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Abstract

We provide a description of virtual non-local matrix product operator (MPO) symme-
tries in projected entangled pair state (PEPS) representations of string-net models. Given
such a PEPS representation, we show that the consistency conditions of its MPO symme-
tries amount to a set of six coupled equations that can be identified with the pentagon
equations of a bimodule category. This allows us to classify all equivalent PEPS rep-
resentations and build MPO intertwiners between them, synthesising and generalising
the wide variety of tensor network representations of topological phases. Furthermore,
we use this generalisation to build explicit PEPS realisations of domain walls between
different topological phases as constructed by Kitaev and Kong [Commun. Math. Phys.
313 (2012) 351-373]. While the prevailing abstract categorical approach is sufficient to
describe the structure of topological phases, explicit tensor network representations are
required to simulate these systems on a computer, such as needed for calculating thresh-
olds of quantum error-correcting codes based on string-nets with boundaries. Finally,
we show that all these string-net PEPS representations can be understood as specific in-
stances of Turaev-Viro state-sum models of topological field theory on three-manifolds
with a physical boundary, thereby putting these tensor network constructions on a math-
ematically rigorous footing.
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1 Introduction

A large class of (2+1)D spin systems exhibiting topological order can be constructed using the
string-net condensation mechanism introduced by Levin and Wen [1], leading to the string-net
models which are classified by the data of a unitary fusion category (UFC) D. Tensor network
descriptions for string-net states have been obtained in [2–4] as PEPS wave functions. The
fact that these PEPS wave functions exhibit non-trivial topological order can be related to
local properties of the PEPS tensors in that they must exhibit non-trivial MPO symmetries [5].
The set of MPO symmetries is finite and closed under multiplication, and their properties can
be described by the data of a UFC C [4,6]. Such MPO symmetries can then be used to construct
the different ground states of the string-net model on a torus, as well as its anyonic excitations
through an explicit construction of the Ocneanu tube algebra elements which form a basis
for Z(C), the monoidal center of C. Recently, these constructions have also been related to
subfactor theory concepts [7].
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The main question we want to answer in this work is the following: given some string-net
model D, what are its possible PEPS representations and the corresponding MPO symmetries?
We will show that the various consistency equations regarding the presence of MPO symmetries
C in a given PEPS representation of a string-net D amount to the various pentagon equations
in a (C,D)-bimodule category M, and that explicit representations of these tensors can be
obtained using the associators of this bimodule category. In this way, we provide a framework
that allows for a unified treatment and generalisation of known PEPS representations for quan-
tum doubles, twisted quantum doubles and string-nets, and hence provides an important step
into the realisation of a general “fundamental theorem” of PEPS [8].

Different PEPS representations of the same string-net model D should be locally indistin-
guishable, as the local physical properties are completely fixed upon specification of D. We
make this explicit by defining an MPO intertwiner that acts as an interface between two dif-
ferent PEPS representations, which can be pulled freely through the lattice and therefore has
no effect on the local observables of the PEPS. Such an MPO intertwiner can be thought of as
a generalisation of a virtual gauge transformation of the PEPS, and provides more insight into
the precise nature of different PEPS representations that locally describe the same state.

The different torus ground states of these representations can be explicitly constructed us-
ing the MPO symmetries C, which depends on the representation under consideration. There-
fore, for these different MPO symmetries C1,C2, ... to describe the same ground state space, we
need a 2-Morita equivalence between the fusion categories C1,C2, ... which can be guaranteed
by requiring the bimodule category describing the relevant tensors to be invertible. We provide
a new necessary condition on the associators of such a bimodule category as a reformulation
of MPO-injectivity [5], a necessary requirement for describing topologically ordered systems
with tensor networks.

Bimodule categories have previously been shown to be the relevant mathematical struc-
ture governing the properties of domain walls between two different string-net models [9], of
which the case of a string-net on a manifold with boundaries is a special case. Using the more
general PEPS representations for string-nets mentioned above, we define explicit tensor net-
work representations for these boundaries and domain walls. While these features have been
fully understood abstractly in the setting of category theory [9–13], tensor networks allow
to devise actual tensors with all required properties and put those to work on the computer.
This situation is similar to the difference between 6j symbols and 3j symbols in group theory:
while 6j symbols are sufficient to think about the structure of representations, we need the
Clebsch-Gordan coefficients to build effective models realizing those symmetries. Understand-
ing boundaries and domain walls in this way is especially relevant in the context of topological
quantum computation [14], since it is expected that it is much simpler to design physical sys-
tems with open boundary conditions rather than having to engineer the physical system in
such a way that it effectively has the topology of a torus. Furthermore, these models show
a much richer excitation spectrum in the presence of boundaries and domain walls, which in
turn implies a larger possible gate set for such a topological quantum computer [15,16].

We conclude with showing that these more general PEPS representations of string-net
models, as well as the MPO symmetries and intertwiners can be understood in the framework
of Turaev-Viro state-sum models. We show that the PEPS can be interpreted as a Turaev-Viro
construction on a particular three-manifold, generalising a relation that has previously been
reported in [17]. The benefit of framing these tensor network constructions in this way is
twofold: on one hand, it allows one to prove properties of these tensor networks using TFT
arguments, of which the relation between MPO-injectivity and Morita equivalence is an exam-
ple. On the other hand we hope that this formulation will allow readers who are familiar with
Turaev-Viro constructions to better understand these particular tensor networks and enrich the
computational power for Turaev-Viro models with tensor network methods.

3

https://scipost.org
https://scipost.org/SciPostPhys.10.3.053


SciPost Phys. 10, 053 (2021)

2 MPO symmetries

As mentioned in the introduction, topological order in a (2+1)D tensor network state requires
the presence of virtual MPO symmetries that can be moved through the lattice. These MPO
symmetries correspond to the Wegner-Wilson loop operators in string-net models, with the
key difference that they act purely on the virtual level of the PEPS tensors rather than on the
physical degrees of freedom. An important consequence of this is that these virtual MPO sym-
metries are unchanged when perturbing the state with some operator on the physical level, as
opposed to the Wegner-Wilson loop operators which have to be dressed under such a pertur-
bation [18]. In particular, these virtual symmetries also survive the dimensional reduction of
the (2+1)D state to a 2D classical partition function by projecting out the physical degrees of
freedom. Partition functions constructed in this way are expected to provide a description of
critical lattice models governed by conformal field theories in their continuum limit [19, 20].
In this case, the MPO symmetries provide a lattice version of topological defects, which have
been shown to encode symmetries and dualities of two-dimensional rational conformal field
theories a long time ago [21]. The symmetries encoded by these defects commute with all
chiral symmetries of the conformal field theory.

In general, we expect those symmetries which are encoded in one-dimensional structures
to be particularly robust, i.e. they are topological in nature and can be continuously deformed.
In the situation considered here, the MPO symmetries can be pulled through the PEPS tensors
which are located at the location of the physical degrees of freedom of the spin model. This
motivates the pulling-through condition:

=
. (1)

Here the oriented black lines represent the virtual legs of the PEPS tensor and thus the external
legs of the MPO tensor, while the red lines are the internal legs of the MPO tensor (see Appendix
A.3). Thus the MPO tensor itself is situated at the intersection between a red and black line,
while the PEPS tensor is situated at the point at which three oriented black lines join and meet
a physical leg (which is sticking out of the page), hence both the PEPS and MPO tensor are
associated to four-valent vertices. This structural similarity will be heavily used later on. The
pulling-through condition needs to be satisfied for each value of the physical index of the PEPS
tensor. The Hilbert spaces associated to the physical index of the PEPS, to the virtual index of
the PEPS and to the internal index of the MPO are respectively called H, V and W , and will be
specified in Eqs. (15) – (17) below. For fixed H and V , the space W will of course still depend
upon the MPO under consideration.

At first instance, such symmetry MPOs appear as closed loops and thus act as an operator
on a tensor product of PEPS virtual indices. We jump back and forth between the closed MPOs
and the individual MPO tensors. The closed objects are invariant under gauge transforms
on the internal MPO index, while the pulling-through equation transforms covariantly under
such a transformation. Such a gauge transform can be used to bring the MPO tensor in a block
diagonal form, i.e. a direct sum of injective MPO tensors. At the level of the closed MPO, this
implies that it is a (regular) sum of the operators associated with the injective MPO tensors,
which themselves are also only defined up to a gauge transform. We now assume that there is
a finite set of (isomorpism classes of) injective MPO tensors that satisfy Eq. (1), and any MPO
tensor satisfying it can be decomposed as a direct sum thereof. We label (representatives of)
these injective MPO tensors using a and denote the corresponding closed MPO by the symbol
Ôa.

Clearly, the MPO tensor associated with the product of any two such MPOs also satisfies
Eq. (1) and can thus be decomposed as a direct sum (at the level of the tensors) or a sum (at
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the level of the operators) of our basis of injective MPOs. We can therefore restrict to work
only with the basis of injective MPOs Ôa and thereby obtain

Ôa Ôb =
∑

c

N c
ab Ôc ⇐⇒

a

b =
∑
c

N c
ab

c , (2)

with non-negative integers N c
ab, implying that the set of MPOs form a fusion ring. 1 In order

to be able to define an idempotent color, we promote this structure to an algebra over C by
allowing for arbitrary complex linear combinations of the basis elements. In terms of the
closed MPOs, this amounts to the presence of an additional virtual tensor, consisting of the
expansion coefficients and commuting with the MPO tensor, in the trace in expression (69)
that associates the operator Ô to an MPO tensor.

At the level of the MPO tensors, the decomposition (2) is established by the fusion tensors
X c,m

ab that satisfy the zipper (i.e. intertwining) condition

=
a

b
c

a

b
cm m

, (3)

where the tensor X c,m
ab is situated at the crossing of the three oriented red lines with m= 1, 2, ...,

N c
ab. The existence of these fusion tensors is guaranteed by the fundamental theorem of MPOs,

which is a straightforward extension of the same theorem for MPS (see Appendix A for details);
it states that two MPO tensors that generate the same MPO for any number of sites must be
related by a gauge transformation on the internal MPO indices. This theorem is very straight-
forward to prove using the Cauchy-Schwarz inequality [22], but applied in this context plays a
crucial role in translating the global multiplication property of these MPOs to local conditions
on the MPO tensors. The multiplication of MPOs is associative, i.e. we have

(Ôa Ôb) Ôc = Ôa (Ôb Ôc) . (4)

At the level of the fusion tensors this imposes the recoupling identity [6]

d b

c

a

=
∑
f,mn

(
0F abc

d

)f,mn

e,jk
d b

c

a
e

f
m

n
j

k

, (5)

where 0F describes the basis transformation between the two fusion trees. This new quantity
0F does not depend on the internal space. From this definition, it follows that it must satisfy
a pentagon identity, which expresses the fact that the following two composite recoupling

1 We may formalize the so obtained structure by considering a fusion category which has MPO tensors as objects
and intertwiners between MPO tensors as morphisms. The MPOs are then associated with isomorphism classes of
objects, and the injective MPOs with isomorphism classes of simple objects. The decomposition (2) realizes the
tensor product of simple objects at the level of isomorphism classes.
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procedures are equivalent:

e

a

b

c

d

a

b

c

d

e

a

b

c

d
e

e

a

b

c

d

e

a

b

c

d

g
f

f

h

h
i

g

j j

i

0F

0F

0F 0F 0F

m
l

k

o

k

n

q
p

n

r
t

qr
s

m

.

Explicitly the pentagon identity for 0F reads
∑

o

�

0F f cd
e

�h,no
g,lm

�

0F abh
e

�i,pq
f ,ko =

∑

j,rst

�

0F abc
g

� j,rs

f ,kl

�

0F a jd
e

�i,tq
g,sm

�

0F bcd
i

�h,np
j,r t . (6)

The simplest and first studied case of MPO symmetries are those where they are products
of (unitary) group representations, i.e. the internal MPO space W is trivial (one-dimensional).
The external MPO Hilbert space, which is the virtual PEPS space V , can in that case be decom-
posed into a direct sum of irreducible representations of the group, on which the MPO tensors
thus act block-diagonally, by using a suitable choice of basis of V . Also in the general case it
is useful to simultaneously block diagonalise all possible operators on V that appear in this
set of MPOs, i.e. when interpreting the MPO tensors as operator-valued matrices, one should
collect all operators appearing in those matrices for each of the injective MPO tensors a. These
operators generate a subalgebra of End(V) that can be block diagonalised and gives a direct
sum decomposition V ∼=

⊕

αVα, where we label the different blocks with Greek letters α,β , ...
As by definition the MPOs act block-diagonally on the subspaces Vα, all of the above equa-

tions remain valid when restricting the external MPO index to the subspaces Vα. In particular,
the pulling-through condition [Eq. (1)], which holds for arbitrary (direct) sums of the injective
MPO tensors, can, for each value of the external index, be interpreted as a vertical intertwining
relation between the horizontal concatenation of two MPO tensors (i.e. contracted along the
internal MPO dimension) and a single MPO tensor. It thus makes sense to identify a basis of
linearly independent fusion tensors Uγ,k

αβ
satisfying

α β

γ

α β

γ

=k
k

, (7)

with k = 1, ..., Nγ
αβ

a label for the linearly independent fusion tensors Uγ,k
αβ

situated at the

crossing of the three oriented black lines, and Nγ
αβ

the dimension of this fusion space. This

relations holds, with fixed fusion tensors Uγ,k
αβ

, for every MPO, both for the set of injective MPO
tensors as well as for any direct sum of them. As fusion of three concatenated MPO tensors
must again be associative, we obtain an associativity condition for the fusion tensors Uγ,k

αβ

=
∑
µ,mn

(
4Fαβγδ

)ν,jk
µ,mn

α β γ

δ

µν

α β γ

δ

j

k n
m

, (8)
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with an associator 4F that also satisfies a pentagon relation:
∑

o

�

4Fηγδρ

�µ,no

λ,lm

�

4Fαβµρ

�ν,pq

η,ko
=
∑

κ,rst

�

4Fαβγ
λ

�κ,rs

η,kl

�

4Fακδρ

�ν,tq

λ,sm

�

4Fβγδν

�µ,np
κ,r t . (9)

The set of labels α,β ,γ, ... can in general be completely different from the labels a, b, c, ...; in
particular, there is no need to identify 4F with the associator 0F we defined earlier.

In the most general case, identical blocks αmay appear several times in the decomposition
of V , and denoting these degeneracies as nα, a more general way to write this decomposition
is as V ∼=

⊕

α

⊕nα
µα=1 Vα ∼=

⊕

αVα ⊗Cnα , where the operators in the MPO tensor thus act as
the identity on the degeneracy spaces Cnα . In order for the PEPS tensors to satisfy the pulling-
through condition [Eq. (1)] for every value of the physical index, the PEPS tensor should itself

be constructed as a linear map from the joint fusion spaces
⊕

α,β ,γC
Nγ
αβ⊗Cnα⊗Cnβ⊗Cnγ to the

physical space H. Put differently, for every value of the physical index, the PEPS tensor acts on
the virtual space V ⊗V ⊗V as a linear combination (over α, β , γ and k) of the different fusion
tensors Uγ,k

α,β multiplied with a arbitrary tensor on the degeneracy spaces Cnα⊗Cnβ ⊗Cnγ . This
is similar to how MPS or PEPS tensors with group symmetries are constructed [23,24], except
that here the physical index is unaffected by the group action as the symmetry is purely virtual.

Henceforth we set nα = 1 and omit the corresponding tensor product factors, as the gen-
eralisation is straightforward. Furthermore, this minimal case is sufficient to understand the
RG fixed point. Indeed, when the linear map that defines the PEPS tensor is isometric, which
requires that

H ∼=
⊕

α,β ,γ

CNγ
αβ , (10)

or at least that the physical space H contains the joint fusion spaces on the right hand side as
a subspace, the associativity condition in Eq. (8) can be moved to the physical level, where it
is one of the defining relation of the Levin-Wen string-net models. Ultimately, this associativity
condition can be interpreted as a renormalization group (RG) transformation at the physical
level, and thus expresses that the PEPS is an RG fixed point.

Contracting such an RG-invariant PEPS tensor and its conjugate along their physical index
(which cancels the isometric linear map) then defines completely positive maps T and S that
implement a fine- and coarse-graining of the corresponding MPOs

S

T , (11)

and thus express scale invariance of the MPOs. In particular, this also holds for the projector
MPO

∑

a da Oa/D
2, which is positive definite and thus represents a scale-invariant density

matrix; here D2=
∑

a d2
a , with the numbers da being the quantum dimensions, as defined

in Appendix B. The necessary existence of such completely positive maps for scale-invariant
density matrices was proven in Ref. [25].

Henceforth, we identify H =
⊕

α,β ,γC
Nγ
αβ and just take the PEPS tensor to be equal to Uγ,k

αβ
:

α β

γ

k=
⊕

α,β,γ,k
, (12)

whereby the physical index takes values in (α,β ,γ, k). The structure of the vector spaces V
and W (depending on specific injective MPOs of type a) is defined in the next section.
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2.1 Bimodule categories

At this point, we have illustrated that MPO symmetries of PEPS define two fusion structures
(more correct terminology: monoidal structures) corresponding to horizontal fusion of MPO
products, and vertical fusion related to MPO scale transformations. They thus encode the alge-
braic data of two fusion categories C and D. A particular prescription for such MPO tensors can
be constructed by also invoking the algebraic data associated with a (C,D)-bimodule category
M (see appendix B)2. In particular, the pulling-through condition, the zipper condition, the
two recoupling identities and the two pentagon equations coincide with the different pentagon
equations of C, D and M if we make the following identifications:

j

k

n m

a

b

c

A

B

C

:=
�

dadb

dc

�
1
4

�

1F abC
A

�B,k j
c,mn

p

dB

,

j

k

nm

a

b

c

A

B

C

:=
�

dadb

dc

�
1
4

�

1F abC
A

�B,k j
c,mn

p

dB

, (13a)

aα

m

j

n

k

A B

DC

:=

�

2F aCα
B

�D,nk
A, jm

p

dAdD

, aα

n

j

m

k

A B

DC

:=

�

2F aCα
B

�D,nk
A, jm

p

dAdD

, (13b)

α β

γ
A

C

B

j n

m

k :=

�

dαdβ
dγ

�
1
4

�

3FAαβ
B

�γ,km

C , jn
p

dC

,
α β

γ
A

C

B

j n

m

k :=

�

dαdβ
dγ

�
1
4

�

3FAαβ
B

�γ,km

C , jn
p

dC

, (13c)

with

{a, b, c, ...} ∈ IC , {A, B, C , ...} ∈ IM and {α,β ,γ, ...} ∈ ID,

where IC , IM and ID are sets of representatives for isomorphism classes of simple objects in C,
M and D respectively. Here, 1F , 2F and 3F are the associators of M as a left C-module category,
a (C,D)-bimodule category, and a right D-module category, respectively; more details are
provided in appendix B. The notation used to represent these tensors is a generalization of the
triple line notation used in [2,3]; to interpret them in the usual tensor network sense it suffices
to group the three lines and their multiplicity label into a single index, see appendix A.4.
Using these definitions, the recoupling identity for the fusion tensors, the zipper equation, the
pulling-through condition and the recoupling identity for the PEPS tensors are identified with
pentagon equations (P1), (P2), (P3) and (P4) respectively (see Appendix B.4). Schematically,
this identification amounts to

' = = '

1F 1F = 0F 1F 1F 2F 1F = 1F 2F 2F 2F 3F = 3F 2F 2F 3F 3F = 4F 3F 3F

, , , ,

2A bicategorical structure also controls full local rational conformal field theory [26, 27]. In [26], weak Hopf
algebras are proposed as the underlying algebraic structure; this framework is more restrictive than the categorical
setup we are using (and omits the pivotal structure on the module category). The notation we use for the fusion
symbols of a two-object bicategory agrees with the notation in [26] and with the literature on weak Hopf algebras
[28].
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where we have omitted all labels and sums for simplicity. The quantum dimensions da, dA, and
dα are positive real numbers associated to the simple objects of C, M and D, respectively3. We
adopt the convention of [4], which involves a factor of a quantum dimension for every closed
loop in a tensor network contraction. The presence of such factors can be avoided by locally
absorbing these contributions into the definition of the relevant tensors, as was done in [6];
however, this requires prior knowledge of the lattice geometry, and for the sake of generality
we do not use that approach. The quantum dimensions also appear in the definitions (13)
because we not only want the pulling through property to hold for the specific case of equation
(1), but also for more general cases such as

=

a a

. (14)

To achieve this, we must require that the fusion categories C and D have a spherical pivotal
structure. One can then show that using the above definitions the left- and right-handed MPO
tensors of (13b) are related by a gauge transformation on the internal legs, which ultimately
allows one to prove more general cases of the pulling-through property. For details, we refer to
appendix C. The vector spaces associated with the different indices can depend on orientation,
but are of the general form

V =
⊕

α∈ID

⊕

A,B∈IM

HomM(A/α, B), (15)

for the virtual PEPS index, and

W =
⊕

A,B∈IM

HomM(a .A, B) (16)

for the internal index of an injective MPO of type a ∈ IC , or with an additional direct sum
over a in a more general MPO. Here, / and . denote the right and left action of D and C,
respectively, on the bimodule category M. The physical space of the PEPS tensor is similarly
rewritten as

H =
⊕

α,β ,γ∈ID

HomD(α⊗ β ,γ). (17)

2.2 MPO intertwiners

Given a string-net model based on the fusion category D, a PEPS representation can be deter-
mined by choosing a right D-module category M and using the corresponding associator 3F
in definition (13c). Different choices of right D-module categories M lead to different PEPS
representations of the same string-net model D. Because the underlying string-net model is
the same, these PEPS wave functions are states in the same Hilbert space and can only differ
globally; locally, they are indistinguishable. We can also choose different representations in
different regions of the lattice; this situation is depicted in Figure 1a for two choices of right
D-module categories M1 and M2. The two PEPS representations, which we label PEPSM1,D
and PEPSM2,D, are separated by an MPO intertwiner (drawn in purple). The requirement that

3The existence of dimensions for objects in the fusion categories C and D requires them to be spherical fusion
categories (see appendix C). A (C,D)-bimodule category M does not come with an intrinsic duality, and therefore
one can not a priori define dimensions for its objects. However, one can take the dual of an object A∈M to be the
object A in the opposite category Mop where we identify HomMop(A, B) with HomM(B, A). Mop has the natural
structure of a right C-module and left D-module category, which is unique because C and D are pivotal. Using
Mop, one can define dimensions for objects in M; see e.g. [29].
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PEPSM2,D

PEPSM1,D

C2

C1

(a)

PEPSM,D

PEPSD,D

C

D

(b)

Figure 1: (a) Two PEPS representations for the ground state of the same string net
model D, determined by module categories M1 and M2. (b) For the particular
case that M1=D and M2=M, explicit tensors can be constructed in terms of the
F -symbols of M as a (C,D)-bimodule category.

these two representations should be locally indistinguishable then translates to the fact we
should be able to move these MPO intertwiners freely through the lattice.

The choice of right D-module category also determines the explicit representations of the
MPO symmetry algebra C. As argued above, in order for the MPO symmetries C to describe the
excitations of the string-net D we should have a Morita equivalence between C and D which
can be guaranteed by choosing C = D∗M, the dual of D with respect to M. For the situation
depicted in Figure 1a, we get MPO symmetries C1 and C2 described explicitly by tensors deter-
mined by the 2F symbols of a (C1,D)-bimodule category M1 and (C2,D)-bimodule category
M2, respectively. Since the product of an MPO symmetry with an MPO intertwiner is also
an MPO intertwiner, the fundamental theorem again dictates that there should exist fusion
tensors that decompose this product into a basis of injective MPO intertwiners. These fusion
tensors can then be used to start and end MPO symmetries on MPO intertwiners.

For the specific case of M1 = D and M2 = M depicted in Figure 1b, we can find ex-
plicit representations of the MPO intertwiners (now drawn in blue) and corresponding fusion
tensors. These tensors must satisfy various consistency conditions. First of all, the MPO in-
tertwiners should be moveable through the lattice so as to guarantee that it is not locally
observable:

=
A A

α β

γ

α β

γ

k k

. (18)

The fusion tensors for multiplying an MPO intertwiner with an MPO symmetry satisfy

=
a

B
C

a

B
Cm m

α
α

(19)

for left multiplication and

=
A

β
C

A

β
Cm m

α
α

(20)

for right multiplication. Fusion of MPO symmetries with MPO intertwiners should be associa-
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tive:

=
∑
C,mn

(
1F abB

A

)C,mn

c,jk

a b

BA
c
j

k

a b

BA
C

n m
, (21)

=
∑
D,mn

(
2F aBαA

)D,mn
C,jk

α

a

BA
C

a

α

BA
D

jk mn

, (22)

=
∑
γ,mn

(
3FBαβA

)γ,mn
C,jk

αβ

BA
γ

αβ

BA C
k j

m

n

. (23)

The associativity equations correspond to those of a bimodule category, showing that the in-
jective MPO intertwiners can be labeled by simple objects in a (C,D)-bimodule category M,
as already indicated by the notation. These consistency conditions can be satisfied by making
the following identifications for the above tensors and their inverses:

γ
Cj

n

k

m

α

A B

β

:=

�

3F Cαγ
B

�β ,nk

A, jm
Æ

dAdβ
,

γ
Cj k

α

A B

β

m

n

:=

�

3F Cαγ
B

�β ,nk

A, jm
Æ

dAdβ
, (24a)

j

m kn

Da

C

α

A

B
:=
�

dadB

dC

�
1
4

�

2F aBα
A

�D,k j
C ,mn

p

dD

,

j

m nk

Aa

B

α

D

C
:=
�

dadB

dC

�
1
4

�

2F aBα
A

�D,k j
C ,mn

p

dD

, (24b)

k

m jn

γβ

C
B

α

A

:=

�

dAdβ
dC

�
1
4

�

3FAβα
B

�γ,k j

C ,mn
Æ

dγ
,

k

m n

α
β

A
B

γ

Cj
:=

�

dAdβ
dC

�
1
4

�

3FAβα
B

�γ,k j

C ,mn
Æ

dγ
, (24c)

such that the consistency conditions coincide with the following pentagon equations in a
(C,D)-bimodule category M:

= = =

' ' '

3F 3F = 3F 3F 4F 3F 2F = 2F 2F 3F 3F 3F = 3F 3F 4F

1F 2F = 1F 2F 2F 3F 2F = 2F 2F 3F 3F 3F = 3F 3F 4F

, , ,

, , .

The more general case of Figure 1a requires more general F symbols than what we can get from
a bimodule category; we refer to Section 5 for more details. We stress that these different PEPS
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representations of the same string-net model D are only locally indistinguishable. Indeed, if
we define these PEPS on a manifold with a non-trivial topology these different representations
may represent different ground states. To see this explicitly, consider two PEPS representations
|ψ1〉 and |ψ2〉 of the string-net model D on a torus:

|ψ1〉=

PEPSD,D

, |ψ2〉=

PEPSM,D

. (25)

We can insert a small region of a different representation PEPSM,D in the state |ψ1〉 by inserting
a closed loop of MPO intertwiner labeled by A at the cost of multiplying with the quantum
dimension dA associated to this MPO intertwiner. We can now grow this closed loop so as to
cover almost the entire torus by PEPSM,D, and then reduce the so obtained loop to a network
of MPOs whose edges are labeled by simple objects in C:

PEPSM,D

A

PEPSD,D

= PEPSD,D

PEPSM,D

A

PEPSM,D

PEPSM,D PEPSM,D

=
∑

a,b,c

TA
abc

PEPSM,D

c

c

aa b

(26)
where TA

abc are coefficients for the tube algebra elements built using MPOs in C. This means
that, unless all MPOs a, b, c in the final result are labeled by the identity object, |ψ1〉 and |ψ2〉
are not the same state. Generically, this is indeed what happens; we will illustrate this with
a simple example using the toric code in Section 4. An important observation here is that
even though TA

abc depends on the initial choice of MPO intertwiner A, the resulting ground
state is the same for all these choices up to a factor. This is related to the fact that the torus
ground states are characterised by the central idempotents of the tube algebra, which can be
non-uniquely decomposed into simple idempotents that each represent the same ground state,
an observation made in [6]. A more detailed explanation requires the explicit computation of
TA

abc , which we leave for future work.

2.3 2-Morita equivalence and MPO injectivity

The ground states on a torus in a string-net model D are well understood. They are described
by the monoidal center Z(D) [1]. At the same time, these ground states can be understood as
idempotents of the tube algebra [4,6] associated to the MPO symmetries C, which is an explicit
construction of the monoidal center Z(C). Therefore, in order for the MPO symmetries C to
correctly describe the ground states of some string-net model D, we need the monoidal centers
of these two fusion categories to be equivalent, Z(D)' Z(C). Fusion categories D and C with
this property are said to be 2-Morita equivalent. It can be shown that D and C are 2-Morita
equivalent if and only if there exists a (C,D)-bimodule category M satisfying

M�D Mop ' C and Mop �C M'D , (27)
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with �C and �D denoting the Deligne product relative to C and D respectively 4. Such a
bimodule category M is called an invertible (C,D)-bimodule category [32]. If we use the
associators of this invertible bimodule category to define the PEPS, MPO and fusion tensors, the
MPO symmetries C are guaranteed to correctly describe the ground state subspace of the string-
net D. These relations can be interpreted as the requirement that two PEPS representations
PEPSM,D and PEPSD,D describe the same ground state manifold, as it ensures that there is
an invertible isomorphism between the two tube algebras as constructed from their respective
MPO symmetries C and D.

The standard definition of an invertible bimodule category in terms of the equivalences
(27) is not practical for explicit computations. For our purposes, we would rather like to have
a condition on the associators of a given bimodule category that allows one to decide whether
or not it is invertible. This is a well posed problem, as the bimodule category is completely
fixed upon specifying its associators; to our knowledge it has not yet been assessed in the
literature.

In [5], a condition relating the MPO symmetries and the PEPS tensors was derived that
ensures that the ground state degeneracy of the PEPS on a particular manifold does not depend
on the system size, a necessary requirement for a topologically ordered state at an RG fixed
point. This condition, which is known as MPO-injectivity, requires that the PEPS tensor, when
viewed as a map from its virtual spaces to the physical space, is invertible on a subspace
provided by some MPO. Applied to the case under consideration in this paper, this condition
can be written as

1 2
4 5

6
3

1

4 5

2

6

3

=
∑
a

da
D2

a

, (28)

where the physical indices of the PEPS and its pseudoinverse are contracted and we have
numbered the legs of the PEPS and MPO tensors to indicate the explicit identification between
the left- and right-hand side. Previously, this equation was shown to hold for the case where
we define the PEPS and MPO tensors using D as a (D,D)-bimodule category, as in that case
it coincides with the pentagon equation. Using the associators of a generic (C,D)-bimodule
category M however, this equation can no longer be identified with any of its pentagon equa-
tions, and it is in fact straightforward to describe bimodule categories for which this equation
does not hold.

One can show that the equality (28) holds whenever the (C,D)-bimodule category M
is invertible, meaning that the MPO-injectivity condition is a necessary requirement on the
associators of a bimodule category for it to be invertible. Whether or not this is also a sufficient
condition is left as an open question.

3 Boundaries and domain walls

The generalised PEPS representations discussed above now also allow us to describe domain
walls between different string-net models D1 and D2. Following Kitaev and Kong [9], domain
walls between two such models can be constructed using a (D1,D2)-bimodule category M.
These domain walls satisfy a set of consistency equations which can be thought of as general-
isations of the Levin-Wen string-net condition in the form of Eq. (8) in the presence of such a

4The relative Deligne product can be understood at the level of simple objects as the Karoubi envelope of a
structure known as the ladder category, i.e. Mop �D M' Kar(LadD(Mop,M)). This formulation of the Deligne
product can be worked out in the diagrammatic language following [30, 31] and is particularly suited for tensor
network calculations.
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PEPSM2,D2PEPSM1,D1

M
Z(D1) Z(D2)

(a)

PEPSM,D2PEPSD1,D1

M
Z(D1) Z(D2)

(b)

Figure 2: (a) A domain wall between two string-net models D1 and D2, described
by PEPSM1,D1

and PEPSM2,D2
respectively. (b) For the particular case that M1=D1

and M2=M, explicit tensors can be constructed in terms of F -symbols of a (D1,D2)-
bimodule category M.

domain wall. A priori, we can consider any PEPS representation of the string-nets D1 and D2,
which is the situation depicted in Figure 2a. By restricting to the more specific case of Figure
2b however, we will be able to find explicit PEPS representations of the relevant domain wall
tensors using the associators of a (D1,D2)-bimodule category M. The general case of Figure
2a requires a further generalisation of these associators, which we briefly discuss at the end of
Section 5.

Starting on the left side of the domain wall we have a string-net model D1 with the usual
bulk Levin-Wen recoupling condition:

α1

β1 γ1

δ1
µ1

α1

β1 γ1

δ1

ν1
j

k
m n=

∑
µ1,mn

(
0Fα1β1γ1
δ1

)ν1,jk
µ1,mn

, (29)

with α1,β1, ... labelling simple objects in D1. Boundaries for this model are described by
module categories M over D1 with the associativity condition

=
∑
γ1,mn

(
1Fα1β1B
A

)C,jk
γ1,mn

α1

β1
B

A

γ1α1

β1

B

A

C
k

j
m n

. (30)

Here, M is a left D1-module category with simple objects labeled by A, B, .... A domain wall
can be described by having M also be a boundary for a string-net model D2 with simple
objects α2,β2, .... This boundary is a right D2-module category, which requires the following
associativity conditions:

=
∑
C,mn

(
3FBα2β2

A

)γ2,jk
C,mn

m

n
β2

α2
B

A

γ2 β2

α2

B

A

Cjk

(31)

=
∑
µ2,mn

(
4Fα2β2γ2
δ2

)ν2,jk
µ2,mn

m

n
γ2

β2α2

δ2

ν2
µ2jk

γ2

β2α2

δ2 (32)
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The requirement that M is a domain wall then becomes

=
∑
C,mn

(
2Fα1Bα2

A

)D,jk
C,mn

α2

α1

B

A

C
α1

α2

B

A

D
j

k

m

n

. (33)

A tensor network representation of these domain wall structures for the specific case in Figure
2b is then given by the following assignments:

α1

β1 γ1

δ1

ν1

µ1

j

n

mk :=

�

dα1
dβ1

dγ1

�
1
4

�

0Fδ1α1β1
µ1

�γ1,km

ν1, jn
Æ

dν1

,
α1

β1γ1

δ1

ν1

µ1

j

n

m k :=

�

dα1
dβ1

dγ1

�
1
4

�

0Fδ1α1β1
µ1

�γ1,km

ν1, jn
Æ

dν1

,

(34a)

j

m k

n

β1

α1

C
γ1

A

B

:=

�

dγ1
dB

dA

�
1
4

�

1Fα1γ1B
C

�A,kn

β1,mj
Æ

dβ1

, m k C

B

A

n

j

α1

β1

γ1 :=

�

dγ1
dB

dA

�
1
4

�

1Fα1γ1B
C

�A,kn

β1,mj
Æ

dβ1

,

(34b)

j

mk

n

D

CA

B
α2α1 :=

�

dBdα2

dA

�
1
4

�

2Fα1Bα2
C

�A,kn

D, jm
p

dD

,

n

mk

j

C

D

α2

B

A
α1 :=

�

dBdα2

dA

�
1
4

�

2Fα1Bα2
C

�A,kn

D, jm
p

dD

,

(34c)

α2

β2

γ2

A

C

B

j

n

m k :=

�

dα2
dβ2

dγ2

�
1
4

�

3FAα2β2
B

�γ2,km

C , jn
p

dC

,
α2

β2

γ2

A

C

B

j

n

mk , :=

�

dα2
dβ2

dγ2

�
1
4

�

3FAα2β2
B

�γ2,km

C , jn
p

dC

,

(34d)

such that equations (29)-(33) become the following bimodule pentagon equations in a (D1,D2)-
bimodule category M:

'

''

'

'

0F 0F = 0F 0F 0F 1F 1F = 1F 0F 1F 2F 1F = 2F 1F 2F

2F 3F = 3F 2F 2F 3F 3F = 4F 3F 3F

, , ,

, .
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4 Examples

In this section we explicitly construct the various tensors discussed above for specific instances
of the categories D, M and C. An explanation of the relevant bimodule categories can be
found in Appendix D.

4.1 The toric code

The simplest and most well-known example of a system exhibiting topological order is the toric
code, which is a Z2 quantum double model. We denote the elements of Z2 as g ∈ {+1,−1}.
We will consider the fusion category VecZ2

of Z2-graded vector spaces. The simple objects of
this category are one-dimensional Z2-graded vector spaces which we can label by the group
elements of Z2, and the tensor product is given by the group multiplication. Since Z2 is an
abelian group, its irreducible representations are 1-dimensional and its representation cate-
gory Rep(Z2) is monoidally equivalent to VecZ2

.

D =M= C = VecZ2

The first representation of the toric code PEPS, MPO and fusion tensors can be obtained by
choosing D as a module category over itself, and correspondingly also taking C =M = D.
This representation is the one studied in [4,6] and has the following explicit tensors:

g2 g3

g23
g1

g12

g123

1 1

1

1 = 1, g1
g3

1

1

1

1

g12 g123

g23g2

= 1,

1

1

1 1
g1

g2

g12

g123

g23

g3

= 1, (35)

where here and henceforth g12 := g1 g2 and as usual we only define non-zero tensor entries.
As all fusion spaces are 1-dimensional we simply denote the multiplicity label by 1. In this
representation, the non-trivial MPO symmetry labeled by g1 = −1 is a tensor product of local
operators that act as Pauli σx operators on the virtual loops of the PEPS representation.

D = VecZ2
,M= Vec,C = Rep(Z2)' VecZ2

A second representation of the toric code PEPS, MPO and fusion tensors can be obtained by
choosing M= Vec, i.e. the category of finite dimensional vector spaces. This category has only
one simple object and lines labeled by this object will be drawn as dotted lines. We obtain an
invertible (C,D)-bimodule category M by choosing C = Rep(Z2)' VecZ2

. This representation
is the one used in [33] and has the following explicit tensors:

g1 g2

g12

1 1

1

1 = 1, g2
g1

1

1

1

1 =

¨

1, g2 = +1,

g1, g2 = −1,

1

1

1 1
g1

g2

g12 = 1. (36)

In this representation, the non-trivial MPO symmetry labeled by g1 = −1 is a tensor product
of local operator that act as Pauli σz operators on the physical degrees of freedom of the PEPS
representation.
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4.1.1 MPO intertwiner between different PEPS representations

On the physical level, the two representations PEPSVecZ2
,VecZ2

and PEPSVec,VecZ2
are locally in-

distinguishable. This property can be made very explicit by the existence of the following MPO
intertwiner between these two representations:

g2
1

1

1

1

g1 g12

= 1,

1

1 11

g1

g2

=

¨

1, g2 = +1,

g1, g2 = −1,
1

1 11

g12g1g2 = 1, (37)

along with corresponding fusion tensors to allow MPO symmetries in the two representations
to start and end on an MPO intertwiner. The fact that these states are only locally the same
state and globally might represent different ground states on a torus is exemplified by the
following equality:

PEPSVecZ2,VecZ2

=
∑

g1,g2

PEPSVec,VecZ2

g2

g1

g2

g1

g12 , (38)

which can be obtained by a straightforward computation explained in Section 2.2. This im-
plies that without the presence of MPO symmetries, the two PEPS representations represent
different ground states on the torus.

4.1.2 Smooth and rough boundaries

It has long been known that the toric code admits two different types of boundary conditions if
we consider it on a manifold with boundaries [34]. These two boundary conditions are called
the smooth and rough boundary, and they differ in the effect they have on bulk excitations
approaching these boundaries. They can be understood in the general framework of string-
net boundaries as being represented by a domain wall to the vacuum, where the boundary
labels are given by a (VecZ2

, Vec)-bimodule category M. The two choices for such a bimodule
category are given by M = VecZ2

and M = Vec describing the smooth and rough boundaries
respectively. The PEPS representation of these smooth and rough boundary conditions is then
respectively given by

1

1 1

1

g12

g1

g2 g123

g3

g23

= 1, (39)

1

1 1

1

g12

g1

g2 = 1. (40)

Using these boundary conditions, one can explicitly compute what happens when excitations
approach a boundary, and for the case of the toric code it turns out that electric excitations
can condense on a smooth boundary, while magnetic excitations can condense on a rough
boundary [35]. This can be studied using the construction of the tube algebra using MPO
symmetries; we will explore this in detail in future work.
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4.2 The S3 quantum double

As a second example, let us consider the smallest non-abelian group, i.e. the permutation
group of three elements S3. We will consider the fusion category VecS3

of S3-graded vec-
tor spaces. The simple objects of this category are one-dimensional S3-graded vector spaces
which we can label by the group elements of S3, and the tensor product is given by the group
multiplication. S3 has three irreducible representations α ∈ {0,ψ,π} respectively correspond-
ing to the trivial, sign and two-dimensional irrep. We can consider the representation category
Rep(S3) as a fusion category with simple objects labeled by irreps and the tensor product given
by the fusion rules of these irreps. The quantum dimensions of these simple objects correspond
to the dimensions of the irreps, i.e. d0 = dψ = 1, dπ = 2. The non-trivial fusion rules in this
case are given by

ψ⊗ψ= 0, π⊗ψ=ψ⊗π= π, π⊗π= 0+ψ+π. (41)

D =M= C = VecS3

Similar to the toric code, a representation of the S3 quantum double PEPS, MPO and fusion
tensors can be obtained by choosing D as a module category over itself, and correspondingly
also taking C =M = D. This representation is again the one studied in [4, 6] and has the
following explicit tensors:

g2 g3

g23
g1

g12

g123

1 1

1

1 = 1, g1
g3

1

1

1

1

g12 g123

g23g2

= 1,

1

1

1 1
g1

g2

g12

g123

g23

g3

= 1, (42)

where the MPOs labeled by g now act as the left-regular representation Lg on the virtual loops
of the PEPS representation.

D = VecS3
,M= Vec,C = Rep(S3)

A second representation of the S3 quantum double PEPS, MPO and fusion tensors can be
obtained by choosing M = Vec. We obtain an invertible (C,D)-bimodule category M by
choosing C = Rep(S3). We obtain the following tensors:

g1 g2

g12

1 1

1

1 = 1, α
g

1

j

1

k = Dα(g)kj ,

i1

i2

i3 1
α1

α2

α3 =

�

dα1
dα2

dα3

�
1
4

Cα1α2α3
i1 i2 i3

.

(43)
This is the first example we encounter where the fusion spaces are not simply one-dimensional,
which is due to the fact that S3 has a two-dimensional irreducible representation π. The
MPOs are labeled by these irreducible representations, and the multiplication of two MPOs is
simply a tensor product since the external MPO index is one-dimensional. The fusion tensors
then are the Clebsch-Gordan coefficients intertwining the tensor product of two irreducible
representations.
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D =M= C = Rep(S3)

We now study a different string-net model by takingD = Rep(S3). By also choosingM= C = Rep(S3),
we obtain the following tensors:

α2 α3

α6

α1

α5

α4

1 1

1

1 =

�

dα2
dα3

dα6

�
1
4

�

Fα1α2α3
α4

�α6

α5
Æ

dα5

,

α1
α3

1

1

1

1

α5 α6

α6α2

=

�

Fα1α2α3
α4

�α6

α5
Æ

dα5
dα6

,

1

1

1 1
α1

α2

α5

α4

α6

α3

=

�

dα1
dα2

dα5

�
1
4

�

Fα1α2α3
α4

�α6

α5
Æ

dα6

.

(44)

This is the representation studied in [6]. We note that the MPO symmetries again form a rep-
resentation of Rep(S3), and therefore that the anyonic excitations of this PEPS representation
must be the same as the previous two PEPS representations. This is due to the fact that the
monoidal centers Z(VecS3

) and Z(Rep(S3)) are isomorphic, which is true for any group G and
its representations Rep(G).

D = Rep(S3),M= Vec,C = VecS3

The above string-net model admits another PEPS representation that can be obtained by choos-
ing M= Vec and C = VecS3

, giving the following tensors:

α1 α2

α3

i1 i2

i3

1 =

�

dα1
dα2

dα3

�
1
4

Cα1α2α3
i1 i2 i3

, g
α

k

1

j

1 = Dα(g)kj ,
1

1

1 1
g1

g2

g12 = 1.

(45)
This representation is equivalent to the one in [33], since the left-regular representation is just
the sum of all irreducible representations weighed by their dimension.

5 Turaev-Viro TFT, PEPS and MPO symmetries

The assignments made for the tensors in Equations (13) and (24) have been chosen in such
a way that the various consistency conditions on those tensors all amount to some pentagon
equation for a pair of fusion categories C and D together with a (C,D)-bimodule category
M. In this section we explain how the specific form of these tensors can be derived from a
Turaev-Viro state-sum construction of a 3d TFT. More precisely, the PEPS tensor network can
be shown to be an instance of such a 3d Turaev-Viro TFT on a particular three-manifold with a
choice of skeleton. Such a construction has already been performed in [17] for the particular
PEPS representation that is discussed in [2,3], which corresponds to the case that C=D with
M being D as a bimodule category over itself. We present the construction for the general
case of (C,D)-bimodule categories considered in this paper, freely using the formulation of
Turaev-Viro TFT given in [36] and extending it to the presence of a physical boundary.
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Let us first restate what the PEPS tensor network really represents. We consider an oriented
surface Σ with a cell decomposition ∆. For concreteness we take ∆ to be the honeycomb
lattice, but the construction works analogously for arbitrary cell decompositions including
cases where the vertices of the cell decomposition do not all have the same number of legs.
We recall from Section 2 that the Hilbert space H associated to the physical leg of the PEPS
tensor (13c) is given by the direct sum

H =
⊕

α,β ,γ∈ID

HomD(α⊗β ,γ) . (46)

Denoting by ∆0 the set of vertices of the cell decomposition, we can associate a Hilbert space
HΣ to the surface Σ and its decomposition ∆ by attaching a copy of H to every vertex:

HΣ =
⊗

v∈∆0

H . (47)

Placing a trivalent PEPS tensor at each of the vertices and contracting along the edges of ∆,
the PEPS tensor network describes a state in a “space of ground states” or “protected space”
H0
Σ⊆HΣ, the dimension of which depends on the topology of the surface Σ.

We are now going to show that the subspace H0
Σ is also provided by a Turaev-Viro con-

struction, and that we recover the PEPS representation (13c) from that construction. To do
so, we introduce the three-manifold

MΣ := Σ× [0, 1] . (48)

The geometric boundary ∂MΣ of MΣ is the disjoint union of two copies Σ×{0} and Σ×{1} of
the surface Σ. We regard Σ×{1} as a gluing boundary. This is the type of boundary that arises
when chopping a three-manifold into pieces; to such a boundary the Turaev-Viro TFT for D,
to be denoted as TFTD, assigns the vector space

TFTD (Σ) =H0
Σ . (49)

In contrast, the other partΣ×{0} of ∂MΣ is taken to be a physical or end-of-the-world boundary
(sometimes also called a brane boundary in the literature). On a physical boundary a boundary
condition must be specified. In the case of TFTD the elementary boundary conditions are
labeled by indecomposable right D-module categories [9, 37], which we will denote by M.
Note that M has a natural structure of a left module category over the “dual” of D with respect
to M, i.e. over the monoidal category C=D∗M of D-module endofunctors of M, whereby M
becomes a C-D-bimodule category. We think of MΣ as a cobordism

MΣ : ; → Σ, (50)

from the empty set to the gluing boundary Σ×{1}. To the empty set ; the theory TFTD assigns
the one-dimensional vector space C. Applying TFTD to the cobordism (50) thus yields a linear
map

TFTD (MΣ) : C→H0
Σ . (51)

To emphasize the difference between the gluing and the physical boundaries, it is perhaps
useful to consider what happens when we take both boundaries to be gluing boundaries. In
this case, we have a cobordism M ′Σ from one gluing boundary to the other; applying TFTD to
this cobordism yields a linear map TFTD

�

M ′Σ
�

: H0
Σ→H0

Σ. In contrast to the map (51), which
is described by the vector TFTD (MΣ) (1) ∈H0

Σ, the map TFTD
�

M ′Σ
�

is an operator which acts
on such a vector, and the corresponding tensor network object would be a projected entangled

20

https://scipost.org
https://scipost.org/SciPostPhys.10.3.053


SciPost Phys. 10, 053 (2021)

Σ× {0}

Σ× {1}

(a)

α
β

γ

B

A

C

Ve0

V ∗
e0

e0

e2 e1

e3

(b)

Figure 3: (a) A region of the three-manifold MΣ, where the surface Σ is endowed
with a honeycomb-lattice cell decomposition. The physical boundary is depicted in
green, the gluing boundary is white. (b) The assignment of state-sum variables to
the two types of plaquettes with their orientation, as well as the vector spaces Ve0

and V ∗e0
associated to half-edges of MΣ.

pair operator (PEPO). If instead we take both boundaries to be physical boundaries, then even
though the resulting three-manifold M ′′Σ has a non-empty boundary, it has to be treated as
a cobordism from the empty set to the empty set; applying TFTD to this cobordism yields a
linear map TFTD

�

M ′′Σ
�

: C→ C and thus a complex number. As a tensor network, the resulting
object would represent the inner product between two PEPS; it would not have any physical
degrees of freedom.

Once we are able to give an explicit description of TFTD on MΣ, the map (51) provides us
with a construction of a vector in the space H0

Σ. Such an explicit description is indeed provided
by the Turaev-Viro construction. For performing this construction we need several additional
ingredients. First, we fix a skeleton P for the three-manifold MΣ; the TFT will not depend on
this skeleton, but to most directly recover the PEPS description we choose a skeleton consisting
of prisms fitting with the cell decomposition∆ ofΣ. The skeleton P of MΣ is depicted in Figure
3; note that there are no vertices or edges on the gluing boundary. Secondly, we attach state-
sum variables α,β ,γ, ...∈ ID to the oriented plaquettes of the skeleton that lie in the interior
of MΣ (these are shaded blue in Figure 3b). There are also oriented plaquettes in the physical
boundary (shaded green in Figure 3b); to these we assign state-sum variables A, B, C , ...∈ IM,
with IM a set of representatives for the isomorphism classes of simple objects of M. It is
worth noting that there is an equivalent formulation of the Turaev-Viro construction in which
the state-sum variables are attached to edges rather than plaquettes; this is related to the
present construction by Poincaré duality. The formulation chosen here, which corresponds to
the exposition in [36], connects more directly to the PEPS formalism.

We think of an edge of P as consisting of two half-edges, each attached to one of the
two ends of the edge. To every oriented half-edge in P we associate a vector space given by
a morphism space involving the state-sum variables (in D or in M) that label the adjacent
faces, with the distinction between domain and codomain determined by the orientations of
the half-edge and of the faces. Specifically, if the edge is in the interior of MΣ, such as e0 in
Figure 3b, then the three adjacent faces have state sum variables in D, hence we have the
three simple objects α,β γ in D. Accordingly, the spaces assigned to the two half-edges are

HomD(α⊗β ,γ) =: Ve0
and HomD(γ,α⊗β)∼= HomD(α⊗β ,γ)∗ = V ∗e0

, (52)

respectively. For an edge on the physical boundary, such as the edges e1, e2 and e3 in Figure
3b, two adjacent faces are on the physical boundary and thus have state sum variables A, B in
M. The face pointing to the interior still has a label γ in D. Correspondingly, the spaces for
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α
β
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B
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C

(a)

BA

C

α

γ

β

(b)

Figure 4: Application of the evaluation map on a vertex of the physical boundary (a)
leads to a tetrahedral diagram (b) that upon evaluation yields the PEPS tensor.

the half-edges are given by e.g.

HomM(A/γ, B) =: Ve1
and HomM(B, A/γ)∼= HomM(A/γ, B)∗ = V ∗e1

, (53)

respectively. (Recall that the symbol / denotes the right action of D on M.) Further, to every
oriented edge e∈ P we associate the vector space Ve ⊗ V ∗e that is given by the tensor product
of the two spaces attached to those of its two half-edges. Finally, to the three-manifold with
skeleton P we associate the big vector space

VP :=
⊗

e∈P
Ve ⊗ V ∗e . (54)

Each of the tensor products Ve⊗V ∗e in VP is a tensor product of two vector spaces in a dual
pairing and thus contains a canonical vector

ve =
∑

i

bi ⊗ bi , (55)

with {bi} any basis of Ve and {bi} the dual basis of V ∗e . (In the tensor network language this
canonical vector appears as the maximally entangled state used to contract two tensors, as in
Eq. (66).) Using these canonical vectors, we find a canonical vector

vP :=
⊗

e∈P
ve (56)

in VP , which is independent of the specific choices of bases for the vector spaces Ve.
At every vertex v of P we have an evaluation map, which can be constructed as follows.

For each vertex v we draw a closed ball neighbourhood Bv around v, as shown in Figure 4a.
Then we construct a graph Γv on the boundary of this ball by the following prescription: the
edges of Γv are defined as the intersection of the plaquettes of the skeleton P with the boundary
of Bv; they inherit their orientation and label from the orientation and state-sum variable of
the plaquette. The intersections of the edges of P with the boundary of Bv give the vertices
of Γv , to which we attach the vector space of the associated half-edge. This prescription yields
a tetrahedral graph on a sphere, of the form depicted in Figure 4b. The resulting graph can
be evaluated according to the rules of state-sum TFT as described e.g. in [36, Chapter 12.2],
slightly extended such that the labels of Γv are allowed to take values in the module category
M in addition to the fusion category D. Specifically, a tetrahedral graph evaluates to a 6 j
symbol, and in the case at hand this is indeed the 3F symbol of Eq. (13c). The evaluation map
for a vertex v is thus a map from the tensor product of the vector spaces Ve associated to the
half-edges incident to v to the complex numbers, e.g.

evv : V ∗e0
⊗V ∗e1

⊗Ve2
⊗Ve3

→ C, (57)
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A2 B2

B1A1

α

Ω

(a)

B2

B1A1

A2

α
Ω

(b)

Figure 5: Application of the evaluation map to the intersection of the boundary Wil-
son line Ω with an edge on the physical boundary (a) leads to a tetrahedral diagram
(b) that in special cases evaluates to the MPO symmetry or MPO intertwiner tensors.
Note that the lines labeled by Ω and α do not cross, as is evident from (a).

for the vertex depicted in Figure 3b. Combining the evaluations for all vertices of P gives a
linear map

evP =
⊗

v∈P
evv : VP →

⊗

e ending
on gluing
boundary

Ve =HΣ . (58)

Applying this map to the vector (56) gives a state evP(vP)∈HΣ. Note that by this evaluation
all vector spaces for half-edges that are connected to a vertex disappear. However, there are no
vertices on the gluing boundary, hence the vector spaces assigned to the half-edges ending on
gluing boundaries survive the evaluation. By inspection, one verifies that this state is indeed
the PEPS associated with the data D and M,

evP(vP) = PEPSM,D . (59)

By construction the state evP(vP) lies in the space H0
Σ that the TFT associates to the gluing

boundary: it is the vector that the state-sum construction assigns to MΣ, i.e. TFTD(MΣ)(1),
with 1 ∈ C= TFTD(;). Thus the equality (59) expresses in particular that the PEPS lies in the
subspace H0

Σ⊂HΣ of ground states.

It is now fairly straightforward to also study the more general case that the physical bound-
ary contains Wilson lines. In general, such a boundary Wilson line separates regions labeled
by two different boundary conditions corresponding to different module categories M1 and
M2. The boundary Wilson lines themselves are objects in the category FunD(M1,M2) of
D-module functors. Taking A1, B1, ... ∈ IM1

and A2, B2, ... ∈ IM2
as labels for the plaquettes

in the regions of the physical boundary that correspond to M1 and M2, respectively, we get
the situation depicted in Figure 5a around the intersection of the boundary Wilson line Ω with
an edge on the physical boundary. We can again construct an evaluation map, leading to the
tetrahedral graph in Figure 5b. This graph can be evaluated directly in the following two
special cases:

1. M1=M2=M. In this case the boundary Wilson line is labeled by a simple object
Ω∈FunD(M,M)=D∗M=C and the graph evaluates to an 2F symbol, as in Equation
(13b) for the MPO symmetry tensors.

2. M1=D and M2=M. In this case the Wilson line is labeled by a simple object
Ω∈FunD(D,M)=M and the graph evaluates to an 3F symbol as in Equation (24a) for
the MPO intertwiner tensors.

23

https://scipost.org
https://scipost.org/SciPostPhys.10.3.053


SciPost Phys. 10, 053 (2021)

To be equally explicit in the generic case, a further extension of recoupling theory is needed.
Note that one can obtain objects of the functor category FunD(M1,M2) through the compo-
sition

M2 ×Mop
1 ' FunD(D,M2)× FunD(M1,D)→ FunD(M1,M2) (60)

of functors, but this composition is not essentially surjective, in general. Instead, one can make
use of the fact that FunD(M1,M2) is equivalent to the relative Deligne product M2�DMop

1 ,
as follows e.g. from the so-called module Eilenberg-Watts calculus [38]. However, to the best
of our knowledge a (basis-dependent) description of this equivalence analogous to the use of
F symbols in the special cases above has not yet been worked out.

6 Conclusion and outlook

We have used the mathematical structure of a bimodule category to explore tensor network
formulations of concepts in topologically ordered phases. We showed that the consistency
conditions of having non-local MPO symmetries encoded by a fusion category C in a PEPS
representation of a string-net based on a spherical fusion category D are equivalent to the
pentagon equations of a (C,D)-bimodule category M, thereby classifying explicit representa-
tions of the PEPS and MPO tensors. These bimodule categories also allowed us to construct
MPO intertwiners between different PEPS representations of the same string-net providing a
generalisation of virtual gauge transformations between PEPS that describe the same state.
An important conclusion to be drawn from these MPO intertwiners is that they relate equiv-
alent PEPS tensors with possibly distinct virtual bond dimensions. This is in contrast to the
situation for MPS, where the fundamental theorem dictates that two equivalent MPS have the
same virtual bond dimension, and our results will contribute to the formulation of a general
fundamental theorem of PEPS.

The PEPS representations and their MPO symmetries allow for a description of all ground
states on a torus of some given string-net model through an explicit construction of the tube
algebra, which we have only briefly touched upon in Section 2.2. This tube algebra gives a
realisation of the monoidal center Z(C); as such it also yields a description for the anyonic
excitations of these models and allows us to characterise their topological features using the
MPO symmetries [6]. The PEPS representations for boundaries and domain walls in string-net
models introduced in this work can then be used to investigate mechanisms of anyon conden-
sation and to characterise the properties of excitations living on these domain walls. While this
has already been understood in the abstract diagrammatic language of category theory [9,13],
tensor networks allow for the numerical simulation of such systems. This is especially rele-
vant in the context of error-correcting codes based on string-net models, where the explicit
computation of properties such as error thresholds has proven to be difficult using traditional
methods [39–41]. By extending PEPS representations for string-nets to include boundaries
and domain walls, tensor network methods will provide a handle on these challenging prob-
lems.

The tensor network representations also provide a means to perturb these string-net ground
states away from the RG fixed point, allowing us to study phase transitions between different
topological orders [42–45]. These phase transitions are intimately linked with anyon conden-
sation [46, 47] which, as already mentioned in the context of boundaries and domain walls,
can be explicitly described using bimodule categories. It would be interesting to see what
happens to the MPO symmetries and the associated tube algebras when we approach a phase
transition, where certain PEPS representations and MPO symmetries will provide a more nat-
ural framework than others.

As mentioned before, a further generalisation of the various F -symbols is required to de-
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scribe the more general case of MPO intertwiners and domain walls shown in Figures 1a and
2a. The relevant structure is that of a bicategory with three objects, which compared to the
2-object bicategories in this work comes with a total of 15 F -symbols satisfying 21 pentagon
equations. These further generalisations of F -symbols and their pentagon equations should all
have a natural interpretation in the tensor network language. Whether or not there is anything
regarding these MPO intertwiners and domain walls that can be described by a 3-object bi-
category but not already by combining 2-object bicategories is an open question that requires
further research.

It should be appreciated that Turaev-Viro models allow more flexibility in the cell decom-
positions, at least as long as one works with a single spherical fusion category. It remains a
challenge to understand the evaluation of more general graphs on a sphere and to obtain ex-
plicit expressions beyond F -symbols so as to extend the computational power of PEPS to more
general cell decompositions.

Another natural extension of the bimodule categories used throughout this paper is to also
include fermionic or superfusion categories [48] and associated superbimodule categories.
The formalism of MPO symmetries for fermionic topological orders has been worked out in
[49] for the case when the categories C, M and D coincide. We expect that we can extend
this to include superbimodule categories in the same way as we did for the bosonic case.

Finally, we point out that our results on tensor network descriptions of topologically or-
dered states in (2+1) dimensions have immediate relevance for 2-dimensional critical lattice
systems as well. This is due to the fact that also in those systems, the presence of non-local
symmetries described by MPOs is an essential feature [19]. Using a mapping known as the
strange correlator [20, 50], any topologically ordered PEPS can be mapped directly to the
partition function of a critical statistical mechanics model described by a conformal field the-
ory (CFT) in the continuum limit. Many properties of the CFT such as topological defects,
torus and cylinder partition functions and operator content can be readily understood as the
image of corresponding concepts in topologically ordered PEPS under the strange correlator
map [51]. The generalisations of such PEPS as described in this paper allow for an explicit
realisation of the off-diagonal D and E type minimal models, where the intertwiners between
different representations provide a lattice understanding of simple current extension or orb-
ifolding [52].

Coda

“Philosophically, the theory of tensor categories may perhaps be thought of as a theory of vector
spaces or group representations without vectors.” [Etingof, Gelaki, Nikshych and Ostrik, Ten-
sor Categories, AMS, 2016] Pragmatically, the theory of matrix product operator symmetries
may therefore be thought of as a theory of vector spaces and group representations without
vectors, with vectors. 5
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A Tensor networks

The purpose of this appendix is to provide a basic overview of pertinent tensor network con-
cepts that are used in the main text. For more information, we refer to [4,6,22,53–55].

A.1 Matrix product states

Matrix product states furnish an efficient approximation to the ground states of local gapped
Hamiltonians for one-dimensional lattices. A state of such a system having N sites is an element
of the vector space H⊗N

phys, with Hphys the state space at each site, called the physical Hilbert
space. A translation invariant matrix product state (MPS) for such a system with periodic
boundary conditions is specified by a 3-index tensor A according to

|ψ(A)〉 :=
d
∑

j1, j2,..., jN

Tr(Aj1Aj2 · · ·AjN ) | j1〉 | j2〉 · · · | jN 〉 , (61)

where d is the dimension of Hphys
∼=Cd and {| j〉} is an orthonormal basis of Hphys. One leg

of the tensor A takes values in Hphys, while the other two take values in an auxiliary virtual
space of dimension D. Thus for each j=1,2, ... , d the tensor A defines a D×D-matrix Aj: in
(61) the trace over an N -fold product of these matrices is taken. Diagrammatically, (61) can
be expressed as

|ψ(A)〉 = A

. . .j2 jNj1

A . . . A
. (62)

It is immediate from its definition that the MPS (61) is invariant under the substitution Aj 7→XAj

X−1 with X an arbitrary invertible D×D-matrix. Such a substitution is called a virtual gauge
transformation.

Upon forming linear combinations and matrix products the matrices Aj for all values j∈{1,
2, ... , d} generate an algebra which is a subalgebra of the D2-dimensional algebra of D×D-
matrices. An MPS is called injective if this subalgebra is the full D2-dimensional matrix algebra.
If an MPS is not injective, then there exist invariant subspaces of the full matrix algebra such
that the corresponding orthogonal projectors P1, P2, ... satisfy Aj Pr = PrA

j Pr for all j=1, 2, ... , d
and all r, as well as a unitary virtual gauge transformation U such that all U Pr U† and all
UAjU† are simultaneously block diagonal. For instance, in the case of 2 subspaces the gauge
transformed MPS tensors take the form

Ãj = UAjU† =

�

B j D j

0 C j

�

. (63)

For periodic boundary conditions, the off-diagonal blocks D j do not contribute to the MPS
|ψ(Ã)〉. Without loss of generality we can therefore assume that D j=0. The matrices Ãj for
the non-injective MPS then simply become direct sums Ãj=B j⊕C j and the non-injective MPS
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decomposes into a direct sum of two MPS, each of which in turn might be injective. If not, we
can simply iterate the argument until the original non-injective MPS has turned into a direct
sum of injective MPS.

The most important property of injective MPS is captured in the fundamental theorem of
MPS [56]. This theorem states that two injective MPS characterized by tensors A and B, re-
spectively, yield the same state |ψ(A)〉 = |ψ(B)〉 for arbitrary system size N if and only if A and
B are related by a virtual gauge transformation X , i.e. if and only if

AX B X=
. (64)

This result is of central importance in the classification of MPS, e.g. it is the basis of the clas-
sification of SPT phases in 1-dimension using group cohomology.

A.2 Projected Entangled Pair States

A more physical interpretation of MPS is provided by the following different yet equivalent way
of constructing MPS, which also carries over to higher-dimensional systems. We consider again
a translation invariant system with periodic boundary conditions. At each site with physical
d-dimensional degree of freedom j, we place two D-dimensional virtual degrees of freedom
with orthonormal basis {|i〉}, yielding a D2-dimensional Hilbert space. This is indicated in the
following picture:

j1 j2 j3

D D D D D D

j4

D D
. . . . . .

. (65)

We now maximally entangle all the pairs of qudits on neighbouring sites by projecting onto
the maximally entangled state

|α〉=
D
∑

i=1

|i〉 |i〉 . (66)

We depict this prescription as

j1 j2 j3 j4

|α〉〈α| |α〉〈α| |α〉〈α||α〉〈α| |α〉〈α|

, (67)

where the dotted lines indicate periodic boundary conditions. Finally, given a PEPS tensor A,
at each site we act on the pair of qudits associated to it with the corresponding linear map
fA : CD⊗CD→Cd , whereby the virtual degrees of freedom at the site are mapped to the the
d-dimensional space of physical degrees of freedom:

j1 j2 j3 j4 . (68)

The so obtained state in H⊗N
phys is called a projected entangled pair state, or PEPS for short.

An attractive feature of this construction is that it has a straightforward generalisation to
higher dimensions. Actually, the term PEPS is usually reserved for a PEPS in 2 dimensions; in
Figure 6a we display such a PEPS. Similar to the MPS case, one can alternatively just define a
PEPS as a tensor with one physical and ` virtual legs, as depicted for `=4 in Figure 6a. The
two constructions are equivalent.
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(a) (b)

Figure 6: (a) A 2× 4 patch of a 2-dimensional PEPS lattice, with the physical index
drawn as sticking out up and to the right. (b) The same patch with more general
tensors.

A.3 Matrix product operators

Similarly as for MPS one can define translation invariant matrix product operators (MPO) with
periodic boundary conditions, specified by a 4-index tensor B with two di-dimensional internal
and two de-dimensional external legs according to

Ô(B) =
de
∑

{i},{i′}=1

Tr
�

Bi1 i′1 · · ·Bin i′n
�

|i1 · · · in〉 〈i
′
1 · · · i

′
n|

= B

. . .i′2 i′ni′1

B . . . B

. . .i2 ini1

. (69)

These MPOs represent a linear mapC⊗dn
e →C⊗dn

e . Taking de= d, these maps can be interpreted
as operators acting on a suitable MPS with physical dimension d or as a density matrix. In the
present paper we use them instead exclusively as operators acting on the virtual degrees of
freedom of a PEPS according to

, (70)

i.e. the external legs of the MPO are contracted with the virtual legs of the PEPS, so that in
particular we have de=D. Here the internal legs of the MPO are drawn in red in order to
distinguish them from the virtual legs of the PEPS.

Analogously to an MPS, an MPO is called injective if the di× di-matrices Bii′ with i, i′∈{1, 2, ... , de}
generate the full d2

i -dimensional matrix algebra. If the MPO is not injective, there exist invari-
ant subspaces Pa and a unitary virtual gauge transformation U such that all U PaU† and all
UBii′U† are simultaneously block diagonal and the MPO matrices become a direct sum of
injective MPO matrices:

UBii′U† =
⊕

a
Bii′

a , (71)
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where Bii′
a denote the different injective blocks. Moreover, owing to the periodic boundary

conditions we can again assume any off-diagonal blocks to be zero. In the main text we denote
the different injective MPOs as Ôa := Ô(Ba), and we keep track of the MPO injective block label
a as the label of the red line.

A.4 Diagrammatic notation

In the situation studied in the main text we deal with a honeycomb lattice, so that the number
of virtual legs of the PEPS tensor is `=3. Also, in order to render the diagrammatic description
of tensors unambiguous, the legs of all tensors must be oriented. Further, for visual clarity, we
have made the following diagrammatic simplifications in the main text:

≡ and ≡ . (72)

In the explicit expressions for the fusion, MPO and PEPS tensors we are using a generalisa-
tion of the triple line notation that was introduced in [2, 3]. To relate this notation to more
conventional tensor network notation, it suffices to unite the triple lines and their multiplicity
together into a single index. It is also worth noting that we only list the non-zero components
of the tensors. Hereby we avoid the proliferation of factors of Kronecker deltas for lines shared
between two indices that results from the conventions in e.g. [2–4]. Finally, we do not orient
the outer lines of the triple line since these are being summed over when contracting tensors,
and the fact that there exists a consistent orientation of these lines justifies its omission. When
applied to the fusion tensor Xm, this prescription amounts to the identification

j

k

n m

a

b

c

A

B

C

(aBA, j)

(bCB, k)

(cCA, n) ≡
a

b
c m , (73)

where on the right hand side we only keep the MPO injective block labels a, b, c with degen-
eracy label m, and where

|cCA, n〉 ∈ HomM(c .C , A) ,

|aBA, j〉 ∈ HomM(a .B, A) ,

|bCB, k〉 ∈ HomM(b .C , B) . (74)

For the MPO tensor the identification is given by

aα

m

j

n

k

A B

DC

(aDB, k)(aCA, j)

(AαB,m)

(CαD,n)

≡ a

α
, (75)
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where on the right hand side we only keep the MPO injective block label a and the PEPS
injective block label α, and

|aCA, j〉 ∈ HomM(a .C , A) ,

|aDB, k〉 ∈ HomM(a .D, B) ,

|CαD, n〉 ∈ HomM(C /α, D) ,

|AαB, m〉 ∈ HomM(A/α, B) . (76)

Finally, for the PEPS tensor we have

(AγB,m)

α β

γ
A

C

B

j n

m

k

(CβB, n)(AαC, j)

≡

α β

γ

k , (77)

where on the right hand side we only keep the PEPS injective block labels α,β ,γ with degen-
eracy label k and

|AαC , j〉 ∈ HomM(A/α, C) ,

|CβB, n〉 ∈ HomM(C /β , B) ,

|AγB, m〉 ∈ HomM(A/γ, B) . (78)

Further, the physical leg of the PEPS – which is sticking out of the page – is labeled by (αβγ, k),
with

|αβγ, k〉 ∈ HomD(α⊗ β ,γ) . (79)

B Categories

B.1 Fusion categories

A monoidal category (C,⊗, 0F,1) is a category C with a functor ⊗: C×C→C and a natural

isomorphism 0F : (a⊗ b)⊗ c
∼=−→ a⊗ (b⊗ c) for a, b, c∈C, called the associator or associativity

constraint, and with a distinguished unit object 1∈C and natural isomorphisms a⊗1
∼=−→ a and

1⊗ a
∼=−→ a, called the right and left unit constraints. The associator 0F is required to satisfy the

pentagon relation, which we will display explicitly in Section B.4. In addition there are two
triangle relations involving the associator and the right and left unit constraint, respectively.
Without loss of generality however, we take the unit object to be strict, meaning that the unit
constraints are identities, so that a⊗1= a=1⊗ a on the nose and the triangle relations are
trivial.

A rigid monoidal category is a monoidal category for which every object a has a left dual ∨a
and a right dual a∨ and there are left evaluation and coevaluation morphisms eeva : a⊗∨a→1
and ßcoeva : 1→∨a⊗ a and right evaluation and coevaluation morphisms eva : a∨⊗ a→1 and
coeva : 1→ a⊗ a∨, required to satisfy the so-called snake identities. We represent the left and
right evaluation and coevaluation graphically as

eeva =
a ∨a , ßcoeva = a∨a

, eva =
aa∨ , coeva = a a∨

. (80)
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Then the snake identities look as follows:

a
a =

a

a

= a
a , a∨

a∨ =

a∨

a∨

,
∨a

∨a =
∨a

∨a

. (81)

A fusion category is a semi-simple rigid monoidal category which is in addition linear and
satisfies certain finiteness conditions (for a precise definition see e.g. Chapter 4.1 of [57]).
In particular, the morphism sets HomC are finite-dimensional vector spaces over some field,
which for our purposes is the complex numbers C, and the number of isomorphism classes of
simple objects is finite. We select a set IC of representatives for these classes that contains 1.
In terms of the simple objects in this set we have

a⊗ b ∼=
⊕

c∈IC

N c
ab c . (82)

The multiplicities N c
ab=dimC(HomC(a⊗ b, c)) are called the fusion rules of C; they satisfy

∑

e∈IC

N e
abN d

ec =
∑

f ∈IC

N d
a f N f

bc (83)

and N b
a1=δ

b
a =N b

1a. The associator 0F and its inverse, which we denote as 0F , can be expressed
in terms of the simple objects in IC as follows (using the diagrammatic language for morphisms,
to be read from top to bottom):

a b c

d

e
j

k

a b c

d

f
m

n=
∑
f,mn

(
0F abc

d

)f,mn

e,jk

,

a b c

d

f
m

n

a b c

d

e
j

k=
∑
e,jk

(
0F

abc
d

)f,mn

e,jk

.

(84)
Here m, n and j, k are multiplicity labels, for instance j labels a basis vector in HomC(a⊗ b, e).
By definition, 0F and 0F are indeed inverses, in the sense that

∑

f ,mn

�

0F abc
d

� f ,mn
e, jk

�

0F abc
d

� f ,mn
e′, j′k′ = δee′δ j j′δkk′ . (85)

Furthermore, the basis vectors in the one-dimensional vector spaces HomC(a⊗1, a) and
HomC(1⊗ a, a) can be chosen such that

�

0F1bc
d

�d,m1

b,1k
=
�

0F a1c
d

�c,1m

a,1k
=
�

0F ab1
d

�b,1m

d,k1
= δm

k . (86)

In our context, we have to deal with two different fusion categories. We denote the second
one by D, the elements of the finite set ID of simple objects by α,β , ... , and the fusion rules of
D by

α⊗ β ∼=
⊕

γ∈ID

Nγ
αβ
γ, (87)

with Nγ
αβ
=dimC(HomD(α⊗β ,γ)), satisfying

∑

µ Nµ
αβ

Nδµγ=
∑

ν NδανNν
βγ

. We denote the asso-

ciator of D by 4F and its inverse by 4F ; they satisfy

α β γ

δ

µ
j

k
ν
m

n

α β γ

δ

=
∑
µ,mn

(
4Fαβγδ

)ν,mn
µ,jk

,

α β γ

δ

µ
j

k
ν
m

n

α β γ

δ

=
∑
µ,jk

(
4F

αβγ
δ

)ν,mn
µ,jk

.

(88)
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We denote the unit object of D again by 1; again we can make basis choices such that
�

4F1βγ
δ

�δ,m1

β ,1k
=
�

4Fα1γ
δ

�γ,1m

α,1k
=
�

4Fαβ1
δ

�β ,1m

δ,k1
= δm

k . (89)

B.2 Module categories

A left module category (M, . , 1F) over a fusion category (C,⊗, 0F) is a (linear, semisimple)
category M with a functor . : C×M→M (called the action of C on M) and a natural iso-

morphism 1F : (a⊗ b).A
∼=−→ a . (b .A) with a, b∈C and A∈M that satisfies a mixed pentagon

relation. We take the action of the (strict) unit object 1∈C to be strict, i.e. 1.A=A.
We select a set IM of representatives for the isomorphism classes of simple objects of M

and write
a .A∼=

⊕

B∈IM

N B
aA B, (90)

with N B
aA=dimC(HomM(a .A, B)), satisfying

∑

c∈IC

N c
abN B

cA =
∑

C∈IM

N B
aC N C

bA . (91)

The isomorphism 1F and its inverse 1F can be expressed as follows:

a b A

B

c
j

k

a b A

B

C
m

n=
∑
C,mn

(
1F abA

B

)C,mn

c,jk

,

a b A

B

C
m

n

a b A

B

c
j

k=
∑
c,jk

(
1F

abA
B

)C,mn

c,jk

.

(92)
We can choose bases in the one-dimensional morphisms spaces involving the unit object in
such a way that

�

1F1bA
B

�B,m1

b,1k
=
�

1F a1A
B

�A,1m

a,1k
= δm

k . (93)

Analogously, a right module category (M, / , 3F) over the fusion category D is a category

M with a right action functor / : M×D→M and a natural isomorphism 3F : (A/α)/β
∼=−→A/

(α⊗β)with A∈M and α,β ∈D. In terms of the sets ID and IM simple objects, the right action
/ is expressed as

A/α∼=
⊕

B∈IM

N B
Aα B, (94)

with N B
Aα=dimC(HomM(A/α, B)) satisfying

∑

C∈IM

N C
AαN B

Cβ =
∑

γ∈ID

N B
AγN

γ

αβ
, (95)

while the isomorphism 3F and its inverse 3F are described as

A α β A α β

B

m

n

B

γ

j

k
C =

∑
γ,mn

(
3FAαβB

)γ,mn
C,jk

,

A α β

B

j

k
C

A α β

m

n

B

γ =
∑
C,jk

(
3F

Aαβ
B

)γ,mn
C,jk

.

(96)
Again we can choose bases such that

�

3FA1β
B

�β ,1m

A,1k
=
�

3FAα1
B

�α,1m
B,k1 = δ

m
k . (97)
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B.3 Bimodule categories

A (C,D)-bimodule category (M, . , / , 1F, 3F, 2F) over a pair of fusion categories C and D is
a category M with additional structure such that (M, . , 1F) is a left C-module category and
(M, / , 3F) is a rightD-module category and such that there is a natural isomorphism 2F : (a .A)

/α
∼=−→ a . (A/α) for a∈C, A∈M and α∈D. In terms of simple objects, this imposes the com-

patibility condition
∑

C

N C
aAN B

Cα =
∑

D

N B
aDN D

Aα (98)

on the left and right action functors. The isomorphism 2F and its inverse 2F give

a A α

j

a A α

k

B

C
m

n

B

D=
∑
D,mn

(
2F aAαB

)D,mn
C,jk

,

a A α

j

k

B

C

a A α

m

n

B

D =
∑
C,jk

(
2F

aAα
B

)D,mn
C,jk

,

(99)
and can be made to satisfy

�

2F1Aα
B

�α,m1
A,1k =

�

2F aA1
B

�A,1m
B,k1 = δ

m
k . (100)

B.4 Pentagon equations

The natural isomorphisms 0F , 1F , 2F , 3F and 4F for a pair of fusion categories C and D and a
(C,D)-bimodule category M as described above satisfy coupled consistency conditions known
as pentagon equations. They are a core ingredient of this paper, and therefore we present all
of them in this separate section. One of these equations is the pentagon equation for the fusion
category C; it expresses the equality of the two ways in which an isomorphism

((a⊗ b)⊗ c)⊗ d
∼=−→ a⊗ (b⊗ (c ⊗ d))

can be constructed from the associator 0F of the category. It reads (see formula (6) in the main
text)

∑

o

�

0F f cd
e

�h,no
g,lm

�

0F abh
e

�i,pq
f ,ko =

∑

j,rst

�

0F abc
g

� j,rs

f ,kl

�

0F a jd
e

�i,tq
g,sm

�

0F bcd
i

�h,np
j,r t , (P0)

an equality to which we will refer as P0. Similarly, equating the two ways in which an isomor-
phism

((a⊗ b)⊗ c).A
∼=−→ a . (b . (c .A))

can be constructed using 0F and 1F gives

∑

o

�

1F f cA
B

�C ,no

g,lm

�

1F abC
B

�D,pq
f ,ko =

∑

j,rst

�

0F abc
g

� j,rs

f ,kl

�

1F a jA
B

�D,tq

g,sm

�

1F bcA
D

�C ,np
j,r t , (P1)

which we call P1, the analogous procedure for

((a⊗ b).A)/α
∼=−→ a . (b . (A/α))

gives
∑

o

�

2F f Aα
B

�D,no

C ,lm

�

1F abD
B

�E,pq
f ,ko =

∑

F,rst

�

1F abA
C

�F,rs
f ,kl

�

2F aFα
B

�E,tq
C ,sm

�

2F bAα
E

�D,np
F,r t , (P2)
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which we call P2,

((a .A)/α)/β
∼=−→ a . (A/ (α⊗ β))

gives
∑

o

�

3F Cαβ
B

�γ,no

D,lm

�

2F aAγ
B

�E,pq

C ,ko
=
∑

F,rst

�

2F aAα
D

�F,rs
C ,kl

�

2F aFβ
B

�E,tq

D,sm

�

3FAαβ
E

�γ,np

F,r t
, (P3)

which we call P3, and

((A/α)/β)/γ
∼=−→ A/ (α⊗ (β ⊗ γ))

gives
∑

o

�

3F Cβγ
B

�µ,no

D,lm

�

3FAαµ
B

�ν,pq

C ,ko
=
∑

δ,rst

�

3FAαβ
D

�δ,rs

C ,kl

�

3FAδγ
B

�ν,tq

D,sm

�

4Fαβγν

�µ,np
δ,r t , (P4)

which we call P4. Finally

((α⊗ β)⊗ γ)⊗δ
∼=−→ α⊗ (β ⊗ (γ⊗δ))

gives
∑

o

�

4Fηγδρ

�µ,no

λ,lm

�

4Fαβµρ

�ν,pq

η,ko
=
∑

κ,rst

�

4Fαβγ
λ

�κ,rs

η,kl

�

4Fακδρ

�ν,tq

λ,sm

�

4Fβγδν

�µ,np
κ,r t , (P5)

which is the pentagon identity for the fusion category D and which we call P5. The inverses

0F , 1F , 2F , 3F and 4F satisfy a very similar system of coupled pentagon equations. They can
be derived in parallel with those above, and we refrain from presenting them here.

C Pivotal and spherical structure

C.1 Pivotal, spherical and unitary fusion categories

In a rigid monoidal category C the evaluation and coevaluation morphisms can be concate-
nated as done in the snake identities (81). But they cannot, in general, be composed so as
to obtain endomorphisms of the tensor unit, i.e. numbers. Rather, to be able to do so, we
must have a way to consistently identify the left and right dual of an object or, equivalently, an
object and its double dual. To be precise, what is needed is a monoidal natural isomorphism
between the identity functor and the double dual functor of C. Such a natural isomorphism
is called a pivotal structure, and a rigid monoidal category with a pivotal structure is called a
pivotal category. For a pivotal fusion category we can identify left and right duals, so that for
any a∈C we only need to deal with a single dual object, which we denote by ā; an object a
is called self-dual if ā∼= a. Moreover, every pivotal fusion category is equivalent, as a pivotal
category, to one in which the pivotal structure is trivial, so that in particular ¯̄a= a; we will
tacitly assume that we work with this equivalent fusion category.

In a pivotal category we can define two traces of an endomorphism f ∈HomC(a, a) by

a
f
a

ā and ā
a
f
a

(101)

respectively, and thus in particular two dimensions of an object a as traces of the identity
morphism ida. If the two traces coincide for every endomorphim f , then the pivotal category
is called spherical. For a spherical fusion category C we denote the (unique) dimension of a∈C
by da.
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A C-linear fusion category is called unitary if it comes with an involutive antilinear con-
travariant endofunctor † that is the identity on objects, is compatible with tensor products, and
such that the morphism spaces are Hilbert spaces, and if the associativity constraint is unitary.

In a unitary fusion category one can choose the bases of the morphism spaces used in the
definition (84) of the 0F -symbols in such a way that the 0F -symbols form unitary matrices.
(Conversely, if this is possible, then the fusion category is unitary.) A unitary fusion category
has a canonical pivotal structure which is even spherical. With respect to this pivotal structure
the dimension da of every object is positive. We will often take square roots of these numbers,
and one must keep track of the choice of square root. Taking the fusion category to be unitary
makes this rather straightforward as we can always choose the positive root, as done in the
main text. We note that unitarity is not a necessary requirement and that the generalisation
of the MPO formalism to nonunitary fusion categories is straightforward [58].

We take the normalisation of the basis vectors of HomC(a⊗ b, c) and HomC(c, a⊗ b) to be
such that

a b

c

j

k

c′

= δ j,kδc,c′

√

√dadb

dc

c

c

,
∑

c, j

√

√ dc

dadb

a b

c
j

j

a b

=

a b

a b

. (102)

This choice facilitates some of the explicit formulas that we will give below; it is worth noting
that different conventions are in use as well.

In a C-linear spherical fusion category one has
�

0F aāa
a

�1,11
1,11 =

ca

da
, (103)

with ca=c∗ā a phase. One can make a consistent gauge choice such that ca=1 for every
non-selfdual simple object a. In contrast, for simple objects a that are self-dual, the number
�

0F aāa
a

�1,11
1,11 is a gauge invariant quantity, and hence so is ca. One can show that in this case

ca ∈{1,−1}; this number is known as the Frobenius-Schur indicator of a. The number ca
can be expressed in terms of a suitable endomorphism of a, which diagrammatically looks as
follows:

a aā

a

a

1

1

=
�

0F aāa
a

�1,11
1,11

a

a

a aā

1

1

= da

�

0F aāa
a

�1,11
1,11

a

= ca

a

. (104)

Here we do not write any multiplicity labels, as the morphism spaces involved are all one-
dimensional. In the following we will make a particular choice for the left and right evaluation
and coevaluation morphisms:

a ā
:=

1

a ā

,
aā

:= c∗a
1

aā

, (105)

aā
:= ca

1

aā

,
a ā

:=
1

a ā

. (106)
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Using Eq. (104), these can easily be seen to satisfy the snake identities (81).

C.2 MPO symmetries

In the explicit identifications of the various tensors in the main text with F -symbols there are
various factors of (powers of) quantum dimensions. Of these, the ones that are appear with a
power 1/4 are simply normalization choices to be consistent with Eq. (102). The other factors
appear as a square root, and they are chosen such that the properties pertaining to sphericity of
the relevant fusion categories are satisfied at the level of the tensors as well. To illustrate this
for the MPO symmetries, we start by noticing that due to the gauge choice (93), the addition
or removal of a trivial MPO to some other MPO symmetry can be made trivial:

k

n 1
b

c

A

A

C

1

=

k

n1
b

c

A

A

C

1

= δk,nδb,c n c
A

C

n ,

j

n 1

a

c

A

C

C
1

=

j

n1

a

c

A

C

C
1

= δ j,nδa,c n c
A

C

n ,

(107)

where we use the following states to terminate or create a vacuum line:

n 1
A

B

= 1
A

B

n = δn,1δB,A

Æ

dA. (108)

The existence of the particular states in Eq. (108) also allow us to define explicitly the left and
right evaluation and coevaluation morphisms at the level of the MPO symmetries:

j

k

BA

a

ā

:=

j

k

1

a

ā

1

A

B

A

,

j

k

B A

ā

a

:= c∗a

j

k

1

ā

a

1

A

B

A

, (109)

BA

ā

a k

j

:= ca

j

k

1

ā

a

1

A

B

A

, B A

a

ā

j

k

:=

j

k

1

a

ā

1

A

B

A

. (110)

Using these morphisms we can write the snake identities in the form

B
a

m

A
ā

α

a

n

k

D

C

j

=
B

a

m
A

ā

α

a

n

k

D

C

j

= aα

m

j

n

k

A B

DC

, (111)
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while tracing becomes

BA

ā

m

a

α

n

= BA

a

m

ā

α

n

= daδmn BA

n

α

n

. (112)

The evaluation and coevaluation morphisms establish an important relation between the left
and right-handed MPO symmetry tensors [4,6]:

āα

n

j

m

k

A B

DC
aa = āα

n

j

m

k

A B

DC
aa = aα

n

j

m

k

A B

DC

. (113)

Using this property, we can prove more general forms of the pulling-through equation. In
particular we have

=

a aa

= , (114)

which gives the relation (14) depicted in the main text.

D Examples of bimodule categories

D.1 The case C =M=D

We can always take M = C, such that the map C ×M→M is simply the map C × C→ C. In
this case, also D = C and all the F symbols coincide. The definitions in Eq. (13) then coincide
with [4].

D.2 Finite groups

Take C = VecωG , the category of G-graded vector spaces. The simple objects of this category
are one-dimensional vector spaces each graded with a different group element g ∈ G; we will
identify these simple objects with the group elements themselves and write g ⊗h= gh. Using
the shorthand g1 g2 = g12, the associator 0F can be written as

�

0F g1,g2,g3
g123

�g23,11

g12,11
≡ω(g1, g2, g3) (115)

and the pentagon equation (P0) becomes

ω(g12, g3, g4)ω(g1, g2, g34) =ω(g1, g2, g3)ω(g1, g23, g4)ω(g2, g3, g4). (116)

This equation is known as the 3-cocycle condition, and its solutions are 3-cocycles that are
classified by the third cohomology group H3(G, U(1)). To define MPO tensors that form a
representation of the group G, we must choose a module category M over VecωG . These have
been classified in [59] and can be formulated as follows. Take H ⊂ G some subgroup of G; the
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set of simple objects of M are then the different cosets gH in the set of left cosets G/H. The
map ⊗ : G × G/H → G/H is given by

g1 ⊗ g2H = g12H. (117)

If we choose a full set of representatives m1, . . . , mn (n is called the index of H in G) for G/H
one can readily verify that the associativity condition

N g3
g1 g2

N m3
g3m1

= N m3
g1m2

N m2
g2m1

(118)

holds. If we interpret N m2
g1m1

= (Ng1
)m2

m1
as a matrix from m1 to m2 then this equation means

that Ng1
is a representation of G. In group theory, this is known as the induced representation

IndG
H of the trivial representation of the subgroup H. For a given group G and a 3-cocycle

ω ∈ H3(G, U(1)), the pentagon equation (P1) imposes a constraint on the possible choice of
subgroup H. This can be understood as follows: if we restrict the elements of G to a subgroup
H and the elements of G/H to H (with representative e), the associator 1F becomes

�

1Fh1h2e
e

�e,11
h12,11 ≡ψ(h1, h2), (119)

since h⊗H = hH = H. Using this in pentagon equation (P2), we have

ω(h1, h2, h3) =
ψ(h1, h23)ψ(h2, h3)
ψ(h1, h2)ψ(h12, h3)

= dψ, (120)

which implies that ω restricted to the subgroup H, denoted as ω |H , can be written as a
coboundary and therefore must be trivial. We next treat two particular choices of the sub-
group H and construct the invertible bimodules.

H =Z1

We can always take H to be the trivial group for any ω. In this case, G/H = G and therefore
M= C, which was already treated in section (D.1).

H = G

This choice can only be made when ω is trivial. We then have G/G =Z1, which contains only
one element e. This means the associator 1F must be of the form

�

1F g1 g2e
e

�e,11
g12,11 ≡ψ(g1, g2) (121)

as discussed above. Using this in pentagon equation (P2), we find that 2F must satisfy
�

2F g12eα
e

�e,i11
e,1i3
=
∑

i2

�

2F g1eα
e

�e,i21
e,1i1

�

2F g2eα
e

�e,i31
e,1i2

(122)

which, writing
�

2F g1eα
e

�e,i21
e,1i1
≡ Dα(g1)

i2
i1

as matrices becomes

Dα(g12) = Dα(g1)D
α(g2), (123)

meaning the matrices Dα form a representation of G. These representations are labeled by
α ∈ D, so we find D = Rep(G), and the fact that α label simple objects means that Dα are

irreducible representations. Writing
�

3F eα1α2
e

�α3,ksi3
e,i1 i2

≡ Cα1α2α3
i1 i2 i3,k in equation (P3), we find that it

should satisfy
∑

j3

Cα1α2α3
i1 i2 j3,k Dα3(g)i3j3 =

∑

j1, j2

Dα1(g) j1i1 Dα2(g) j2i2 Cα1α2α3
j1 j2 i3,k . (124)
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This equation implies that C is the intertwiner between the tensor product of two irreducible
representations Dα1(g)⊗Dα2(g) and the irreducible representation Dα3(g), which means that
C is a Clebsch-Gordan coefficient. In this notation, k labels the degeneracies, i.e. the different
ways in which α1 and α2 can fuse to α3. Equation (P4) implies that this fusing process must
be associative:

∑

j6

Cα1α6α4
i1 j6 i4,mCα2α3α6

i1 i2 j6,n =
∑

α5,lk j5

�

4Fα1α2α3
α4

�α6,nm

α5,kl
Cα1α2α5

i1 i2 j5,k Cα5α3α4
j5 i3 i4,l , (125)

with associator 4F . In group theory this object is known as the Racah W-coefficient; they are
related to the 6 j symbols by a phase, and they are a solution of pentagon equation (P5).
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