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Abstract

We describe an efficient numerical method for simulating the dynamics and steady states
of collective spin systems in the presence of dephasing and decay. The method is based
on the Schwinger boson representation of spin operators and uses an extension of the
truncated Wigner approximation to map the exact open system dynamics onto stochastic
differential equations for the corresponding phase space distribution. This approach is
most effective in the limit of very large spin quantum numbers, where exact numerical
simulations and other approximation methods are no longer applicable. We benchmark
this numerical technique for known superradiant decay and spin-squeezing processes
and illustrate its application for the simulation of non-equilibrium phase transitions in
dissipative spin lattice models.
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1 Introduction

Large ensembles of two-level systems that can be approximately modeled as a single collec-
tive spin are of interest in many areas of physics. In quantum optics, collective light-matter
interaction effects can be understood from the analysis of the Dicke model [1], which de-
scribes the coupling of many two-level atoms to a common photonic mode. In the field of
ultracold atoms, the evolution of Bose-Einstein condensates in double-well potentials can be
mapped onto the motion of one large collective spin [2]. In nuclear and solid-state physics the
Lipkin-Meshkov-Glick (LMG) model [3] is frequently used to investigate ferromagnetic phase
transitions in systems with all-to-all interactions. In many situations one is interested in the
dynamics or the steady states of those systems in the presence of dephasing and decay. For ex-
ample, for magnetic field sensing, spin squeezing [4,5] and related metrological applications
with large ensembles of atoms [6,7] the achievable sensitivities are primarily limited by such
decoherence processes. But the coupling of large ensembles of two-level systems to a common
environment can also lead to new physical phenomena, such as phase-locked condensates in
equilibrium [8], or superradiant [1,9] and super-correlated [10] decay.

From a theoretical and computational perspective, the primary interest in collective spin
models arises from their permutational symmetry. This symmetry effectively reduces the
full dimension of the Hilbert space of NTLS two-level systems, d = 2NTLS, to the dimension
dS = (2S+1) of a spin S =NTLS/2 system. At the same time, the system can still exhibit inter-
esting many-body effects and sharp phase transitions in the ‘thermodynamic limit’ S� 1. For
this reason, dissipative versions of the Dicke [11–13], LMG [14,15] and related collective spin
models [16–18] play an important role in the analysis of non-equilibrium phase transitions
in open quantum systems, since an exact numerical integration of the full master equation is
still possible for moderately large ensembles. However, brute force numerical simulations are
no longer feasible for atom numbers encountered in many of the actual experiments and, in
general, for systems involving multiple collective spins. Such scenarios appear naturally in
the presence of inhomogeneous couplings or frequencies [19, 20] or in extended lattice sys-
tems [19,21], which are most relevant for analyzing critical phenomena. For closed systems,
the coherent dynamics of spins with S � 1 is typically well-described by mean-field theory,
i. e., by evaluating the dynamics of the average spin vector 〈~S〉 only. But this approach ig-
nores important correlations, such as spin squeezing effects, and will in general provide a
poor description of the actual state in the presence of dissipation. Here quantum fluctuations
associated with incoherent processes can drive the system into highly mixed states [16,17,21],
where the fluctuations of the spin components become comparable to their mean values. Thus,
in order to accurately model such a behavior, it requires approximate numerical techniques,
which take the effect of fluctuations into account, while still being able to simulate the dynam-
ics of large collective spins efficiently.

In this paper we describe a broadly applicable stochastic method for simulating the dis-
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sipative dynamics of systems involving either a single or many coupled collective spins. The
method relies on the Schwinger boson representation of spin systems and uses an extension
of the truncated Wigner approximation (TWA) [22] to map the dynamics of those bosons
onto a set of stochastic differential equations in phase space. For weakly interacting bosonic
systems such phase space methods based on the TWA are well established and can be used,
for example, to simulate dissipative bosonic lattice systems and non-equilibrium condensation
phenomena [23–27]. The extension of these methods to spin systems via the Schwinger rep-
resentation has previously been applied for simulating the coherent dynamics of lattices of
spin-1/2 systems [28, 29] and that of collective spins [22]. In the latter case also alternative
methods based on the discrete TWA (DTWA) [30] are very efficient. In Ref. [31], Olsen et al.
showed that a stochastic sampling of the positive-P representation of the Schwinger bosons
can also be used to model the collective decay of an atomic ensemble. However, the practical
applications of this approach are very limited since the stochastic trajectories derived from
the positive-P distribution tend to diverge after rather short times [28,29,31,32] and, to our
knowledge, this method has not been developed further. Here we show how this problem can
be overcome for systems with S � 1 by working with the Wigner function, but performing
an additional positive diffusion approximation (PDA). As a result of this approximation, the
stochastic equations in phase space are well-behaved for arbitrary times, which allows us to
evaluate also the long-time dynamics and the steady states of dissipative spin systems that
have been inaccessible so far. Using this truncated Wigner method for open quantum spins
(TWOQS), we obtain an approximately linear scaling with the number of collective spins in-
cluded, in any dimension and for arbitrary interaction patterns. In a recent work [21], we
have already applied this method to identify novel PT -symmetry breaking transitions in the
steady state of a one dimensional spin lattice with gain and loss. Here we provide a more
detailed derivation of this simulation technique and discuss and benchmark its performance
in terms of several explicit examples.

The structure of this paper is as follows: In Sec. 2 we first present a general outline of
the method and explain how the original master equation can be mapped, under certain ap-
proximations, onto a set of stochastic differential equations. Then, in Sec. 3 we illustrate
and benchmark this procedure by studying several model systems. We also go on and show
how this technique can be applied to the simulation of non-equilibrium phase transitions in
dissipative spin lattice models. Finally, in Sec. 4 we present our conclusions.

2 Outline of the Method

We are interested in the open system dynamics of i = 1, . . . , N coupled spin-S systems, which
can be modeled by a master equation for the system density operator ρ,

ρ̇ = −i[H,ρ] +
∑

n

ΓnD[cn]ρ. (1)

Here H is the many-body Hamiltonian describing the coherent evolution and the Lindblad
superoperators, where D[c]ρ = 2cρc† − c†cρ − ρc†c, account for incoherent processes with
jump operators cn and rates Γn. In the following we assume that H and all cn can be written
in terms of products of the collective spin operators Sz

i and S±i = (S
x
i ± iS y

i ), which obey the
usual spin commutation relations, [Sz

i , S+j ] = δi jS
+
i and [S+i , S−j ] = 2δi jS

z
i .

Equation (1) conserves the length of each individual spin, ∂t〈~S2
i 〉 = 0, and therefore the

dynamics of each subsystem can be restricted to a dS = (2S + 1) dimensional subspace. How-
ever, the dimension of the full density operator, dρ = (dS)2N , still scales exponentially with the
number of subsystems or lattices sites N . This scaling makes an exact numerical integration
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of Eq. (1) impossible when S or N are large. Here we introduce an approximate method,
the TWOQS, to simulate such systems in the limit S � 1, which only scales linearly with the
system size N . The derivation of this method consists of four main steps:

1. The N spins are mapped onto a set of 2N bosonic modes using the Schwinger boson
representation.

2. The master equation for the bosons is mapped onto an equivalent partial differential
equation for the Wigner phase-space distribution.

3. We use the TWA and the PDA to obtain a Fokker-Planck equation (FPE) for the Wigner
function with an (almost) positive diffusion matrix.

4. This FPE is mapped onto an equivalent set of stochastic Ito equations, which can be
efficiently simulated numerically.

In the following, we first give a brief general outline of the individual steps in this derivation,
while the application of this method for concrete examples is discussed in more detail in Sec. 3.

2.1 Bosonization

In a first step, we use the Schwinger boson representation to map each of the spins, ~Si , onto
two independent bosonic modes, ai and bi , by identifying

S+i = a†
i bi , S−i = ai b

†
i , Sz

i =
1
2
(a†

i ai − b†
i bi). (2)

One can easily show that this transformation preserves all the spin commutation relations
given above. For all models constructed from collective spin operators only, the total number
of excitations at each site, a†

i ai + b†
i bi , is conserved. The initial condition can then be chosen

such that
1
2
(a†

i ai + b†
i bi) = S, (3)

to simulate spins of different lengths. This is more useful than mapping each site to a single
Holstein-Primakoff boson [33], since the transformation above does not involve any operator
square roots, which can be numerically difficult to work with.

2.2 Phase Space Distributions

The main advantage of switching to a representation expressed in terms of bosonic modes
is that the master equation, Eq. (1), can be mapped onto an equivalent partial differential
equation for a class of phase space distributions, which contain the same information as the
density operator [32]. We parameterize the set of distributions by the variable k = −1,0, 1
and define

Fk(~α, t) =
1
π4N

∫

d4Nλ e(~α
~λ∗−~α∗~λ) Tr

¦

e
~λ~v†
ρ(t)e−~λ

∗~v
©

e
(1+k)

2 |~λ|2 , (4)

where ~v = (a1, b1, a2, b2, . . . , aN , bN ) is a vector of all 2N bosonic annihilation operators and
~α and ~λ are vectors containing the same amount of complex numbers. When k = 0 this phase
space distribution corresponds to the Wigner function, for k = 1 it is the Glauber-Sudarshan P-
representation and when k = −1 we obtain the Husimi Q-function. We can use this definition
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to calculate what form each term in the master equation takes in the equation for Fk [32]. For
example, for a single mode one finds the mapping

aρ →
�

α+
(1− k)

2
∂

∂ α∗

�

Fk(α, t), (5)

a†ρ →
�

α∗ −
(1+ k)

2
∂

∂ α

�

Fk(α, t), (6)

ρa† →
�

α∗ +
(1− k)

2
∂

∂ α

�

Fk(α, t), (7)

ρa →
�

α−
(1+ k)

2
∂

∂ α∗

�

Fk(α, t). (8)

This translation lets us recast the master equation for ρ in the form of a partial differential
equation for the phase space distribution,

∂

∂ t
Fk(~α, t) = LFk(~α, t), (9)

with L some linear differential operator that depends on the specific problem under consider-
ation.

2.3 Truncated Wigner Approximation

The result in Eq. (9) is still exact and therefore in general not very useful. In particular, the dif-
ferential operator L may contain third- or higher-order derivatives, which prevent an efficient
stochastic sampling of Fk. For example, for the coherent dynamics generated by the master
equation ρ̇ = −iΩ[S2

x ,ρ], the corresponding partial differential equation for Fk ≡ Fk(α,β , t)
reads

∂ Fk

∂ t
=

iΩ
4

�

∂

∂ α

�

2α∗β2 + 2α|β |2
�

+
∂

∂ β

�

2β∗α2 + 2|α|2β
�

− k
∂ 2

∂ α2
β2 − k

∂ 2

∂ β2
α2 − k

∂ 2

∂ αβ
αβ

+
1− k2

2

�

∂ 3

∂ α∂ α∗∂ β
β −

∂ 3

∂ β∂ β∗∂ α
α−

∂ 3

∂ α2∂ β∗
β −

∂ 3

∂ α∗∂ β2
α

�

− c.c.

�

Fk.

(10)

To proceed we neglect all third- and higher-order derivatives, which in this example corre-
sponds to omitting all terms in the second line of Eq. (10). This approximation is just the
usual TWA [22] applied to arbitrary distribution functions. For spin systems we expect this
approximation to become accurate in the limit of large S, since terms proportional to αFk or
βFk scale as ∼

p
S compared to derivatives such as ∂ Fk/∂ α ∼ O(1). After performing the

TWA we obtain a FPE of the form

∂

∂ t
Fk(~x , t) =

�

−
∂

∂ x j
A j(~x) +

1
2
∂

∂ x i

∂

∂ x∗j
Di j(~x)

�

Fk(~x , t), (11)

with a drift matrix A and a diffusion matrix D. Here we have assumed Einstein’s sum conven-
tion, where the indices i and j run over the 4N components of the vector ~x = (α1,α∗1,β1,β∗1 ,α2,
α∗2,β2,β∗2 , . . . ).

2.4 Positive Diffusion Approximation

For stochastic simulations, performing the TWA is not enough since in general the diffusion ma-
trix D obtained in this way is not positive semi-definite. This can already be seen from the un-
derlined terms in Eq. (10). Similarly, we find that an incoherent decay process, ρ̇ = ΓD[S−]ρ,
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is mapped under the TWA onto the FPE

∂

∂ t
Fk = Γ

�

∂

∂ α

�

|β |2 +
(1+ k)

2

�

α−
∂

∂ β

�

|α|2 −
(1− k)

2

�

β −
∂ 2

∂ α∂ β
αβ

+
(1− k)

2
∂ 2

∂ α∂ α∗

�

|β |2 +
(1+ k)

2

�

+
(1+ k)

2
∂ 2

∂ β∂ β∗

�

|α|2 −
(1− k)

2

�

+ c.c.

�

Fk, (12)

and there are again second-order derivatives that can lead to negative diffusion rates. Thus,
in a second step we perform a PDA by neglecting some of these diffusion terms. In the two ex-
amples above this approximation amounts to omitting all the underlined terms in Eq. (10) and
Eq. (12), while keeping the diffusion terms in the second line of Eq. (12). This choice cannot
be justified by simple scaling arguments and in Sec. 3 we discuss and verify the applicability of
this approximation in terms of several explicit examples. In general, the PDA can be motivated
by the fact that it eliminates the dominating negative contributions to D, while conserving the
total spin S and leaving the equations of motion for the mean values 〈Sk〉 unaffected. The
price we pay for this last requirement is that for k = 0 the resulting diffusion matrix can be-
come negative for certain values of α. However, the corrections scale as ∼ 1/S compared to
other terms and for S � 1 the residual negative contributions do not affect considerably the
stochastic sampling of trajectories in actual simulations.

Before we proceed let us remark that the problem of non-positivity can also be overcome
by working with a positive-P representation, where αi and α∗i are replaced by a pair of in-
dependent complex variables [31, 32]. In this case, a positive semi-definite diffusion matrix
can be obtained for this larger set of variables without neglecting any terms. However, it is
known that the resulting stochastic equations are often not well-behaved [32]. In particular,
the appearance of “spikes", where individual trajectories diverge at a finite time [28, 29, 32],
often prevents the simulation of the long-time behavior of a system or its steady state.

2.5 Stochastic Simulations

After applying the TWA and the PDA, we end up with a FPE with an (almost) positive semi-
definite diffusion matrix D. This FPE can be mapped onto an equivalent set of stochastic (Ito)
differential equations [34],

d x i = Ai(~x)d t + Bi j(~x)dWj(t), (13)

where dWi are real-valued independent Wiener processes with 〈dWidWj〉= δi jd t and B(~x) is
the factorized diffusion matrix with B(~x)B(~x)† = D(~x). This set of equations can be efficiently
simulated with the Euler-Maruyama method [34]. This means that we do not calculate the
full probability distribution, but instead obtain the required expectation values by averaging
over ntraj trajectories of these stochastic equations. Note that for a closed system, where all
second- and higher-order derivatives have been neglected, the amplitudes αi evolve according
to the mean-field equations of motion,

ẋ i = Ai(~x), (14)

consistent with the usual applications of the TWA [22]. In the presence of dephasing or decay
our approach accounts for the corresponding damping terms and the associated amount of
quantum fluctuations in a consistent manner.

For sufficiently many trajectories and with initial values sampled according to the distri-
bution Fk(~α, t = 0), these stochastic averages provide accurate approximations of the corre-
sponding quantum mechanical expectation values

〈(a†
i )

nam
j 〉P|Q|W =

∫

d4Nα (α∗i )
nαm

j Fk(~α, t)≈ 〈(α∗i )
nαm

j 〉stoch(t), (15)
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where, depending on the chosen distribution function, 〈. . . 〉P|Q|W denotes the normally-ordered,
anti-normally-ordered or symmetrically-ordered expectation value. All expectation values of
the original spin system can then be obtained using the relations in Eq. (2).

2.5.1 Initial conditions

In many situations of interest the initial state can be chosen as a fully polarized state with
〈Sz

i 〉 = −S at each site. This corresponds to a state where one of the two Schwinger bosons is
prepared in the vacuum state |0〉, the other one in the Fock state |2S〉. For k = −1 this state is
described by the Q-function

Q0(α,β) =
1
π2

e−(|α|
2+|β |2) |β |

4S

(2S)!
, (16)

which is positive everywhere and can be used as an initial probability distribution for the
trajectories. For k = 1 and k = 0 the corresponding P- and Wigner distributions for Fock
states are singluar or have negative values. It is thus necessary to approximate the initial
state by replacing the Fock state |2S〉 by a coherent state with the same mean amplitude. The
corresponding initial conditions are then given by

P0(α,β) = δ(α)δ(β −
p

2S), (17)

and
W0(α,β) =

4
π2

e−2(|α|2+|β−
p

2S|2), (18)

respectively. This approximation introduces an uncertainty in the spin quantum number S,
which, however, scales only with

p
S and becomes negligible in the limit of interest, S� 1.

In order to initialize the system in an arbitrary spin coherent state |θ ,φ〉 on the Bloch
sphere we can simply rotate this state by the angle θ around the y-axis and φ around the
z-axis. This amounts to replacing α and β by the rotated amplitudes

α̃ = eiφ(cos(θ/2)α− sin(θ/2)β), (19)

β̃ = sin(θ/2)α+ cos(θ/2)β , (20)

i.e., Wθ ,φ(α,β) =W0(α̃, β̃).

2.6 P-, Q-, or Wigner Distribution?

Up to now we have kept our analysis completely general and derived all the results for ar-
bitrary distribution functions Fk(~α). This raises the question of which distribution to choose
in an actual simulation? It is well-known that squeezed states, which appear commonly in
interacting spin systems, cannot be represented by a positive and non-singular P-distribution
and thus cannot be simulated via the stochastic equations given in Eq. (13) when k=1. The
Q-distribution (k = −1) has the obvious advantage that it can represent spin states with a
well-defined spin quantum number, i.e., there is no need to approximate the initial state. Fur-
ther, as can be seen from Eq. (12), after the PDA the diffusion matrix for the Q-distribution is
strictly positive semi-definite. However, it turns out that for models that include (S x)2 or simi-
lar interaction terms in the Hamiltonian, performing the PDA eliminates relevant contributions
to the coherent dynamics. As can be seen from Eq. (10), this is not the case for the Wigner
distribution (k = 0), since there are no second-order derivatives in the Hamiltonian dynamics
and the PDA only affects incoherent processes. This is true for all quadratic coupling terms in
the Hamiltonian ∼ Sνi Sµj (ν,µ= z,±), which already includes the most common types of spin-
spin interactions. Therefore, while below we will also discuss several basic examples where
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the P- or the Q-distribution yield equally accurate results, we find that for generic interacting
systems it is necessary to work with the Wigner function, which reproduces most accurately
the Hamiltonian part of the dynamics.

3 Examples and Applications

In this section we will present several explicit examples, to show how our method can be
applied to simulate some of the most frequently encountered interactions and decoherence
processes. To do so we will mainly focus on systems with a single collective spin, where all
the results can still be compared with exact numerical results. This will allow us to test the
validity of the approximations described above and make a comparison of how the different
phase space representations perform under different circumstances. In Sec. 3.5 we will then
extend these results and discuss the simulation of a whole chain of collective spins, for which
exact methods are no longer available.

3.1 Spontaneous Emission

As a first example we consider the collective decay of a large ensemble of two-level systems,
which can be described by the master equation

ρ̇ =
Γ

2S
D[S−]ρ. (21)

Note that here we rescale the emission rate by a factor 2S in order to obtain the same time
scale for the dynamics for different values of S. After performing the TWA the resulting FPE
for this model is already given in Eq. (12) above. The PDA then corresponds to neglecting the
underlined term in this equation, after which we can map the FPE onto the following set of
stochastic Ito equations

dα =
−Γ
2S

�

|β |2 +
(1+ k)

2

�

αd t +

√

√Γ (1− k)
4S

�

|β |2 +
(1+ k)

2

�

(dW1 + idW2), (22)

dβ =
Γ

2S

�

|α|2 −
(1− k)

2

�

βd t +

√

√Γ (1+ k)
4S

�

|α|2 −
(1− k)

2

�

(dW3 + idW4), (23)

where the dWn are real-valued and independent Wiener processes with 〈dWndWm〉= δnmd t.
In Fig. 1 we plot the outcome of a stochastic simulation of this coupled set of equations

for k = 0,±1 and for two different spin quantum numbers, S = 10 and S = 100. In these
examples it is assumed that the spin is initially prepared in the maximally excited state with
Sz|S〉 = S|S〉, which we represent by initial distributions as given in Sec. 2.5.1. For the con-
sidered values of S we can also solve the full master equation exactly and use these results
to benchmark our approximate approach. We find that for about ntraj = 1000 trajectories the
TWOQS reproduces very accurately the superradiant decay of a large ensemble, with higher
accuracy for larger values of S. For this example we find almost no visible differences between
the three different distribution functions. However, a closer inspection shows that in the case
of the Wigner function (k = 0), the square root in Eq. (23) can become negative for some tra-
jectories. This becomes a crucial problem for very small values of S and restricts stimulations
to short integration times, since at longer times these unphysical trajectories can dominate the
dynamics. For larger spins, this error is suppressed by 1/S and becomes a negligible effect for
S ¦ 100, as shown in Fig. 1. In a simulation, possible errors arising from the negative diffusion
term can be easily tracked by monitoring the change of the total spin, i.e., 〈|α|2 + |β2|〉, over
time.
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W
Q
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Figure 1: Simulation of the superradiant decay of a single collective spin with spin
quantum number S = 10 and S = 100. The system is initially prepared in the high-
est excited state, |Sz = S〉. The stochastic simulations for the P-, Q- and Wigner-
distribution are compared to the exact integration of the master equation, Eq. (21).
In both plots ntraj = 1000 trajectories have been simulated to compute the stochastic
averages.

This example illustrates that even for the Wigner function, residual negative diffusion terms
are not a practical limitation for simulating dissipative processes in collective spin systems
when S is large. Instead, when using the exact positive P-representation [31], the same sim-
ulation would be limited to times of about t ® Γ−1, before the appearance of spikes prevents
any converging results. Note that the same conclusions also apply to master equations with a
gain term, D[S+], which can be described by simply exchanging the two bosonic modes, i.e.,
α↔ β in Eqs. (22) and (23).

3.2 Dephasing

We now proceed with the derivation of the stochastic equations of motion for a collective spin
which is subject to dephasing. In the absence of any other interactions, dephasing can be
described by the master equation

ρ̇ = ΓφD[Sz]ρ. (24)

The bosonized form of this equation is obtained by substituting Sz → (a†a− b† b)/2 and under
the TWA the resulting FPE reads

∂

∂ t
Fk(~α, t) =

Γφ

4

�

∂

∂ α
α+

∂

∂ β
β −

∂ 2

∂ α2
α2 −

∂ 2

∂ β2
β2 +

∂ 2

∂ α∂ α∗
|α|2

−
∂ 2

∂ α∂ β
αβ +

∂ 2

∂ α∂ β∗
αβ∗ −

∂ 2

∂ β∂ β∗
|β |2 + c.c.

�

Fk(~α, t). (25)

Although also in this case there are second-order derivatives with negative prefactors, a straight-
forward diagonalization of the diffusion matrix shows that D(α,β) is already positive semi-
definite for all α and β . In this case the PDA is obsolete and we can factorize the diffusion
matrix as D(α,β) = B(α,β)B(α,β)†, where

B(α,β) =

√

√Γφ

2
i
4







α −α α −α
−α∗ α∗ −α∗ α∗

−β β −β β

β∗ −β∗ β∗ −β∗






. (26)
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Figure 2: Dephasing of a collective spin as described by Eq. (24). For this plot,
it is assumed that the system is initially prepared in a spin coherent state pointing
along the x-direction, |S x = S〉, and the successive evolution of 〈S x〉(t) is shown
as a function of time. For this example the other two spin components vanish up
to statistical errors. The exact results obtained from the full master equation are
compared with stochastic simulations of Eq. (27) and Eq. (28) for k = 0,±1. To
obtain this data ntraj = 1000 trajectories were simulated.

Note that this factorization is not unique, but with the current choice we obtain a very simple
and symmetric form for the stochastic equations,

dα= −
Γφ

4
αd t + i

√

√Γφ

2
αdW, (27)

dβ = −
Γφ

4
βd t − i

√

√Γφ

2
βdW, (28)

where dW is a single real-valued Wiener processes. These equations are independent of k
and there is no preferred phase space distribution to simulate dephasing. In the example
plotted in Fig. 2, which shows the dephasing of a spin that is initially polarized along the x
direction, the stochastic averages for all distributions agree within the statistical errors with
the exact dynamics, keeping in mind that for k = 1 and k = 0 the initial distributions are only
approximate.

3.3 Dynamics and Steady States of Driven Spin Systems

We now consider slightly more complicated models in which there is an interplay between
coherent driving and incoherent decay. The simplest model in this class is that of a collective
spin driven by a transverse field of strength Ω and including a collective decay with rate Γ .
The corresponding master equations reads

ρ̇ = −i[HD,ρ] +
Γ

2S
D[S−]ρ, (29)

with a Hamiltonian HD = ΩSx .

3.3.1 Transient dynamics

In Fig. 3 we show again a comparison between the TWOQS and the exact numerical simu-
lations of this master equation for all three distribution functions and for the spin quantum
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Figure 3: Time evolution of a driven collective spin in the presence of dissipation,
as described by Eq. (29). The solid lines represent the exact dynamics of the spin
expectation values 〈Sz〉 (yellow line), 〈S y〉 (red line) and 〈S x〉 (blue line), while the
crosses, diamonds and circles are obtained from the stochastic sampling of the P-,
the Q- and the Wigner-distribution, respectively. For this simulation, the system is
initialized in the fully polarized state |Sz = −S〉.

numbers S = 10 and S = 100. For S = 10, we find clearly visible deviations from the exact
oscillations, which can in part be traced back to the approximation we made in the initial
condition (see Sec. 2.5.1). For this reason, sampling of the Q-function is most accurate in this
situation. However, these deviations become negligible when we consider higher spins and al-
ready for S = 100 all distribution functions reproduce very precisely the exact spin dynamics
over many oscillation periods.

3.3.2 Steady states

A specific interest in the model given in Eq. (29) arises from the fact that it exhibits a non-
equilibrium phase transition at a driving strength of Ω= Γ [17,35,37]. At this point the steady
state of this system changes from a spin coherent state on the lower half of the Bloch sphere
to a highly mixed state with 〈Sz〉= 0.

From the analysis of coherent bosonic or spin systems it is known that the TWA often
leads to inaccurate results for long simulation times [22]. The same problem is encountered
when the TWOQS is used to simulate, for example, the oscillations shown in Fig. 3 for much
longer times. However, the timescale beyond which significant errors occur increases with S
and for many practical applications the system reaches a steady state before problems arise.
This is demonstrated in Fig. 4, where we use our stochastic approach to simulate the master
equation for a driven spin with S = 1000 up to a time t = 50Γ−1. Note that for Eq. (29) there
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Figure 4: Simulation of the steady state of a driven spin system described by Eq. (29).
The two plots show (a) the mean values and (b) the fluctuations of the three com-
ponents of a spin with S = 1000. The solid lines are obtained from the exact so-
lution for the steady state of this system [17, 35, 37], while the crosses, diamonds
and circles are obtained from a stochastic sampling of the P-, the Q- and the Wigner-
distribution. The inset in (a) shows the simulations of the Wigner distribution for
even larger spin numbers S around the transition point Ω/Γ = 1. The steady state
was obtained by time averaging after t = 40Γ−1 for another period of ∆t = 10Γ−1

and for ntraj = 2500.

still exists an analytic solution for the steady state [17, 35, 37], which allows us to compare
these simulations with the exact results for the mean values and the fluctuations of the spin
components.

In the polarized phase, Ω < Γ , we find that both the mean values as well as the fluctua-
tions of all spin components agree almost perfectly with the exact results. For the considered
example of S = 1000 there are still some visible differences for the predicted spin fluctuations
at and above the transition point, Ω/Γ = 1. However, as shown in the inset of Fig. 4(a) the
non-analyticity at the phase transition point becomes more pronounced and closer to the ex-
act result by increasing the spin quantum number S. We emphasize that in the whole mixed
phase, Ω/Γ ≥ 1, the Liouvillian gap of the considered model, i.e., the smallest decay rate
in the problem, scales as ∼ 1/S. This means that in the mixed phase this system is particu-
larly challenging to simulate and oscillations around the steady state can persist for very long
times. Nevertheless, we see that by simply approximating the steady state at a fixed time
t = 40Γ−1 by an average over a time span of ∆t = 10Γ−1, all the essential features of the
model are already rather accurately reproduced. In particular, for Ω� Γ , all the fluctuations
are around 〈(Sk)2〉 ∼ S2/3, indicating that the system is close to a fully mixed state. This
and other examples show that by using the TWOQS it is possible to access the steady states of
driven-dissipative collective spin models.

3.4 Spin Squeezing

Spin squeezing is an important non-classical effect in quantum metrology, which reduces the
variance of one spin component below the value of S/2 obtained for NTLS = 2S indepen-
dent two-level systems. In the presence of collective decay and dephasing, the effect of spin
squeezing can be described by the master equation

ρ̇ = −i
g

2S
[S2

x ,ρ] +
Γ

2S
D[S−]ρ + ΓφD[Sz]ρ, (30)
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Figure 5: (a) Time evolution of the squeezing parameter ξ for different decay rates
Γ/g = 0,0.125, 0.25,0.5 and for S = 10 and S = 100. (b) Maximum of the squeezing
parameter ξopt as a function of the decay rate Γ . In all plots the solid lines represent
the exact results, while the diamonds and circles have been obtained from a stochastic
sampling of the Q- and Wigner distribution. The system is initialized in the state with
all spins pointing down, |Sz = −S〉.

where the Hamiltonian term ∼ S2
x has already been discussed as an example in Sec. 2. There-

fore, under the TWA and the PDA we obtain the stochastic equations,

dα = −i
g

4S

�

α∗β2 +α|β |2
�

d t + dα|decay + dα|deph, (31)

dβ = −i
g

4S

�

β∗α2 + |α|2β
�

d t + dβ |decay + dβ |deph, (32)

where the last two terms in each line account for the decay and dephasing processes described
by Eqs. (22)-(23) and Eqs. (27)-(28), respectively.

In Fig. 5, we use the approximate stochastic equations to simulate the spin squeezing
parameter ξ as a function of time. For a state pointing in the z-direction this parameter is
defined as [4]

ξ2 =min
φ

2S(∆Sφ)2

|〈Sz〉|2
, (33)

where (∆Sφ)2 = 〈(Sφ)2〉 − 〈Sφ〉2 and Sφ = cos(φ)S x + sin(φ)S y . Note that a squeezing
parameter below unity, ξ < 1, requires a finite amount of entanglement between the two-level
systems [38].

Compared to all the previous examples, we now see a clear difference between the results
obtained for different distributions. For k = 1 the value of the squeezing parameter is ξ ≥ 1
for all times, since squeezed states can only be represented by a non-positive P-distribution.
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Figure 6: Time evolution of the squeezing parameter ξ for different dephasing rates
Γφ/g = 0,0.25, 0.5,1.0 and for S = 10 and S = 100. The solid lines represent the
exact results, while circles have been obtained from a stochastic sampling of the
Wigner distribution. The system is initialized in the state with all spins pointing
down, |Sz = −S〉.

Therefore, these results have not been included in Fig. 5. For the Q-distribution we obtain a
finite amount of squeezing, but the predicted values for ξ do not match at all the exact results.
This discrepancy can be traced back to the fact that in the PDA we neglect essential contri-
butions to the coherent dynamics, which appear whenever there are spin-spin interactions.
Therefore, in such cases neither the P- nor the Q-distribution give reliable predictions.

For simulations based on the Wigner function, we find very accurate results for ξ at short
times, but considerable deviations from the exact behavior for longer simulations when Γ
is small. This is consistent with the general observation that the TWA is not well suited to
simulate coherent dynamics over longer times. However, these discrepancies are significantly
reduced for larger dissipation rates and for larger spin quantum numbers. Importantly, Fig. 5
shows that already for S = 100 the dissipative evolution into an entangled quantum state with
ξ2 ≈ 0.05 − 0.5 can be accurately simulated with our method. As further demonstrated in
the lower two panels of Fig. 5, this level of accuracy is sufficient to predict optimal squeezing
parameters in open quantum systems, as relevant for metrological applications. Very similar
conclusions can be obtained from the investigation of squeezing in the presence of dephasing,
as summarized in Fig. 6. In general we find that dephasing processes are more accurately
captured by our method than decay.

3.5 Spin Chains

In all the examples so far we have considered the dynamics of a single spin, where for S ≈ 100
the full master equation can still be solved exactly. This is no longer possible for systems
involving N ¦ 2 collective spins, while the TWOQS scales only linearly with N . This fea-
ture becomes highly relevant, for example, for the study of non-equilibrium magnetic phases
in driven-dissipative spin chains. In this context, one typically considers generic Heisenberg
models of the form [39,40]

H =
N
∑

i=1

�

J̃xS x
i S x

i+1 + J̃yS y
i S y

i+1 + J̃zSz
i Sz

i+1

�

, (34)
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where in addition each spin is subject to decay. Thus, the master equation for this system reads

ρ̇ = −i[H,ρ] +
N
∑

i=1

Γ̃D[S−i ]ρ, (35)

where J̃k = Jk/(2S) and Γ̃ = Γ/(2S) are the rescaled coupling strengths and the rescaled
dissipation rate for general spin-S systems.

For S = 1/2, Eq. 35 can still be simulated for large 1D chains using numerical techniques
based on matrix-product operators [40]. However, in this case one does not observe any sharp
phase transitions for finite Γ , while the reliability and applicability of related techniques for
2D systems are still under investigation [41–43]. Both in 1D and 2D, such tensor network
methods have very unfavorable scaling for larger S. The current method allows us to address
the limit S � 1, where already in 1D distinct non-equilibrium phases and sharp transitions
between them are expected. In a previous work [21] we have already applied this approach
to study PT -symmetry breaking transitions in spin chains with both gain and loss, which can
be mapped back onto a loss-only model with J̃x = −J̃y and J̃z = 0. Here we outline the
implementation of this method for the general Heisenberg model in Eq. (34). Since we are
dealing with in interacting spin system we must use the Wigner function, i.e., k = 0. After
carrying out the general procedure described in Sec. 2 we obtain the stochastic equations

dαn = −
i
4

�

(J̃x + J̃y)(αn+1β
∗
n+1 +αn−1β

∗
n−1)βn + (J̃x − J̃y)(α

∗
n+1βn+1 +α

∗
n−1βn−1)βn

+J̃z(|αn+1|2 − |βn+1|2 + |αn−1|2 − |βn−1|2)αn

�

d t + dα|decay,
(36)

and

dβn = −
i
4

�

(J̃x + J̃y)(α
∗
n+1βn+1 +α

∗
n−1βn−1)αn + (J̃x − J̃y)(αn+1β

∗
n+1 +αn−1β

∗
n−1)αn

+J̃z(|βn+1|2 − |αn+1|2 + |βn−1|2 − |αn−1|2)αn

�

d t + dβ |decay.
(37)

Depending on the relations between all the coupling parameters and the dissipation rate, the
model in Eq. (34) exhibits many different stationary phases, which have been analyzed in
Ref. [39] using mean-field theory. As a proof-of-concept demonstration of the TWOQS we
consider here the case Jz = 0. Then for Jx Jy > −Γ 2 the steady state of the system is the
fully polarized state along the z-direction and we can use a Holstein-Primakoff approximation
to study the fluctuations around this state, similar to the analysis in [21, 39]. Beyond the
transition point, e.g. for Jx > 0 and Jy < −Γ 2/Jx , we expect a strongly mixed phase, but in
this regime mean-field theory and linearization techniques are no longer applicable. In Fig. 7
we show the results of a stochastic simulation of a spin chain with N = 100 sites and S = 5000.
This simulation confirms that in the limit of large S there is a non-equilibrium phase transition
between a polarized and a highly mixed phase, even in 1D. At the transition point the mean
value of 〈Sz〉 and the fluctuations of all spin components exhibit a sharp jump and spin-spin
correlations along the chain diverge. In the polarized phase we can still use the Holstein-
Primakoff approximation to benchmark the simulations also in this extended chain and we
find almost perfect agreement. Importantly, the TWOQS also allows us to explore the non-
polarized phase, where the strong fluctuations cannot be captured by a Holstein-Primakoff or
mean-field approximation. While a detailed analysis of this phase is outside the scope of this
work, we find many similarities with the pseudo PT -symmetric phase described in Ref. [21],
where further discussions about its physical properties can be found.
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Figure 7: Stochastic simulation of the steady state of a dissipative Heisenberg chain
as described by Eq. (35). (a) Magnetization 〈Sz〉 and variances 〈(∆S x ,y,z)2〉 as a
function of Jy/Γ for a fixed value of Jx = Γ/2. (b) Plot of the spin-spin correla-
tions C(s) = 〈S+n S−n+s〉/〈S

+
n S−n 〉 for a value of Jy/Γ = −1.96 near the phase transition

point. (c) Plot of the correlation length ξ extracted from a fit of C(s) = e−|s|/ξ (for
s even) as a function of Jy . In all plots the solid line represent the results obtained
using the TWOQS and the crosses show the analytic predictions obtain from the
Holstein-Primakoff approximation in the polarized phase. For the stochastic simula-
tions we have assumed a chain of N = 100 sites with periodic boundary conditions
and S = 5000.

4 Conclusion

In summary, we have introduced a new numerical method for simulating the dissipative dy-
namics of collective spin systems. This method works best in the limit of large spin quantum
numbers, where exact simulations are no longer possible. At the same time the TWOQS goes
beyond mean-field theory by taking the most relevant quantum fluctuations associated with
dephasing and decay processes into account. A crucial step in the derivation of the stochastic
differential equations is the PDA, which enforces the positivity of the diffusion terms. Although
seemingly a very crude approximation, it does not affect the accuracy of actual simulations for
large S and allows us to access the long-time dynamics and steady states of open spins sys-
tems. This was not possible using previous approaches based on the otherwise more accurate
positive P-distribution.

We have illustrated and benchmarked the application of this method for various spin mod-
els with dephasing and decay. Since the accuracy of the method improves with increasing S
and only scales linearly with the number of spins, these simulations can be directly applied
for atomic ensembles with sizes encountered in real experiments or be extended to simulate
dissipative spin models in two or even three dimensional lattices. Finally, this technique can
be readily combined with existing TWA simulations for bosonic systems and therefore be ap-
plied as well for simulating Dicke-type models, where collective spins are coupled to single or
multiple bosonic modes.
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[43] C. Mc Keever and M. H. Szymańska, Dynamics of two-dimensional open quantum lattice
models with tensor networks (2020), arXiv:2012.12233.

[44] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimen-
sion, Phys. Rev. Lett. 98, 070201 (2007), doi:10.1103/PhysRevLett.98.070201.

19

https://scipost.org
https://scipost.org/SciPostPhys.10.2.045
https://doi.org/10.1016/j.optcom.2005.06.006
https://doi.org/10.1007/978-3-662-04103-1
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1007/978-3-540-70713-4
https://doi.org/10.1016/0375-9601(79)90003-3
https://doi.org/10.1016/0375-9601(79)90003-3
https://doi.org/10.1088/0022-3700/14/21/028
https://doi.org/10.1088/0022-3700/14/21/028
https://doi.org/10.1103/PhysRevA.22.1179
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.110.257204
https://doi.org/10.1103/PhysRevX.6.031011
https://doi.org/10.1038/s41467-017-01511-6
https://doi.org/10.1038/s41467-017-01511-6
https://arxiv.org/abs/2012.03095
https://arxiv.org/abs/2012.12233
https://doi.org/10.1103/PhysRevLett.98.070201

	Introduction
	Outline of the Method
	Bosonization
	Phase Space Distributions
	Truncated Wigner Approximation
	Positive Diffusion Approximation
	Stochastic Simulations
	Initial conditions

	P-, Q-, or Wigner Distribution?

	Examples and Applications
	Spontaneous Emission
	Dephasing
	Dynamics and Steady States of Driven Spin Systems
	Transient dynamics
	Steady states

	Spin Squeezing
	Spin Chains

	Conclusion
	References

