 0 in a sequential manner. We also establish that simultaneous double soft limit can be
arrived at by taking 7, = 7, limit of the consecutive limit. In some sense, this is a consistency
check for our computation of the double soft limits.

For arbitrary k, the simultaneous double soft factor for the adjacent soft external states is
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given by,

1

S
1<a;--<ay_o<n—2

k _
S]()S) = S(k Y (Sal"'ak—z m > Sayqr_y n—1 n) S(k) ’ (1.1)

a;-ag_on—1n

where s, .., are generalised Mandelstam variables. In Eq. (1.1), we have taken the external

states n and n— 1 soft, and the argument of the single soft factor S~ signifies that the soft
label m for S~V is replaced by a composite label ‘n n—1’. The single soft factor, S is defined
with a shifted propagator s, ..q, , n—1+5a;--q,_, n- Lhis is the main result of this paper. We also
find, for any k, that the leading contribution to the double soft factor scales as T>*~1) in the
T — 0 limit.

We generalise our analysis to the next to adjacent soft external states for k = 3, where
we encounter a high degree polynomial equation to solve for the punctures in terms of the
generalised Mandelstam variables. We, however, do not have generic explicit solutions to this
polynomial equation. In the case of k = 3, we show that the double soft factor for the next to
next to adjacent soft external states factorises into a product of two k = 3 single soft factors
for each of the soft external states.

The paper is organised as follows: Section 2 is more of a review of the k = 2 CHY formal-
ism. In this section we will study single and double soft limits of n point amplitudes in the
biadjoint scalar field theory. We, however, will present the results for the double soft limit of
the amplitudes with non-adjacent soft punctures. As in the literature, for an arbitrary k, we
will use phrases like punctures on CPX~!, external states, and external particles interchange-
ably. In section 3, we will discuss the single soft theorem for arbitrary k. After setting up the
notation, we will consider single soft theorem in k = 3 case and analyse collision as well as
collinear singularities. We then generalise these results to arbitrary k. This section summarises
the results of [49], but the method spelt out in this section is useful for generalisation to the
double soft limit. Section 4 contains a detailed study of the double soft theorem for k = 3,
where we consider two external soft states to be adjacent. Section 5 contains generalisation
of the double soft theorem for adjacent external states to arbitrary k. In section 6, we revert
to the k = 3 case and study the next to adjacent double soft limit of n point amplitudes and in
7, we study the next to next to adjacent double soft limit. We conclude with section 8, which
contains a discussion on applications and possible extensions of these results.

2 Soft Theorems for Biadjoint Scalar Field for k = 2

In this section, we review the single and double soft limits of biadjoint scalar amplitudes for
k = 2 in the CHY formalism. As mentioned in the introduction, we will take both a and f
to be canonically ordered, I = 1,2,...n. Here we shall consider soft limits in mff) (I|T). In
the resulting lower point amplitude canonical ordering would mean labels are arranged in
ascending order of magnitude after omitting the soft particles.

2.1 Single soft limit

We will begin with the familiar single soft limit of the n-point amplitude of the biadjoint scalar
field theory. We will present the computations in both homogeneous and inhomogeneous
coordinates, which helps us set up the notation for the rest of the paper. In the homogeneous
coordinates, we can express the punctures on CP! by,

71 1 z2
we()-2() =% 2
a a

4
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where Z, are homogeneous coordinates and x, are projective coordinates defined in the coor-
dinate patch where Z; is non-vanishing. It is convenient to introduce a potential function [59],

1 1
2 — —
S = E:Sablogm bl, labl= x, x| (2.2)
b#a
whose extremisation gives the scattering equations, which in the projective coordinates take
the form,
Sab )
E:=E g = Es logla b| =0, 2.3
a X, — X} Ox a b 108 | | ( )

b#a
where s, ;, are the Mandelstam variables. At this stage although we can treat the Mandelstam
variables in terms of specific functions of momenta, e.g., s, , = 2k, - kj,, for the purpose of gen-
eralisation to arbitrary k we will keep them generic without referring to explicit dependence
on momenta. We now define,

@ b#a

S

E =) 290 |xp|

a bz#c:l|ab|
:Z Sab
b#GIabI
Sab
=X a| > 22
b#alabl

=—|Xd|E, . (2.4)

(xXp —Xq+Xq—X)

. . . . 1 .
Here X is an arbitrary reference vector on CP! and we will denote it by X = (x) In the third

equality in Eq. (2.4) we have used the condition of momentum conservation. It follows from
the Eq. (2.4) that the delta function for a-th scattering equation can be expressed as,

5(E,)=—IX a| 6(E)). (2.5)

In order to take the single soft limit, we need to choose soft momenta for one of the external
legs. Without loss of generality, we will choose n-th particle momentum to be soft. Since the
external momenta are in one to one correspondence with the punctures on CP!, we will use
the words momentum and punctures interchangeably. In the later sections, where there is no
clear description in terms of momenta, we will only use the term punctures. We will denote
the soft puncture by o in homogeneous coordinates. In this coordinates the one-form on CP*
can be written as,

AR VA
(odo) = 72 {72
2
= (ZY)%dx,, xnzé. (2.6)

Since the n-th external state has soft momentum, the n-particle amplitude factorises into n—1-
particle amplitude times the soft factor. We therefore denote, m%z) (I11) = 8@ m,_, (I|1),
where the soft factor given by,

@ __ (ada)(Xa)[ (n—11) ]2
bgnsn(bo(_)é)b) (n—10)(c1)
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2
— dx, (x, — x) X1~ Xp—1
Sub(Xp—) (xn _xn—l)(xl _xn)

Xp—Xn

b#n

! .1 @2.7)

Snn—1 Sn1

In the last line we have used the residue theorem to evaluate contributions coming from simple
poles at x,, = x,,_; and x,, = x;.

2.2 Double soft limits

We will now study simultaneous soft limits with two external soft momenta. For the biadjoint
scalars there are qualitatively two different ways of taking simultaneous soft limits: in a given
color ordered arrangement, either two adjacent states are taken soft, or two non-adjacent

states are taken soft. As we will see below in the former case, the soft factor scales as 772,

whereas in the latter case, the scaling is 772.

2.2.1 Adjacent soft limit

As in the previous subsection, we will continue to take k,, the momentum of n-th particle soft.
In addition we will consider k,,_;, the momentum of (n — 1)-th particle, to be soft as well. We
implement these soft limits by scaling the soft momenta as k,, = TlAcn and k,_; = TIACn_l and take
T — 0. As a result the Mandelstam variables scale in the following manner, s,_; , = T5,_1 4
ands, , = 75, 4, on the other hand s,_; , = 72$,_; ,,. Using this scaling property we decompose
the scattering equations based on their scaling property in soft limit as,

n—2
S
E, = b __9, ae{l,2,...n—2}
bzlxa_xb
b#a
n—2
S Sh_
En—l — n—1b + n—1n —O,
b=1 Xn—1— Xp Xn—1— Xp
—2
< Snb Sn—1n
E, = — =0. (2.8)

The integral representation of the soft factor is,

S]()ZS):den 5(15,1)de,1_1 6(En—1)[ Xn-1—X1

2
(xn—Z - xn—l)(xn—l - xn)(xn - xl)]

2.9

The solutions to Eq.(2.8) fall into two categories [54], the non-degenerate solutions where
|51 — x| ~ O(TO) and the degenerate solutions where |x,,_; — x,| ~ O (7). In the adja-
cent soft limit, contribution from the degenerate solutions dominate over those of the non-
degenerate ones. Since we are interested in picking up the leading contribution, we will con-
sider only the degenerate solutions.

In the degenerate case we make a change of variables,

Xn—1 :p+€a Xn =p—§, (2.10)
where, £ is O(7). With this change of variables it is convenient to re-express the delta functions
with arguments E,_; and E,, in terms of sum and difference of the two scattering equations.
The integral representation of the double soft factor then becomes,

Xn—2— X3
E(xn2—p)(p —x1)

2
Sk = Jdpjdaé(En_1+En)5(En_1—En)[ } . 1D

6
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The & integral can be evaluated using the second delta function to localise & to its solution
[54-58]. This method is not convenient when we study higher k generalisations. Therefore
instead of solving for £, we can use the second delta function to convert £ integration to a
contour integral. We can then use the contour deformation method and pick up poles from
the integrand which came out of the Parke-Taylor factor in the soft limit. The pole is seen to
be at £ = 0 and in the neighbourhood of this pole we can approximate E,_; —E, ~ s”*% The
soft factor can now be evaluated as,

(2) df 1 Xp—2 — X1 2
s@ — _|dp6(E,_+E,) § —[ }
. J B OSSR

_ 1 f dp [ Xp_o— X1 ]2
Sn—1n n—2 Sn—1b+Snb (xn—Z —P)(P _xl)

{P_’xn—z,xl} bzl P—Xp

= ! [ ! + ! :| . (2.12)

Sn—1n LSn—1n—2 + Snn—2 Sn—11 + Sn1

It follows from the last line of Eq. (2.12) that S]gzs? scales as 773. This scaling can be also
understood from the Feynman diagrams given below, where the blob stands for the n—3 point
tree diagram.

Pn—2 P1
kn—l kn kn—l kn
1 “ 1 1 N 1
Sn—1n Sn—1n—2 + Snn—2 Sn—1n Sp—11 + Sn1

As can be seen from the above diagrams, the intermediate propagator connecting two soft legs
with momenta k,_; and k, with the hard leg having the momentum p,, a = {n— 2,1} gives
a factor of 772 whereas the propagator joining the blob gives a factor of T~! making overall
scaling of the double soft factor to be 773. This scaling may change in theories with the
derivative couplings, as factors of soft momenta can also come from the interaction vertices.
The power of soft momenta in the denominator is, therefore, reduced and the double soft

factors scale as 7™ where m < 2 [54-58, 60-66].

2.2.2 Non-adjacent soft limit

We will now consider soft limits for two non-adjacent external states. To illustrate this, we
consider n—2 and n to be soft punctures. Following from our earlier analysis, it is easy to see
thats,_,, ands,, scaleas 7, ands,_,, — 72 in the limit T — 0. Thelabela =1,--- ,n—3,n—1
denotes the hard external particles. The soft factor can then be written as,

2
S](DZS) :f d.X'n 5(En)f dxn—Z S(En—2)|: (xn—3 _xn—l)(xn_l —Xl) _xl)]

(xn—B - xn—z)(xn—z - xn—l)(xn—l - xn)(xn

1 1 1 1
_ L N , (2.13)
Snn—1 Sn1 Sn—2n—3 Sn—2n—1
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It readily follows that S](DZS) in Eq. (2.13) scales as 72 and is equal to the product of two
single soft factors found in Sec.(2.1). In general if we consider soft limits in any two non-
adjacent states, then the double soft factor is the product of individual single soft factors for
the corresponding soft external states.

3 Single Soft Theorem for Generalised Biadjoint Scalars

In the previous section, we reviewed aspects of k = 2 biadjoint scalar theory in the CHY
formalism [25-28]. We will now discuss its generalisation where instead of studying punctures
on CP! as will consider punctures on CP*"! [44]. From now on, we will refer to external states
as punctures on CP*! since there is no clear representation of them in terms of momenta.
The scattering equations for any k are obtained by saddle point analysis of the scattering
potential function, which is a generalisation of the k = 2 scattering potential, given as,

St = Z Sqyapa, 108(a1az+++ ay), 3.1

a;<as<--<a

where (a;a,---ay) is the determinant,

1 1 1

o) oM ... ol
od B ... b

(@yag--aq)=| . 2 S (3.2)
-k tk . -k
o® ot .. oW

and {a‘(ll),agz),m ,al(lk)} are the homogeneous coordinates describing the puncture o, on
CP*~!. The generalised Mandelstam variables, denoted as Sa,ay-a,» T€ Symmetric tensors of
rank k and has the property that it vanishes whenever two indices on it are same,

Sayay-a;-a;-a, = 05 (3.3)

and projective invariance of the scattering potential gives,

> Swaea =0, Vai. (3.4)

ay<as<--<ap#a;

These two conditions are generalisations of masslessness condition and momentum conserva-
tion of Mandelstam variables to higher k.

We will be working in the inhomogeneous coordinates, where the scattering potential func-
tion is written as,

S(k) = Z 5a1a2u.ak IOg |a1a2 U ak| 4 (35)

a1 <ap<--<dy

where |a;a, - - - ai| is the determinant,

1 1 1
1 1 1
X, X, X,
aay---ai| = . . . - (3.6)
k=1 k-1 k—1
X Xg Xqr
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and {1, xal, xczl, s x(’i} are the inhomogeneous coordinates for the puncture o,. The scattering
equation for arbitrary k can now be given as,

(k)
g0 = 957
o -
oxt
Saa. - Vol
— E &_laaz...ak|:0, Va:l,--.’n. (3.7)

ce A
ty<znta laay - - - ai| 9 xE

This equation hold for each i = 1,---k — 1. Analogous to the k = 2 case, the biadjoint scalar
amplitude for general k is constructed as [44],

m®(alf) = f du,PTO[a]PTW[B], (3.8)

where a and f3 are specific ordering of n scalars in this amplitude, and PT stands for the
Parke-Taylor factor, which for fixed k takes the form,

1
PTW[1,2,--- ,n]:= .
[ n] [12---k||23 -+ k—=1]---|n1 -+ k—1]

(3.9

Two copies of the PT factors signifies that the scalar is in the biadjoint representation. We will
work with a = 3 = 1.

In this section, we will study soft theorems for the generalised biadjoint scalars for any
k. We will begin by recalling the single soft theorem, which was studied in [49]. We will
first review the case for k = 3 theory and then summarise the general k case briefly. Through
this review, we will set up the notation, which will be useful when we study the double soft
theorem.

3.1 Single soft theorems for k = 3 amplitudes

Let us consider the n-point amplitude with n-th state going soft. A convenient way to deal with
the soft limit is to express the n-point function with one soft state in terms of (n — 1)-point
function. This is done by extracting the terms in the PT factor which depend on the puncture
corresponding to the n-th particle. After extracting those terms, the remaining PT factor is
almost that for the n — 1 point function. However, to ensure the cyclic symmetry of the PT
factor we need to multiply and divide by terms which reinstate the cyclic symmetry of the
(n—1)-point PT factor. Taking this into account we can write,

In—2n—11|[n—112]

= PT®)[1,2,---n—1]. 3.10
In—2n—1n|ln—1n1|n12| [ ] ( )

PT®)[1,2,--- ,n]

On the RHS of Eq. (3.10), the PT factor involves n — 1 punctures and the factor multiplying it
has two parts, while the denominator contains the soft punctures extracted from the n-point
PT factor, the numerator terms are remnants of the cyclic symmetry of the n—1-point function.
In order to take the soft limit, we introduce a parameter T and introduce the limit,

Snab = TShap — 0, VYa,b#n, (3.11)

where s, ;. is a symmetric third rank tensor whose components are the generalised Mandel-
stam variables for k = 3 case. The limit taken above is akin to the limit s, ;, — 78, in the
k = 2 case where s, ;, are the Mandelstam variables for k = 2 which can be expressed in terms
of the kinematic variables.
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In this limit scattering equations decouple at the leading order, since s, ;, , scales differently
compared to s, , . when {a, b, c} # n. The decoupled equations take the form!,

) S 0
EW=¢ a—bn—_labn|=0,
" 1Sa<z:b3n—1 |Cl b Tll axfll

(3.12)

. S d
E((ll)z Z abe —ilabc|=0, VYa#n, i=1,2.
I Flan) labc|dxt

In the soft limit we replace the n-point PT factor by the n—1-point PT factor multiplied by the
soft factor extracted from the original PT factor as given in Eq. (3.10). With this substitution
and explicitly pulling out the integration over the soft kinematic variables, Eq. (3.8) takes the
form,

2 2
(3) _ i Q) |n—2n—11||n—112| )
m>(II) = | du,— dx!6(E
n (D) f Hn 1!:1[J nO(E, )(ln—2n—1n||n—1n1||n12|
< (PT®[1,2,--- ,n—1])° (3.13)

— a(3),,,03)
=85 mn_l(I|I),

where

2 2
o —2n—11||n—112]
S®) = dxi 5(ED ( In ) . 3.14
n D nOE) In—2n—1n|ln—1n1|n12| ( )

The integration over xfl in Eqg. (3.14) implements the scattering equations Eq. (3.12) through
the 6-functions. Equivalently, it is convenient to replace the & (Er(li)) by poles located at the
zeros of the scattering equations. This is achieved by removing the &-functions and putting
the scattering equations in the denominator of the integrand. This allows us to use the contour
integral method, and we can compute the integral by deforming the contour away from the
zeros of the scattering equation. The residues collected from the poles away from the zeroes of
the scattering equation give identical contribution except with the opposite sign. Since we will
be working with multiple complex variables, two per puncture in the projective coordinates,
as in Eq. (3.13) or three per puncture in the homogeneous coordinates, it is suitable to use the
global residue theorem [68] to carry out the contour deformation.

Since the contribution from the scattering equations is not picked up in the contour de-
formation, only possible contributions come from the soft factors in Eq. (3.14). These con-
tributions can be categorized into two types, collision singularities and collinear singularities.
The collision singularities are those where the puncture o, corresponding to the soft state
collides with one of the hard punctures in the denominator of the integrand of Eq. (3.14).
The collinear singularities on the other hand, correspond to two punctures becoming collinear
with the soft punctures in the denominator of the integrand of Eq. (3.14). We will first discuss
the contribution from collision singularities and then discuss the contribution from collinear
singularities.

Sabn L
labn| axi
configuration |a b n| ~ 7, which can happen when a, b,n are collinear or n-th puncture collides with either

In fact, in the Eg) equation there is an additional term T la b n|. When one considers the singular

L . 1 1 . . .
puncture a or puncture b, then the derivative term is of the form 'x j o ‘, where j # i. This determinant,
b
in general, may not scale to 0 as T — 0. Hence in the case of the singular solution this additional term is of

O(1), nevertheless its contribution appears at subleading order in the soft theorem [67]. We will ignore these
configurations as we are interested in the leading order results, which have contributions only from the regular
solutions.
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3.1.1 Collision singularities

The collision singularities in Eq. (3.14) occur for the following two planar configurations: (i)
o, — 04, (ii) 0, = 0,_;. In the first case we parametrize the n-th variable as?,

X, =X +E€, Yn=Yy1+ea, e€—0, (3.15)

where we have chosen to work in the inhomogeneous coordinates. With this parametrisation
the integration measure over the soft puncture variables becomes,

2
l_[dxfl =dx,dy, =ededa, (3.16)
i=1

and delta functions, treated as the top form on o, transforms in the following way,
5@ (8, 8®,8, S¥)=e5@(3.5®,5,89). (3.17)

In deriving this relation we have used the fact that the change of variables implemented for
the argument of the §-function generates a term proportional to e !, and &(ax) = |a| ™' 5(x).
The scattering equations become,

de da
ds® = § (— + )
T Z Sibn 6 a—a

2<b<n—1
= $
= 3.5P==>"%,, 8S®=c > br (3.18)
€ “— a—ay
a=2 2<b<n—1

where, a;, is the CP! projection of 0. The soft factor can then be evaluated as,

) _ 2
S(S)J‘(n; 1) _ i e“de da Ay —Qn_q
m 72 n—1 n-l . e2(a—a,_q)(a—ay)
S bien” 3, st e
an a—ay
b=2

a=2
1 1 1
(), @1

S12n  Sn—1n1
Zslan
a=2

D=

where the integration in a variable is that corresponding to a single soft factor for k = 2 from
Eq. (2.7). A similar analysis in the case (ii), when o,, = 0,1, leads the corresponding residue
to be equal to,

1 1 1
Bl 1) —
S (n;n—1) = — (s + ) . (3.20)

n—1n1l Sn—2n—1n
Z Sn—1na
a=1

Besides the planar collisions, we could also have non-planar collisions, e.g.,
o, — 0,5, 0, = 0,_5. Most of the analysis above carries through in these cases as well
except that in these cases we have only one determinant in the denominator of the soft factor
becoming proportional to €. This gives us €2 factor in the denominator, which is not good
enough to offset €2 factor in the numerator and as a result this type of degeneration does not
contribute to the single soft theorem.

2For the k = 3 case, we will use {1, x;, xi} or {1,x,,y,} interchangeably, to denote the inhomogeneous coordi-
nates of the o, puncture.
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3.1.2 Collinear singularities

We will now look at the collinear singularities. As mentioned earlier, collinear singularities
occur when the soft particle n becomes collinear with two hard punctures. We will begin with
the case where the soft puncture of n becomes collinear with hard punctures of n—2 and n—1.
In the homogeneous coordinates, we have,

op=ao,_1+¢&, (3.21)

where & lies on the straight line that connects the punctures n — 1 and n — 2. In this case, the
determinant (n— 2 n—1 n) becomes,

(n—2n—1n)=(Mn—-2n—-1&)=0, (3.22)

where we have used the fact that £ is collinear with n—2 and n—1. The Eq. (3.22) corresponds
to poles of the PT factor. However note that a soft puncture becoming collinear with two hard
punctures is a codimension one singularity. Whereas for the CP? integration to give non-zero
residue, one needs a codimension two singularity. Such a codimension two singularity occurs
when the soft puncture becomes simultaneously collinear with two sets of hard punctures. We
will therefore consider the case where soft puncture n becomes collinear with two pairs of
hard punctures n—2,n—1 and 1, 2. This can be parametrised as,

op=a0,_1+po+¢&, (3.23)

where, as f — 0 we obtain the straight line corresponding to the punctures n—2,n—1 and,
as a — 0 we obtain the straight line corresponding to the punctures 1,2. The above equation
when written in inhomogeneous coordinates reads,

Xp = axp_q+Bx;+(1—(a+p))xe
Yn=0aypa1+By1+(Q—(a+pB))ye, (3.24)
which makes the determinants in the PT factor transform as,

In—2n—1n|=pn—2n—-11|,
n12|=aln—112|,
In—1nll=n—1&1]. (3.25)

The measure, on the other hand, transforms as,
dx,dy,=In—11¢&|dadf, (3.26)

and the scattering equations become,

N

dS(B) n—2n—1nda+sn12dﬂ
a B
=8,8® = Izl g g() Il (3.27)
a B

The transformation rule Eq. (3.24) implies,
52(0,,8®,8, S®)=|n—11£|62(8,8®,9,5?) . (3.28)

The soft factor then takes the form,

@l _ [Un=11&)°dadp 1 2
" apln—1E1]

Sn—2n-1n X Sn12
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1

= - - (3.29)
Sn—2n-1nSn12
Therefore the full single soft factor for k = 3 biadjoint scalar theory is given by,
3) — aBB)Ly,. 3)L . 3
S =8B (n;1) + 8 (n—1;n) + 8B
1 1 1 1 1 1
N ! S12n " Sn—1n1 i n—2 Sn—1n1 i Sn—2n—1n
Z Stan Z Sn—1na
a=2 a=1
1
(3.30)

Sh—2n—1nSn12

Thus the single soft factor for k = 3 is obtained by studying the boundary structure in the
moduli space which comprises of both collision and collinear type singularities of codimension
two.

3.2 Single soft limit for arbitrary k

The above discussions for single soft theorem can be generalised for arbitrary k. We con-
sider soft limit in n-th external state, such that s, 4,..q,_,» Scales as T with 7 — 0 for any
a; € {1,2,---n—1}. The scattering equations can then be decomposed in the following way:

. Sajay-a, O
ED = 12 —la;a, - ai| =0, Ya
a |a do - d |axl 152 k 1
1<ay<az<--<aqp<n—1 122 k a,
A, k£
; Sayap_1n 0
k—
ED = > E a4 0] =0, (3.31)
1<a; <-<ag_,<n—1 lay -+ @y 04| 9}

where i = 1,2,---k — 1. Here we consider only the regular solutions to scattering equations
and hence we neglect any O (1) terms that may arise when |a; - --a,_;0,| ~ 7.
The soft factor for arbitrary k can be expressed in the integral form as,

k=1
sk = J]_[dx;5<k—1)(E;)
i=1

[l(n—k+1)---1||(n—k+2)---12|---|n—112---k—1|]2
(n—k+1)---n|[(n—k+2)---nl|---|n12--- k—1|

(3.32)

In [49], the expression in Eq. (3.32) was evaluated in terms of the generalised Mandelstam
variables by an iterative procedure and a prescription for calculating the soft factor for any
given k was presented. The scaling of the soft factor in this case can be seen to be =1,
For the purposes of this work, the formal factorisation given in Eq. (3.32) is sufficient and we
refer the reader to [49] for further details on the single soft factor.

4 Double Soft Theorem for k = 3 Amplitudes

We will now look at the double soft theorems, where we have two external states becoming
soft. Here we have two main cases, and we will treat them one at a time. To begin with, we will
discuss the simultaneous double soft limit. In this case, both the external states are going soft
at the same rate, and therefore the limits cannot be taken independently. The simultaneous
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double soft theorem has multiple sub-cases, and we will analyse each sub-case separately. The
other kind of double soft limit is called the consecutive double soft limit, where one state goes
soft at a faster rate than the other soft state. This limit clearly has a hierarchical structure and
is relatively easy to deal with, and we will take up this case later.

4.1 Simultaneous double soft limit

Let us now look at the simultaneous double soft limit. This limit implies two external states
are going soft at the same rate, parametrised in terms of 7, which in the soft limit will be
taken to zero. In this case, we can have several configurations which qualify as double soft
limit, but their treatment differs. For example, we can have adjacent external states going soft,
which is the case we will deal with first. However, besides this, we can have next to adjacent
states becoming soft. The singularity structure of this case is quite different from the case of
adjacent external states going soft. We could also have the next to next to adjacent states in
the scattering going soft. For the case at hand, namely k = 3, this choice of configurations
with soft scattering states further away from each other, resulting in an expression which is a
product of two single soft factors. In fact, for arbitrary k, if there are at least k — 1 hard states
between two soft states, then the double soft limit is just a product of two single soft factors.

Soft Limits for Adjacent Particles: We will consider n-th and (n — 1)-th external states go-
ing soft. This limit corresponds to the following behaviour of the generalised Mandelstam
variables,

A ~ 24 _
Sabn—1 " TSabn-1> Sabn > TSabn> San—1n T San—1n> a,b—1,2,~-,n—2. (4-1)

Here we will be concerned with the leading order soft factorisation. Therefore it suffices
to consider only regular solutions to the scattering equations, i.e., we assume none of the
determinants |a b n| and |a b n—1| scale as O (7) Va,b € {1,2,--- ,n—2}. In [67] it has been
shown that singular solutions to scattering equations for k > 3 contribute to the subleading soft
theorem. Therefore these solutions will not be part of our analysis. The scattering equations
to the leading order can be written as,

i Sabec d
EW =

—labc|=0, a
|abc|3xc(ll)| | v

b,c#a,n—1,n

. $ 2 n—2 $ 3
E® =1 Z abn-l |abn—1|+TZZ an—ln lan—1n|=0,
a=1

n—1 b labn—1| axffll — lan—1n| 3XT(21
g a n—2 § a
) — abn 2 an—1n .
E,(ll)_r Z @bl (l_)|abn|+r Zlan—lnl (i)lan—1n|—0, 4.2)
a,b#n—1,n axn a=1 o Xp,

where i = 1, 2 labels components of the inhomogeneous coordinates of the puncture.

Let us first look at the integrand in Eq. (3.8) with (n — 1)-th and n-th particle soft. In the
double soft limit, as was done in the single soft limit, we extract the dependence on the soft
punctures and write the remaining factor as the Parke-Taylor factor for n — 2 punctures. The
resulting expression can be written as,

—3n—21|[n—212
PT(3)[12...n] = n n [In |

= PT®[12---n—2]. (4.3)
In—3n—2n—1|ln—2n—1n|ln—1n1|n12|
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In the double soft limit, the amplitude can be written as,

m®(11) = m!Y,(1|1) J [ [dx®,dxPs(E H5(ED)
i

In—3n—21|ln—212] 2
X . (44
In—3n—2n—1|ln—2n—1n|ln—1n1|n12|

The soft factor can be computed by deforming contours of integration away from the original
poles coming from scattering equations of soft particles which are written in terms of the delta-
functions in the integral. In this process, we encounter poles in the integrand, which occur
when the determinants in the denominator of the integrand vanish. As in the single soft limit,
the determinant vanishes in two possible ways. Either there is a collision singularity, that
is when two punctures collide or when three punctures become collinear. In the case of the
double soft limit, we encounter more intricate combinations of these two types of singularities.

The second and third equations in Eq. (4.2) have two sums. First sum always scales linearly
in 7, however, depending on the behaviour of [a n — 1 n|, the terms in the second sum can
either be linear or quadratic in 7. This gives rise to two types of solutions to the scattering
equations:

* Non-degenerate solutions: They correspond to [a n—1 n| ~ O(To). In this case, the
second sum of last two equations in Eq. (4.2) are sub-dominant compared to the first
sum.

* Degenerate solutions: They correspond to [a n—1 n| ~ O(7). In this case, some or all
the terms in the second sum are of O(7) and hence are of the same order as the first
sum.

For non-degenerate solutions the double soft factor scales as —*. This behaviour can be un-
derstood from Eq.(4.4) - there are four delta functions containing scattering equations of soft
external states in the arguments, each of which contributes to a factor of 7 in the denomina-
tor, and the integrand is independent of 7. For degenerate solutions, the determinants which
depend on both n—1 and n punctures contribute to a factor of T each, and there are two such
determinants in the denominator of the integrand. So the integrand scales as T~*, and it can
be checked that measure goes as T~2 making the overall scaling of the double soft factor as
77%. As we are interested in the leading soft theorem ,we will only present the analysis of the
degenerate solutions in the following subsection.

4.2 Degenerate solutions

As argued above, similar to k = 2 case studied in sec.(2.2), degenerate solutions dominate
in the double soft limit for the adjacent particles going soft. We will therefore concentrate
on this sector and analyse the leading singular behaviour in the double soft limit. In order to
do that, let us first look at the scattering equations in Eq.(4.2). For the degenerate solutions
denominator in the second sum of E,_; and E,, equations scale as T, making the overall scaling
of the terms to be 7. There are two possible ways where the determinant [an—1 n| ~ 7:

* if the two soft punctures collide with each other, 0, —0,_; ~ 7.

* if the two soft punctures are nearly collinear to any one of the hard punctures. This can
happen if the straight line joining o,,_; and o,, is away from a hard puncture, o, by a
distance of O (7)3.

3There can not be more than two such hard punctures because in that case the two hard punctures, say, a and
b will be collinear with a soft puncture in the limit T — 0 making both [an—1n| — 0 and |b n—1 n| — 0. But in
the latter case, they are part of singular solutions and hence we do not consider them in this discussion.
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We will analyse these two cases in detail in the following subsections.

4.2.1 Collision of soft punctures

We will begin with the analysis of the collision singularity. It is convenient to make the follow-
ing change of variables in order to do the integration:

X, =pi+e,  x=pi-tg, =12, (4.5)
1
where p is O (1) and & is O(t). In component form they can be given by p = | p! | and
02
0
£=| &' |. In terms of these variables we can re-express the scattering equations as,
62
‘ 4 a+ d
Er(1121+Er(11): Z Sabn—1TSabn ilabP|,
1<a<b<n—2 labpl ap
s s el s 0
(i) (i) _ abn—1"°abn an—1ln
E’ —EWY= labp|l+ ) ———lapé]. (4.6)
oo ISG;@_Z labpl  9p ;Iapilaﬁl
Determinant containing a, p and & then takes the form,
1 1 O
lap&l= xg p; E;
x; p° &
2 XZ _p2
= (p —x Na—ay,), where we define a=2-, a,=———. .
g (p" —x) ) h defi g 4.7)
&l xg—p?
The measure transforms as,
2 . . . .
[ [dxi_ dxis(EL)6(ED) =16 d*p d2E 6@ (E,_, + E,)6D(E, 1 —E,) . (4.8)
i=1

The second delta function in the measure can be used to solve for & in terms of p to localize
the & integration analogous to the k = 2 case [54-58],

5A(E—¢E0)
s2N(E. . —E :E 0 , 4.9
(Eny = En) = AEY —ED)  B3(ED,—EV) @2
9&l 9¢&2
B(Eﬁi)l_Eﬁz)) a(Eﬁi)l—Eﬁz))
FI a¢&2

where & are the solutions of the scattering equations for &.

However, we find that solving for £ from the scattering equations is rather complicated
as it leads to a high degree polynomial equation. Therefore we take an alternate approach
analogous to the one we adopted while discussing k = 2 soft limit in Sec.(2.2).

Instead of using the second delta function to localize & integral, we will use it to convert
the £ integration to a contour integral. We can express the soft factor as,

In—3n—21|ln—212] ]2

In—3n—2pln—2& pllp & 1{|p 12
(4.10)

Sqex = f d*p d*€ 6B,y +E, )6 (B y —En)[
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In Sg?g, the subscript implies that the soft factor is related to the degenerate solutions. We

note that,

In—2&pllp & 1= (") (a—an2)a—a))x,_,—p)x; —p"). (4.11)

Vanishing of the L.H.S. implies either £! — 0, and/or @ — a,,_;, and/or a — a;. We consider
the following change of variables,

g o= e
=& = ea, (4.12)
which simplifies the integration measure,

1 0

d%¢ = ‘a . deda=¢ededa. (4.13)

Since &' and &2 are components of a two dimensional vector, contour deformations for them
cannot be done independently because the original contour wraps around the solutions of the
scattering equations.

We note that in the limit € — 0, the dominating term is the second summation in the
second and third equations of (4.6). We can, therefore, neglect the p dependent part, and
write the last two equations as,

. ) a . . n—2
Ea—E) = 55S%  where §7=) isqpanloglap &l 4.14)
a=1
Thus we have,
a8 1 353
oet | (1w Zg
28° o 1 35
&2 € da
25 85° 25 85°
s 2, 22 | =e 6@ 2,22 ). 4.15
(agl’agz) ¢ de’ da (4.15)

To see the factorisation channels we write,
n—2 2

~ de da x2—p
dsszzsan—ln[_"‘ ]’ @@= 7>
o € a—a, xl—p

(4.16)

and find poles are at ¢ = 0 and a = a;, ®,_,. This is evident from the £ integration which
follows from Eq.(4.10),

9 2

% e“deda [ 1

n? n? e2(x; —pN(xp_, —pN(a—ay)(a—a,_)

% Z Sa n—1ln Z Sfi:.}a“ - 2 :
a=1 a=1
1 [ 1 1 ] 1
= + . (4.17)

n? S1n-1n  Sn—2n-1n |1n—2p|2
lea n—1n
a=

Now we have to perform p integration,

1 1 1
R el
¢ S1n—1n Sh—2n—1n

San—1n
a=1
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In—3n—21|jn—212]
In=3n—2pllln—2pllp 12

2
x f d?p 6(E,_, + En)[ ] . (4.18)

The p integration is similar to the single soft analysis with the generalised potential function
§B) = > (Sapno1 +Sapn)logla b p|. We therefore obtain,

1<a<b<n—2

3) _ 1 1 1
Sdeg T n—2 ( + )

Sn—1n1 Sh—2n—1n

San—1n
a=1
1
X
(Sn—3n—2n-1"1Sn—3n—2n)n—112+Sn12)
1 1 1
+ 3 +
n Sh—3n—2n-1 + Sh—3n—2n Sh—2n-11 + Sh—2n1
(sa n—2n—1 + San—2 n)
a=1
1 1 1
( , ) s
Sp—2n-111FSn—2n1 Sn—112tSn12

n—2
Z(San—l 1 +5an1)
a=2

4.2.2 Soft punctures collinear to one hard puncture

We will consider o,_; and o, to be nearly collinear with a puncture o, corresponding to
a hard external state, such that |c; 0,1 0,| ~ 7. It can then be seen from Eq.(4.4) that
integrand for the double soft factor goes as =2 whenever d = n—2 or 1. For other values of d
no determinant in the denominator becomes of O (7), therefore, this configuration produces
subleading contribution compared to the case when two soft punctures collide.

Hence the leading double soft factor S](DBS) for the adjacent labels, n — 1 and n going soft
simultaneously is given by the expression in Eq.(4.19).

4.3 Consecutive double soft limit

We will now look at the consecutive double soft theorem, that is, where one external particle
becomes soft at a faster rate than the other external soft particle. Here we have two possibili-
ties,

a) We will first take the n-th particle to be soft, i.e., s, ., = 715,45 and we know from the
single soft theorem for k = 3 that,

m®(1|1) =s® m® (111, (4.20)

with the soft factor,

@ 1 1 1 1 1
S0 = 7| 3 — - +
TiLSn—2n-1nSn12 Sp—1n1  Sn12

—1
San1
a=2
1 1 1
+— ( + - )] (4.21)
" A Sn—1n1 Sh—2n—1n
San—1n
a=1
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We follow it up by considering the soft limit for the (n — 1)-th particle, s,_; 45 = T251—1 4 b>
with the condition 7; < 7T,. Therefore we obtain,

3 3 3
m®(1|1) =s® | s® _,mP(111), (4.22)
n—1—0
where the second soft factor 8513—)1—@ has the following form,
1 1 1 1 1
3513—)1—>0:_2|:A s R (A T3 )
T5LSn—3n—2n-15n-112 &, Sp—2n-11 Sn—3n—2n-1
Z an—2n—1
a=1
1 1 1
+ (A + - ) ] . (4.23)
Sn—112  Sn—2n-11

n—2
Z Aa n—11
a=2

In the limit 7; < 75, the first soft factor Sgﬂo in the leading order of 7, as well as of 7, takes
the form,

) _ 1 [ 1 L1 ( 11 )
n—0 - 2 A A n—1 A A
ne1-0 T1L725n—2n-1nSn12 A T2Sn—1n1  Sn12
Sanl
a=2
1 1 1
—2 A + A
o . ToSn—1n1  T25n—2n-1n
T2 Z San—1n
a=1
1 1 1 1
== ( - + - ) . (4.24)
175 Sn—1n1 Sn—2n—1n

n—2
Z San—1n
a=1

Thus the consecutive double soft factor for the adjacent particles where n-th particle is taken
to be softer than the (n — 1)-th soft particle is given by,

g® g®» __1 1 11
n—0 n—1-0 — 274 [ n=2 8 8
n—1—0 12 A n—1nl n—2n—1n
Z an—1ln
a=1
1 1 1 1
X3 A + 3 x + 3
Sh—3n—2n-15n—-112 Sp—3n—2n-1 Sn—2n-11

San—2n-1
1

Q

1 1 1
+— _ - . (4.25)
=, Sp—2n-11  Sn-112
San—11
a=2

b) The second possibility of the consecutive adjacent double soft limit is where we will take
the (n — 1)-th particle to be softer than the n-th one, i.e., T; > T,. The analysis is similar to
the previous one and the soft factorisation turns out to be,

m® (1]1) = s

n—1-0 Siﬂomgz (11D , (4.26)

n—0
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where the soft factor is given by,

(3) (3) _ 1 1 1 1
Sn—>0 Sn—1—>0 - 472 | n=2 R (§H—1 01 + §n—2 e1n
n—1—0 1°2 Z Sqn-1in
a=1
y [ 1 N 1 ( L )
§n—3 n—2 n§n 12 ni:gé\ gn—S n—2n gn—Z nl
-2
= an—2n
1 1 1
+ (A + - ):| . 4.27)
Sn—2n1 Sni12

n—2
Z §a nl
a=2

We can obtain Eq.(4.25) and Eq.(4.27) by taking appropriate consecutive limits in 7; and 7,
starting from the expression of simultaneous double soft limit derived in Eq.(4.19). This serves
as a consistency check for the simultaneous double soft factor.

5 Double Soft Theorem for Arbitrary k

The result of sec:(4.1) can be generalised for arbitrary k. Contributions for the leading simul-
taneous double soft factor when two adjacent particles are taken to be soft come from degener-
ate solutions, more specifically when the two corresponding soft punctures are infinitesimally
close to each other, i.e., when the separation is of O (7). The other degenerate configuration
occurs when one of the soft punctures approaches the co-dimension one subspace generated
by other soft puncture and (k — 2) number of hard punctures. This degeneration, however,
contributes at subleading order in the soft theorem. Needless to say, the non-degenerate so-
lutions appear at further subleading orders in the expansion and therefore we do not discuss
them here. In this section, we present only the leading order result for the double soft theorem
in adjacent simultaneous soft limit for any k > 3.

We will now consider the soft limit in labels n — 1 and n. We can then impose following
conditions on the generalised Mandelstam variables:

S

n—1la;-ag n—1la;-ag_q >

ey (5.1)

n—1lnay-ag >

Snay--a_y

Il
Q. a9

»y =

N

n—1lnayago
for a;,---ar_; €{1,2,---n—2} labelling the hard external states, and rest of the Mandelstam
variables are of order unity.

We are interested in the soft limit mg‘) In = S](Dkg mflk_)z (I1) for k > 3, where the double
soft factor can be expressed in the integral form as,

S](:)ks) — J dk—lxn 5(k—1) (EH)J dk—lxn_1 6(k_1) (En—l) %

[ In—k---1l|((n—k+1)---12|---|n—21---k—1| ]2
In—k---n—20,_4|/|(n—k+1)---0,10, |lop10,1-- k—=2||lc,1---k—1]

(5.2)

In the soft limit we can write the scattering equations as follows:

; Sayo )
E((lll) = Z ar--ag i lay ---a;| =0, Ya, €{1,2,---n—2}
1<ay<ap<n—2 |a1 o 'akl dx ]
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. s _ 3
i ap--ag_y n—1
Er(1—)1 = Z ay - ap_y 0uy] Ox lay -+ a1 oyl
1<a;-<ap_y<n—2 "1 k=1 9n-11 0X;_4
Sq. o -1 0
12 n—in
+ E: lay - ar 2 0p1 0,/ =0,

. i
1Sa1"'<ak_2$n_2 |a1 ak—2 Un—l Unl axn—l

. Sqy e 0
i _ 1A 1
ET(I) - E: ld;---a Glaxi|a1"'ak—10n|

1<a;-~<ap_; <n—2 1 k=1 %%n n

Saj-ag_yn—1n d
1 0k—2
DY - 3191 G2 On 0] =0, (5.3)

1<ap-<agp_p<n—2 a Ak—2 Op—1 Onl 00X,

wherei =1,2,---k—1. We would again like to emphasise that here we are only considering
the regular solutions and hence have ignored any additional O (TO) terms in E((li) which will
be present if we include the singular solutions. To be precise we assume the condition that
laj ---ay_,0,—1| and |a; - - - ay_, 0| are always of order one.

We will now focus on the degenerate solutions, i.e., when |a; -+ ay_s 0,1 0| is of O(7).
There are two way to arrive this condition, when o,_; and o, are in O(7) neighbourhood of
each other or when the two soft punctures and any set of (k — 2) hard punctures
aj, j € {1,2,---n—2} form a co-dimension one subspace up to O(7) deformation. However,
following our analysis earlier, we will ignore the latter configuration.

We choose the following change of variables,

i _ i i
xn— - p+£:

xt = pl—¢&t, E~o(r), i=1,--k—1. (5.4)

ISt

The integration measure transforms in the following way;,
d1x, , d¥lx, = 2k1gk-1lp gk-lg (5.5)
and the delta functions with arguments as E, and E,_; are expressed as,
s*&D(g ) s*kD (g, _)=216¢D (g _ +E)s®D(E,_—E,). (5.6)

For later purpose we define,

1 1 .- 1 1 0
1 1 1 1 1
xal xaz o xak—z P 5
ap ~+ A2 0,10, = —2 . . .
k-1 k-1 k-1 k-1 k-1
X, Xa, Xg, P 3
YD)
Aal @ ap&’ (5'7)

The soft factor in Eq.(5.2) then becomes,

Sps = f d*p d*1E 50D (B, + B) 67 (Byy — Ey)

) In—k--1l(n—k+1)---12]---Jn—21---k—1 . (5.8)

(k) (k)
A(n_k+1)...n_2pg"'Al...k_ngm_k ---n—2p||p 1. k—1]

The last two equations in (5.3) can be expressed as,

i Sq, - 1 0
(l) — ap-ag— N 1
By = P “lay -+ a1 P
1<a;-<ag_;<n—2 lay a1 pl 9p
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5a1~~~ak_2 n—-1n 0O (k) _
3 ® Feifaaape =0

1<a; - <ap_o<n—2 2 ay - agop&
‘ Sy 0
Er(ll) _ Z ap Qg1 n ilal...ak_l p|
1<a; <@g <n—2 lay -+ ax—1 Pl 9p
Sal...ak72 n-1n 0O (k) —
T2 am aptuane=0 69
1<a;-<ap_o<n—2 a; - ar2p&

We first do the & integrals in Eq.(5.8), for which we make a change of variables,

g = e,
g = e, j=2,---k—1. (5.10)
This implies,
d¥ e = ek 2de dF2¢ . (5.11)
Following the above change of variables we can write Agj)mak,zp £ 25,
(k) _ 1 _ 1), (1 _ 1) A-D)
Aal @ pg € (xal P ) (xak—z P ) AC ap - ag—p’ (5.12)
where we have defined,
1 1 1
< 2 R
alD =T, =l (5.13)
1Tk : : : : X,—p
k-1 k—1 k
g aal aakfz

Similarly Ag’;f})ak X will be denoted by the determinant of (k—1) x (k—1) minor obtained

—9 A
1 1
2 o?
by replacing the column . by k,_l in Eq.(5.13).
gk.—l ak.—l
k—1
We define a new potential function,
& k
S= Z Sal---ak,z n—1n log Afh)‘“ak—zp g (5~14)

1<a;--<ap_p,<n—2

such that near € — 0, Er(ll_)1 — E,(Ii) can be approximated to be,

O _ 5 o Say~appn-1n 0 (k) _ 9 a_
E, L —E7 R Z NG oEi Aal g p€ agis =0. (5.15)
1say-<@psn=2 Zq,.q_,p&

The delta function with the argument Er(ll_)1 — E,(li) can be used to perform & integration as
a contour integral. Under the change of coordinates from &! to (e, g ) this delta function

transforms as, . .
s« (E,_1 —E,)=€"2%5 (g—i) 5= (5—;) : (5.16)

-1
€ integration gives a residue ( > Saqtp_y n—1 n) . The soft factor in Eq.(5.8) now
1<a;--<ay_y<n—2
takes the form,
k) _ 1 k—2 (k—z)( 8 )
S = d“=¢o —
ps Z sal---ak,z n—1n 7 Z:]

1<a;--<ap_,<n—2
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2
AN el o
X d1p §"V(E,_, +E,)
AGD) L AGD AGED
(n—k+1)-n—2¢ n—2 {17200 1ok—2

=k dlln=(e=1) 12 jn =21k —1] g
In—k---n—=2p|[(n—k+1)---p1|---|p1---k—1|

1 _
= S (54,00 y m = Sayoapy no1n) SE. (5.17)

salmak,z n—1n
1<a;--<ay_o<n—2

This is the expression for double soft factor for arbitrary k when adjacent particles are taken
to be soft. S~ is the single soft factor corresponding to k—1 which has the pole structure of
the formsg, ...q, , n—1 n in place of usual (k—1)-indexed Mandelstam variables. S® denotes the
single soft factor for k with shifted propagators of the form s, ...q, | n—1 * Sq;--a,_; n- £Q-(5.17)
provides a recursion relation of calculating double soft factor from single soft factors. It is

worth pointing out that the leading contribution to the double soft factor for arbitrary k scales
—3(k—1)
at v .

6 Next to Adjacent Soft Limits for k = 3 Amplitudes

In this section, we study the double soft limits for next to adjacent external states labelled by
n—2 and n. For this, we choose the scaling of the generalised Mandelstam variables as,

A o 24
Sabn—2 = TSabn—2> Sabn = TSabn> San—2n =T San—2n> a,b 7571_2,71 , (6.1)

where, a, b label the hard punctures. We will consider regular solutions and ignore the singular
solutions where the determinants |a b n|, and |a b n — 2| scale as 7, the scattering equations
become,

i Sabc d
EW =

—labc|=0, Va,
|abc|3x((ll)| |

b,c#a,n—2,n

0 Sabn—2 O
E. =7 —labn—2
n—2 Z labn—2| ax(1)2| |
e

a,b#n—2,n
2 §a n—2n a
+7 Z 2 o) lan—2n|=0, (6.2)
a#En—2,n |Cl n-— Tll aXn—Z
M Sabn 0
EV =1 Z abnl (i)la b n|
a,b#n—2,n axn

Sqn_ d
+ 12 Z an—2n —lan—2n|=0.
a#n—2,n lan—2n| axle)

The soft factor for the next to adjacent soft punctures can then be expressed as,

s, = f dzan d2x,_y 6D (E,)P(E,_y)

[ In—4n—3n—1|n—-3n—11|jln—112] ]2
In—4n—3n—-2|ln—3n—2n—1|ln—2n—1n|ln—1n1|n12|

(6.3)
In the next subsection, we will study the consecutive double soft limit to understand the leading

order behaviour of the soft factor and later we will take up the simultaneous double soft limit
as a consistency check on the results of the consecutive soft limit.
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6.1 Consecutive double soft limit

In the consecutive double soft limit, we will encounter two possibilities depending on which
external state becomes soft at a faster rate.

a) We will start with the case where the n-th particle is softer than the (n — 2)-th one where
Snab=T151ap aNd S;,_24p = TaSp_2qp, With 7; <K 7,. After taking these two limits we have,

3 3 3
m®(1|1) =s® s® _omP,(IID), (6.4)
n—2—0
where,
(3) 1 1 1 1 1
Sn—2—>0 - _2[ 2 & + n—3 ¢ *3
T5LSn—4n—3n—2 Sn—2n-11 A Sn—3n—2n-1 Sn—2n-11
Sh—2an—1
a=
1 1 1
+ n—1 ( & + A )] > (6.5)
Z $ Sh—3n—2n-1 Sn—4 n—3 n—2
—2an-3
a=1,a#n—2,n—3 rean
and,
(3)
Sn—>0

1 1 1 1 1
T2 =S ;
n—2—0 1 2°n—2n—1n-°nl2 A n—1nl nl2
Zslan
a=2

1 1 1
+— ; + 3
¢ A TaSh—2n—1n Sn—1n1

Z San—1n

a=1

1 1 1 1
=——1- — + — . : (6.6)
7172 Sn—2n—1nSn12 A Sn—2n—1n
Z an—1ln
a=1

The full soft factor for this consecutive limit with 7; < 75 is,

o g _ 1 1 1, 1 1
n—0 n—2—0 TZTS ¢ g n—3 g 3
n—2—0 1%2 n—2n—1n nl2 $ n—4n—-3n—2 °n—2n-11
an—1n
a=1
1 1 1
+ 3 — + -
A Sn—3n—2n-1 Sn—2n-11
Z Sn—2an—1
a=1,a#n—2,n—1
1 1 1
— - + - . (6.7
n Sn—3n—2n-1 Sn—4n—3n—2
Z Sn—2an—3

a=1,a#n—2,n—3

b) If instead we take 7, < 7, and carry out a similar analysis as in the previous case, the
consecutive soft factor becomes,

—2— — A A _
: 0 n—0 n-0 T?T% Sn—2n—1n \ Sn—4n—3 n—2 = N
Z Sn—2an-1
a=1

24


https://scipost.org
https://scipost.org/SciPostPhys.10.2.036

Scil SciPost Phys. 10, 036 (2021)

[ 1 N 1 ( 1 N 1)
X
Sp—3n—1nSn12 ”ilg Sp—1n1  Sn12
lan
a=2

1 1 1
+ (A + = )] . (6.8
o A Sn—3n—1n Sn—1n1
Z San—1n
a=1

It is now evident from Eq. (6.7) and Eq. (6.8) that the leading behaviour of the double soft
factor in the simultaneous limit is expected to be O(t>). On the other hand, the scaling of
the soft factor for the non-degenerate solutions goes as O(7 %), which is subleading compared
to the degenerate case. This suggests that if we want to pick up the leading effects in the
simultaneous limit, it suffices to look at the degenerate solutions. However, in appendix A, we
have analysed the contribution of non-degenerate solutions to the subleading results.

6.2 Simultaneous double soft limit: Degenerate solutions

We will now look at the simultaneous double soft limit. In this case the determinant |a n—2 n|
scales as 7, for a belonging to hard particles. This scaling happens when either the two soft
punctures come close to each other, or they are nearly collinear with one of the hard punctures.
We will look at both these possibilities now.

6.2.1 Collision configuration
To study the colliding configurations we consider the following change of variables,
xfl_zzpi-l-gi, x,iqui—é;’i, i=1,2, (6.9)

where & is O(71). In terms of these new variables, scattering equations become,

)] i) _ Sabn—2tSabn O
En_2+Er(ll)—Z l.|abp|,

5 labpl  dp
@ (i) — Sabn—2"Sabn O San—an O
E_,—E —E Jlabp|+ y Lt : 6.10
2B =2 b gt PP ;apaaa'“pg' (©10)

The soft factor for the degenerate solutions can be expressed as,

S((i?;)g :J d2p d2€ 5(2)(En—2 + En)é(Z)(En—Z _En)

—4n—3n—1|ln—-3n—11|ln—112 2
[ In—4n—3n—1[ln—3n l|n | ] 6.11)

In—4n—-3pln—-3pn—1l[pn—1&|ln—1p 1|[p 12

We can first do the & integration by deforming the contour. To do that we will consider fol-
lowing parametrisation,

£l =e,

&2 =ea. (6.12)
The integration measure can be written as,

d?t =ededa. (6.13)
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Similarly delta functions will transform with a Jacobian factor, which is equal to e. We can
then express the £ integral in terms of € and a. It is easy to see that there is no singularity in
the e contour integral and as a result this integral vanishes,

2

e?deda 1 xZ—p
1 San—2n 1 1 ’ aa 1_ A1
Ezsa n—ZnZ a—a, e(p _Xn—l)(a_an—l) xXi—p
a a

1 da 1
= € de San—2n 1 1
;Sa n—2n ; a—a, (P _Xn_1)(a_an—1)
0

(6.14)

In fact, the collision singularity contributes at the order 7~*, and in that sense, this vanish-
ing contribution is subleading. This hints that the dominating contribution comes from the
collinear singularity, where two soft punctures become collinear with one hard puncture.

6.2.2 Soft punctures collinear to one hard puncture

We will now consider the case when the determinant |n — 2 n d| scales as 7, i.e., both the soft
punctures are nearly collinear to one of the hard punctures labelled by d. We will now use the
collinearity ansatz by parametrising x;_, as,

Xp—o =Xg +alx,—xq) ,
Yn2=Yat+taly,—yq)+7¢&. (6.15)

Therefore the determinant |[n — 2 n d| becomes,
In—2nd|=71&(xg—x,) . (6.16)

The Parke-Taylor contribution for d = n—1 then can be written as,

|: In—4n—3n—1||In—3n—11|[n—112] ]2
Tg(xn—l_xn)|n_4n_3 a(o-n_o-n—l)”n_ga(an_on—l) n—1||n—1 n 1||Tl 1 2| ’
(6.17)

where we have used the definition,

1 1 0
laba(o,—o_pl=labd|l+|x, xp alx,—x,-1)|. (6.18)
Ya Yo Yn—Yn-1)

For d # n— 1, the Parke-Taylor contribution is O(t°). For d = n— 1, the measure becomes,
dx,dy,dx,_ody,_o = T(x, —x,_1)dx,dy,dad§ . (6.19)

The scattering equations for n and n— 2 become,

A

1 S$abn2 Sn—2n—1
B, =7 () Ry, ),
1Sa<b§n—1,a,b7én—2 |a a(an - Gn—l)l g(xn - xn—l)
Sy pn_ S on_
E'(12_)2:_T Z ; abn—2 (Xa—Xb)+Tn2n 1n,
1<a<b<n—1,a,b#n—2 |a a(o-” - a”_l)l 5

26


https://scipost.org
https://scipost.org/SciPostPhys.10.2.036

Scil SciPost Phys. 10, 036 (2021)

S Sp_op_
D YRR T NN e I
1<a<b<n—1,a,b#n—2 la bnl &0, —xp-1)
S S
E(Z):—T abn X —x)—Ta n—2n—1n. 6.20
n Z la bnl (xq = x3) 3 (6.20)

1<a<b<n—1,a,b#n—2

Thus each scattering equation is of O(t). Therefore in the soft factor, we have one power of T
in the numerator from the measure, four powers of T in the denominator from the scattering
equations and two powers of 7 in denominator from the Parke-Taylor factor. Thus, this limit
contributes at order 77> and hence it is the leading order contribution for the next to adja-
cent puncture soft limit. However, we have not found suitable linear combinations of these
equations that would allow us to independently deform the contours away from the scattering
equations. On the other hand, if we localise the delta function on variables £ and a, while
we can consider any of the scattering equations above and solve for &, we find that solving
for a leads to an n — 3 degree polynomial equation. Thus for generic parametrisation, the
computation seems to be analytically intractable. We hope to return to this in the future.

7 Next to Next to Adjacent Soft Limits for k = 3 Amplitudes

In this section we will study the double soft limit for n-th puncture and its next to next to
adjacent puncture. We consider punctures labelled by n — 3 and n to be soft,

A A _ _2a
Sabn—3 = TSabn—3> Sabn = TSabns San—3n =7 San-3n> a:b #n—B,n. (7'1)

The scattering equations for regular solutions, i.e., when the determinants |a b n| and |a b n—3|
are non-vanishing as T — 0, are,

i Sabec d
EW =

—labc|=0, Va,
|abc|3xc(ll)| |

b,c#a,n—3,n

i Sy b 0
Er(ll_)3 =1 Z Zb" 33 5 la bn—3|
a,b#n—3,n |a n— | 3Xn_3

n

$ )
+ 72 an—3n —|lan—3n|=0,
e

a#n—3,n
(i) — §abn d
E)V =1 Z —|a bl (l.)Ia b n|
a,b#n—3,n axn
2 é\an—Bn 0 _
+7 Z an—3n] (l,)|an—3n|—0. (7.2)
a#n—3,n aXn

Hence the soft factor can be written as,

@ _| 42 2 ) ) In—5n—4n—2|
S =|d d*x,_3 6"(E,)0 " (E,_
nn—3 J an Xn-3 O (En)O T (Ey 3)[In—S n—4n—3[n—4n—-3n-2|

2
y In—4n—2n—1|[n—2n—11||n—112] 7.3)
In—3n—2n—1|ln—2n—1n|ln—1n1l|n12|| ° '
In this case contributions from non-degenerate solutions dominate over that of degenerate
ones because in the Parke-Taylor factor none of the determinants simultaneously contain the

punctures n and (n — 3), hence it does not lead to any (1) contribution in the denominator
for the degenerate case. As a result in the degenerate case, the measure and the scattering
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equations together give the scaling which is less than the O(7~*) scaling of the non-degenerate
solutions. In this case the soft factor is expressed as,

2
) 2 2) In—2n—11|ln—112] ]
S =| d*x, 6*“(E
nn=3 J " ( n)[ln—2n—1n|ln—1n1||n12|

2
« | a2y 35(2)(E 3)[ In—5n—4n—2|ln—4n—2n—1| ]
" "l In-5n—4n-3|In—4n—3n-2|ln—3n—2n-—1|

3
1 1 1 1
+— ; + 3 ; -
¢ A Sn—1n1 Sh—2n—1n Sn—5n—4n—3 Sn—3n—2n—1

1 1 1
+ — — + -
A Sn—5n—4n—3 Sn—4n—3n—2
San—4n—3

1 1 1
+— - + -
¢ A Sn—4n—3n—2 Sh—3n—2n—1

a#n—3,n—2

n—3°

where ng) and SS_)S are the single soft factors corresponding to n-th and (n — 3)-th soft ex-
ternal states respectively. Similar result holds when any of the external state from the set
{3,4,---n— 3} along with n-th state are taken to be soft,

s® = s®s®  Vae{34,---n-3}. (7.5)

Therefore, in this case double soft factor is the same as the product of two single soft factors.
This is analogous to the k = 2 non-adjacent case discussed in 2.2.2.

8 Discussion

In this paper, we derived the double soft limit for adjacent soft external states for arbitrary k.
We also generalised our method to the double soft limit of the next to adjacent and next to next
to adjacent soft external states. We found that in the simultaneous double soft limit leading
contribution in case of the adjacent soft external states scales as 7~>*~1 in the T — 0 limit.
It follows from a simple scaling argument, in the canonical color ordering, that when the soft
labels i and j in an amplitude are arranged in such a way that |i —j| € {k,k+1,---n—k + 1}
then the double soft factor is a product of two single soft factors and hence it scales as 721,
For all intermediate separations, i.e., 1 < |i —j| < k, the scaling exponent is linear in |i — j| for
a cyclic ordering.

The fact that these soft limits involve higher order poles seems to indicate that these am-
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plitudes could be relevant for computation of loop diagrams, see e.g., [45]%. Alternatively, the
higher order poles could be a signature of composite particles or multiparticle states contribut-
ing to the amplitude. It would be interesting to check if this is true by further studying the
factorisation in detail. In a recent paper by some of the authors [69], the relation of the double
soft factor with the cluster algebra was presented. It would be interesting to generalise our
results to multiple soft theorem. There are no efficient techniques to date that can compute
arbitrary (k,n) amplitudes. However, one may be able to bootstrap these amplitudes by know-
ing the structure of multi-soft factors. Whether multi-soft factors themselves are amplitudes
of some theory is worth exploring but we will leave it for the future.
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A Next to Adjacent Non-degenerate Solutions for k = 3

In this appendix, we will discuss the non-degenerate contributions to the subleading results
for the next to adjacent double soft limit. For the non-degenerate configuration we neglect
terms of O(72) in the scattering equations Eq. (6.2). In the homogeneous coordinates we
then obtain,

3) _ (0q d?0,) (X1 Y1 0) (0nez d?002) (X3 Y3 0s)
non-deg Sppc(X1b¢) N Sppc(Yy be) Spobc(Xab¢) O Spspc(Yobo)
Z Eo-n blc) Z E)O-n I;C) Z (fjbn—z ;C) Z ((27?1—2 ;C)
b,c b,c b,c
x[ (n—4n—-3n—1)(n—3n—-11)(n—112) T A1)
(n—4n-30,,)(n—-30, ,n—1)(c, y,n—10,)(n—10,1)(c,12)]

To evaluate this integral we will employ the global residue theorem, for which we will deform
the contour from the poles of the scattering equations and pick up contributions from the
singularities of the integrand. First we deform the o,_, contour and encounter poles at the
zeroes of the determinants in the denominator of the integrand,

(n—4n—-30,.,), (n—30,.on—1), (0pan—10,) . (A.2)

While evaluating the integral in Eq. (A.1), we encounter two different kinds of singularities
which we will discuss below by considering those cases one at a time.

A.1 Collision singularities

In this case (n — 2)-th puncture collides with any one of the punctures listed below,

L. On—2 — Op3

“Relation between the (3, 6) amplitude and four point one-loop integrand in cubic biadjoint scalar field theory
is studied in [69].
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2. Opn—2 — Op
3. Opn—2 — Op4
4. On_g — Oy (A.3)

Casel: 0, 5 >0, 3
We choose the following parametrisation,
Op—o =0p_3 + EA, (A4)

where € is treated as one complex variable, which implies that the variable A € CP? has only
one independent component. We choose X, = 0,_3, and deform the contour of o,,_,,

(n—3AdA)e’de(n—3Y,A)

Sn—2n-3p(¥Y2 bn—3)
Z Sn—2bc Z e(Abn-3)

b,c#n—3 b#n—3
2
« (n—4n—-3n-—1)
e2(n—4n—3A)(n—3An—1)(n—-3n—10,)
. 1 (n—3AdA)(n—3Y,A)
> Suap Sp-203 (¥ bn=3)
i . E_S @Abn-3)

2
y (n—4n—-3n-—1) 1
(n—4n—-3A)(n—-3An—1)| (n—3n—10,)*
1 1 1 1
[ + } 5. (A.5)
D Sn—2n-3cLSn2n-3n4 Sn-in2n-3](n—3 n—10,)
c#n—3

In the last line we reduce the integration to that on CP! by treating n—3 as a spectator, choose
0 1 . . .
Y, = (1), and A = (x ) We are then left with a o,, integration to be performed, however,
A

we notice that it is precisely the single soft integral,

(3) 1 1 1
577 = +
Z Sn—2n—3c LShn—2n—-3n—4 Sn—1n—2n-3
c#n—3

(02d%0,) (X1Y10,) [ (n—3n—11)(n—112) ]2
Sppe(Xq1bc) Snpe (Y1 bC) — — —
bz ’(Janblc) bz (bonblc) (n-3n—-10,)(n—10,1)(c,12)
. .

1 ( 1 1 )
= +
Z Sn—2n—3¢ \Sn—2n—-3n—4 Sn—1n—2n-3
c#n—3

1 1 1 1
X + +
Sn—3n—1nSn12 Z Sp—1nc \Sn—3n—1n Sn—1n1
c#n—1

1 1 1
+ ( + )] . (A.6)
anlc Sn12  Sn—-1n1

c#1
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Case2: 0, 5 >0y

We parametrize o,_, as,
Opo0=0,_1+€A. (A.7)

We choose the reference vector X, = 0,,_;. The 0,_, integration then becomes,

1 (n—1AdA)(n—1Y,A) (n—3n—11)
> Sneabe S Snan1c(an=19) | (n—3An—1)(An—10,)

bc#n—1 el (An—1¢)
1
= ——F(o,). A.8
S siane (04) (A.8)
b,c#n—1

The o, integrations will then be as follows,

0 d?c, (X Y, 0,)
s = LI (o)
2 Sn—2bec anbc(xlbc) snpc(Yh bo) n
bc;én 1 (opbo) (o, bo)
n—112 2
><|: ( ) ] . (A.9)
(n—10,1)(0,12)
After contour deformation o, will encounter poles at,
i. o, — 0,
ii. O, — Op1
iii. o, — Oy
iv. 0, — Polesof F(o,) (A.10)
i. o, = 01: We will choose,
o,=01+1B. (A.11)
We set X; = 0 to obtain,
§® _ 1 %(n—lAdA)(n—leA)
2;1
’ Z Sn—2bc Z Snef s—”_zna;(_ylz:) 1c)
b,c#n—1 C;én 1

(n—3n—11) ] (1BdB)(1Y1B)[ (n—112) ]2

(n—3An—1)(An—11) ZM (n—1B1)(B12)
Blc

c#1

1 1 1 1 1
= + + :
Z Sn—2n—1b Z Snic LSn—3n—2n-1 Sn—2n-11dLSn—1n1 Sn12

b#n—1
(A12)
ii. 0, = 0,_1: We choose our parametrisation,
Opn=0p1+nB, (A.13)
with the reference vector X, = o,_;. In this case we note that,
1
F(o,)= ﬁf(B) . (A.14)
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The B integration then takes the form,

G _ 1
SZ'Z -

Z Sn—2bc Z snef

b,c#n—1 e,f #n—1

f(n—leB)(n 1Y2B){HB);}_ (A.15)

Sun1c(Yyn—11) _ 2
&Bnllc) (n—1B1)

c;én 1
Here o,,_, is a spectator and hence both A and B integrals can be converted to CP! integrals.
We choose Y] =Y, = ((1)), A= (xl ), and B = (Xl ) With this choice the above integrations
become, ! ’

22 T s Sp—.
Z Sn—2be¢ Sne f Z Xan_chc Z nxAz_nxl <

b,c#£n—1 efnl c#n—1 c#n—1

Xn—3—X1
. A.16
) [(XA_xn—S)(XA_XB)(xB_xl):| ( )

We first evaluate residues at x4, = x,_3,xp and then perform the xj integration. x, has a
simple pole at x,_3 and a double pole at xp. Therefore we get,

2
g® f X1~ Xn-3
22 Z Sn—2bc Snef Z xnn_)l(c (xB_xn—B)(xB_xl)
b,c#n—1 e f n—1 c#n—1
Sn—2 n—lc2
1 c#n—1 (xp—xc) 2
x + 2 - Sn—2n— °n—2n—lc
Sn—1n—2n-3 Spo e ( Xn— 3) Z Xp—X,
#Z . Txp—x. c#n—1
c#EN—
(A.17)

Thus we see x; has simple poles at x,_3 and x;. Moreover, the residue at xz = x,_3 turns
out to vanish. The last term in the square bracket does not have a pole at xz = x;, hence
evaluating xp integral we obtain,

(3) 1 1 1 1
s$) = + : (A.18)
’ Z Sn—2n—1b Z Sn—1nc LSn—1n1 \Sp—3n—2n-1 Sn-2n-11
b#n—1 c#n—1

iii. 0, = 05: We will now parametrize o, as,
o,=05+1nB. (A.19)

We find there is no pole as n — 0. Hence there is no contribution from this singularity.

iv. Poles of 7 (0,): By definition of 7 (o,) in Eq.(A.8), and after performing the A integra-
tion we obtain,

2
Flo) = (n—lAdA)(n—leA) (n—3n—11)
On) = 2110 | (n—3An—1)(An—10,)
T (@An-10
c#n 1
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Z Sn—2n-1c

I:(n—gn_ll)]z[ 1 + c#n—l(”n—lc)z
(n —3n—1 n) Sh—3n—2n—1 ( Z Sn—2n-1c )2
(nn—1c¢)
c#n—1

2

(n 3n—1n) Z (sfl‘rf“llcc)
C n—1

} . (A.20)

From the above expression we can see that other than at o,, = 0,,_; and at o,, = 0,_3, which
have already been taken into account in Eq.(A.18), no other poles of o, appear from F (o ,,).
Case 3: 0, g >0 4

From the symmetry argument o,_, — 0,_4 does not contribute.

Case 4: 0, 5 — 0,

We choose our parametrization,
Op_n=0,+€A. (A.21)

We will choose X, = 0, and obtain the Eq.(A.1) to be,

g® (0, d*0,) (X1 Y7 0,) (0,AdA)e%de (0, Yy A)
3

Snp Xy be) snpc(Y1be) Snapc(opbe) Spapc(Yoabc)
Z ?an blc) Z E)on 11 c) Z (crznb+eA be) bZ: (oznb-f-eAzb c)
C C

X[ (n—4n—3n—1)(n—-3n—11)(n—112) ]2
(n—4n—-30,)(n—30,n—1)e(An—10,)(n—10,1)(0,12)
(an d*c )(X1 Y, 0,)
anbc(X1bC)ZSnbc(Y1 bc)

(opbc) (o, bc)
(0,AdA)e%de (o, Y, A)
f ZS" eear (1 E(E:A,,bbcc)))bzsn_fgi(byzc)b 2(1-e253)
C
[ (n—4n—3n—1)(n—-3n—11)(n—112) 2
enh—4n—-30,)(n—30,n—1)An—10,)(n—10,1)(0c,12)

(A.22)

By momentum conservation . s, o pc+ 2. Sp_onc = O, therefore we canneglect . s, 5 p,
b,c#n c#n b,c#n
which is of O(72), in comparison with O(7) terms. We then obtain,

® — _ (04 d%0,) (X1 Y1 0) (0,AdA)de (o, Y, A)
3 SnbcX1b¢) N supc(Ya be) Sn2bc(Abc) N Spab(Yabo)
P RPN o RO Ve o o D e C TS
C
2
(n—4n—-3n—1)(n—3n—-11)(n—112)
(n—4n-30,)(n—30,n—1)An—10,)(n—10,1)(c,12)
(A.23)
Now consider o, — o,_; with the parametrization,
op,=0,_1+nB. (A.24)
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We will choose X; = 0,_; and also Y, = 0,_;. With this choice we have,

g® — n?dn(n—1B dB)(n—1Y; B)
- Z Sppc(n—1bc) Z Spn1c(Ypn=1c¢)
b1 (n=1bc) n(Bn—1c)

xf de(n—1AdA)n(Bn—1A)
€2,

Sp_on_1c(An—=1c) Z Sp_apc(n—=1bc)
n(Bn—1c¢)

n—1bc
b,c#£n—1 ( )

[ (n—4n—-3n—-1)(n—-3n—11)(n—112) ]2

n3(n—4n—3n—1)(n—3Bn—1)(An—1B)(n—1B1)(n—112)

_ _% dn(Bn—1dB)(Y;n—1B) de(An—1dA)(An—1B)

Snn—1 (Yl n—1 C) Sn—2n-1 L‘(A n—1 C)
n Z Snbcz (Bcn_1 ) EZ (Bn—1¢) Z Sh—2b¢
b,c#n—1 c c b,c#n—1

2
(n—3n—11)
><[(n—s n—1B)(An—1B)(Bn—11)] . (A.25)

0 1 1
We can now take o,_; as a spectator, and choose Y; = (1), A= (x ), and B = (x ) Thus
A B

we have,

(3)
S3

j€(13n—1d13)(1/1n—113)
S Snn lc(Yln ].C)
bcgr:l—l nbcbc#nln2bc (Bn—1c¢)

2
ff(An—ldA)(An—lB)[ (n—3n—11) ]

Sn—2n-1c(An—1¢) (n—3n—1B)(An—1B)(Bn—11)
(Bn—1¢)

= — dxA(xB X4)
Z snbc n 2bc Z nn_lc Sn—2n— 1c(x xA)
b,c#n—1 bc #n—1 (ee=xp) T (ee—xg)

2
« [ (xl ~Xn3) ] . (A.26)

(xg —x—3) (xg — x4) (x1 — Xx5)

Taking x, = xp + € and performing the integrations we get,
-1 1 1
Sg?,) _ 3 ( + ) . (A.27)
Sn—3n—1n Sn—1n1
( Z Sn—1 nc) ( Z Sn—2n—-1 c)
b#n—1 c#n—1

It can be checked, by explicit computations, that the other possibilities, namely,
(i) o, = 04, (ii) 0, = 04, (iii) 0, = 0,3, (iv) 0,, = 0,4, will not contribute.

A.2 Collinear singularities

This singularity lies at the codimension 2 boundary where o,_, is at the intersection of two
lines, one of them containing o,_,4 and o,_3, and other line containing o,_; and o,. Let §
be the point of intersection of these two lines then,

(n—4n—3&)=0, (En—10,)=0. (A.28)
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We choose the parametrization as,

Opo=00,1+pfo, 3+&. (A.29)
The o,_, integration becomes,
}5 (En—1n—3)dadp

Spn—2 n—3 n—4(Xp n—3 n—4) + Sp2bpcXp bc) ]
(Ebc)

a(n—1 n—3 n—4)
b,c#(n—3,n—4)

8 Xy Y, a0, 1 +Bo,_3+&)

|:5n—2 n—3n—4(¥2 n—=3 n—4) + Sn2bc(Yabc) :|
a(n—1n—3 n—4) (Ebc)
b,c#(n—3,n—4)

2
1
X . A.30
[%(n—Bin—l)(n—Bn—lan)] ( )
We choose the reference vectors as X, = 0,,_; and Y, = & to obtain,

1

1 2
. (A.31)
Sn—2n—3n—4 Z Sn—2bc [(n—Bn—lon)]
b,c#(n—3,n—4)

The o, integration then takes the form,

1
5@ _

col
Sn—2n—3n—4 2 Sn—2bc
b,c#(n—3,n—4)

(00 d%0,) (X1 Yy 07,) [ (n—3n—11)(n—112) ]2
SppcXq bc) Sppc(Yybe) — — —
bzcz ?on e bzc: ann = (n—-3n—-10,)(n—10,1)(c,12)

_ 1
Sn—2n—3n—4 Z Sh—2be¢
b,c#(n—3,n—4)
[ 1 1 ( 1 1 )
X + +
Sn—3n-1nSn12 20 Sninc \Sn—3n—1n Sn—1n1
c#n—1
1 1 1
+ ( + )i| . (A.32)
anlc Sn12 Sp—1n1
c#1

Now the double soft factor for the non-degenerate configuration where n-th and (n — 2)-th
external states are going soft is given as,
3 _a® L a® L a® L aB®) B
S =817 +8,1+S5,,+8,7+8 (A.33)

non-deg col *

We find that the above soft factor scales as O(t™*), which is subleading compared to the
degenerate case.
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