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Abstract

We study the free energy of four-dimensional CFTs on deformed spheres. For generic
nonsupersymmetric CFTs only the coefficient of the logarithmic divergence in the free en-
ergy is physical, which is an extremum for the round sphere. We then specialize to A/ = 2
SCFTs where one can preserve some supersymmetry on a compact manifold by turning
on appropriate background fields. For deformations of the round sphere the ¢ anomaly
receives corrections proportional to the supersymmetric completion of the (Weyl)? term,
which we determine up to one constant by analyzing the scale dependence of various
correlators in the stress-tensor multiplet. We further show that the double derivative of
the free energy with respect to the marginal couplings is proportional to the two-point
function of the bottom components of the marginal chiral multiplet placed at the two
poles of the deformed sphere. We then use anomaly considerations and counter-terms
to parametrize the finite part of the free energy which makes manifest its dependence
on the Kihler potential. We demonstrate these results for a theory with a vector mul-
tiplet and a massless adjoint hypermultiplet using results from localization. Finally, by
choosing a special value of the hypermultiplet mass where the free energy is indepen-
dent of the deformation, we derive an infinite number of constraints between various
integrated correlators in N = 4 super Yang-Mills with any gauge group and at all values
of the coupling, extending previous results.
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1. Introduction and summary

The free energy of a conformal field theory on a compact four-manifold M is ambiguous
due to ultraviolet divergences. These are classified by diffeomorphism invariant local counter-
terms of dimension four or less. The general answer for the free energy on M is

logZy =4, (VOIMAfN) +A, (VOIMAf}V)% +Aqlog (VolMAfN) + finite. (1.1)

The coefficients of divergent terms as well as the finite term may depend on various parameters
in the theory such as marginal couplings and the number of degrees of freedom. The quartic
and quadratic divergences correspond to cosmological constant and Einstein-Hilbert counter-
terms respectively. Due to the logarithmic divergence, the finite part of the free energy is
scheme-dependent.

The coefficient of the logarithmic divergence is meaningful and is related to the conformal
anomaly [1-4]. In four dimensions the conformal anomaly is comprised of two terms, the
a anomaly coming from the integrated Euler density, and the ¢ anomaly from an integrated
(Weyl)? term. Their contribution to the action is

Ag

= i f d*x /g (—aE4+ ¢ Cpype CH7P7). (1.2)

The a and ¢ anomalies belong to different classes, “type-A" and “type-B" anomalies [5].
The type-A anomalies can be expressed in terms of topological invariants and do not change
under small deformations of the metric and other background fields. Anomalies in this class
are monotonic under RG flows to the IR [6]. On the other hand, the type-B anomalies are not
topological invariants and can be related to correlators of local operators. In particular, c is
related to the normalization of the stress-tensor two-point function, Cr, by ¢ = % [7,8].

If M is the round-sphere then the (Weyl)? term is zero and the ¢ anomaly does not con-
tribute. Hence, one finds for A

AOZ_

64an2 f d*x /gE, = —a. (1.3)

If we deform away from the round sphere the a anomaly does not change, but the (Weyl)? term
is no longer zero and contributes to the free energy and A,. Since the stress-tensor couples to
the deformations of the metric, the change in A, is computable from the integrated correlation
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functions of the stress-tensor. To leading order the change comes from the integrated stress-
tensor two-point function.

One can also study a conformal field theory on M in the presence of other background
fields for various conserved currents. In particular, if we have an A/ = 2 superconformal
field theory (SCFT), then in order to preserve supersymmetry we must turn on other back-
ground fields in the supergravity multiplet when deforming the metric [9-11]. This leads to
additional contributions to the conformal anomaly, which results in the supersymmetric com-
pletion of the Euler density and the (Weyl)? terms. The supersymmetric Euler density includes
the second Chern class of the background gauge fields and preserves the topological nature
of the a anomaly [12]. By invoking Weyl invariance and R-symmetry invariance, we further
determine the supersymmetric completion of the (Weyl)? term up to six overall coefficients.
We then study the scale dependence of the two-point functions of the tensor multiplet to fix
all but one coefficient. This generalizes the result in [13, 14] for the supersymmetrized Weyl
anomaly by including the contribution of all background fields in the supergravity multiplet.
The sixth coefficient requires knowledge of the three- and four-point functions to completely
fix it and will not be considered in this paper.

Extending to an A/ = 2 SCFT also restricts many of the counterterms and leads to some
scheme independent finite terms. Of particular interest is the dependence of the free energy
on the marginal couplings in the theory. In [15, 16] it was shown that the sphere free energy
of N' = 2 SCFTs is proportional to the Kéhler potential. Using localization we generalize a
particular version of this result to any supersymmetric background. Namely, we show that for
the deformed sphere

0,0;10g Z = (32r2)2(Ai(N)7\J—.(S)), (1.4)

where A; is the bottom component of the exactly marginal chiral multiplet. (N) and (S) denote
the north and south poles on the deformed sphere, which are defined as fixed points of the
Killing vector composed from a preserved supersymmetry transformation. For an arbitrary
supersymmetric background, the Killing vector can have more than two fixed points and the
result generalizes by including a sum over the fixed points (see eq. (3.40)).

The two-point function appearing in (1.4) is proportional to the Zamolodchikov metric due
to the supersymmetry. We then combine this result with the moduli anomaly [13,14] and an
analysis of possible counterterms [17] to further constrain the form of the free energy on gen-
eral manifolds. We show that up to holomorphic functions and terms local in the supergravity
background fields, the free energy takes the form

K(t;,7) «a

logZ = T+%K (Tifi)I(Wey1)2+%/5(fi,Fi)I(Weyl)z‘i'Y(Tifi: b)+P, (14, b)+P; (75, b),

(1.5)
where a is a constant, B(;,7;) and y(7;,T;, b) are modular-invariant, and P, and P}, are holo-
morphic and anti-holomorphic functions of the moduli. y, P, and P}, are also Weyl-invariant
and necessarily non-local functionals of the supergravity background fields. b parameterizes
the deformation away from the round sphere. We then show that the partition function of the
theory with a vector multiplet and an adjoint massless hypermultiplet on a specific deformed
background [18], which can be computed exactly using localization, indeed has the structure
of eq. (1.5).

We finally point out that the deformation independence of the free energy of the theory
with a special value of hypermultiplet mass can be used to obtain an infinite number of rela-
tions between various integrated correlators at all values of the coupling. Two of these con-
straints were recently obtained by studying the free energy of A' = 2* theory on the deformed
sphere [19].

The rest of the paper is structured as follows. In section 2 we review the extraction of
the Weyl anomaly from the stress-tensor two-point function. In section 3 we generalize this
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to N' = 2 SCFTs and compute the supersymmetric Weyl anomaly up to one undetermined
constant. We then study the dependence of log Z on the marginal couplings of the SCFT and
derive the results in egs. (1.4) and (1.5). In section 4 we continue our study of A" = 2 theories
on the ellipsoid. We compute the localized partition function for a gauge theory with an adjoint
hypermultiplet. We consider both the U(1) case and that of SU(N) at large N. We then discuss
the ambiguities of defining the theory away from S* where the space is no longer conformally
flat. Finally we derive an infinite number of constraints for integrated correlators in V' = 4
SYM on the round sphere from the partition function of the deformed sphere. In the appendix
we derive Ward identities for two-point functions.

2. CFTs on deformed spheres and the stress-tensor two-point functions

The deformations of the free energy with respect to the background metric yield correlators
involving the stress-tensor. Since the Euler invariant does not change under metric perturba-
tions, only the (Weyl)? term contributes. If we denote the perturbation away from the round
four-sphere metric by h,,, i.e.,

ds? i eq = ds2 g +hy,dxtdx” = 026,,dxdx” + hy,, dxtdx”, (2.1)

where Q = —2 and r is the radius of the round sphere, then the leading contribution of the

12
1+

(Weyl)? term to the anomaly A, is given by

c 2
6A¢ = 25672 J d*xy/gh"” (nupnva + o Twp — gnuvnpa) hP?, (2.2)

where 7, =V, V, — gWVZ. The combination in the parentheses projects to traceless, trans-
verse, rank-two tensors. To relate the above expression to the stress-tensor two-point corre-
lator, we use the fact that the integral is invariant under the Weyl scaling of the full metric
&uv +hy,. Scaling the metric by Q2 and keeping only the leading term in the free energy we
get

c

5Ay =
07 256m2

2
J d*xQ2(x)hH” (nupnw + Mo Typ — g“uvnpc) Q2(x)hP7 (x), (2.3)

where the operators 7, are those for the flat metric. To simplify the above expression further,
we introduce an integral over a 6-function followed by an integration by parts to get

— ¢ 4 4 2 2 uv po
60 =5 f d'x f 4ty Q2 )RR R ()
2
X (nupnm+7'cua7'cvp—§7twnpa)54(x—y). 2.4)

We can further manipulate (2.4) by using the following regularization procedure to define the
Dirac delta function [20-22]",

1zl _ -l
2Ves X2 2V

where the first and the second equations hold identically, while the last is true away from
|x|=0and 6, captures the dependence on the scale. A short calculation then gives

v25awzi5 1 (2.5)

§4(x) = —_—,
(x) PR

_ d

— dlogAyy

Lurpo (X, ¥)
s(x,y)8 ’

IThis amounts to regularizing the coincident limit of the two-point functions. This regularization introduces a
length scale and the type-B conformal anomaly is due to the dependence of free energy on this length scale [5].

2 1
(Tcupnva t o Typ — gnuvﬂpa) m = 64002%(x)Q*(y) (2.6)

4
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where Z,,,,,,

is the tensor structure appearing in the two point function

_ Cr Iuv,pcr (X,y)

V2, s(xy)H

2.7)

(Tyy () Ty (¥))

s(x, y) is the geodesic distance on the sphere

s(x,y) = v/ Qx)Y)x—yl, (2.8)

and

1
Lyvpo (X) = wanmuwmgmuAmyg&ﬂm, (2.9)

N| -

with
(x—=y)ulx—y),

Iy(x—y)=6,,—2 =P (2.10)
Plugging everything in, we get
1
04 = 3594 J d*x/ g(X)J d*y v/ g(y )" (P (Y Ty () Tpo (1)) 2.11)

Hence, the leading correction to the universal coefficient in the free energy is given by the
integrated stress-tensor two-point function.

2.1. Examples
Let us demonstrate the above by considering generic CFTs placed on specific deformed
spheres.

2.1.1. SU(2) x U(1) isometry

We first consider a simple deformation which preserves an SU(2) x U(1) isometry. In
projective coordinates the deformation is

hy,,dxtdx” = eQ* (xodx; — x7dx,)?. (2.12)
The leading contribution to the (Weyl)? part of the anomaly is then given by

3 2
> ¢, (2.13)

5A0 ==
2240

c
647'52Jd4x‘/§cﬂ1’pcrcmp0=

Let us now compute the logarithmic divergence in the integrated stress-tensor two-point
function. Contracting the correlator with the metric deformation we have

vV 8(x)/ g(y )" (x )P (¥ )Ty (X) T (1))

2 2 2
e2Cr(x)%Q(y) 2 (%2 +x2)(y2 + y2
= T 16mix—yP® (4(X1yl +x272)? = (x} +x3) (v} + ¥3) (2.14)
+16(x2y1 xlzyz) ((Xz}ﬁ Xlzyz) —(x1y1+XzJ’2)))'
=y =l

In general, to compute the integrated correlator one can use the SO(5) symmetry of the inte-
gration measure to fix the position of one of the operators at the north (or south) pole. This
corresponds to a specific choice of regularization scheme which preserves the SO(5) isometry
of the round sphere. If we do this the above correlator vanishes identically at separated points
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because the deformation is zero at the poles. To uncover the singularities in the coincident
limit we use the relations

1 1 272
5, — =2m1%6%x), 5 = Om6%(x — y). 2.15
o = 2T o) X [#2m ~ T (m + 1T (m + 2) (x =) (2.15)

The second equality follows from the first by interchanging the Laplacian and . Using these
relations one finds

3%50 J d*x J d*y v/ 8V g(y" R (Y )T () Tpo (1))

Cf o (24 x) (x4 20 (g o+ xd=7) g + 203 (3 + 23 =7) + (34 25+ 1))
:_167'52

(xf+x§+x§+x§+1)8
_ 3Cpe?
T 2240°

(2.16)
which matches the result in (2.13).
2.1.2. U(1) x U(1) isometry
Let us now consider squashing the round sphere to an ellipsoid [18]. In this case the metric
is
ds? = r’E°EPs (2.17)

where

E' ={sinp cosOd¢, Ezzfsinp sin0dy, E® =sinpfd6 +hdp, E*=gdp.

(2.18)
The coordinates ¢ and y are 27 periodic, while 6 € [0, 2], p € [0, ], and
_\/2~2 7 cos2 — 1/ r24in2 TV £-2 coc2
f=V{2sin" 6 + £ cos? 6, g =1/r2sin p+(££)f cos2 p,
2 —¢?
h= cospsinf cos6. (2.19)

Setting { = {=r corresponds to the round sphere. The overall size of the manifold is pa-
rameterized by r2¢{ while the squashing is parameterized by the dimensionless parameter
b= \/% The metric in (2.17) preserves a U(1) x U(1) isometry corresponding to the Killing

vectors 0y and J,. For supersymmetric theories it admits a Killing spinor when certain back-
ground fields are turned on [18]. The integrated (Weyl)? term can be calculated analytically
for this deformation for all b > 1 and we find

1672 f d4x\/§pr0CWpo -
—46b12+68b°—28b*+15v/b7—1b10log (2b (VBI—1+b2)—1)+6
45p10
o1y, (2.20)

Hence, the integrated two-point function for the stress-tensor does not have logarithmic
singularities to leading order in the deformation.

We can also show the absence of a leading order singularity in the two-point function
directly. We first set { = r so that the deformation is completely captured by ¢ = b?r. The

6
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deformation of the metric away from the round sphere takes the form in projective coordinates,

h,, =2(b—1) (Vqu + W'qu) where v,dxt =d (Qx') and  w,dx*=d (x?).
(2.21)
We now write the two-point function contracted with the deformation as

vV 80/ gAY (0 RPT (y )Ty (X) Ty 6 (¥))
Cr (hab(X)hab()’) = %haa(x)hbb(J’) —ahe (o, () |y Jalx =)y
x—yl

" antlx—yf8
(x=¥)g(x—=y)p(x =), (X—J’)d)
|x —yl4 '

+ 4K (x)h (y)

(2.22)

After integrating over the coordinates, the anomaly contribution of each of the four terms
inside the parenthesis in (2.22) can be found by using (2.15). After a tedious calculation we
find

3

r hab(x)h 14 (64x8 + 252x° + 360x* + 202x2 + 45
SO—J d4Xd4yM :f X ( )

x—y[8 18(x2 +1)?

4 (12x4 +6x2% — 1)

[ 1
-5, | d*xd*y———h? (x)h® =—1|d

24(x2+1)?

(x=y)g(x=y)p _
lx—yo

-
—450J d*xd*yh®(x)h.2(y)

J

f : n*(2318x* + 1271x2 + 400 (x2 + 4) x® + 278)
- X
60 (x2 +1)2

(x=¥)g Cx—=y)p (x —=¥)c (x —¥)4
|x — y|'2

45, J d*xd*yh® (x)h (y)

f . m* (1120x® + 4560x° + 6888x* + 3676x> + 753)
— | dax :

(2.23)

360 (x2 +1)2

Each of the above terms is logarithmically divergent for large x, but their sum vanishes. Hence,
the leading logarithmic divergence for the integrated two-point function vanishes.

3. Free energy of A/ = 2 SCFTs on deformed spheres

In this section we study the partition function of A’ =2 SCFTs on supersymmetric curved
backgrounds. These backgrounds are obtained by coupling the stress-tensor multiplet of N' = 2
theories with the gravity (Weyl) multiplet of ' = 2 Poincaré (conformal) supergravity [10,
11,23]. The supergravity background in Euclidean signature has a metric g,,,, a self-dual two-
form B+w an anti-self-dual two-from B, , background vector fields v, and VMU for
U(1)g x SU(2)g R-symmetry and a scalar field D(x). The partition function is then a non-
local function of the supergravity background fields and couplings of the theory which can be
computed via localization under favorable circumstances. We study both the logarithmically
divergent and the finite part of the free energy. We do not need the explicit knowledge of
any supersymmetric background for our analysis and our main tool is the Weyl anomaly, the
moduli anomaly and a classification of local counter terms.
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3.1. Weyl anomaly in V' = 2 SCFTs

The universal coefficient of the log(vol MA{‘N) term can be determined using the Weyl
anomaly which is modified to incorporate the N' = 2 supersymmetry. The appropriately su-
persymmetrized Weyl variation of the free energy is given by the following superspace expres-
sion [13,14,24].

1

ovlogZ >
08 1672

Jd“xJ d4®€52(a5+(c—a)Wa/jWaﬁ)+c.c. (3.1)

Here 6% is a chiral superfield which parameterizes the super-Weyl transformations. Its lowest
component is 60 + i 6a where 60 parameterizes the Weyl transformations and d o parame-
terizes the U(1)g transformation. & is the chiral density, W,z is the covariantly chiral Weyl
superfield and = is a composite scalar constructed from curvature superfields that appear in
commutators of super-covariant derivatives. In component fields the anomalous variation of
the free energy takes the form?

SxlogZ >—2adcy(M)+da [(a — ) (P(M) —nyqy,)—(a— %)nsu(z)}z}

c (3.2)

+
1672

50J d4xJ§(C“”p0Cuvpo - )

All terms on the first line are topological invariants, where y (M) is the Euler characteristic
of the compact manifold M. The term multiplying the U(1)y transformation is written as a
combination of the Pontryagin character and the second Chern class for the background gauge
fields,

P(M) = 392 J d4xeuvpaRuvaﬂRpoa/5,
1 4. uvpo
My = 32772 d'xe F,qupo: (3.3)
1 4. uvpo
nSU(z)R = 327_52 d"xe Trf‘uvfpo-.

For supergravity backgrounds smoothly connected to the round sphere, the topological invari-
ants in eq. (3.3) vanish and y (M) = 2. The term proportional to the central charge c in the
Weyl transformation is not topological and hence is non-trivial on deformed spheres. The el-
lipses denote the additional terms required to make the (Weyl)? term supersymmetric. Let us
denote this supersymmetric completion by I(wey)2. Then the Weyl anomaly coefficient, A,, on
supergravity backgrounds smoothly connected to the round sphere is given by

c
Ag=—a+ WI(Weyl)z . (3.4)

Since ¢ appears in the normalization of the two-point functions for operators in the stress-
tensor multiplet, this suggests that one can relate these two-point functions to the supersym-
metric completion in (3.4). In the next section we follow this strategy to determine I(yey1y2-

3.2. Supersymmetric completion of (Weyl)? from stress-tensor correlators

In this section we determine I(yey1)2 by studying the logarithmic divergences of various
two-point correlators of stress-tensor multiplet operators. We first use the Weyl-weights and

250 and S a are independent of coordinates.
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U(1)g charges of the various fields in the supergravity multiplet to write down the most general
possibility for Iryeyr)2. We then use the precise coupling of the stress-tensor multiplet with the
Weyl-multiplet to relate the logarithmic divergences of the two-point functions to various terms

in I(Weyl)z .
The Weyl weights of the fields in the supergravity multiplet are

We,, = -2, Wy, = 0, wy, = 0, wg=-1 wp = 2. (3.5)
The self-dual and anti-self-dual two-forms are charged under the background U(1); gauge
field and carry opposite chiral weights. This implies that an equal number of self-dual and
anti-self-dual two-forms must appear in an allowed term. Using these considerations one can
list the possible local functions of background fields which can appear in I(yeyp)2. For example,
possible terms involving the scalar field D(x) are

g"v,v,D, D(B,B"), D% (3.6)

The first term is omitted because it is a total derivative. The second term is ruled out because
its non-trivial parts must involve different numbers of self-dual and anti self-dual two-forms.
Similarly, after accounting for the possible terms involving other background fields one can
write down the most general form for I(yey)2 consistent with the invariance under U(1)g and
constant Weyl transformations:

Tiweyl2 = f d4x¢§(c“vpac“”PU + 1 D% + coF  F*” + 3 TeF, FHY + ¢,V BT VIB_
+E4R,,BHPB", +csBY BB BTHY). (3.7)

Under non-constant Weyl transformations all terms are invariant except the ones that ap-
pear with coefficients ¢, and ¢;. The coefficient ¢, can then be fixed in terms of ¢, by re-
quiring their combined Weyl variation to cancel. We rewrite these in terms of the-two form

_ p+ —
B,y =B,,+B,,, such that

1
+ - —
VBB, = —2 (v,B,,V"B" —2V,B*"V B ,—2V ,B"'V B ),

1 1 (3.8)
+ -V 4 4
RuyBPB™", = JRy,B"PBY, — SRBB,,.
Up to a total derivative, the Weyl variation is then given by
+UVTO p— | = +upp—v \ _ C4_264 2 __puv C4_264 up pv
5o v/E(caVuBH VB, 4E R, BB ) = S SRV 0B B, — =Y V0B B,
(3.9)

Hence, the Iy given in eq. (3.7) is invariant under local Weyl transformations if ¢, = %04.

The rest of the coefficients in I(yeyy2, €Xcept cs, can be determined by relating the Weyl
anomaly to logarithmic divergences in the two-point functions. These two-point functions can
be computed by taking functional derivatives of the free energy with respect to the background
fields to which the operators couple. To this end we compute the scale dependence of the two-
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point functions using 6, logZ = 4A, = —4a + I(weyy2 and eq. (3.7). This gives

161I2
5%logZ c1Cr
= §*x—y),
“3D(x)5D(y) Iz  128072° * )
5%logZ coCr
| = 5HY92—0943") 6% (x —y),
78V, ()6, (y) I 640n2( o (3.10)
5%logZ Cr )
o i) - s - 2€(u€k)l (84702 —~2313") 5% (x —y),
oV, (x)6 VK (y) R 6407
62 C4CT
o logZ =——_" R 54 —y),
O 5B,y ()58, () "8 |e ~ Toa0m2 Dlrlipo1® (X )
where B, is the differential operator
Buypo =(6"P5779% —456"°5°3"). (3.11)

We now use the linearized coupling of the Weyl-multiplet with the stress-tensor multiplet
operators [25] to relate the terms computed in (3.10) to the two-point functions, where we
find

5.55:[ ~hMT,, ——(tu)”(vu) 16(H,,B™ +H,,B™) —0,D ] (3.12)

The stress-tensor multiplet two-point functions are completely determined by using Ward iden-
tities in terms of the central charge C; and are given by

Coser 1
(02 (x) 02 (Mg = 512074 jx —y 3
. . 3C 1
(]u(x)]v(y))R“ 16077:54 |x — y|6 /m/ (x— .y)
(6)” GO s = e Tl (x =),

16074 |x — y|6 Ty
3Cr (x—y)(x—y)
~ 1280m4 |x —y|8

[
(4€ur108p1 +4€ 00118y, + 1261487, 67 +85% 5, 6).

(Hyy () Hpo (3)) s

(3.13)
These two-point functions are derived in Appendix A.
From the linearized coupling of the background scalar we find that
5%logZ
— 0,(x)0 5 3.14
65(05(x)0,(y)) = 2560 567 (x—y). (3.14)

Comparing this with (3.10) we determine that ¢; = %

From the linearized coupling of the background field to the SU(2)y current we compute

5%logZ
78V ()5 VK (y) IR

1
:—Zég(tﬁ.(x)t;’l(y)). (3.15)

The scale dependence of the right hand side can be computed using the two-point func-
tions (3.13) and the identity

I 1
B = E(éu —3,0,)— (3.16)

|x|6

|x |4’
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which gives

5%logZ Cr
—— L ejen (64702~ 8107) 5% (x — ¥). (3.17)
8V, (x)8 VK (y) Ir? " 12807
Comparing with eq. (3.10) we get ¢3 = —%. In a completely analogous manner one finds that
Cy = —3-

From the coupling of the two-form field in the Lagrangian (3.12) we find that

52 o .
6 1 z‘ = 2565, (H,,,(x)H +H H
7 8B,y (x)5B g (y) o lrs o (o () H o (3) + Hyy()H 0 ()
3Cr . (x—=y) (x—y)
- 54 © Ix —y|8 (46NVY[O'5p]L + 46000[V5M]}’ + 125[“b5va 5Y]p (3.18)

+ 85t pég]bév]y +{u, v,v} = {p,0, L})).

Under ({u, v,y} <= {p,0,t}) the first two terms are antisymmetric and drop out from the
two-point function. Using

x¥xt 1 1
=— (370" +3¢"0%) — 3.1

we then find for the scale dependence of the two-point function

52
o log
7 8B, (X)0B,s(¥)

Comparing with eq. (3.10) we find that ¢, = 4096.

The final coefficient c5 is for a quartic term and hence it is necessary to compute up to
four-point correlators to find it. In fact, the supersymmetric Lagrangian also contains terms
coupling the bottom components of marginal chiral multiplets with B:IVB“”. Hence, four
derivatives with respect to the background two-form field will involve a combination of two-
, three- and four-point functions. In principle, all of these functions can contribute to the
logarithmic divergence in the free energy.

The scale dependence of the two-point function can be ascertained as before. Scale depen-
dence of three- and four-point functions is more non-trivial to obtain. Higher-point functions
contain two types of divergences: (i) when only a subset of the operators collide, (ii) when
all the operators collide. The divergences of the first kind are the so-called semi-local diver-
gences [26] and these can be regularized by counterterms which involve coupling of the back-
ground fields for the colliding operators with the remaining operator. Since such couplings
are already present in the supersymmetric Lagrangian and are completely determined by su-
persymmetry, the effect of such counterterms is to only renormalize the operators appearing
in the Lagrangian.

The divergences of the second kind, the so-called ultra-local divergences [26] are regular-
ized by adding counter-terms local in the background fields and these are the divergences that
we are interested in. The ultra-local divergence of the three-point function can be determined
with a bit of effort because the three-point functions are protected. The task becomes much
more difficult for the four-point function. Since the only theory-dependent content of the Weyl
anomaly is the coefficient C;, we can use the free theory results to determine the ultra-local
divergence in the four-point function and fix ¢;. This would be interesting to compute but we
will not do it here.

——Bluipe18 (x —¥). (3.20)

Z
R4 202
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3.3. Finite part of the free energy and the Kahler potential

In this section we study the free energy of N/ = 2 SCFTs on a supersymmetric curved
background as a function of the marginal couplings. On R* an ' = 2 SCFT can be deformed
while preserving superconformal invariance by the term

dimMC

1 —
— | dx :E; (7:C; + 7). (3.21)
=

where C; is a marginal operator in the SCFT and dim,_ is the dimension of the conformal
manifold M of the SCFT. On a curved background the above deformation is not generally
superconformal invariant. It can, however, be made superconformal invariant by adding non-
minimal couplings with background fields of the supergravity Weyl-multiplet [15,27]. This
leads to a term having the form

% f d*x,/g Z T; (Ci — %AiB;vBW”) +h.c, (3.22)
i

where A; is the bottom component of the chiral multiplet whose top component is the marginal
operator C;. For Lagrangian SCFTs based on a gauge group G = [ [; G;, the above deformation
is proportional to the action for an AN/ = 2 vector multiplet [28] with complexified gauge
coupling 7;. For our purposes, it now suffices to focus on a single marginal deformation which
has a Lagrangian description. Our results hold for abstract marginal deformations, irrespective
of their microscopic realization.

In order to leverage the microscopic realization of marginal deformations in terms of the
N = 2 vector multiplet, we use the language of cohomological fields introduced in [10, 11].
A key ingredient is the existence of a Killing vector v which is the square of a supersymmetry
transformation. Given v we can define its dual x = g(v, ) and the interior product on forms
in the cohomology t, : w € Q*(M) — (1, w)(e) := w(v, ). Left and right handed generalized
Killing spinors ¢; and 7" of norm s(x) and §(x) respectively generate the supersymmetry trans-
formations. These functions are related to the Killing vector field as s§ = ||v||>. Using this geo-
metric data one can construct the cohomological fields ¢ = §X +sX and v, =¢ io,ﬁ;ﬁiauxi
in terms of a standard ' = 2 vector multiplet (X, A;,A,). Then the supersymmetry variations
take the form

OA=1¥ (3.23)
oW =1,F+idy¢ (3.24)
op =1,9, (3.25)
while the action can be written as
1
S=— f QATr(p+T+F)P+6(...), (3.26)
TT8vym J M

where Q is a v-equivariantly closed multiform whose zero-form and two-form components are
given by [10]

s+§  8n2
s—3§ 4i
Q, =—2i dx — Ad(s—3).
2= e T G MY
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Q also has a 4-form component which is not needed for the subsequent computations. Since
Q is equivariantly closed, we see by a straight forward computation that

G(d+1,)QAT(F + ¥+ ¢)? =6(Te(F + ¥ + ¢)?), (3.27)

showing that up to supersymmetrically exact terms the Lagrangian is equivariantly closed.
Following Atiyah-Bott-Berline-Vergne, this implies that the action localizes equivariantly to a
sum over fixed-points of the Killing vector [29]. Indeed one can show that modulo §-exact
terms

S =327 Z 1At +327 Z ! Z00, (3.28)

/ /
x:s(x)=0 X"x x:5(x)=0 "X"x

with e, €] characterizing the manifold close to the fixed point x. In deriving (3.28) we used
that L, .
TrX? = +8i A(x),  TrX =-8i A(x). (3.29)

Let us show with more detail the above argument on the deformed sphere background
of [18]. The Killing vector field and the functions s and § are given by

10 12

V—Z£+?a, s = 2sin? (B), §:2C052(_)- (3.30)

2

The vector field has fixed-points at the north pole (p = 0) and the south pole (p = 7). We
define the following multiform

K K AdK

nN=———1——— = (id+,)n=1, (3.31)
llv]2 v Y

which is well defined everywhere except at the fixed points of v. Away from the poles, we can
write

QAT (¢ +U+FP =((d+1,)N)AQATr(¢p + ¥+ F)>

=({d+t,)(NAQATI(¢ +¥+F)*)+5(nAQATr(p +¥ +F)?).
(3.32)

To use this, we can cut out small balls of radius € around the poles of the sphere and apply
Stokes theorem, giving

J QATr(¢p + ¥ +F)>

M

:lim(iJ NAQATr(¢p + ¥+ F)>
20\ Jisaanusasy)

+6 (J NAQATr(¢ +\I/+F)2)). (3.33)
M\(B(N)UB(S))

Using the definition of 1 in eq. (3.31) and that of Q in eq. (3.27) we compute

—1 w3
(s8)2

w
+2 Kk ATH(T AF)
SS

NAQATr(¢p + W +F)? =Tr(¢?) K Adk + w—}K A Tr(¥2) + 2w—~11< ATr(¢pF)
s$ s§

e, (3.39)

(s5)2

KAdk ATr(¢p¥) +... ,
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where we have omitted forms of degree less than three since they do not contribute to the
integrals. w; and w35 are the coefficients of the one- and three-form in 7

on — s—3§ ieglzzM o — (s —8)(s? + 4s5 +§2) i@glz,M
17 549) 8m2’ 3T (s+3)3 8m2
Using the explicit form of the Killing one-form, we find that the leading term at small € for the
surface integrals in (3.33) is

(3.35)

iJ Tr(qbz)ng/\dx:if Tr(¢2)(N)(—i)l4w3(N)_—2eE1/\Ez/\E3
SIN) S3N) € f

n/2 r2n 270
= _—ng(N)Tr(qu)(N)f f f elcosOelsinOefdpdydo
fed 0 0 0
= —41200 w4 (N)Tr($2)(N) (3.36)
~ ngSZ(M
=—16m200| —1+ Tr(X2)(N)
8m2
= 4i7'cg§MT€ZTr(X2)(N).

All other terms contributing to the first integral in (3.33) are suppressed by a factor s5 ~ €

and thus vanish. The computation around the south pole works in the same way. One can
also check that terms in the second integral are well-behaved and finite when taking € to zero.
This proves that, modulo 6—exact terms,

S =—4itllTe(X?)(N) + 4i?€ZTr()_<2)(S) = 32(¢ (TA(N) + TA(S)) . (3.37)
In the presence of multiple marginal deformations (3.37) generalizes to
§ =3200 Y (T:A(N) + THALS)) - (3.38)
i
From this we get
8,0510g Z ) = (320)? <Al~(N)Z\7(S)>M . (3.39)

For the case of the round sphere where { = (= r, (8.39) reproduces the result of [15, 16].
Remarkably, (3.39) can be generalized to any any supersymmetric background. For a manifold
M with many isolated fixed points, (3.39) generalizes to a sum over all fixed points,

— 1 —
80;logZy, = (322 D, ————(AG)AL)), (3.40)

~ £.e €€
x:5(x)=0,y:5(y)=0 X "x"Y"y

where ¢ and { in (3.39) are replaced by the two equivariant parameters ¢,, s; (sy, sfv) that
characterize the plus (minus) fixed points of the chosen Killing vector on M.

The two-point function appearing on the right hand side of (3.39) is related to the two-
point function of marginal operators due to the supersymmetric Ward identities, and hence
is proportional to the Zamolodchikov metric.> Choosing ¢ = rb,l = 7> We can parameterize
(3.39) as

- 8ij ~
0i07l0gZ =7 (1+P(7;,7;,b)) - (3.41)

30One might have expected that since (3.39) contains scalar operators, it could have been written in terms of
elementary geometric data of the deformed sphere, e.g. the geodesic distance between the two fixed points. How-
ever, this is not true because of the presence of various non-trivial background fields which modify the two-point
function of microscopic fields in the Lagrangian and consequently the two-point functions of various composite op-
erators. It would be interesting to determine explicitly how the two-point functions depends on such background
fields.
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We can then integrate this up to

K (Ti)?f)

IOgZ = T (1 + P(Tl',?i, b)) + Ph (Ti, b) +ﬁh (?l‘, b), (342)

where K(7;,7;) is the Kdhler potential, P = dimlM gi7ai5]-.(1< P), and P, and P}, are holomorphic
C
and anti-holomorphic functions of the moduli. In the next section we will argue that P, (7;, b)

and P, (Flv, b) are Weyl-invariant functionals of the supergravity backgrounds.

3.4. The moduli anomaly and the finite part of the free energy

In this section we use insights from the moduli anomaly [14] and extended conformal
manifolds [17] to further constrain the form of the free energy for A’ = 2 SCFTs. In particular
we demonstrate that the functions P, (t;, b) and P, (F;, b) appearing in eq. (3.42) are Weyl-
invariant functionals of the supergravity backgrounds. Moreover, we argue that the ambiguous
part of the function K (Ti,?lv) P(t;,7;, b) is proportional to the Iyey)2 term.

We start with the superspace expression of the Weyl-anomaly which involves the Kéhler
potential [13,14]:

1
5ylogZ >+
»108 19

Py f d*xd*0d*0 £ (6= +6%) K (7;,75). (3.43)

The normalization is fixed by the two point function of marginal operators which is propor-
tional to the Zamolodchikov metric. After evaluating the right hand side of (3.43) in compo-
nent form and setting the moduli 7; to be constant, it takes the form of a Weyl variation of the
supersymmetric Gauss-Bonnet term (see eq. (5.9) in [13] or (2.2) in [14]),

ﬁK (ri,?;)f d*x 5, (ﬁ(%& - %DR +¢(71,77) (Cuypo CH7PT + -+ ))) (3.44)
where Z(Ti,?lv) is an arbitrary function of the moduli. The dependence on the Gauss-Bonnet
term is unambiguous while the (Weyl)? term appears with E’(Ti,?;) as this is the only Weyl-
invariant and supersymmetric local term that can be constructed from N = 2 supergravity
background fields. Comparing (3.44) with (3.42) we conclude that P, and P, are Weyl-
invariant, possibly non-local functionals of the supergravity background fields. The free en-
ergy, modulo holomorphic Weyl-invariant terms is

K(75,7) | Loweyy

12 9672

where y(t;,T;, b) is an unambiguous, Weyl-invariant and necessarily non-local functional of
the supergravity background.

We finally use the Kéhler ambiguity and the choice of possible counter-terms [17] to fur-
ther constrain ¢(7;,T;). The ambiguities in the free energy must be taken into account by ap-
propriate counter-terms. These ambiguities render the partition function multivalued on the
conformal manifold M. Including the counter-terms with coupling t; makes the partition
function single-valued on the extended conformal manifold [17] parameterized by marginal
couplings and the counter-term couplings. For example on the round sphere the free energy is

I@ and the possible supergravity counter-terms are [15,30](see also appendix A of [19])*:

K(ti,7)é(ty, 7)) +v(T, 74, b), (3.45)

Jd4xd495(E—W“ﬂWaﬁ)+c.c, tw

t
% 19272

903 J d*xd*0EWP W, +c.c. (3.46)

4tl and t, have to be holomorphic function of moduli but here we treat them as independent couplings which
can have holomorphic ambiguities.
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The second term, which is proportional to I(yey1)2, vanishes for the round sphere and the first
term evaluates to

1 — 1 _
—E(tx+tx)x(84)=—6(tx +1,). (3.47)

The free energy is then a well defined function of marginal couplings and t, if the Kéhler shift,

K—K+F+F, (3.48)

is accompanied by a shift in the coupling t,,
F
=t + 3 (3.49)

For supergravity backgrounds with a non-zero Iy, the Kéhler shift must also be accompa-
nied by an appropriate shift in the coupling ty, to make the free energy well-defined. Since
the coupling can be shifted by holomorphic functions of moduli only, this constrains the form
of ¢(7;,7;) in eq. (3.45). It must satisfy

K(7;,7)c(7;,7)=aK(7;,7;)+ B(7:, 7)), (3.50)

where «a is a constant and (7;,7;) is an unambiguous function of the moduli which is inde-
pendent of the Kéhler shifts. This also implies that 3(;,7;) is modular invariant since duality
transformations generate Kahler shifts. The free energy is now a well-defined function of the
moduli 7;, the coupling constant for the Gauss-Bonnet term ¢, and the coupling constant for
the I(weyr)2 term if the Kéhler shifts are accompanied by the shifts

F
t, >t + 3 tyw — ty —4aF. (3.51)

In summary, the free energy of an A/ = 2 SCFT on an arbitrary supersymmetry background
takes the form
K(7;,7) @

logZ = T+%K (Tifi)I(Wey1)2+%/5(fi,Fi)I(Weyl)z‘i'Y(Tifi: b)+P, (14, b)+P; (75, b),

(3.52)
where «a is a theory-dependent constant, (7;,7;) and y(t;,7;, b) are modular-invariant func-
tions of the moduli and P, (P},) is a Weyl-invariant, holomorphic (anti-holomorphic) function

of the moduli and supergravity background parameters.

4. Supersymmetric localization and the free energy on the deformed sphere

In this section we study SCFTs on the specific supergravity background of [18]. We start
by reviewing the background fields needed to preserve supersymmetry. We then analyze the
partition function of supersymmetric theories on this background. We discuss the structure of
the free energy for Abelian N = 4 super Yang-Mills (SYM) as well as N = 4 SYM at large N
using localization. We then elucidate the definition of ' = 4 SYM on the deformed sphere,
showing that the finite part of the free energy is independent of the deformation parameter if
one chooses the theory such that near the poles it reduces to ' = 4 SYM in the Q-background,
indicating a symmetry enhancement.

4.1. Review of the N = 2 supersymmetric background

An N = 2 supersymmetric theory can be coupled to a supergravity background by turning
on appropriate background fields in the A/ = 2 Poincaré supergravity. To preserve supersym-
metry one needs to add non-minimal couplings in the Lagrangian. For the vector multiplet the
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Lagrangian takes the form [10,18]

_ _2 ~
Lo = L +Tr [16an(FnJ;nX +F- X))—64B™B, , X +64B*'B_, X>

vec

R _
—2(D—§)XX], 4.1)

where £°" is obtained from the flat space Lagrangian by covariantizing all derivatives with
respect to the metric and background gauge fields for the R-symmetry, and X is the complex
scalar field of the vector multiplet. Similarly for the hypermultiplet Lagrangian one needs to
add non-minimal couplings with the background two-form, curvature and the scalar field to
preserve supersymmetry,

—1_,,—2\ 1 2 — _
Lryp = Lygy + 1By, Tr (1/)10‘“’1112 —p aH"Y ) - (D — gR) Tt(2,2, + 2,Z,), (4.2)

where 1; and Z; are fermions and scalars in the hypermultiplet.

In order to preserve supersymmetry on the deformed sphere with U(1) x U(1) isometry
and the metric in (2.17), one needs to further turn on non-trivial background fields. These
were determined in [18], which we reproduce here in a slightly more conventional form®. The
background two-form field is given by

1 —cosZ%cosp
_ : 1 4 2, 3
B;v—T((COSQ(g-f)-FSIHQh)(E ANE"+E“AE )

+(sin9(g—f)—c059h)(E2/\E4+E3/\El))

4.3
B 1+sin2%cosp (4.3)
wr 16f g

+(sin (f — g) —cos Oh) (E> AE*— E* A EY)),

((cos@(f—g)+hsin9)(E1 /\E4—E2/\E3)

where f, g, and h are defined in (2.19). The expression for the background SU(2)y field is
more complicated and requires the explicit expression for the generalized Killing spinor of [18]
to solve for it. It can be expressed as

V,dxt =V, E®, (4.4)

where V, are SU(2)-valued components of the background field in the local frame. These are
given by

Vl = ‘71’11-3 + ‘71’272

1+e’
V2 = ‘72’1773 + ‘72,2’52 ,
o re (4.5)
V3 =V53T 14
V4 - V4,3T}(+¢:
where we have defined T}lc+¢ = cos(y +p)tt + sin(y +¢)r? and

Ti o = cos(y + ¢)t2 —sin(y + ¢)rl. The terms multiplying the various matrices in (4.5)

>These background fields are not uniquely determined. Indeed there is a three-parameter family of background
fields which preserve supersymmetry on the deformed sphere [10, 11, 18, 23]. In reproducing the background
fields in (4.3)-(4.7) we have made a convenient choice of these parameters such that the the background fields
are smooth at the poles.
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are given by

Vin=

sin” 0 N cos®  hsinOcosp 1_’_sinzp 1
2f sinpcosf 2gsinp 2f gsinp 2

7, = sine?osp 1_Z_Z_|_sin2p (1_1_‘)
’ 2f sinp gf 2 g

cos? 0 N sinf  hcosbcosp 1_+_sin2p _ 1
2f sinpsinf 2gsinp 2f gsinp 2

szz_cose'cosp 1 2 +sin2p (1_£)
g 2f sinp sf 2 g

Vy3=— cos'p 1——£2£2 + sin” p (1—Ji)
’ 2f sinp gf3 2 g

Vo= hcos.p 1_6222 N sin p (1_1:) '
~ 2fgsinp gf3 2 g
Finally the expression for the background scalar field, after subtracting the contribution
from the curvature coupling, is

2{ cosOsinp

Vo=

20 sin 0 sin Jo} 4.6)

R 1 1 h? 4 sin®pcos?p ., o
D)-5="1—— —— D22 ofg+h?
9 f? f2 fg 4f2g* (F+g"=2fg 1)

1 0?P2cosp (+02—f2)cosp  cosp (1 1) ,
+|=3,— o + —— + : - — — —Zsinpcosp
g gfsmp gf4sinp gf?sinp fsinp J\f g
4 2ézhcosp Jr2cot29 _ hcosp \ h S 0 CoS
fs1np %+ g2f4sinp  fsinp fgsinp ) fg peosp-
(4.7)

4.2. The localized partition function

In this section we consider corrections to the free energy coming from the squashing of the
sphere to an ellipsoid. We will pay close attention to the logarithmic divergence in the free
energy as well as its dependence on the marginal couplings of the SCFT. We start by giving the
localized partition function for A/ = 2 vector and hypermultiplets and then specialize to the
theory with a hypermultiplet in the adjoint representation.

The localized partition function is given by [18]

_ﬁﬁn
Jda( l_[ (a C() ) r2 |stt| Zvethyp> (4-8)

aEA

where Z,. and Zy, are the one-loop contributions from the vector multiplet and hypermul-
tiplet. Z;,, is the contribution of instantons at the north and the south pole. On the ellipsoid

18


https://scipost.org
https://scipost.org/SciPostPhys.10.3.063

Scil SciPost Phys. 10, 063 (2021)

the one-loop contributions are given by

,
Zyeo = (Zyocy) [ ] 55%55 1 ((on+1)b+71;1) +§§(a-af) (4.9)

aEA m,n>0
n 2 E’E 2
((mb—l—g) +r—2(a-a) )

—1
n+s3 |
Znyp = l_[l_[ (m+3)b+ b2+l ﬁ(a'P+M) (4.10)

-1
1 ~
n+s |
(m+3)b+ bz—l\ﬁ(a'PJru) ,

where r; is the rank of the gauge group, the product on «a is over all positive roots and the
product on p is over all weights in the representation R of the hypermultiplet. The hyper-
multiplet mass is % Zyec,u(1) is the one-loop determinant associated with each element of the
Cartan subalgebra, and is given by

+1
Zyecu) =Q l_[ ((m+1)b+ nb )(mb+%), 4.11)

m,n>0,(m,n)#(0,0)

where Q = b + b™!. This term is normally dropped on the sphere because it only contributes to
an overall constant. However, on more general manifolds it encodes interesting dependence
on the background and are needed to reproduce the correct correlators when taking derivatives
with respect to the deformation parameter [19]. The instanton contribution is given by the
Nekrasov partition function with equivariant parameters b, % and the hypermultiplet mass %

Equations (4.10) and (4.11) are divergent and need to be regularized, except for a specific
choice of the hypermultiplet where the product of Z,¢. and Zyy, is finite. The regularized
one-loop determinants can be expressed in terms of the Upsilon function Y} (x) [31,32] which

has zeros at x = mb + 5 +Q,—mb — 3 for all non-negative integers m and n.

T (i4/ f—ﬁa-a)Tb(—i f—ﬁa-a)

(a-a)? ’

Zyec = (ng(o))rG l_[

aEA,

-1
N Q
ZhYP:l_[ Ty | i ﬁ(a~p+u)+5 .

PER

(4.12)

4.2.1. Abelian N' = 4 SYM

We now use the localization results to explore the free energy of N' = 4 SYM. Due to
the possibility of non-minimal couplings, there is a subtlety in defining what we mean by an
N = 4 theory on curved space. In this example we consider the theory of an N = 2 vector
multiplet and a massless adjoint hypermultiplet coupled to the curved space by turning on the
supergravity background fields in (4.3)-(4.7).

The instanton partition function for the abelian theory is independent of the deformation
and is given by [19, 33]

oo

1
Zinst,u(1) = l_[ 1 oznikr * (4.13)
k=1

19


https://scipost.org
https://scipost.org/SciPostPhys.10.3.063

Scil SciPost Phys. 10, 063 (2021)

The one-loop determinants need to be regularized. On the round sphere the logarithmic di-
vergence in the free energy is given by —4alog Ay = —log Ayy. After regularizing the infinite
products in (4.10) and (4.11) the free energy can be written as

Q* 1 _ _
logZ = (Z - 2) log Ayy — > log (7 —7) +10g Y} (0) +10g Zipgt y(1) + 108 Zinst u(1)- (4.14)
Comparing with the general form of the free energy in eq. (3.52) we see that
2 _ - —
Iweye = 6472 (% —1),  a=p(z,7) =P, (7;,b) =P, (75, b) =0,
Y(Ti)Fi: b) = logTé(O)' (4~15)
The first term is theory independent and is computed from the logarithmic divergence of the
free energy.

4.2.2. N =4SYM at large N

Let us now consider the large N limit of the N’ = 2 theory with a massive adjoint hyper-
multiplet. The instanton contribution can be ignored in this limit and the localized partition
function can be written as

Z(b,u) = f l_[da [ o2 NZiafzveCzhyp, (4.16)

i<j

where we have set { = rb and { = 7. The one-loop determinants can now be written as

_ Ty(ioy;)
Zyec ZT[;(O)N 11_[ : J 5

iz 19U

Znyp = (Tb(% + ipL))NJrl l_[ (Tb(lO' +ipu+ = ))

i#j

) 4.17)

After some manipulation the infinite products can be written as

- TI;(O) N—-1 0o n (n_zm)z}//Z (n—2m+1+ip)2)//2 -1

i#j n=1m=1

B ( Tl;(o) )N—l
Ty (3 +ip)

% exp (_ZZ (y)*

i#j p=1

Z[(nﬂo )sz((n 2m)* —(n— 2m+1+1p)2p))

(4.18)

where v/ = 4/1— %, p= é—;‘,, and o} = 20;/Q. The sum over n in (4.18) is divergent and
needs to be regularized. To do this we cut off the sum at some large n = r Ay, and then take
the limit A{,, — 0o. However, there is a subtlety as to how A{}, is chosen since n appears with
the redefined fields o ! in (4.18). In particular, we claim that to match with the definition
of o 7> ALy = 2Ayy/Q, where Ayy is the cutoff that is held fixed as the squashing parameter
is varied. While we do not prove it here, we believe that this choice is consistent with the
enhancement to A/ = 4 supersymmetry. We will later show that this is also consistent with the

results in [19] for integrated correlators.
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Equation (4.18) can then be reexpressed as

/) ' o0
ZyocZnyp = (ﬁ) exp ((1 +p2)ZZ(Y’)2pfp(o§j,p)) , (4.19)

Tb(% +1U) i#j p=1

where the functions f,(x, p) can be written in terms of digamma functions and their deriva-
tives, plus a logarithmic divergence. The first few examples are

filx,p) = —logAy, +y(1+ix)+ixay'(1+ix)
falx,p)) = —logA{N+¢(1+ix)+3ix1,b’(1+ix)—( 1+pH)+= X)I,l)//(1+lx)
1 . 1. "m .
—(E(1+p2)1x+61x3)¢ (1+ix)
—log Ay + (1 +ix)+5ixp’(1+ix)

—(2(1 +p)+ 5x2)¢”(1 +ix)— (2(1 +p3ix+ gix3) P"(1+1ix)

f3(x)

+ (iu +p2)(3+ p2)+ 3(1 +p2)x?+ 234x4) $@(1 +ix)

1
(m(l +p2)(B+pix+ 2(1 +p2)ix®+ mixS)zp(S)(l +ix).
(4.20)

Combining the divergent part of f,, with the divergent part of the prefactor in (4.19) we find
that the free energy has the logarithmic divergence

2
logZ 3—(%—1+u2)(N2—1)1ogA§,v. (4.21)

Using the functions in (4.20) one can then find corrections to the free energy order by
order in y’. We are particularly interested in the situation where A > 1. In this case we expect
generic eigenvalues in the matrix model to be widely separated from each other at the saddle
point. In other words one has that |07 J.I > 1 for generic i and j. In this case we have that

all f,(x, p) satisfy f,(x, p) ~ —log Ay, +log(i x). Hence, after regularization, which removes
the Ayy dependence, we have that®

AT e o O ooy )]) =[5+

i#] i#]
(4.22)

Zvethyp

Substituting this into (4.16) we find that the partition function is

z|reg_ A J nda ]_[(a )T 5 SN0 (4.23)

i<j

This is very close to the form of a Gaussian matrix model. In fact if y = +i=5- QY it is the Gaussian

matrix model, as we know it must be since at these points Z,¢cZpyp, = 1. In the large N limit
the saddle point equation is

1672 Q?* 1
No;=2( =+ , 4.24
No, (4 u ;Ui_oj (4.24)

5We have dropped the prefactor in (4.19) as it does not contribute to the leading order result at large N.
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which is equivalent to the saddle point equation for a Gaussian matrix model with A replaced
2
by (QT + ,uz) A. Hence, the free energy is

2 (2 2
logZ A N7 (— +,u2) log ()L (— + uz)) . (4.25)
reg. 2 4 4

Note that (4.25) is very similar to the free energy for strongly coupled N' = 2* on the round
sphere [34-36].

Due to the logarithmic divergence, one needs combinations of at least three derivatives
with respect to Q and u for scheme independence. For u = 0 we can write the free energy,
including the divergent part, as

(4.26)

Q Q Q@ Q
) i)

log Z ~ N2 |:—(——2 log Ayy + ?log)wr Elog—

Comparing this with the Weyl anomaly and the general form of the finite part in (3.52), we
see that in the large N limit’

2 —_ —_ —
Tweyty2 = 641?(%—1), a=512, p(t;,T;)=P,(7;,b) =P (’r;,b):O,
_ N202 2
(7,7, b)=— 8Q log % (4.27)

4.3. Subtleties regarding ' = 4 on curved space and an infinite set of relations

It is a subtle issue to identify a quantum field theory on a general curved space as a CFT. For
a conformally flat background, one can canonically map a CFT from flat space to the curved
space. For a generic curved space one cannot unambiguously determine a unique fixed point
due to the presence of more than one length scale. The ambiguity manifests itself in various
choices for the non-minimal coupling of the QFT to the curved space. Demanding supersym-
metry substantially restricts these choices but still leaves some ambiguity. One possibility is to
determine the beta function of the theory on the curved space®. However, the renormalization
group flow is not well understood on curved space [39].

This ambiguity is also present when we place N’ = 4 SYM on a curved space. We de-
fine the N = 4 theory as N' = 2* with a special value of the hypermultiplet mass parameter,
w/r. Naively, one would associate an adjoint hypermultiplet with u = 0 to the N’ = 4 the-
ory. Indeed, this turns out to be the correct choice for the theory on the round sphere [40].
Near the poles, the round supersymmetric background is equivalent to the 2-background with
equivariant parameters €; = €5 = % For generic values of the hypermultiplet mass super-
conformal symmetry is broken and only 8 supercharges are preserved. For the correct value
of the adjoint hypermultiplet mass, all 32 superconformal symmetries are restored in the Q-
background. This value depends on the equivariant parameters, and for the round sphere
corresponds to u = 0.

The N = 4 value of u is modified on the deformed sphere. At the superconformal point,
the mass parameter my which appears in the Nekrasov partition function is equal to either
equivariant parameter [40]. In the more general case, my is related to the hypermultiplet
mass & and the equivariant parameters €, €, as [40]

uw 61+62

r 2

7We use that in the large N limit K(7,7) = —6N?log A.

8The flat space beta function can be determined from the localized partition function by examining the scale
dependence of the one-loop determinants and comparing it to the classical part [33, 37, 38] for the case of the
sphere.
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Since the equivariant parameters are equal on the round sphere, setting u = 0 leads to my = %,
which is the conformal mass term on the round sphere. For the deformed sphere we have that
e1=2, e, =&, and thus get’

T

iu= :l:2 (b—%) (4.29)

so that my = €; or my = €, at this pole. The relation in (4.29) is also the value advocated
in [41] by demanding that the instanton partition function is trivial. By embedding the su-
persymmetric background in N/ = 4 supergravity [42], one can show that the supersymmetry
enhances at the poles [43] for this particular value of mass parameter. Moreover, for this
value of the hypermultiplet mass the infinite products in the one-loop determinants simplify
t0 ZyecZnyp = 1'%, Consequently, the partition function with any gauge group is independent
of the deformation and given by

Z(b,uzi(%—;—b)) Jdaexp(——Tra ) l_[ (a- a)2 (4.30)

aEA,

For the SU(N) gauge group in the large N limit, the result in eq. (4.25) becomes exact for the
N = 4 value for the mass and we obtain the free energy

N2
logZ = —7log7t. (4.31)

This has remarkable consequences for the integrated correlators that can be computed by
taking derivatives of the free energy with respect to the squashing parameter. In particular
3o z(b —i(ﬂ_L))—o (432)
b 108 U= 5 2p))” .
gives a relation between various integrated n- and lower-point correlation functions. In [19],
three non-trivial relations between various four-point correlators in N’ = 4 SYM were derived
by studying the mass-deformed N' = 2* on the deformed sphere. We can demonstrate how
two of these relations are a simple consequence of (4.32)'. To do so, we write the deformed
Lagrangian schematically as

1 oo
L= > (b—1)" (Lo +uLt" +pl L), (4.33)
YM n=0

The first relation in [19] is

2 2 2 —
—64720,8- (82 — 5 )logZ(b,,u)‘u:O’b:l =0. (4.34)

°In computing the partition function via localization only values of the background fields near the poles appear
in the one-loop determinants. It is possible that there is a non-trivial profile of the hypermultiplet mass which
enhances the symmetry and has the value in (4.29) at the poles.

1% Another interesting choice is iy = —% (b + %) for which the one-loop determinants cancel the Vandermonde
determinant and only the instantons contribute to the partition function. For b = 1 this choice coincides with the
theory pointed out in eq. (5.16) of [33].

1o be precise, one obtains unambiguous relations between various derivatives of the free energy which can be
related to integrated correlators. In doing so one needs to be careful in dealing with possible contributions from
redundant operators. We thank G. Festuccia for pointing this out.
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This is equivalent to '?

_zfl_[d“ g(x .21 0(x1).§€1 O(x2)+2.200(x ).%20()(2)

— 2% (x)) L% (x5) — 22%°(x)) 2% (x5))

J l_[d“ V(L)L M0(x,) L0 (x5) — 2002 L% (x2) 2% (x3))

gYM (4.35)

J 1_[d4 V(e )(LO0(x) 200 (x5) L1 (x3) L0 x4)

gYM
— 2% °(x1)$° 2(x2) L% (x3) £ (x4))
=0.
It is straightforward to check that the same constraint follows from the deformation indepen-
dence of the N' = 4 theory. In particular, the combination appearing in (4.35) is equal to

—321%8,8-0/ [logZ(b ib_ —) +1log Z(b, ——b + g)] (4.36)
=1
Similarly we can show that the second relation in [19],
(~68232+ 31 + 8} — 1582 log 2 (b, M)’H:O’bzl —0, (4.37)
is equivalent to
(2 —1582) [logz(b, b —) +1og Z(b,— b 2y %)] =0, (4.38)
b=1

where we also used log Z(b, ) = log Z(b™*, u), which is evident from the construction of the
partititon function.

One can, in fact, derive an infinite number of relations between various integrated corre-
lators using

> a3 [logZ(b —b——)+logZ(b ——b+%)] =0, (4.39)
n =1
where the q,, are chosen to satisfy
>adp+| =0 (4.40)
— " b b’ lb=1 ’ ’

in order to ensure that ambiguous terms in the free energy do not contribute. For example,
the above relation with the operator 8; + 68; translates into

5 4 342 242 4 _
(85 +63;—10825% — 63232 — 43+ log Z (b, “)’bzl,uzo 0. (4.41)
The third relation in [19] is
— (27272 _ A4 _ 142 2
—16¢ = (36202 — 3 — 16738, 3:32) log Z (b, M)‘bzl,uzo, (4.42)
where ¢ = #. The authors of [19] provided overwhelming evidence for (4.42), and it is

straightforward to show that this is consistent with the large-N expression given in (4.25), but
it does not follow from (4.32) alone. It would be interesting to demonstrate (4.42) directly.

12We set & = 0 in the following expressions.
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A. Ward Identities for two-point functions

In this section we use the notations and the flatspace N/ = 2 supersymmetry transforma-
tions of the stress-tensor multiplet from [25]. For convenience, the transformations we use
are

— F0A
60y =iy 448 +l€§){2 (A1)
Syy=H,Ep+... (A.2)
57(1A - 3ad02§§ +... (AB)
—p B 2i _ -
oH d:_EJaa §X——( aa%ﬁA‘i'aaﬁXg)gz (A.4)
O == 3 aaﬁAiA (A.5)
B _: B B|: Ceh
Bt oan” =iy 5A+"'—§5A[1Jaaﬁ &+..] (A.6)
2
A_ Y A T A A
5J ap _g(aadHﬂ + OpaH," ) €4 — 28,4 H T EA = 28,4 H,TER + ... (A.7)
7 1, . .
5JadﬂA:_2Tadﬁﬁ€A gA( aa]ﬁ[j Baaﬂjﬁd_aﬁd]aﬂ)
1 (A.8)
B _ B_ 5 B
+2€B( aat A _gaaﬁtﬁdA 3/5ataﬂA )+
A A A
5T yapf = SA(ZEWJM 420,40 " — Buad . — By )+ (A.9)

The ellipses denote terms that are not necessary for the following computations as the cor-
responding terms are easily seen to drop out. The parameter & is assumed to be Grassmann
odd.
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We make use of the following Ward identities

0=5(ToapiT visn) (A.10)
_ 5, Lrs
(A.11)
0=5(J,45"H ) (A.12)
i 2 —¢
= (a5 ) ER+ <[§(8adHﬂY+8ﬁdHa”) g;‘—zamHﬂYgg—zamHaYgg]H 5->
(A.13)
0=5(t,4,"Tppic) (A.14)

=183 (Va5 Tppic) + é‘sﬁ £k (Juas Toprc)

) ) (A.15)
+288 <tadAB (gaﬁﬁ' tach - gaﬁy'tgfch — 4 tﬁch)>
0=5(j,aTpprc) (A.16)
=28 {Juas™ T pprc) — €2 <jaa (gaﬁ/ﬂ'ay - %%15/3 - 36/31'/5?)> (A.17)
0=05 <027aA> =i&y <157aA> —(020,402) &3 (A.18)
0=5(yH ) =(HPH )& - l( 22 (557" + 23, 77,")) &b (A.19)
Combing the first two of these we find

—2<Taa/m r.% >§g‘§;( (A.20)

= %gg [235d <(§ [9,5,3Ha€ + 3a/3H/3€:| EA—20,4H,°E4 _zaeﬁ-HﬁYg’A)ﬁs
+23;, <(§ [é’adHﬁe + aﬁdHaf] g;’*— 2aedHﬁ€g2 —28,4H TE ) ", o

2

\/ =
I_'\/\/\/

5
— aﬁﬁ<(§[aadH5f+aﬁd €A —20,4Hs E4 —20,H, 55) .
Combing the first with the third and fourth
/ 1 S N
56\ zA _ D c 5,8 A_38 ;6 A
263 < aa[iﬂTw >€5 __52'55 <aaat/5[33 (gaYYt D 38)/ t)’/ D —0 )'/t yD )>

: 1,5 5 5 .6
—5355D<8a/3t/5af;c( 8 t D _gay t)'/ DA_a)'/tyDA

1, 5. .
+= 5355 < aa]ﬂﬁ( )f __a 5]}>6_86}>15y)>
1
£ 23 1 8:5_ 56 ib
+5 53 5 \ Paplpa 3 y v T93 )y
+ ggagg < aﬁjﬂa (3 yy] - _a 5].7}6 _867}]57)> .

26


https://scipost.org
https://scipost.org/SciPostPhys.10.3.063

Scil SciPost Phys. 10, 063 (2021)

And the last two yield

e (HLPH e = %(o2 (55070, +8,78,%0,)) & 5. (A.23)

From the quantum numbers (including scaling dimension, spin and R-spin) we know that
the different 2-point functions take the form

(Tuapp Ty %) = GO CRIHCORICE i m I APRE) (A.24)
§d—1
—a 1 Cyxtx” ‘ ,
A H_( (o) p /5‘) A2s
< * ﬁ> Vszd_1 2|x|8 (O-“)aﬁ(o-v) (), (0) F ( )
. 1, G
(aapg ) = 52— (0"Daal g 5T 0) (A.26)
Sd—l
1 C
B D\ _ bt D<B BD
<tadA BBC >_ ngdi1 (O-M)ad(o-v)ﬁﬁWIMV(x)((SAéC+6AC€ ) (A27)
1 G
(0:05) = —— - (A.28)
2Y2 VSZd 1 |X|4

3
Cy=—C A.29
H™ g0™T (A.29)
3
Ci=—25CT (A.30)
C =—2¢ (A.31)
t — 80 T .
1 3
C R A.32
07 397H " 1280 T (A.32)

has to hold for the equations to be consistent. We double-checked the last relation by also
computing the ratios C/C;, Co/Cj; using corresponding Ward identities.

The two-form correlator can be rewritten with spatial indices. To do this we contract (A.25)
with appropriate sigma matrices to trade spinor indices for space indices, which, after some
simplification gives eq. (3.13).
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