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Abstract

We study the free energy of four-dimensional CFTs on deformed spheres. For generic
nonsupersymmetric CFTs only the coefficient of the logarithmic divergence in the free en-
ergy is physical, which is an extremum for the round sphere. We then specialize to N = 2
SCFTs where one can preserve some supersymmetry on a compact manifold by turning
on appropriate background fields. For deformations of the round sphere the c anomaly
receives corrections proportional to the supersymmetric completion of the (Weyl)2 term,
which we determine up to one constant by analyzing the scale dependence of various
correlators in the stress-tensor multiplet. We further show that the double derivative of
the free energy with respect to the marginal couplings is proportional to the two-point
function of the bottom components of the marginal chiral multiplet placed at the two
poles of the deformed sphere. We then use anomaly considerations and counter-terms
to parametrize the finite part of the free energy which makes manifest its dependence
on the Kähler potential. We demonstrate these results for a theory with a vector mul-
tiplet and a massless adjoint hypermultiplet using results from localization. Finally, by
choosing a special value of the hypermultiplet mass where the free energy is indepen-
dent of the deformation, we derive an infinite number of constraints between various
integrated correlators in N = 4 super Yang-Mills with any gauge group and at all values
of the coupling, extending previous results.
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1. Introduction and summary

The free energy of a conformal field theory on a compact four-manifold M is ambiguous
due to ultraviolet divergences. These are classified by diffeomorphism invariant local counter-
terms of dimension four or less. The general answer for the free energy on M is

log ZM = A1

�

volMΛ
4
UV

�

+ A2

�

volMΛ
4
UV

�
1
2 + A0 log

�

volMΛ
4
UV

�

+ finite. (1.1)

The coefficients of divergent terms as well as the finite term may depend on various parameters
in the theory such as marginal couplings and the number of degrees of freedom. The quartic
and quadratic divergences correspond to cosmological constant and Einstein-Hilbert counter-
terms respectively. Due to the logarithmic divergence, the finite part of the free energy is
scheme-dependent.

The coefficient of the logarithmic divergence is meaningful and is related to the conformal
anomaly [1–4]. In four dimensions the conformal anomaly is comprised of two terms, the
a anomaly coming from the integrated Euler density, and the c anomaly from an integrated
(Weyl)2 term. Their contribution to the action is

A0 =
1

64π2

∫

d4 x
p

g
�

−aE4 + c CµνρσCµνρσ
�

. (1.2)

The a and c anomalies belong to different classes, “type-A" and “type-B" anomalies [5].
The type-A anomalies can be expressed in terms of topological invariants and do not change
under small deformations of the metric and other background fields. Anomalies in this class
are monotonic under RG flows to the IR [6]. On the other hand, the type-B anomalies are not
topological invariants and can be related to correlators of local operators. In particular, c is
related to the normalization of the stress-tensor two-point function, CT , by c = CT

160 [7,8].
If M is the round-sphere then the (Weyl)2 term is zero and the c anomaly does not con-

tribute. Hence, one finds for A0

A0 = −
a

64π2

∫

d4 x
p

gE4 = −a. (1.3)

If we deform away from the round sphere the a anomaly does not change, but the (Weyl)2 term
is no longer zero and contributes to the free energy and A0. Since the stress-tensor couples to
the deformations of the metric, the change in A0 is computable from the integrated correlation
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functions of the stress-tensor. To leading order the change comes from the integrated stress-
tensor two-point function.

One can also study a conformal field theory on M in the presence of other background
fields for various conserved currents. In particular, if we have an N = 2 superconformal
field theory (SCFT), then in order to preserve supersymmetry we must turn on other back-
ground fields in the supergravity multiplet when deforming the metric [9–11]. This leads to
additional contributions to the conformal anomaly, which results in the supersymmetric com-
pletion of the Euler density and the (Weyl)2 terms. The supersymmetric Euler density includes
the second Chern class of the background gauge fields and preserves the topological nature
of the a anomaly [12]. By invoking Weyl invariance and R-symmetry invariance, we further
determine the supersymmetric completion of the (Weyl)2 term up to six overall coefficients.
We then study the scale dependence of the two-point functions of the tensor multiplet to fix
all but one coefficient. This generalizes the result in [13, 14] for the supersymmetrized Weyl
anomaly by including the contribution of all background fields in the supergravity multiplet.
The sixth coefficient requires knowledge of the three- and four-point functions to completely
fix it and will not be considered in this paper.

Extending to an N = 2 SCFT also restricts many of the counterterms and leads to some
scheme independent finite terms. Of particular interest is the dependence of the free energy
on the marginal couplings in the theory. In [15,16] it was shown that the sphere free energy
of N = 2 SCFTs is proportional to the Kähler potential. Using localization we generalize a
particular version of this result to any supersymmetric background. Namely, we show that for
the deformed sphere

∂i∂ j log ZM = (32r2)2〈Ai(N)Aj(S)〉, (1.4)

where Ai is the bottom component of the exactly marginal chiral multiplet. (N) and (S) denote
the north and south poles on the deformed sphere, which are defined as fixed points of the
Killing vector composed from a preserved supersymmetry transformation. For an arbitrary
supersymmetric background, the Killing vector can have more than two fixed points and the
result generalizes by including a sum over the fixed points (see eq. (3.40)).

The two-point function appearing in (1.4) is proportional to the Zamolodchikov metric due
to the supersymmetry. We then combine this result with the moduli anomaly [13,14] and an
analysis of possible counterterms [17] to further constrain the form of the free energy on gen-
eral manifolds. We show that up to holomorphic functions and terms local in the supergravity
background fields, the free energy takes the form

log Z =
K (τi ,τi)

12
+
α

96
K (τi ,τi) I(Weyl)2+

1
96
β(τi ,τi)I(Weyl)2+γ(τi ,τi , b)+Ph (τi , b)+Ph

�

τi , b
�

,

(1.5)
where α is a constant, β(τi ,τi) and γ(τi ,τi , b) are modular-invariant, and Ph and Ph are holo-
morphic and anti-holomorphic functions of the moduli. γ, Ph and Ph are also Weyl-invariant
and necessarily non-local functionals of the supergravity background fields. b parameterizes
the deformation away from the round sphere. We then show that the partition function of the
theory with a vector multiplet and an adjoint massless hypermultiplet on a specific deformed
background [18], which can be computed exactly using localization, indeed has the structure
of eq. (1.5).

We finally point out that the deformation independence of the free energy of the theory
with a special value of hypermultiplet mass can be used to obtain an infinite number of rela-
tions between various integrated correlators at all values of the coupling. Two of these con-
straints were recently obtained by studying the free energy of N = 2∗ theory on the deformed
sphere [19].

The rest of the paper is structured as follows. In section 2 we review the extraction of
the Weyl anomaly from the stress-tensor two-point function. In section 3 we generalize this
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to N = 2 SCFTs and compute the supersymmetric Weyl anomaly up to one undetermined
constant. We then study the dependence of log Z on the marginal couplings of the SCFT and
derive the results in eqs. (1.4) and (1.5). In section 4 we continue our study of N = 2 theories
on the ellipsoid. We compute the localized partition function for a gauge theory with an adjoint
hypermultiplet. We consider both the U(1) case and that of SU(N) at large N . We then discuss
the ambiguities of defining the theory away from S4 where the space is no longer conformally
flat. Finally we derive an infinite number of constraints for integrated correlators in N = 4
SYM on the round sphere from the partition function of the deformed sphere. In the appendix
we derive Ward identities for two-point functions.

2. CFTs on deformed spheres and the stress-tensor two-point functions

The deformations of the free energy with respect to the background metric yield correlators
involving the stress-tensor. Since the Euler invariant does not change under metric perturba-
tions, only the (Weyl)2 term contributes. If we denote the perturbation away from the round
four-sphere metric by hµν, i.e.,

ds2
deformed = ds2

round + hµνdxµdxν = Ω2δabdxadx b + hµνdxµdxν, (2.1)

where Ω= 2

1+ |x |
2

r2

and r is the radius of the round sphere, then the leading contribution of the

(Weyl)2 term to the anomaly A0 is given by

δA0 =
c

256π2

∫

d4 x
p

ghµν
�

πµρπνσ +πµσπνρ −
2
3
πµνπρσ

�

hρσ, (2.2)

where πµν ≡∇µ∇ν− gµν∇2. The combination in the parentheses projects to traceless, trans-
verse, rank-two tensors. To relate the above expression to the stress-tensor two-point corre-
lator, we use the fact that the integral is invariant under the Weyl scaling of the full metric
gµν+hµν. Scaling the metric by Ω−2 and keeping only the leading term in the free energy we
get

δA0 =
c

256π2

∫

d4 xΩ2(x)hµν
�

πµρπνσ +πµσπνρ −
2
3
πµνπρσ

�

Ω2(x)hρσ(x), (2.3)

where the operators πµν are those for the flat metric. To simplify the above expression further,
we introduce an integral over a δ-function followed by an integration by parts to get

δA0 =
c

256π2

∫

d4 x

∫

d4 yΩ2(x)Ω2(y)hµν(x)hρσ(y)

×
�

πµρπνσ +πµσπνρ −
2
3
πµνπρσ

�

δ4(x − y) . (2.4)

We can further manipulate (2.4) by using the following regularization procedure to define the
Dirac delta function [20–22]1,

δ4(x) =
−1

2VS3
∇2 1
|x |2

=
−1

2VS3
∇2δσ

log(|x |ΛUV)
|x |2

=
1

VS3
δσ

1
|x |4

, (2.5)

where the first and the second equations hold identically, while the last is true away from
|x |= 0 and δσ =

d
d logΛUV

captures the dependence on the scale. A short calculation then gives

�

πµρπνσ +πµσπνρ −
2
3
πµνπρσ

�

1
|x − y|4

= 640Ω2(x)Ω2(y)
Iµνρσ(x , y)

s(x , y)8
, (2.6)

1This amounts to regularizing the coincident limit of the two-point functions. This regularization introduces a
length scale and the type-B conformal anomaly is due to the dependence of free energy on this length scale [5].
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where Iµνρσ is the tensor structure appearing in the two point function

〈Tµν (x) Tρσ (y)〉=
CT

V 2
Sd−1

Iµν,ρσ (x , y)

s(x , y)2d
, (2.7)

s(x , y) is the geodesic distance on the sphere

s(x , y) =
Æ

Ω(x)Ω(y)|x − y| , (2.8)

and

Iµν,ρσ (x) =
1
2

�

Iµσ (x) Iνρ (x) + Iµρ (x) Iνσ (x)
�

−
1
d

gµνgρσ , (2.9)

with

Iµν (x − y) = δµν − 2
(x − y)µ(x − y)ν
|x − y|2

. (2.10)

Plugging everything in, we get

δA0 =
1

32
δσ

∫

d4 x
Æ

g(x)

∫

d4 y
Æ

g(y)hµν(x)hρσ(y)〈Tµν(x)Tρσ(y)〉. (2.11)

Hence, the leading correction to the universal coefficient in the free energy is given by the
integrated stress-tensor two-point function.

2.1. Examples

Let us demonstrate the above by considering generic CFTs placed on specific deformed
spheres.

2.1.1. SU(2)× U(1) isometry

We first consider a simple deformation which preserves an SU(2) × U(1) isometry. In
projective coordinates the deformation is

hµνdxµdxν = εΩ4 (x2dx1 − x1dx2)
2 . (2.12)

The leading contribution to the (Weyl)2 part of the anomaly is then given by

δA0 =
c

64π2

∫

d4 x
p

gCµνρσCµνρσ =
3ε2

2240
CT . (2.13)

Let us now compute the logarithmic divergence in the integrated stress-tensor two-point
function. Contracting the correlator with the metric deformation we have

Æ

g(x)
Æ

g(y)hµν(x)hρσ(y)〈Tµν(x)Tρσ(y)〉

=
ε2CTΩ(x)2Ω(y)2

16π4|x − y|8

�

4(x1 y1 + x2 y2)
2 −

�

x2
1 + x2

2

� �

y2
1 + y2

2

�

+ 16
(x2 y1 − x1 y2)2

|x − y|2

�

(x2 y1 − x1 y2)2

|x − y|2
− (x1 y1 + x2 y2)

�

�

.

(2.14)

In general, to compute the integrated correlator one can use the SO(5) symmetry of the inte-
gration measure to fix the position of one of the operators at the north (or south) pole. This
corresponds to a specific choice of regularization scheme which preserves the SO(5) isometry
of the round sphere. If we do this the above correlator vanishes identically at separated points
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because the deformation is zero at the poles. To uncover the singularities in the coincident
limit we use the relations

δσ
1
|x |4

= 2π2δ4(x) , δσ
1

|x |4+2m
=

2π2

4mΓ (m+ 1)Γ (m+ 2)
�mδ4(x − y). (2.15)

The second equality follows from the first by interchanging the Laplacian and δσ. Using these
relations one finds

1
32
δσ

∫

d4 x

∫

d4 y
Æ

g(x)
Æ

g(y)hµν(x)hρσ(y)〈Tµν(x)Tρσ(y)〉

= −
CTε

2

16π2

∫

d4 x

�

x2
1 + x2

2

�

�

x4
1 + 2x2

1

�

x2
2 + x2

3 + x2
4 − 7

�

+ x4
2 + 2x2

2

�

x2
3 + x2

4 − 7
�

+
�

x2
3 + x2

4 + 1
�2�

�

x2
1 + x2

2 + x2
3 + x2

4 + 1
�8

=
3CTε

2

2240
,

(2.16)
which matches the result in (2.13).

2.1.2. U(1)× U(1) isometry

Let us now consider squashing the round sphere to an ellipsoid [18]. In this case the metric
is

ds2 = r2EaE bδab, (2.17)

where

E1 = ` sinρ cosθdφ, E2 = e` sinρ sinθdχ, E3 = sinρ f dθ + hdρ, E4 = gdρ.
(2.18)

The coordinates φ and χ are 2π periodic, while θ ∈ [0, π2 ], ρ ∈ [0,π], and

f =
Æ

`2 sin2 θ +e` cos2 θ , g =
r

r2 sin2ρ +
�

`e`
�2

f −2 cos2ρ,

h=
e`2 − `2

f
cosρ sinθ cosθ . (2.19)

Setting ` = e` = r corresponds to the round sphere. The overall size of the manifold is pa-
rameterized by r2`˜̀ while the squashing is parameterized by the dimensionless parameter

b =
r

`
e`
. The metric in (2.17) preserves a U(1)× U(1) isometry corresponding to the Killing

vectors ∂φ and ∂χ . For supersymmetric theories it admits a Killing spinor when certain back-
ground fields are turned on [18]. The integrated (Weyl)2 term can be calculated analytically
for this deformation for all b ≥ 1 and we find

1
16π2

∫

d4 x
p

gCµνρσCµνρσ =

−46b12+68b8−28b4+15
p

b4−1b10 log
�

2b2
�p

b4−1+b2
�

−1
�

+6

45b10

=O
�

(b− 1)4
�

. (2.20)

Hence, the integrated two-point function for the stress-tensor does not have logarithmic
singularities to leading order in the deformation.

We can also show the absence of a leading order singularity in the two-point function
directly. We first set e` = r so that the deformation is completely captured by ` = b2r. The

6

https://scipost.org
https://scipost.org/SciPostPhys.10.3.063


SciPost Phys. 10, 063 (2021)

deformation of the metric away from the round sphere takes the form in projective coordinates,

hµν = 2(b−1)
�

vµvν +wµwν
�

where vµdxµ = d
�

Ωx1
�

and wµdxµ = d
�

Ωx2
�

.
(2.21)

We now write the two-point function contracted with the deformation as
Æ

g(x)
Æ

g(y)hµν(x)hρσ(y)〈Tµν(x)Tρσ(y)〉

=
CT

4π4|x − y|8

�

hab(x)hab(y)−
1
4

ha
a(x)h

b
b(y)− 4hac(x)hc

b(y)
(x − y)a (x − y)b

|x − y|2

+ 4hab(x)hcd(y)
(x − y)a (x − y)b (x − y)c (x − y)d

|x − y|4

�

.

(2.22)

After integrating over the coordinates, the anomaly contribution of each of the four terms
inside the parenthesis in (2.22) can be found by using (2.15). After a tedious calculation we
find

δσ

∫

d4 xd4 y
hab(x)hab(y)
|x − y|8

=

∫

dx
π4
�

64x8 + 252x6 + 360x4 + 202x2 + 45
�

18 (x2 + 1)
9
2

,

−δσ

∫

d4 xd4 y
1

4|x − y|8
ha

a(x)h
b

b(y) = −
∫

dx
π4
�

12x4 + 6x2 − 1
�

24 (x2 + 1)
9
2

,

−4δσ

∫

d4 xd4 yhac(x)hc
b(y)

(x − y)a (x − y)b
|x − y|10

=

−
∫

dx
π4
�

2318x4 + 1271x2 + 400
�

x2 + 4
�

x6 + 278
�

60 (x2 + 1)
9
2

,

4δσ

∫

d4 xd4 yhab(x)hcd(y)
(x − y)a (x − y)b (x − y)c (x − y)d

|x − y|12

=

∫

dx
π4
�

1120x8 + 4560x6 + 6888x4 + 3676x2 + 753
�

360 (x2 + 1)
9
2

. (2.23)

Each of the above terms is logarithmically divergent for large x , but their sum vanishes. Hence,
the leading logarithmic divergence for the integrated two-point function vanishes.

3. Free energy of N = 2 SCFTs on deformed spheres

In this section we study the partition function of N = 2 SCFTs on supersymmetric curved
backgrounds. These backgrounds are obtained by coupling the stress-tensor multiplet ofN = 2
theories with the gravity (Weyl) multiplet of N = 2 Poincaré (conformal) supergravity [10,
11,23]. The supergravity background in Euclidean signature has a metric gµν, a self-dual two-
form B+µν, an anti-self-dual two-from B−µν, background vector fields Vµ and Vµ i j for
U(1)R × SU(2)R R-symmetry and a scalar field D(x). The partition function is then a non-
local function of the supergravity background fields and couplings of the theory which can be
computed via localization under favorable circumstances. We study both the logarithmically
divergent and the finite part of the free energy. We do not need the explicit knowledge of
any supersymmetric background for our analysis and our main tool is the Weyl anomaly, the
moduli anomaly and a classification of local counter terms.
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3.1. Weyl anomaly in N = 2 SCFTs

The universal coefficient of the log
�

volMΛ
4
UV

�

term can be determined using the Weyl
anomaly which is modified to incorporate the N = 2 supersymmetry. The appropriately su-
persymmetrized Weyl variation of the free energy is given by the following superspace expres-
sion [13,14,24].

δΣ log Z ⊃
1

16π2

∫

d4 x

∫

d4ΘEδΣ
�

aΞ+ (c − a)WαβWαβ

�

+ c.c. (3.1)

Here δΣ is a chiral superfield which parameterizes the super-Weyl transformations. Its lowest
component is δσ + iδα where δσ parameterizes the Weyl transformations and δα parame-
terizes the U(1)R transformation. E is the chiral density, Wαβ is the covariantly chiral Weyl
superfield and Ξ is a composite scalar constructed from curvature superfields that appear in
commutators of super-covariant derivatives. In component fields the anomalous variation of
the free energy takes the form2

δΣ log Z ⊃− 2aδσχ(M) +δα
h

(a− c)
�

P(M)− nU(1)R

�

− (a−
c
2
)nSU(2)R

i

+
c

16π2
δσ

∫

d4 x
p

g
�

CµνρσCµνρσ + · · ·
�

.
(3.2)

All terms on the first line are topological invariants, where χ(M) is the Euler characteristic
of the compact manifold M. The term multiplying the U(1)R transformation is written as a
combination of the Pontryagin character and the second Chern class for the background gauge
fields,

P(M) = 1
32π2

∫

d4 xεµνρσRµναβRρσ
αβ ,

nU(1)R =
1

32π2

∫

d4 xεµνρσFµνFρσ,

nSU(2)R =
1

32π2

∫

d4 xεµνρσTrFµνFρσ.

(3.3)

For supergravity backgrounds smoothly connected to the round sphere, the topological invari-
ants in eq. (3.3) vanish and χ(M) = 2. The term proportional to the central charge c in the
Weyl transformation is not topological and hence is non-trivial on deformed spheres. The el-
lipses denote the additional terms required to make the (Weyl)2 term supersymmetric. Let us
denote this supersymmetric completion by I(Weyl)2 . Then the Weyl anomaly coefficient, A0, on
supergravity backgrounds smoothly connected to the round sphere is given by

A0 = −a+
c

64π2
I(Weyl)2 . (3.4)

Since c appears in the normalization of the two-point functions for operators in the stress-
tensor multiplet, this suggests that one can relate these two-point functions to the supersym-
metric completion in (3.4). In the next section we follow this strategy to determine I(Weyl)2 .

3.2. Supersymmetric completion of (Weyl)2 from stress-tensor correlators

In this section we determine I(Weyl)2 by studying the logarithmic divergences of various
two-point correlators of stress-tensor multiplet operators. We first use the Weyl-weights and

2δσ and δα are independent of coordinates.
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U(1)R charges of the various fields in the supergravity multiplet to write down the most general
possibility for I(Weyl)2 . We then use the precise coupling of the stress-tensor multiplet with the
Weyl-multiplet to relate the logarithmic divergences of the two-point functions to various terms
in I(Weyl)2 .

The Weyl weights of the fields in the supergravity multiplet are

wgµν = −2, wAµ = 0, wVµ = 0, wB = −1 wD = 2. (3.5)

The self-dual and anti-self-dual two-forms are charged under the background U(1)R gauge
field and carry opposite chiral weights. This implies that an equal number of self-dual and
anti-self-dual two-forms must appear in an allowed term. Using these considerations one can
list the possible local functions of background fields which can appear in I(Weyl)2 . For example,
possible terms involving the scalar field D(x) are

gµν∇µ∇νD, D
�

BµνBµν
�

, D2. (3.6)

The first term is omitted because it is a total derivative. The second term is ruled out because
its non-trivial parts must involve different numbers of self-dual and anti self-dual two-forms.
Similarly, after accounting for the possible terms involving other background fields one can
write down the most general form for I(Weyl)2 consistent with the invariance under U(1)R and
constant Weyl transformations:

I(Weyl)2 =

∫

d4 x
p

g
�

CµνρσCµνρσ + c1D2 + c2FµνFµν + c3TrFµνFµν + c4∇µB+µν∇σB−σν

+ c̃4RµνB+µρB−νρ + c5B+µνB+µνB−µνB−µν
�

. (3.7)

Under non-constant Weyl transformations all terms are invariant except the ones that ap-
pear with coefficients c4 and c̃4. The coefficient c̃4 can then be fixed in terms of c4 by re-
quiring their combined Weyl variation to cancel. We rewrite these in terms of the-two form
Bµν = B+µν + B−µν, such that

∇µB+µν∇σB−σν = −
1
8

�

∇µBνρ∇µBνρ − 2∇µBµν∇ρBρν − 2∇ρBµν∇µBρν
�

,

RµνB+µρB−νρ =
1
2

RµνBµρBνρ −
1
8

RBµνBµν.
(3.8)

Up to a total derivative, the Weyl variation is then given by

δσ
p

g
�

c4∇µB+µν∇σB−σν+c̃4RµνB+µρB−νρ
�

=
c4 − 2c̃4

8
∇2σBµνBµν−

c4 − 2c̃4

2
∇µ∇νσBµρBνρ.

(3.9)
Hence, the I(Weyl)2 given in eq. (3.7) is invariant under local Weyl transformations if c̃4 =

1
2 c4.

The rest of the coefficients in I(Weyl)2 , except c5, can be determined by relating the Weyl
anomaly to logarithmic divergences in the two-point functions. These two-point functions can
be computed by taking functional derivatives of the free energy with respect to the background
fields to which the operators couple. To this end we compute the scale dependence of the two-
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point functions using δσ log Z = 4A0 = −4a+ c
16π2 I(Weyl)2 and eq. (3.7). This gives

δσ
δ2 log Z

δD(x)δD(y)

�

�

�

R4
=

c1CT

1280π2
δ4(x − y),

δσ
δ2 log Z

δVµ(x)δVν(y)

�

�

�

R4
= −

c2CT

640π2

�

δµν∂ 2 − ∂ µ∂ ν
�

δ4(x − y),

δσ
δ2 log Z

δV i j
µ (x)δVkl

ν (y)

�

�

�

R4
= −

c3CT

640π2
ε(i jεk)l

�

δµν∂ 2 − ∂ µ∂ ν
�

δ4(x − y),

δσ
δ2

δBµν(x)δBρσ(y)
log Z

�

�

�

R4
=

c4CT

10240π2
B[µν][ρσ]δ4(x − y),

(3.10)

where Bµνρσ is the differential operator

Bµνρσ =
�

δµρδσν∂ 2 − 4δµρ∂ σ∂ ν
�

. (3.11)

We now use the linearized coupling of the Weyl-multiplet with the stress-tensor multiplet
operators [25] to relate the terms computed in (3.10) to the two-point functions, where we
find

δL =
�

1
2

hµνTµν −
i
2

Vµ jµ −
i
2

�

tµ
�i j �Vµ

�

i j − 16
�

HµνB+µν +HµνB−µν
�

−O2D
�

. (3.12)

The stress-tensor multiplet two-point functions are completely determined by using Ward iden-
tities in terms of the central charge CT and are given by

〈O2 (x)O2 (y)〉R4 =
3CT

5120π4

1
|x − y|4

,

〈 jµ(x) jν(y)〉R4 = −
3CT

160π4

1
|x − y|6

Iµν (x − y) ,

〈
�

tµ
�i j
(x) (tν)

kl (y)〉R4 = −
3CT

160π4

1
|x − y|6

Iµν (x − y) ,

〈Hµν (x)Hρσ (y)〉R4 =
3CT

1280π4

(x − y)γ(x − y)ι

|x − y|8
�

4εµνγ[σδρ]ι + 4ερσι[νδµ]γ + 12δ[µιδ
ν
σδ

γ]
ρ + 8δ[µ[ρδσ]ιδ

ν]γ
�

.

(3.13)

These two-point functions are derived in Appendix A.
From the linearized coupling of the background scalar we find that

δσ
δ2 log Z

δD(x)δD(y)

�

�

�

R4
= δσ〈O2(x)O2(y)〉=

3CT

2560π2
δ4(x − y). (3.14)

Comparing this with (3.10) we determine that c1 =
3
2 .

From the linearized coupling of the background field to the SU(2)R current we compute

δσ
δ2 log Z

δV i j
µ (x)δVkl

ν (y)

�

�

�

R4
= −

1
4
δσ〈t

µ
i j(x)t

ν
kl(y)〉. (3.15)

The scale dependence of the right hand side can be computed using the two-point func-
tions (3.13) and the identity

Iµν
|x |6

=
1
12
(δµν∂

2 − ∂µ∂ν)
1
|x |4

, (3.16)
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which gives

δσ
δ2 log Z

δV i j
µ (x)δVkl

ν (y)

�

�

�

R4
=

CT

1280π2
ε(i jεk)l

�

δµν∂ 2 − ∂ µ∂ ν
�

δ4(x − y). (3.17)

Comparing with eq. (3.10) we get c3 = −
1
2 . In a completely analogous manner one finds that

c2 = −
1
2 .

From the coupling of the two-form field in the Lagrangian (3.12) we find that

δσ
δ2

δBµν(x)δBρσ(y)
log Z

�

�

�

R4
= 256δσ〈Hµν(x)Hρσ(y) +Hµν(x)Hρσ(y)〉

=
3CT

5π4
δσ
(x − y)γ (x − y)ι

|x − y|8

�

4εµνγ[σδρ]ι + 4ερσι[νδµ]γ + 12δ[µιδ
ν
σδ

γ]
ρ

+ 8δ[µ[ρδσ]ιδ
ν]γ + ({µ,ν,γ}↔ {ρ,σ, ι})

�

.

(3.18)

Under ({µ,ν,γ}↔ {ρ,σ, ι}) the first two terms are antisymmetric and drop out from the
two-point function. Using

xγx ι

|x |8
=

1
24

�

∂ γ∂ ι + 1
2 gγι∂ 2

� 1
|x |4

, (3.19)

we then find for the scale dependence of the two-point function

δσ
δ2

δBµν(x)δBρσ(y)
log Z

�

�

�

R4
=

CT

20π2
B[µν][ρσ]δ4(x − y). (3.20)

Comparing with eq. (3.10) we find that c4 = 4096.
The final coefficient c5 is for a quartic term and hence it is necessary to compute up to

four-point correlators to find it. In fact, the supersymmetric Lagrangian also contains terms
coupling the bottom components of marginal chiral multiplets with B+µνB+µν. Hence, four
derivatives with respect to the background two-form field will involve a combination of two-
, three- and four-point functions. In principle, all of these functions can contribute to the
logarithmic divergence in the free energy.

The scale dependence of the two-point function can be ascertained as before. Scale depen-
dence of three- and four-point functions is more non-trivial to obtain. Higher-point functions
contain two types of divergences: (i) when only a subset of the operators collide, (ii) when
all the operators collide. The divergences of the first kind are the so-called semi-local diver-
gences [26] and these can be regularized by counterterms which involve coupling of the back-
ground fields for the colliding operators with the remaining operator. Since such couplings
are already present in the supersymmetric Lagrangian and are completely determined by su-
persymmetry, the effect of such counterterms is to only renormalize the operators appearing
in the Lagrangian.

The divergences of the second kind, the so-called ultra-local divergences [26] are regular-
ized by adding counter-terms local in the background fields and these are the divergences that
we are interested in. The ultra-local divergence of the three-point function can be determined
with a bit of effort because the three-point functions are protected. The task becomes much
more difficult for the four-point function. Since the only theory-dependent content of the Weyl
anomaly is the coefficient CT , we can use the free theory results to determine the ultra-local
divergence in the four-point function and fix c5. This would be interesting to compute but we
will not do it here.
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3.3. Finite part of the free energy and the Kähler potential

In this section we study the free energy of N = 2 SCFTs on a supersymmetric curved
background as a function of the marginal couplings. On R4 an N = 2 SCFT can be deformed
while preserving superconformal invariance by the term

1
π2

∫

d4 x

dimMC
∑

i=1

�

τiCi +τiC i

�

, (3.21)

where Ci is a marginal operator in the SCFT and dimMC
is the dimension of the conformal

manifold MC of the SCFT. On a curved background the above deformation is not generally
superconformal invariant. It can, however, be made superconformal invariant by adding non-
minimal couplings with background fields of the supergravity Weyl-multiplet [15, 27]. This
leads to a term having the form

1
π2

∫

d4 x
p

g
∑

i

τi

�

Ci −
1
4
AiB

+
µνB+µν

�

+ h.c, (3.22)

whereAi is the bottom component of the chiral multiplet whose top component is the marginal
operator Ci . For Lagrangian SCFTs based on a gauge group G =

∏

i Gi , the above deformation
is proportional to the action for an N = 2 vector multiplet [28] with complexified gauge
coupling τi . For our purposes, it now suffices to focus on a single marginal deformation which
has a Lagrangian description. Our results hold for abstract marginal deformations, irrespective
of their microscopic realization.

In order to leverage the microscopic realization of marginal deformations in terms of the
N = 2 vector multiplet, we use the language of cohomological fields introduced in [10, 11].
A key ingredient is the existence of a Killing vector v which is the square of a supersymmetry
transformation. Given v we can define its dual κ = g(v,•) and the interior product on forms
in the cohomology ιv :ω ∈ Ω∗(M) 7→ (ιvω)(•) :=ω(v,•). Left and right handed generalized
Killing spinors ζi and χ i of norm s(x) and s̃(x) respectively generate the supersymmetry trans-
formations. These functions are related to the Killing vector field as ss̃ = ‖v‖2. Using this geo-
metric data one can construct the cohomological fieldsφ = s̃X+sX and Ψµ = ζiσµλi+χ

iσµλi
in terms of a standard N = 2 vector multiplet (X ,λi , Aµ). Then the supersymmetry variations
take the form

δA= iΨ (3.23)

δΨ = ιv F + i dAφ (3.24)

δφ = ιvΨ, (3.25)

while the action can be written as

S =
1

πg2
YM

∫

M
Ω∧ Tr (φ +Ψ + F)2 +δ(. . . ) , (3.26)

where Ω is a v-equivariantly closed multiform whose zero-form and two-form components are
given by [10]

Ω0 =
s− s̃
s+ s̃

+ i
θ g2

YM

8π2

Ω2 = −2i
s− s̃
(s+ s̃)3

dκ−
4i

(s+ s̃)3
κ∧ d(s− s̃).
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Ω also has a 4-form component which is not needed for the subsequent computations. Since
Ω is equivariantly closed, we see by a straight forward computation that

(i d + ιv)Ω∧ Tr(F +Ψ +φ)2 = δ(Tr(F +Ψ +φ)2) , (3.27)

showing that up to supersymmetrically exact terms the Lagrangian is equivariantly closed.
Following Atiyah-Bott-Berline-Vergne, this implies that the action localizes equivariantly to a
sum over fixed-points of the Killing vector [29]. Indeed one can show that modulo δ-exact
terms

S = 32τ
∑

x:s(x)=0

1
εxε′x

A(x) + 32τ
∑

x:s̃(x)=0

1
εxε′x

A(x) , (3.28)

with εx ,ε′x characterizing the manifold close to the fixed point x . In deriving (3.28) we used
that

TrX 2 = +8iA(x), TrX
2
= −8iA(x). (3.29)

Let us show with more detail the above argument on the deformed sphere background
of [18]. The Killing vector field and the functions s and s̃ are given by

v =
1
`

∂

∂ φ
+

1
e`

∂

∂ χ
, s = 2 sin2

�ρ

2

�

, s̃ = 2cos2
�ρ

2

�

. (3.30)

The vector field has fixed-points at the north pole (ρ = 0) and the south pole (ρ = π). We
define the following multiform

η=
κ

‖v‖2
− i
κ∧ dκ
‖v‖4

⇒ (i d + ιv)η= 1 , (3.31)

which is well defined everywhere except at the fixed points of v. Away from the poles, we can
write

Ω∧ Tr (φ +Ψ + F)2 = ((i d + ιv)η)∧Ω∧ Tr (φ +Ψ + F)2

= (i d + ιv)
�

η∧Ω∧ Tr (φ +Ψ + F)2
�

+δ
�

η∧Ω∧ Tr (φ +Ψ + F)2
�

.
(3.32)

To use this, we can cut out small balls of radius ε around the poles of the sphere and apply
Stokes theorem, giving

∫

M
Ω∧ Tr (φ +Ψ + F)2

= lim
ε→0

�

i

∫

(S3
ε (N)∪S3

ε (S))
η∧Ω∧ Tr (φ +Ψ + F)2

+δ

�

∫

M\(Bε(N)∪Bε(S))
η∧Ω∧ Tr (φ +Ψ + F)2

��

. (3.33)

Using the definition of η in eq. (3.31) and that of Ω in eq. (3.27) we compute

η∧Ω∧ Tr (φ +Ψ + F)2 =Tr(φ2)
−iω3

(ss̃)2
κ∧ dκ+

ω1

ss̃
κ∧ Tr(Ψ2) + 2

ω1

ss̃
κ∧ Tr(φF)

+ 2
ω1

ss̃
κ∧ Tr(Ψ ∧ F)

−2iω3

(ss̃)2
κ∧ dκ∧ Tr(φΨ) + . . . ,

(3.34)

13

https://scipost.org
https://scipost.org/SciPostPhys.10.3.063


SciPost Phys. 10, 063 (2021)

where we have omitted forms of degree less than three since they do not contribute to the
integrals. ω1 and ω3 are the coefficients of the one- and three-form in η

ω1 =
s− s̃
(s+ s̃)

+ i
θ g2

Y M

8π2
, ω3 =

(s− s̃)(s2 + 4ss̃+ s̃2)
(s+ s̃)3

+ i
θ g2

Y M

8π2
. (3.35)

Using the explicit form of the Killing one-form, we find that the leading term at small ε for the
surface integrals in (3.33) is

i

∫

S3
ε (N)

Tr(φ2)ω3κ∧ dκ= i

∫

S3
ε (N)

Tr(φ2)(N)(−i)
1
ε4
ω3(N)

−2ε
f

E1 ∧ E2 ∧ E3

=
−2
f ε3
ω3(N)Tr(φ2)(N)

∫ π/2

0

∫ 2π

0

∫ 2π

0

ε` cosθεe` sinθε f dφdχdθ

= −4π2`e`ω3(N)Tr(φ2)(N) (3.36)

= −16π2`e`

�

−1+
iθ g2

YM

8π2

�

Tr(X 2)(N)

= 4iπg2
YMτ`

e`Tr(X 2)(N) .

All other terms contributing to the first integral in (3.33) are suppressed by a factor ss̃ ≈ ε2

and thus vanish. The computation around the south pole works in the same way. One can
also check that terms in the second integral are well-behaved and finite when taking ε to zero.
This proves that, modulo δ−exact terms,

S = −4iτ`e`Tr
�

X 2
�

(N) + 4iτ`e`Tr
�

X
2�
(S) = 32`e`

�

τA(N) +τA(S)
�

. (3.37)

In the presence of multiple marginal deformations (3.37) generalizes to

S = 32`e`
∑

i

�

τiAi(N) +τiAi(S)
�

. (3.38)

From this we get

∂i∂ j log ZM = (32`e`)2
¬

Ai(N)Aj(S)
¶

M
. (3.39)

For the case of the round sphere where ` = e` = r, (3.39) reproduces the result of [15, 16].
Remarkably, (3.39) can be generalized to any any supersymmetric background. For a manifold
Ms with many isolated fixed points, (3.39) generalizes to a sum over all fixed points,

∂i∂ j log ZMs
= (32)2

∑

x:s(x)=0,y:es(y)=0

1
εxε′xεyε′y

〈Ai(x)A j(y)〉 , (3.40)

where ` and e` in (3.39) are replaced by the two equivariant parameters εx , ε′x (εy , ε′y) that
characterize the plus (minus) fixed points of the chosen Killing vector on Ms.

The two-point function appearing on the right hand side of (3.39) is related to the two-
point function of marginal operators due to the supersymmetric Ward identities, and hence
is proportional to the Zamolodchikov metric.3 Choosing ` = r b,e` = r

b , we can parameterize
(3.39) as

∂i∂ j log ZM =
gi j

12

�

1+ eP(τi ,τi , b)
�

. (3.41)

3One might have expected that since (3.39) contains scalar operators, it could have been written in terms of
elementary geometric data of the deformed sphere, e.g. the geodesic distance between the two fixed points. How-
ever, this is not true because of the presence of various non-trivial background fields which modify the two-point
function of microscopic fields in the Lagrangian and consequently the two-point functions of various composite op-
erators. It would be interesting to determine explicitly how the two-point functions depends on such background
fields.
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We can then integrate this up to

log Z =
K
�

τi ,τi

�

12
(1+ P(τi ,τi , b)) + Ph (τi , b) + Ph

�

τi , b
�

, (3.42)

where K(τi ,τi) is the Kähler potential, P̃ = 1
dimMC

g i j∂i∂ j(KP), and Ph and Ph are holomorphic

and anti-holomorphic functions of the moduli. In the next section we will argue that Ph (τi , b)
and Ph

�

τi , b
�

are Weyl-invariant functionals of the supergravity backgrounds.

3.4. The moduli anomaly and the finite part of the free energy

In this section we use insights from the moduli anomaly [14] and extended conformal
manifolds [17] to further constrain the form of the free energy for N = 2 SCFTs. In particular
we demonstrate that the functions Ph (τi , b) and Ph

�

τi , b
�

appearing in eq. (3.42) are Weyl-
invariant functionals of the supergravity backgrounds. Moreover, we argue that the ambiguous
part of the function K

�

τi ,τi

�

P(τi ,τi , b) is proportional to the I(Weyl)2 term.
We start with the superspace expression of the Weyl-anomaly which involves the Kähler

potential [13,14]:

δΣ log Z ⊃ +
1

192π2

∫

d4 xd4θd4θ E
�

δΣ+δΣ
�

K
�

τi ,τi

�

. (3.43)

The normalization is fixed by the two point function of marginal operators which is propor-
tional to the Zamolodchikov metric. After evaluating the right hand side of (3.43) in compo-
nent form and setting the moduli τi to be constant, it takes the form of a Weyl variation of the
supersymmetric Gauss-Bonnet term (see eq. (5.9) in [13] or (2.2) in [14]),

1
96π2

K
�

τi ,τi

�

∫

d4 x δσ

�

p
g
�

1
8

E4 −
1

12
�R+ec

�

τi ,τi

� �

CµνρσCµνρσ + · · ·
�

��

, (3.44)

where ec
�

τi ,τi

�

is an arbitrary function of the moduli. The dependence on the Gauss-Bonnet
term is unambiguous while the (Weyl)2 term appears with ec

�

τi ,τi

�

as this is the only Weyl-
invariant and supersymmetric local term that can be constructed from N = 2 supergravity
background fields. Comparing (3.44) with (3.42) we conclude that Ph and Ph are Weyl-
invariant, possibly non-local functionals of the supergravity background fields. The free en-
ergy, modulo holomorphic Weyl-invariant terms is

K (τi ,τi)
12

+
I(Weyl)2

96π2
K(τi ,τi)c̃(τi ,τi) + γ(τi ,τi , b), (3.45)

where γ(τi ,τi , b) is an unambiguous, Weyl-invariant and necessarily non-local functional of
the supergravity background.

We finally use the Kähler ambiguity and the choice of possible counter-terms [17] to fur-
ther constrain c̃(τi ,τi). The ambiguities in the free energy must be taken into account by ap-
propriate counter-terms. These ambiguities render the partition function multivalued on the
conformal manifold MC . Including the counter-terms with coupling t i makes the partition
function single-valued on the extended conformal manifold [17] parameterized by marginal
couplings and the counter-term couplings. For example on the round sphere the free energy is
K(τi ,τi)

12 and the possible supergravity counter-terms are [15,30](see also appendix A of [19])4:

tχ
1

192π2

∫

d4 xd4θE
�

Ξ−WαβWαβ

�

+ c.c, tW
1

192π2

∫

d4 xd4θEWαβWαβ + c.c. (3.46)

4 tχ and tW have to be holomorphic function of moduli but here we treat them as independent couplings which
can have holomorphic ambiguities.
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The second term, which is proportional to I(Weyl)2 , vanishes for the round sphere and the first
term evaluates to

−
1

12
(tχ + tχ)χ(S4) = −

1
6
(tχ + tχ). (3.47)

The free energy is then a well defined function of marginal couplings and tχ if the Kähler shift,

K → K + F + F , (3.48)

is accompanied by a shift in the coupling tχ ,

tχ → tχ +
F
2

. (3.49)

For supergravity backgrounds with a non-zero I(Weyl)2 , the Kähler shift must also be accompa-
nied by an appropriate shift in the coupling tW to make the free energy well-defined. Since
the coupling can be shifted by holomorphic functions of moduli only, this constrains the form
of ec(τi ,τi) in eq. (3.45). It must satisfy

K (τi ,τi)ec(τi ,τi) = αK (τi ,τi) + β(τi ,τi), (3.50)

where α is a constant and β(τi ,τi) is an unambiguous function of the moduli which is inde-
pendent of the Kähler shifts. This also implies that β(τi ,τi) is modular invariant since duality
transformations generate Kähler shifts. The free energy is now a well-defined function of the
moduli τi , the coupling constant for the Gauss-Bonnet term tχ and the coupling constant for
the I(Weyl)2 term if the Kähler shifts are accompanied by the shifts

tχ → tχ +
F
2

tW → tW − 4αF. (3.51)

In summary, the free energy of an N = 2 SCFT on an arbitrary supersymmetry background
takes the form

log Z =
K (τi ,τi)

12
+
α

96
K (τi ,τi) I(Weyl)2+

1
96
β(τi ,τi)I(Weyl)2+γ(τi ,τi , b)+Ph (τi , b)+Ph

�

τi , b
�

,

(3.52)
where α is a theory-dependent constant, β(τi ,τi) and γ(τi ,τi , b) are modular-invariant func-
tions of the moduli and Ph(Ph) is a Weyl-invariant, holomorphic (anti-holomorphic) function
of the moduli and supergravity background parameters.

4. Supersymmetric localization and the free energy on the deformed sphere

In this section we study SCFTs on the specific supergravity background of [18]. We start
by reviewing the background fields needed to preserve supersymmetry. We then analyze the
partition function of supersymmetric theories on this background. We discuss the structure of
the free energy for Abelian N = 4 super Yang-Mills (SYM) as well as N = 4 SYM at large N
using localization. We then elucidate the definition of N = 4 SYM on the deformed sphere,
showing that the finite part of the free energy is independent of the deformation parameter if
one chooses the theory such that near the poles it reduces to N = 4 SYM in the Ω-background,
indicating a symmetry enhancement.

4.1. Review of the N = 2 supersymmetric background

An N = 2 supersymmetric theory can be coupled to a supergravity background by turning
on appropriate background fields in the N = 2 Poincaré supergravity. To preserve supersym-
metry one needs to add non-minimal couplings in the Lagrangian. For the vector multiplet the
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Lagrangian takes the form [10,18]

Lvec =L cov
vec + Tr

�

16Bmn(F+mnX + F−mnX ))− 64B+µνB+µνX
2
+64B−µνB−µνX 2

−2(D−
R
3
)X X

�

, (4.1)

where L cov
vec is obtained from the flat space Lagrangian by covariantizing all derivatives with

respect to the metric and background gauge fields for the R-symmetry, and X is the complex
scalar field of the vector multiplet. Similarly for the hypermultiplet Lagrangian one needs to
add non-minimal couplings with the background two-form, curvature and the scalar field to
preserve supersymmetry,

Lhyp =L cov
hyp + i Bµν Tr

�

ψ1σµνψ2 −ψ
1
σµνψ

2
�

−
1
4

�

D−
2
3

R
�

Tr
�

Z1Z1 + Z2Z2

�

, (4.2)

where ψi and Zi are fermions and scalars in the hypermultiplet.
In order to preserve supersymmetry on the deformed sphere with U(1) × U(1) isometry

and the metric in (2.17), one needs to further turn on non-trivial background fields. These
were determined in [18], which we reproduce here in a slightly more conventional form5. The
background two-form field is given by

B+µν =
1− cos2 ρ

2 cosρ

16 f g

�

(cosθ (g − f ) + sinθh)
�

E1 ∧ E4 + E2 ∧ E3
�

+ (sinθ (g − f )− cosθh)
�

E2 ∧ E4 + E3 ∧ E1
�

�

B−µν =
1+ sin2 ρ

2 cosρ

16 f g

�

(cosθ ( f − g) + h sinθ )
�

E1 ∧ E4 − E2 ∧ E3
�

+ (sinθ ( f − g)− cosθh)
�

E2 ∧ E4 − E3 ∧ E1
�

�

,

(4.3)

where f , g, and h are defined in (2.19). The expression for the background SU(2)R field is
more complicated and requires the explicit expression for the generalized Killing spinor of [18]
to solve for it. It can be expressed as

Vµdxµ = VaEa, (4.4)

where Va are SU(2)-valued components of the background field in the local frame. These are
given by

V1 = eV1,1τ
3 + eV1,2τ

2
χ+φ ,

V2 = eV2,1τ
3 + eV2,2τ

2
χ+φ ,

V3 = eV3,3τ
1
χ+φ ,

V4 = eV4,3τ
1
χ+φ ,

(4.5)

where we have defined τ1
χ+φ = cos(χ +φ)τ1 + sin(χ +φ)τ2 and

τ2
χ+φ = cos(χ +φ)τ2 − sin(χ +φ)τ1. The terms multiplying the various matrices in (4.5)

5These background fields are not uniquely determined. Indeed there is a three-parameter family of background
fields which preserve supersymmetry on the deformed sphere [10, 11, 18, 23]. In reproducing the background
fields in (4.3)-(4.7) we have made a convenient choice of these parameters such that the the background fields
are smooth at the poles.
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are given by

eV1,1 =
sin2 θ

2 f sinρ cosθ
+

cosθ
2g sinρ

+
h sinθ cosρ
2 f g sinρ

�

1+
sin2ρ

2

�

−
1

2` cosθ sinρ

eV1,2 =
sinθ cosρ
2 f sinρ

�

1−
e`2

g f
+

sin2ρ

2

�

1−
f
g

�

�

eV2,1 =
cos2 θ

2 f sinρ sinθ
+

sinθ
2g sinρ

−
h cosθ cosρ

2 f g sinρ

�

1+
sin2ρ

2

�

−
1

2e` sinθ sinρ

eV2,2 = −
cosθ cosρ

2 f sinρ

�

1−
`2

g f
+

sin2ρ

2

�

1−
f
g

�

�

eV3,3 = −
cosρ

2 f sinρ

�

1−
`2
e`2

g f 3
+

sin2ρ

2

�

1−
f
g

�

�

eV4,3 =
h cosρ

2 f g sinρ

�

1−
`2
e`2

g f 3
+

sin2ρ

2

�

1−
f
g

�

�

.

(4.6)

Finally the expression for the background scalar field, after subtracting the contribution
from the curvature coupling, is

D(x)−
R
3
=

1
f 2
−

1
g2
+

h2

f 2 g2
−

4
f g
−

sin2ρ cos2ρ

4 f 2 g2

�

f 2 + g2 − 2 f g + h2
�

+

�

1
g
∂ρ −

h
g f sinρ

∂θ +
`2
e`2 cosρ

g f 4 sinρ
+

�

`2 +e`2 − f 2
�

cosρ

g f 2 sinρ
−

cosρ
f sinρ

�

�

1
f
−

1
g

�

sinρ cosρ

+

�

1
f sinρ

∂θ +
`2
e`2h cosρ

g2 f 4 sinρ
+

2 cot2θ
f sinρ

−
h cosρ
f g sinρ

�

h
f g

sinρ cosρ .

(4.7)

4.2. The localized partition function

In this section we consider corrections to the free energy coming from the squashing of the
sphere to an ellipsoid. We will pay close attention to the logarithmic divergence in the free
energy as well as its dependence on the marginal couplings of the SCFT. We start by giving the
localized partition function for N = 2 vector and hypermultiplets and then specialize to the
theory with a hypermultiplet in the adjoint representation.

The localized partition function is given by [18]

Z =
∫

da

 

∏

α∈∆+

(a ·α)2
!

e
− 8π2

g2
YM

`e`

r2 Tr a2

|Zinst|2ZvecZhyp, (4.8)

where Zvec and Zhyp are the one-loop contributions from the vector multiplet and hypermul-
tiplet. Zinst is the contribution of instantons at the north and the south pole. On the ellipsoid
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the one-loop contributions are given by

Zvec =
�

Zvec,U(1)
�rG

∏

α∈∆+

1
(a ·α)2

∏

m,n≥0

�

�

(m+ 1) b+
n+ 1

b

�2

+
`e`

r2
(a ·α)2

�

(4.9)

�

�

mb+
n
b

�2
+
`e`

r2
(a ·α)2

�

.

Zhyp =
∏

ρ∈R

∏

m,n≥0





�

m+ 1
2

�

b+
n+ 1

2

b
+ i

√

√

√`e`

r2
(a ·ρ +µ)





−1

(4.10)





�

m+ 1
2

�

b+
n+ 1

2

b
− i

√

√

√`e`

r2
(a ·ρ +µ)





−1

,

where rG is the rank of the gauge group, the product on α is over all positive roots and the
product on ρ is over all weights in the representation R of the hypermultiplet. The hyper-
multiplet mass is µr . Zvec,U(1) is the one-loop determinant associated with each element of the
Cartan subalgebra, and is given by

Zvec,U(1) =Q
∏

m,n≥0,(m,n)6=(0,0)

�

(m+ 1) b+
n+ 1

b

�

�

mb+
n
b

�

, (4.11)

where Q = b+ b−1. This term is normally dropped on the sphere because it only contributes to
an overall constant. However, on more general manifolds it encodes interesting dependence
on the background and are needed to reproduce the correct correlators when taking derivatives
with respect to the deformation parameter [19]. The instanton contribution is given by the
Nekrasov partition function with equivariant parameters b, 1

b and the hypermultiplet mass µr .
Equations (4.10) and (4.11) are divergent and need to be regularized, except for a specific

choice of the hypermultiplet where the product of Zvec and Zhyp is finite. The regularized
one-loop determinants can be expressed in terms of the Upsilon function Υb(x) [31,32] which
has zeros at x = mb+ n

b +Q,−mb− n
b for all non-negative integers m and n.

Zvec =
�

Υ ′b(0)
�rG

∏

α∈∆+

Υb(i
r

`e`
r2 a ·α)Υb(−i

r

`e`
r2 a ·α)

(a ·α)2
,

Zhyp =
∏

ρ∈R



Υb



i

√

√

√`e`

r2
(a ·ρ +µ) +

Q
2









−1

.

(4.12)

4.2.1. Abelian N = 4 SYM

We now use the localization results to explore the free energy of N = 4 SYM. Due to
the possibility of non-minimal couplings, there is a subtlety in defining what we mean by an
N = 4 theory on curved space. In this example we consider the theory of an N = 2 vector
multiplet and a massless adjoint hypermultiplet coupled to the curved space by turning on the
supergravity background fields in (4.3)-(4.7).

The instanton partition function for the abelian theory is independent of the deformation
and is given by [19,33]

Zinst,U(1) =
∞
∏

k=1

1
1− e2πi kτ

. (4.13)
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The one-loop determinants need to be regularized. On the round sphere the logarithmic di-
vergence in the free energy is given by −4a logΛUV = − logΛUV. After regularizing the infinite
products in (4.10) and (4.11) the free energy can be written as

log Z =

�

Q2

4
− 2

�

logΛUV −
1
2

log (τ−τ) + logΥ ′b(0) + log Zinst,U(1) + log Zinst,U(1). (4.14)

Comparing with the general form of the free energy in eq. (3.52) we see that

I(Weyl)2 = 64π2
�

Q2

4 − 1
�

, α= β(τ,τ) = Ph (τi , b) = Ph

�

τi , b
�

= 0,

γ(τi ,τi , b) = logΥ ′b(0). (4.15)

The first term is theory independent and is computed from the logarithmic divergence of the
free energy.

4.2.2. N = 4 SYM at large N

Let us now consider the large N limit of the N = 2 theory with a massive adjoint hyper-
multiplet. The instanton contribution can be ignored in this limit and the localized partition
function can be written as

Z(b,µ) =

∫

∏

i

dσi

∏

i< j

(σi j)
2e−

8π2
λ N

∑

i σ
2
i ZvecZhyp , (4.16)

where we have set `= r b and e`= r
b . The one-loop determinants can now be written as

Zvec = Υ
′
b(0)

N−1
∏

i 6= j

Υb(iσi j)

iσi j
,

Zhyp =
�

Υb(
Q
2
+ iµ)

�−N+1∏

i 6= j

�

Υb(iσi j + iµ+
Q
2
)
�−1

.

(4.17)

After some manipulation the infinite products can be written as

ZvecZhyp =

�

Υ ′b(0)

Υb(
Q
2 + iµ)

�N−1
∏

i 6= j

∞
∏

n=1

n
∏

m=1

�

1−
(n− 2m)2γ′2

(n+ iσ′i j)
2

��

1−
(n− 2m+ 1+ iρ)2γ′2

(n+ iσ′i j)
2

�−1

=

�

Υ ′b(0)

Υb(
Q
2 + iµ)

�N−1

× exp

 

−
∑

i 6= j

∞
∑

p=1

(γ′)2p

p

∞
∑

n=1

�

1
(n+ iσ′i j)

2p

n
∑

m=1

�

(n− 2m)2p − (n− 2m+ 1+ iρ)2p
�

�





(4.18)

where γ′ =
Ç

1− 4
Q2 , ρ = 2µ

Qγ′ , and σ′i = 2σi/Q. The sum over n in (4.18) is divergent and
needs to be regularized. To do this we cut off the sum at some large n = rΛ′UV and then take
the limit Λ′UV→∞. However, there is a subtlety as to how Λ′UV is chosen since n appears with
the redefined fields σ′i j in (4.18). In particular, we claim that to match with the definition
of σ′i j , Λ

′
UV = 2ΛUV/Q, where ΛUV is the cutoff that is held fixed as the squashing parameter

is varied. While we do not prove it here, we believe that this choice is consistent with the
enhancement to N = 4 supersymmetry. We will later show that this is also consistent with the
results in [19] for integrated correlators.
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Equation (4.18) can then be reexpressed as

ZvecZhyp =

�

Υ ′b(0)

Υb(
Q
2 + iµ)

�N−1

exp

 

(1+ρ2)
∑

i 6= j

∞
∑

p=1

(γ′)2p fp(σ
′
i j ,ρ)

!

, (4.19)

where the functions fp(x ,ρ) can be written in terms of digamma functions and their deriva-
tives, plus a logarithmic divergence. The first few examples are

f1(x ,ρ) = − logΛ′UV +ψ(1+ i x) + i xψ′(1+ i x)

f2(x ,ρ)) = − logΛ′UV +ψ(1+ i x) + 3i xψ′(1+ i x)−
�

1
4
(1+ρ2) +

3
2

x2
�

ψ′′(1+ i x)

−
�

1
12
(1+ρ2)i x +

1
6

i x3
�

ψ′′′(1+ i x)

f3(x) = − logΛ′UV +ψ(1+ i x) + 5i xψ′(1+ i x)

−
�

5
6
(1+ρ2) + 5x2

�

ψ′′(1+ i x)−
�

5
6
(1+ρ2)i x +

5
3

i x3
�

ψ′′′(1+ i x)

+
�

1
72
(1+ρ2)(3+ρ2) +

5
24
(1+ρ2)x2 +

5
24

x4
�

ψ(4)(1+ i x)

+
�

1
120
(1+ρ2)(3+ρ2)i x +

1
72
(1+ρ2)i x3 +

1
120

i x5
�

ψ(5)(1+ i x) .

(4.20)

Combining the divergent part of fp with the divergent part of the prefactor in (4.19) we find
that the free energy has the logarithmic divergence

log Z ⊃ −
�

Q2

4
− 1+µ2

�

�

N2 − 1
�

logΛ′UV . (4.21)

Using the functions in (4.20) one can then find corrections to the free energy order by
order in γ′. We are particularly interested in the situation where λ� 1. In this case we expect
generic eigenvalues in the matrix model to be widely separated from each other at the saddle
point. In other words one has that |σ′i j| � 1 for generic i and j. In this case we have that
all fp(x ,ρ) satisfy fp(x ,ρ)≈ − logΛ′UV+ log(i x). Hence, after regularization, which removes
the ΛUV dependence, we have that6

ZvecZhyp
�

�

�

reg.
≈
∏

i 6= j

�

Q
2

�
Q2

2 −2+2µ2

exp

�

(1+ρ2)
(γ′)2

1− (γ′)2
�

log
�

iσ′i j

��

�

=
∏

i 6= j

(iσi j)
Q2

4 −1+µ2
.

(4.22)
Substituting this into (4.16) we find that the partition function is

Z
�

�

reg. ≈
∫

∏

i

dσi

∏

i< j

(σ2
i j)

Q2

4 +µ
2
e−

8π2
λ N

∑

i σ
2
i . (4.23)

This is very close to the form of a Gaussian matrix model. In fact if µ= ±i Qγ′

2 it is the Gaussian
matrix model, as we know it must be since at these points ZvecZhyp = 1. In the large N limit
the saddle point equation is

16π2

λ
Nσi = 2

�

Q2

4
+µ2

�

∑

j 6=i

1
σi −σ j

, (4.24)

6We have dropped the prefactor in (4.19) as it does not contribute to the leading order result at large N .
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which is equivalent to the saddle point equation for a Gaussian matrix model with λ replaced
by
�

Q2

4 +µ
2
�

λ. Hence, the free energy is

log Z
�

�

reg. ≈
N2

2

�

Q2

4
+µ2

�

log

�

λ

�

Q2

4
+µ2

��

. (4.25)

Note that (4.25) is very similar to the free energy for strongly coupled N = 2∗ on the round
sphere [34–36].

Due to the logarithmic divergence, one needs combinations of at least three derivatives
with respect to Q and µ for scheme independence. For µ = 0 we can write the free energy,
including the divergent part, as

log Z ≈ N2

�

−
�

Q2

4
− 2

�

logΛUV +
Q2

8
logλ+

Q2

8
log

Q2

4

�

. (4.26)

Comparing this with the Weyl anomaly and the general form of the finite part in (3.52), we
see that in the large N limit7

I(Weyl)2 =
1

64π2

�

Q2

4 − 1
�

, α= 512, β(τi ,τi) = Ph (τi , b) = Ph

�

τi , b
�

= 0,

γ(τi ,τi , b) = −
N2Q2

8
log

Q2

4
. (4.27)

4.3. Subtleties regarding N = 4 on curved space and an infinite set of relations

It is a subtle issue to identify a quantum field theory on a general curved space as a CFT. For
a conformally flat background, one can canonically map a CFT from flat space to the curved
space. For a generic curved space one cannot unambiguously determine a unique fixed point
due to the presence of more than one length scale. The ambiguity manifests itself in various
choices for the non-minimal coupling of the QFT to the curved space. Demanding supersym-
metry substantially restricts these choices but still leaves some ambiguity. One possibility is to
determine the beta function of the theory on the curved space8. However, the renormalization
group flow is not well understood on curved space [39].

This ambiguity is also present when we place N = 4 SYM on a curved space. We de-
fine the N = 4 theory as N = 2∗ with a special value of the hypermultiplet mass parameter,
µ/r. Naïvely, one would associate an adjoint hypermultiplet with µ = 0 to the N = 4 the-
ory. Indeed, this turns out to be the correct choice for the theory on the round sphere [40].
Near the poles, the round supersymmetric background is equivalent to the Ω-background with
equivariant parameters ε1 = ε2 =

1
r . For generic values of the hypermultiplet mass super-

conformal symmetry is broken and only 8 supercharges are preserved. For the correct value
of the adjoint hypermultiplet mass, all 32 superconformal symmetries are restored in the Ω-
background. This value depends on the equivariant parameters, and for the round sphere
corresponds to µ= 0.

The N = 4 value of µ is modified on the deformed sphere. At the superconformal point,
the mass parameter mN which appears in the Nekrasov partition function is equal to either
equivariant parameter [40]. In the more general case, mN is related to the hypermultiplet
mass µr and the equivariant parameters ε1,ε2 as [40]

mN = i
µ

r
+
ε1 + ε2

2
. (4.28)

7We use that in the large N limit K(τ,τ) = −6N 2 logλ.
8The flat space beta function can be determined from the localized partition function by examining the scale

dependence of the one-loop determinants and comparing it to the classical part [33, 37, 38] for the case of the
sphere.
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Since the equivariant parameters are equal on the round sphere, setting µ= 0 leads to mN =
1
r ,

which is the conformal mass term on the round sphere. For the deformed sphere we have that
ε1 =

b
r , ε2 =

1
br , and thus get9

iµ= ±
1
2

�

b−
1
b

�

(4.29)

so that mN = ε1 or mN = ε2 at this pole. The relation in (4.29) is also the value advocated
in [41] by demanding that the instanton partition function is trivial. By embedding the su-
persymmetric background in N = 4 supergravity [42], one can show that the supersymmetry
enhances at the poles [43] for this particular value of mass parameter. Moreover, for this
value of the hypermultiplet mass the infinite products in the one-loop determinants simplify
to ZvecZhyp = 110. Consequently, the partition function with any gauge group is independent
of the deformation and given by

Z
�

b,µ= ±
�

i b
2
−

i
2b

��

=

∫

da exp

�

−
8π2

g2
YM

Tr a2

�

∏

α∈∆+

(a ·α)2 . (4.30)

For the SU(N) gauge group in the large N limit, the result in eq. (4.25) becomes exact for the
N = 4 value for the mass and we obtain the free energy

log Z = −
N2

2
logλ. (4.31)

This has remarkable consequences for the integrated correlators that can be computed by
taking derivatives of the free energy with respect to the squashing parameter. In particular

∂ n
b log Z

�

b,µ= ±
�

i b
2
−

i
2b

��

= 0 (4.32)

gives a relation between various integrated n- and lower-point correlation functions. In [19],
three non-trivial relations between various four-point correlators in N = 4 SYM were derived
by studying the mass-deformed N = 2∗ on the deformed sphere. We can demonstrate how
two of these relations are a simple consequence of (4.32)11. To do so, we write the deformed
Lagrangian schematically as

L =
1

g2
YM

∞
∑

n=0

(b− 1)n (L 0,n +µL 1,n +µ2L 2,n). (4.33)

The first relation in [19] is

−64π2∂τ∂τ

�

∂ 2
µ − ∂

2
b

�

log Z(b,µ)
�

�

�

µ=0,b=1
= 0 . (4.34)

9In computing the partition function via localization only values of the background fields near the poles appear
in the one-loop determinants. It is possible that there is a non-trivial profile of the hypermultiplet mass which
enhances the symmetry and has the value in (4.29) at the poles.

10Another interesting choice is iµ = − 1
2

�

b+ 1
b

�

for which the one-loop determinants cancel the Vandermonde
determinant and only the instantons contribute to the partition function. For b = 1 this choice coincides with the
theory pointed out in eq. (5.16) of [33].

11To be precise, one obtains unambiguous relations between various derivatives of the free energy which can be
related to integrated correlators. In doing so one needs to be careful in dealing with possible contributions from
redundant operators. We thank G. Festuccia for pointing this out.
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This is equivalent to 12

− 2

∫ 2
∏

i=1

d4 x i

Æ

g(x i)〈L 1,0(x1)L 1,0(x2) + 2L 0,0(x1)L 2,0(x2)

−L 0,1(x1)L 0,1(x2)− 2L 0,0(x1)L 0,2(x2)〉

+
4

g2
YM

∫ 3
∏

i=1

d4 x i

Æ

g(x i)〈L 0,0(x1)L 1,0(x2)L 1,0(x3)−L 0,0(x1)L 0,1(x2)L 0,1(x3)〉

−
1

g4
YM

∫ 4
∏

i=1

d4 x i

Æ

g(x i)〈L 0,0(x1)L 0,0(x2)L 1,0(x3)L 1,0(x4)

−L 0,0(x1)L 0,0(x2)L 0,1(x3)L 0,1(x4)〉
= 0 .

(4.35)

It is straightforward to check that the same constraint follows from the deformation indepen-
dence of the N = 4 theory. In particular, the combination appearing in (4.35) is equal to

−32π2∂τ∂τ∂
2
b

�

log Z(b,
i b
2
−

i
2b
) + log Z(b,−

i b
2
+

i
2b
)
�

�

�

�

�

b=1

. (4.36)

Similarly we can show that the second relation in [19],
�

−6∂ 2
b ∂

2
µ + ∂

4
µ + ∂

4
b − 15∂ 2

b

�

log Z(b,µ)
�

�

�

µ=0,b=1
= 0 , (4.37)

is equivalent to

�

∂ 4
b − 15∂ 2

b

�

�

log Z(b,
i b
2
−

i
2b
) + log Z(b,−

i b
2
+

i
2b
)
�

�

�

�

�

b=1

= 0, (4.38)

where we also used log Z(b,µ) = log Z(b−1,µ), which is evident from the construction of the
partititon function.

One can, in fact, derive an infinite number of relations between various integrated corre-
lators using

∑

n

an∂
n
b

�

log Z(b,
i b
2
−

i
2b
) + log Z(b,−

i b
2
+

i
2b
)
�

�

�

�

�

b=1

= 0, (4.39)

where the an are chosen to satisfy
∑

n

an∂
n
b (b+

1
b
)2
�

�

�

b=1
= 0 , (4.40)

in order to ensure that ambiguous terms in the free energy do not contribute. For example,
the above relation with the operator ∂ 5

b + 6∂ 4
b translates into

�

∂ 5
b + 6∂ 4

b − 10∂ 3
b ∂

2
µ − 6∂ 2

b ∂
2
µ − 4∂ 4

µ

�

log Z(b,µ)
�

�

�

b=1,µ=0
= 0. (4.41)

The third relation in [19] is

−16c = (3∂ 2
b ∂

2
µ − ∂

4
µ − 16τ2

2∂τ∂τ∂
2
µ ) log Z(b,µ)

�

�

�

b=1,µ=0
, (4.42)

where c = N2−1
4 . The authors of [19] provided overwhelming evidence for (4.42), and it is

straightforward to show that this is consistent with the large-N expression given in (4.25), but
it does not follow from (4.32) alone. It would be interesting to demonstrate (4.42) directly.

12We set θ = 0 in the following expressions.
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A. Ward Identities for two-point functions

In this section we use the notations and the flatspace N = 2 supersymmetry transforma-
tions of the stress-tensor multiplet from [25]. For convenience, the transformations we use
are

δO2 =iχ α̇Aξ
α̇A
+ iξαAχ

A
α (A.1)

δχA
α =H β

α ξ
I
β + . . . (A.2)

δχ α̇A =− ∂αα̇O2ξ
α
A + . . . (A.3)

δH
β̇

α̇ =−
i
2

J
β̇A

αα̇ ξαA −
2i
3

�

∂αα̇χ
β̇A+ ∂ β̇

α χA
α̇

�

ξαA (A.4)

δ jαα̇ =−
i
2

J A
αα̇β ξ

β
A + . . . (A.5)

δt B
αα̇A =iJ B

αα̇β ξ
β
A + · · · −

1
2
δB

A

�

iJ C
αα̇β ξ

β
C + . . .

�

(A.6)

δJ A
αα̇β =

2
3

�

∂αα̇H γ

β
+ ∂βα̇H γ

α

�

ξA
γ − 2∂γα̇H γ

β
ξA
α − 2∂γα̇H γ

α ξ
A
β + . . . (A.7)

δJαα̇β̇A =− 2Tαα̇ββ̇ξ
β
A − ξ

β
A

�

2
3
∂αα̇ jββ̇ −

1
3
∂αβ̇ jβα̇ − ∂βα̇ jαβ̇

�

+ 2ξβB

�

2
3
∂αα̇ t B

ββ̇A
−

1
3
∂αβ̇ t B

βα̇A − ∂βα̇ t B
αβ̇A

�

+ . . .
(A.8)

δTαα̇ββ̇ =
i
4
ξ
γ
A

�

2∂γα̇J A
ββ̇α

+ 2∂γβ̇ J A
αα̇β − ∂αα̇J A

ββ̇γ
− ∂ββ̇ J A

αα̇γ

�

+ . . . (A.9)

The ellipses denote terms that are not necessary for the following computations as the cor-
responding terms are easily seen to drop out. The parameter ξ is assumed to be Grassmann
odd.
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We make use of the following Ward identities

0=δ
¬

Tαα̇ββ̇ Jγγ̇δ̇A

¶

(A.10)

=− 2
¬

Tαα̇ββ̇Tγγ̇δδ̇
¶

ξδA +
i
4
ξδB

D�

2∂γα̇J A
ββ̇α

+ 2∂γβ̇ J A
αα̇β − ∂αα̇J A

ββ̇γ
− ∂ββ̇ J A

αα̇γ

�

Jγγ̇δ̇A

E

(A.11)

0=δ
¬

J A
αα̇β H

ε̇

δ̇

¶

(A.12)

=−
i
2

¬

J A
αα̇β J

ε̇B
γδ̇

¶

ξ
γ
B +

­�

2
3

�

∂αα̇H γ

β
+ ∂βα̇H γ

α

�

ξA
γ − 2∂γα̇H γ

β
ξA
α − 2∂γα̇H γ

α ξ
A
β

�

H
ε̇

δ̇

·

(A.13)

0=δ
¬

t B
αα̇A Jββ̇γ̇C

¶

(A.14)

=− iξδA
¬

J B
αα̇δ Jββ̇γ̇C

¶

+
i
2
δB

Aξ
δ
K

¬

J K
αα̇δ Jββ̇γ̇C

¶

+ 2ξδD

­

t B
αα̇A

�

2
3
∂ββ̇ t D

δγ̇C −
1
3
∂βγ̇ t D

δβ̇C
− ∂δβ̇ t D

βγ̇C

�· (A.15)

0=δ
¬

jαα̇ Jββ̇γ̇C

¶

(A.16)

=
i
2
ξδB

¬

J B
αα̇δ Jββ̇γ̇C

¶

− ξδC

­

jαα̇

�

2
3
∂ββ̇ jδγ̇ −

1
3
∂βγ̇ j

δβ̇
− ∂δβ̇ jβγ̇

�·

(A.17)

0=δ



O2χ α̇A

�

= iξαB



χB
αχ α̇A

�

− 〈O2∂αα̇O2〉ξαA (A.18)

0=δ
¬

χA
αH

γ̇

δ̇

¶

=
¬

H β
α H

γ̇

δ̇

¶

ξA
β −

2i
3

¬

χA
α

�

∂βδ̇χ
γ̇B + ∂ γ̇

β
χ B
δ̇

�¶

ξ
β
B . (A.19)

Combing the first two of these we find

− 2
¬

Tαα̇ββ̇T δ̇δ
γγ̇

¶

ξA
δξ

′γ
A (A.20)

=
1
2
ξδB

�

2∂δα̇

­�

2
3

�

∂ββ̇H ε
α + ∂αβ̇H ε

β

�

ξ
′A
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α ξ
A
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β
ξ
′A
α

�

H
δ̇

γ̇

·

+ 2∂δβ̇

­�

2
3

�

∂αα̇H ε
β + ∂βα̇H ε

α

�

ξ
′A
ε − 2∂εα̇H ε

β ξ
A
α − 2∂εα̇H γ

α ξ
′A
β

�

H
δ̇

γ̇

·

− ∂αα̇
­�

2
3

�

∂ββ̇H ε
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β

�

ξ
′A
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ξ
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δ

�

H
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·
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­�

2
3

�

∂αα̇H ε
δ + ∂δα̇H ε

α

�

ξ
′A
ε − 2∂εα̇H ε

δ ξ
A
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α ξ
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δ

�

H
δ̇

γ̇

·�
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(A.21)

Combing the first with the third and fourth

−2ξ
′α
B

¬

Tαα̇ββ̇T δ̇δ
γγ̇

¶

ξA
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α
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3
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2
3
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γ̇ t δ̇ A
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1
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δ
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∂αα̇ j
ββ̇
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2
3
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1
3
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1
2
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ξαBξ

′A
δ

­

∂αβ̇ jβα̇

�

2
3
∂γγ̇ jδ̇δ −

1
3
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1
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(A.22)
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And the last two yield

ξ
′α
A

¬

H β
α H

γ̇

δ̇

¶

ξA
β =

2
3

¬

O2

�

∂βδ̇∂
γ̇αO2 + ∂

γ̇

β
∂ α

δ̇
O2

�¶

ξ
′B
α ξ

β
B . (A.23)

From the quantum numbers (including scaling dimension, spin and R-spin) we know that
the different 2-point functions take the form

¬

Tαα̇ββ̇T δ̇δ
γγ̇

¶

=
1

V 2
Sd−1

(σµ)αα̇(σ
ν)ββ̇(σ

ρ)γγ̇(σ
τ)δ̇δ

CT

|x |8
Iµν,ρτ(x) (A.24)

¬

H β
α H

α̇

β̇

¶

=
1

V 2
Sd−1

CH xµxν

2|x |8
�

(σµ)αβ̇(σν)
α̇β + (σµ)

α̇
α (σν)

β

β̇

�

(A.25)

¬

jαα̇ jββ̇
¶

=
1

V 2
Sd−1

(σµ)αα̇(σ
ν)ββ̇

C j

|x |6
Iµν(x) (A.26)

D

t B
αα̇A t D

ββ̇C

E

=
1

V 2
Sd−1

(σµ)αα̇(σ
ν)ββ̇

Ct

|x |6
Iµν(x)

�

δD
Aδ

B
C + εACε

BD
�

(A.27)

〈O2O2〉=
1

V 2
Sd−1

CO

|x |4
. (A.28)

Plugging these into the relations we got from the Ward identities we get that

CH =
3

40
CT (A.29)

C j = −
3
40

CT (A.30)

Ct = −
3
80

CT (A.31)

CO =
1

32
CH =

3
1280

CT (A.32)

has to hold for the equations to be consistent. We double-checked the last relation by also
computing the ratios CO/Ct , CO/C j using corresponding Ward identities.

The two-form correlator can be rewritten with spatial indices. To do this we contract (A.25)
with appropriate sigma matrices to trade spinor indices for space indices, which, after some
simplification gives eq. (3.13).
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