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Abstract

We exploit insights into the geometry of bosonic and fermionic Gaussian states to de-
velop an efficient local optimization algorithm to extremize arbitrary functions on these
families of states. The method is based on notions of gradient descent attuned to the
local geometry which also allows for the implementation of local constraints. The nat-
ural group action of the symplectic and orthogonal group enables us to compute the
geometric gradient efficiently. While our parametrization of states is based on covari-
ance matrices and linear complex structures, we provide compact formulas to easily
convert from and to other parametrization of Gaussian states, such as wave functions
for pure Gaussian states, quasiprobability distributions and Bogoliubov transformations.
We review applications ranging from approximating ground states to computing circuit
complexity and the entanglement of purification that have both been employed in the
context of holography. Finally, we use the presented methods to collect numerical and
analytical evidence for the conjecture that Gaussian purifications are sufficient to com-
pute the entanglement of purification of arbitrary mixed Gaussian states.
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1 Introduction

Gaussian states form one of the most prominently used and best understood families of quan-
tum states. The standard definition covers bosonic [1-3] and fermionic [4] Gaussian states
both pure and mixed. They naturally appear as ground and thermal states of quadratic Hamil-
tonians in physical systems and are hence ubiquitous in non-interacting quantum many-body
systems in the condensed matter context and as vacua in free field theories. Bosonic Gaussian
states are heavily used in the study of bosonic systems with negligible interactions, such as
Bose-Einstein condensates [5], instances of systems of cold atoms in optical lattices [6] and
to a very good approximation photonic systems [7]. Their fermionic counterparts are equally
important for the study of fermionic quantum many-body systems, including systems captured
by the Bardeen—Cooper—Schrieffer (BCS) theory [8] or the Hartree-Fock framework [9] that
can be seen as a variational principle over Gaussian fermionic states. Other applications range
from field theories [10], continuous variable quantum information [1-3], relativistic quantum
information [11] and quantum fields in curved spacetime [12].

Mathematically speaking, pure Gaussian states can be seen as forming Kihler sub-manifolds
of the projective Hilbert space, i.e., they have a natural notion of distance (Riemannian mani-
fold with metric) and the structure of a classical phase space (symplectic manifold with sym-
plectic form). This mathematical structure will be heavily relied on in this work, where pure
bosonic and fermionic Gaussian states are the focus of attention. For systems constituted of
N modes, the manifold of pure bosonic states M}, and of pure fermionic states My can be
constructed as a symmetric space, i.e., as a quotient of two Lie groups, namely

My = Sp(2N,R)/U(N), )
M; = O(2N)/U(N), ®)

where Sp(2N, R) is the symplectic group, O(2N) the orthogonal group and U(N) the unitary
group. When restricting to one superselection sector of the parity of the fermion number,
we can restrict to the special orthogonal group SO(2N). Gaussian manifolds come with a
natural group action of the respective groups, which we can exploit when performing local
optimization.

We optimize over bosonic and fermionic Gaussian manifolds by taking the natural geom-
etry into account, i.e., the notion of distance between different quantum states as measured
by the Fubini-Study metric [13,14]. Given a Riemannian manifold M with local coordinates
x = (x") and positive-definite metric g§ = (g,,,), such that v-u = g,,,v"'u”, the gradient descent
vector field F* of a function f is

w 9f
dxv’

where G"” is the inverse of g, with G*?g,, = 6",. Typically, the inverse metric G"” needs
to be re-evaluated at every point of the manifold, but for Gaussian states we can explicitly
construct a basis in which the matrix representation of G*” is constant. This provides a crucial
speedup of the underlying algorithm.

The goal of this manuscript is two-fold: First, we demonstrate how the rich geometry of
pure bosonic and fermionic Gaussian states can be exploited to find extremal points of arbitrary
real functions without dealing with redundant directions or parametrizations. Second, we use
a unified framework to describe pure bosonic and fermionic states and carefully review how
to convert between other representations of Gaussian states. This ensures that a reader can
seamlessly apply our methods to their problem of choice. The present manuscript thereby
complements [15], where the geometry of quantum states is discussed, and [16], where the
unified mathematical formalism for Gaussian states is rigorously introduced.

Fl=-G (3)
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A crucial motivation for our work stems from the goal to compare entanglement of purifica-
tion (EoP) and complexity of purification (CoP) in free quantum fields, which recently attracted
increasing interest in the context of applying quantum information methods to holography and
field theory. We provide the GaussianOptimization.m Mathematica package as a simple im-
plementation of our methods, which has already been used successfully in [17 ] to study EoP and
CoP in quantum field theory. The package can be downloaded from our arXiv submission.

This manuscript is structured as follows: In section 2, we review a unified formalism to
treat pure bosonic and fermionic Gaussian states and compute the resulting Kahler geome-
try (positive-definite metric, symplectic form) on the resulting state manifold. In section 3,
we provide a comprehensive treatment of the most commonly used parametrizations of pure
Gaussian states and how to convert between them. In section 4, we use the geometry of the
pure Gaussian state manifold to develop a gradient descent algorithm with an efficient evalu-
ation of G*” which avoids over-parametrization of tangent directions. The following section 5
is devoted to applications, including the well-known problem of finding approximate ground
states, computing Gaussian entanglement of purification (EoP) and Gaussian complexity of
purification (CoP), for which a given function f is optimized over all Gaussian purifications
of a given mixed Gaussian state. In section 6, we use our methods to collect numerical and
analytical evidence for two conjectures stating that for mixed Gaussian states, the Gaussian
EoP is actually optimal (and thus coincides with regular EoP), as well as stating which system
decompositions are necessary to reach this optimum. Finally, we conclude with a discussion
of our results in section 7.

2 Review of Gaussian states

We introduce bosonic and fermionic Gaussian states, both pure and mixed, with a particular
emphasis on the geometry of the state manifold. While standard reviews of Gaussian states
include ref. [1] based on covariance matrices, we follow the conventions of [15,16,18] based
on linear complex structures that provides a basis-independent and unified treatment of bosons
and fermions.

2.1 Quadrature operators and Majorana modes

Bosonic and fermionic quantum systems with N modes can be constructed from N creation or
annihilation operators

|||3,

g ( "3aN’&;{"”,aX{)’ (4)
which satisfy commutation relations [d;,d;]= [&i' aJ’] [al,a = 6;; for bosons or anti-com

.‘

a; =0jj for fermions. Instead of (4), we can

T oA
mutation relations {d;,d;}={a;, '} 0, {a;,
choose a basis of 2N Hermitian operators

A

EZ Wy v b1 BN, )
which are related to the first by the equations
. _ Git+ip; i Qi —ip;
d;=——— and 4 =-——7— (6)
l V2 l V2

with [§;, Qj]:[pi;ﬁj]zoa [Qi:f)j]: i 5ij for bosons and {g;, Qj}Z{f’i,f’j}=5ij, {fli;f’j}zo for ferm
ions. Most readers will be familiar with this notation for bosonic systems, where the Hermitian

4
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basis operators in (5) are called quadratures. However, we will use the same naming conven-
tion for Hermitian fermionic operators, which often go by the name of Majorana modes, just
as our creation and annihilation operators from (4) referred to both bosonic or fermionic vari-
ables. The goal of these conventions is to treat bosons and fermions in a unified framework.
All of our formulas containing indices a, b, ¢ will be manifestly independent from the chosen
basis £, but when giving concrete examples, we will typically provide the explicit matrix rep-
resentations for the two bases from (4) and (5). The position of the index indicates if the
corresponding matrix row or column refers to the classical phase space (upper index) or its
dual (lower index). We use Einstein’s summation convention where we implicitly assume to
sum over repeated indices, where we are only allowed to pair an upper and a lower index."
This formalism is heavily used in the general relativity and high energy physics literature, but
is particularly suitable for the unified treatment of bosonic and fermionic Gaussian states. We
will use the symbols Z and £ to indicate that the RHS of the equation gives the explicit matrix
representations in the basis (5) and (4), respectively.

As we will see, Gaussian states are uniquely specified by their two-point correlation func-
tions in the fundamental operators é . For any state p, we denote the expectation value of
an operator O as (O) = Tr(pO). We may separately consider the symmetrized and anti-
symmetrized part of these correlations, given by the two real bilinear forms

6o = (o8 4 802 %
Qab :_i<éaéb_ébéa>’ (8)
(Requirement: z% = (§%) = 0), 9

where we restrict to 2* = 0 for the purpose of this manuscript to present bosons and fermions
in parallel.?

For bosons, the symplectic form £ is fixed by canonical commutation relations (CCR), while
the positive-definite metric G contains the physical correlations; for fermions, the situation is
reversed, with G fixed by canonical anti-commutation relations (CAR) and Q describing the
physical correlations. In summary, we have

[£9,EP1=iQ%, (bosons)

ta ¢ (10)
(£9,62) =G . (fermions)
With respect to our bases, we have the state-independent expressions
@.p 0 1 a,af 0 —il
Q= (_]] O) = (iﬂ 0 ) , (bosons)
(11)

G:(O ﬂ):(ﬂ 0). (fermions)

When having chosen a set of creation and annihilation operators, our Hilbert space H is
spanned by the orthonormal basis of number eigenvectors |ny,...,ny) with A; |ny,...,ny) =
n;|ny,...,ny), where fi; = éirc“li and n; € N for bosons and n; € {0,1} for fermions. We

1Readers familiar with Penrose’ abstract index notation [19] can also read such as equations as tensor identities.

2For bosonic states with z® # 0, it is easy to adjust the definition of G to be given by
G = (E9ED 4 EPET) — 2225 While there exist fermionic states with z% # 0, they will either not be Gaussian
or they are unphysical (as z* would need to consist of Grassmann variables). Note that also the fermionic super-
selection rule forbids z* # O for genuine fermionic systems, but we could have z* # 0 for spin states mapped to
fermions via Jordan-Wigner transformation. As we focus on physical Gaussian states, we do not consider either of
these cases.
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Table 1: Overview of notations for operator bases. Listed are real (self-adjoint) and
complex operator bases for bosons and fermions, as well as a unified notation used
throughout this work. For an N-mode quantum system, indices are in the range
j,ke{l,...,N} or a,be{1,...,2N}. The creation and annihilation operators in a
complex basis satisfy canonical commutation /anti-commutation relations (CCR/CAR).
Commonly used alternative notations are also listed, some omitting the hat notation
for Hilbert space operators.

Real basis Complex basis
Bosons Phase space (g;, px) CCR operators (13]-, E}Z)
Also: (%;, Pr) Also: (éj,&;)
Fermions Majorana modes 1, CAR operators ( fj, f kT)
Also: v, ¢q, (€, C1) Also: (61,6;:)
o AGP A A PPN
Unified £ Z(4;,p1) ¢ =(a;,q,)

now consider the state-dependent bilinear forms containing the physical correlations. These
are contained in the covariance matrix T??, defined as®

rab :{ G (bosons) (12)

Q% (fermions)

We can combine the state-dependent (12) and state-independent parts (11) into a single object
J, defined below. Due to the fact that G is always positive-definite, we can invert it to define
its inverse g, = (G™1),, with G%g., = §%,. Similarly, we define w,;, = (27!),;, satisfying
Q%w., = 6%p. Note that Q may not be invertible, in which case w refers to the pseudo-inverse
with respect to G. This enables us to define the linear map

__rac
Jab:{ G*w., (bosons) ’ (13)

Q%g., (fermions)

which depends on the state under consideration. We will see in (15) that for Gaussian states the
two formulas in (13) coincide, completely specifying all correlations for both bosons and fermions.

2.2 Definition of pure Gaussian states

Up to this point, the quantum state p has been assumed to be an arbitrary quantum state in
the Hilbert space (with z% = 0). In what follows, we put a specific emphasis on the set of
pure Gaussian states. There are many equivalent definitions in the literature: One may define
Gaussian states as those satisfying Wick’s theorem, as ground states of non-interacting (i.e.,
quadratic), non-degenerate Hamiltonians, or as states vanishing under a full set of specific
annihilation operators. Here, we use yet another equivalent, though very compact definition
[16] based on (13), which states that for a state p

p is a pure Gaussian state < J2=-—1. (14)

3Depending on convention, I'? is sometimes defined with additional prefactors, e.g., as [’ = —Q for fermions.
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If this holds, both formulas in (13) coincide?, such that

p is a pure Gaussian < —G%*w. =Q%g.- (15)

As a pure state, we can write p = |v) (y| for a normalized state vector |v)). One can show
that this state vector |v) is uniquely determined (up to a complex phase) by either the covari-
ance matrix I'®? or equivalently by the complex structure J, which we use as a label to write
) =1J).°

An alternative and completely equivalent definition of pure Gaussian states can be phrased
directly in terms of J, where |J) is the solution of the equations

1(6% +iJ%)E" ) =0. (16)

This definition is based on the observation that the eigenvectors £ ¢ of J with eigenvalues +i
are given by®

£% =1(8% F1J9,)E with £%)J)=0. (17)

The variables éi behave in many ways as creation and annihilation operators, but do not
require a specific basis in phase space, which enables a compact covariant proof of Wick’s
theorem [16]. Moreover, é’i spans the N-dimensional complex eigenspaces VCi of J, which
are the spaces of creation or annihilation operators associated to |J), respectively. We refer to
£ ¢ as phase space covariant creation and annihilation operators, which satisfy the following
commutation (bosons) or anti-commutation (fermions) relations:

[£2,65]=0, [£%,&%]1=cSb, (bosons)

£a £b £a £b ab . (18)
{€4,621 =0, {&%,8]}=C57, (fermions)
where we introduced the 2-point function
po s 1
C;" = (6°€") = (G +i™). (19)
For a given state vector |J), we can always choose a basis
A q, n n n n a,at . . n n
g qu (qlx---sqN’pl""qu) = (al""’aN’aI""’a;]) ’ (20)

in which Q and G simultaneously take the standard forms

e (0 T\aa(0 —il ap (1 O0\aa/0 1
Q:(_ﬂ O):(i“ 0),(;:(0 ﬂ):(ﬂ 0). 1)

In contrast to (10), where only one of the respective background structure (2 for bosons or
G for fermions) takes this form, while the other may take any allowed form, we have now
chosen the basis {7} attuned to |J ), so that also I' (G for bosons, Q for fermions) takes the
above standard form. In this basis, we find”

“We can prove this by computing (Gw) ™ = 0 'G™! = Qg and vice versa. Moreover, (14) implies J ™% = —J.
The two relations together imply (15).

5If we allow for bosons 2% = (£) # 0, we would need to include this in our label of the state vector to write
ly) =1J,z2).

®Here, é‘i is a vector whose components are operators. It is easy to verify J¢ béi = :I:iéi from (17).

’Complex conjugation of the basis &4 satisfies £™ = C° bé b implying él“ =C bé i We have the conjugation

matrix
ap (T O0\aa(0 1
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2 @GP 4 _ _ a,at
LE 1 ay idg idy Y\ =' (4 ~
6_2(75, B T T ):(al; ,dy,0,...,0) ,
£ 22 (4l af, ial iaf, | xaf At At
= 1 N 1 N =
EE(L. ad  9)E(o,..,0a]....4). (22)

Most of the relevant intuition for Gaussian states for N modes comes from considering one
bosonic or two fermionic modes, as reviewed in the following examples, as Gaussian states
for a single fermionic mode is almost trivial. We will further see explicitly that the families of
fermionic Gaussian states consist of two disconnected components.

Example 1 (Single mode pure Gaussian bosonic states). We consider a single bosonic mode

. AAGDP 0 ANDAT A . . .
with & = (§,p) = (a,a"). With respect to the number eigenvectors |n), the most general Gaussian
state vector with z% =0 is

|J) = Z Vel i¢ tanh%)n |2n) , (23)

2nn!
\/cosh 5 n=0

where ¢ €[0,2n] and p € [0, 00). With respect to above bases, one finds

oL cosh p 4+ cos ¢ sinh p sin ¢ sinh p aar e'® sinh p coshp 24)
- sin ¢ sinh p coshp —cos¢sinhp | — | coshp —e '?sinhp

ap —sin ¢ sinh p cos ¢ sinhp +coshp \aai( —icoshp ie'®sinhp (25)
“\cos¢sinhp —coshp sin ¢ sinh p ~\—ie"*®sinhp icoshp |-

In summary, Gaussian states of a single bosonic mode form a two-dimensional plane parametrized
by polar coordinates (p, ¢).

Example 2 (Single and two mode pure Gaussian fermionic states). We consider a single fermionic
mode with é £ (4,D) ='(4,4a"). There are only two distinct pure Gaussian states, which are char-
acterized by the state vectors
J.)=10
{ ) : ) } , 26)

whose covariance matrix and complex structures are
0 =1 0 =Fi
0. = (:F1 0 ) (:I:l 0 ) ’ (27)
a.p 0 +1 aat [ F i 0
Jiz(ﬂ 0)=(0 ii). 28)

In summary, there are only two distinct Gaussian pure states for a single fermionic mode rather

thana famlly of states. We therefore consider also two fermionic modes with 5 (ql, 4o, D1,D9) =
(a,,a,,a al, az), where the most general Gaussian state vectors are

{ |J4) =cos% |0,0) + €' sin% [1,1) }

. (29)
|J_) = cos % 11,0) 4 €'® sin% |0,1)
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with 6 € [0, t] and ¢ €[0,271]. Their covariance matrix and complex structure are

0 Fsin O sin ¢ +cosf +sin 6 cos ¢
0. ¥ +sin 0 sin ¢ 0 —sin 6 cos ¢ cos 6
= Fcos 6 sin 0 cos ¢ 0 sin 6 sin ¢
Fsin 6 cos ¢ —cos 9 —sin 6 sin ¢ 0 (30)
0 iel®sin —icosO 0
aat[  —ie'?sin6 0 0 —icos 6
= icos @ 0 0 —ie”¥sing |°
0 icos® ie"'?sin@ 0
0 Fsin 6 sin ¢ +cos6 +5sin 6 cos ¢
5. +sin 0 sin ¢ 0 —sin 6 cos ¢ cos 6
= Fcos 6 sin O cos ¢ 0 sin @ sin ¢
Fsin 6 cos ¢ —cos O —sin 6 sin ¢ 0 (31)
Ficos0 i5.e71?sin0 0 i5,e'?sin6
aai [ i5.€'¢sinf —icos 6 —i5.ei?sin6 0
= 0 —i8,e ®sind +icosf —i6.e7?sing |’
i5,e71?sin0 0 —i6.e'?sin 6 icos0

with 6. = 123, i.e, 6, =1and 6_ = 0. In summary, Gaussian states of two fermionic modes

form two disconnected spheres parametrized by angles (6, ¢), where we further distinguish the
Gaussian state vectors of type |J,) and |J_). The two sets are distinguished by the parity operator
P =exp(inN), as the total number operator N = Z a '4; is even for |J, ) and odd for |J_)

2.3 Gaussian transformations

In this section, we will introduce a special set of unitary transformations that map Gaussian
states into Gaussian states. They are generated by operators that are quadratic in éa. We
define the Lie group G as linear transformations on the classical phase space V that preserve
the symplectic form Q?° for bosons or the metric G for fermions

G { Sp(2N,R) (bosons) , 32)

O(2N,R) (fermions)
which we represent as matrices M : V. — V with

Sp(2N,R) = {M?, € GL(2N,R) |[MQMT = q},

(33)
O(2N,R) = {M%, € GL(2N,R)| MGMT =G} .
The associated Lie algebras g are then defined as®
sp(2N,R) = {K%; € gl(2N,R) |[KQ + QKT =0}, (3

s0(2N,R) = {K%; € gl(2N,R) | KG + GKT =0} .

We can construct a (projective) representation of these Lie groups as unitary operators S(M) on
Hilbert space by exponentiating quadratic operators. For this, we first define an identification
between Lie algebra elements K € g and anti-Hermitian quadratic operators K with

—% WK% £1EY  (bosons)

fag 35
38K pEEL  (fermions) (35)

Kab (=1 I?:{

8Note that the Lie algebra of O(2N,R) and SO(2N, R) are the same, commonly referred to as so(2N,R).
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which is uniquely fixed by the requirement

[Ki,K,]= [Ebﬁz]- (36)
For any M = X, we define the squeezing operator
S(eF) = ek, (37)

where = implies equality up to a complex phase. For fermions, products of M = eX for
K € s0(2N,R) will only generate the subgroup SO(2N,R), whose group elements satisfy
detM = 1. To generate other group elements M € O(2N,R) with detM = —1, we can take
any dual vector v, € V* satisfying v,G*®v, = 2 to define

S(M,)=v,E%, (fermions) (38)
representing
(M) =v.G%Yy, — 6%, € O(2N,R) (39)

with det M, = —1. We can further check that S(M, ) is unitary. Moreover, we have S‘L(Mv)é a

S(M,) = (M,)?,EP. Consequently, together S(eX) and S(M, ) for a single chosen v, generate
the full orthogonal group O(2N, R), i.e., every element M € O(2N,R) with detM = —1 can
be represented as a S(M) = S(eX)S(M,) for a fixed v, and K = log MMv_l. This definition of
S(M) forms a projective representation satisfying’

S(M;)S(M,) = S(MM,). (40)

Furthermore, we can read off the group element M from S(M) by its action on £ via the
relation

STMEs(M) =M, €. (41)
Every Gaussian state vector |J) has a stabilizer subgroup
UWN)={MegG|MIM"=T}={MeG|MIM =T}, (42)

which preserves T' and J. Note that U(N) depends on J, so one could write U;(N) to indi-
cate this dependence. Similarly, the associated unitary transformation S(M) will preserve the
quantum state vector |J) up to a complex phase, i.e., we have S(M)|J) = |J) for all M € U(N).
This defines the Lie subalgebra

u(N)={K € g|KT+TK" =0} = {K € g|[K,J] =0} . (43)

Similarly, we have K |J) o< |J). Given a Gaussian reference state vector |J,), we can reach any
other Gaussian target state vector |J) via

|J) = S(M) o) = MToMT) . (44)

The solution of the equation MIy;MT =T is not unique, as we can always multiply by u € U(N)
associated to |J,), such that (Mu)To(Mu)" = Mulyu™™MT = MT,MT. We can fix a special solu-
tion T by imposing the condition TI[, = T[,TT leading to the simpler equation

°The equality turns out to hold up to an overall sign, ie., we can choose S(M), such that
S(M;)S(M,) = £5(M; M,).

10
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J = TJoT~! = T%J,, which is solved by T2 = —JJ,. We define this as the relative complex
structure'®

A% =TT =—J (o) =T"(T; ep - (45)

It captures the full basis independent information about the relationship of the two Gaussian
states J and J,. We have the following properties as proven in [16]:

 Bosons. The spectrum of A consists of pairs (e2'i,e™2") with r; € [0, 00), such that
T = v/A has eigenvalues (e"i,e™"i). A is diagonalizable and a symplectic group element.

 Fermions. The spectrum of A consists of quadruples (e!?",el?"i 127 ¢712i) with
r; € (0, 3) or pairs (1,1) or (—1,—1), which correspond to r; € {0, 5}. If the number of
pairs (—1,—1) is even, i.e., the eigenvalue —1 appears with multiplicity divisible by four,
J and J; lie in the same topological component of fermionic Gaussian states, i.e., they can
be continuously deformed into each other. Otherwise, i.e., if the number of eigenvalue
pairs (—1,—1) is odd, J and J, live in separate components. T = +/A is only well defined
in the former case and has quadruple eigenvalues (e'"i,e!"i, e~1"i, e~1"i) for r € (0, 3).
If there are eigenvalue quadruples (—1,—1,—1,—1), there are different, but equivalent
ways'! to define T as a real linear map with T2 = A in this sub block corresponding to
choosing different eigenvectors for the quadruple of eigenvalues (i,i,—i,—1).

We can bring A, T and K =log T into block-diagonal form. We find 2 x 2 one-mode squeezing
blocks for bosons and 4 x 4 two-mode squeezing blocks for fermions. The parameters {r;}
from above correspond to % in our bosonic example 1 and % in our fermionic example 2.

Example 3 (Bosons revisited). We reconsider Example 1 and choose the reference state vector

@ (1 0\acr (0 1 w (0 1\ad(i O
GO:(O 1):(1 o) ’JO—(—1 0)—(0 —i)' (46)
A general symplectic transformation G = Sp(2,R) is
ap (cosT coshs —sin® sinh%  —sint cosh 2 + cos 6 sinh & a.af e'" cosh & iel?sinh & “7)
~ \sinT cosh +cosf sinhs  cost cosh§ +sin 6 sinh & —ie"?sinh & e "coshg )’

for which we have |J) = S(M)|J,) with T from (24), where ¢ = T — 6. The stabilizer group of
|Jo) consists of

e [ COSp  SinQ ag el? 0
“= (—singo cos cp) - ( 0 e'¥v)° (48)
From the relative complex structure A = T? = —J.J,,, we compute the generator
. w P (sing cos¢p YaxiP [ O  ie”?
K_logTZE(coscb —sin¢):E(—iei¢ 0 )’ (49)

such that |J) = ek |Jo). We can always change basis to reach a standard form ¢ = 3, where we
can read off the eigenvalues (e”,e ) of A.

19Sometimes also referred to as relative covariance matrix [20,21].

n essence, T describes half way on the shortest path between T, and I'. The eigenvalues (—1,—1,—1,—1)
imply that I}, and T are on opposite poles of spheres, in which case all the points on the equator are equivalent
choices of being half-way.
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Example 4 (Fermions revisited). We reconsider Example 2. For a single fermionic mode, we
choose the reference state vector |J,,) with

@ (0 1\ac(0 —i w0 1\es(—i 0
90:(_1 O)Z(i 0),J0:(_1 0):(0 i). (50)

The stabilizer subgroup U(1) consists of the same elements as in (42), which coincides with the
group SO(2,R). Consequently, the only group elements that transform |J,) = |J,.) into |J_) lie in
the disconnected component. We also reconsider two fermionic modes with reference state vector

|Jo) given by
e (0 T\aa(0 —il ep (0  T)aa(—il O
QO:(—H O)Z(iﬂ 0 )’JO:(—H o):( 0 iﬂ)‘ (51)

There is a 4-dimensional subspace of these generators also satisfying [K,Jy] = 0, which generates
U(2) c O(4,R). We can reach the most general complex structure J, by a continuous path
generated by

0 0 cos ¢ 0 sin ¢

. 1 a.p —cos ¢ 0 —sin¢ 0

K= 5 log A = E 0 sin ¢ 0 —cos¢ (52)
—sin¢ 0 cos ¢ 0

for A =—J,J,. To reach state vectors of the form |J_), we must also apply an additional trans-
formation S(M,) with v £ (v/2,0,0,0) = (1,0,1,0) to find |J_) = S(M,)|J,). We can al-
ways change basis to reach a standard forms ¢ = 0, where we can read off the eigenvalues
(eieJ 619J e—iG’e—iG) OfA.

2.4 Geometry of pure Gaussian states

The family of pure Gaussian states forms a differentiable manifold M. It provides a versa-
tile tool for analytical and numerical studies of bosonic and fermionic quantum systems with
applications ranging from condensed matter [5,7-9] and quantum information [1,3] to quan-
tum optics [7] and field theory [12]. Mathematically, M is a symmetric space [22] (type CI
for bosons and DIII for fermions) and has the properties of a so-called Kahler manifold. The
latter makes Gaussian states particularly suitable for variational studies, where ground states
and time evolution are approximated on a suitable subset of Hilbert space. In the following,
we will discuss the rich geometry of this manifold, which plays an important role when one
wishes to locally optimize a function on it. We closely follow the conventions of [15], which
contains a comprehensive review of the geometry of variational families, which in turn builds
upon ideas of the time-dependent variational principle [23,24].

We recall our definition of Gaussian state vectors |J) as normalized vectors in Hilbert space,
such that their linear complex structure J¢, satisfies J> = —1. Note that knowing I' does not fix
the complex phase of the Hilbert space vector, i.e., I' actually describes elements of a projective
Hilbert space P(M) which we could represent as (pure) density operators pr = |J) (J| rather
than Hilbert space vectors |J). However, we often prefer to think of pure quantum states as
state vectors |1) rather than density operators p = [1) (y| and accept that we need to keep
in mind that these vectors are actually only defined up to a complex phase, i.e., |J) = e'¥ |J).

Given a covariance matrix I' of a pure Gaussian state vector |J), we are only allowed to
change it in such a way that respects symmetry (symmetric for bosons, antisymmetric for
fermions) and preserves purity (J2 = —1). For the infinitesimal change 6T??, we thus find the

constraints
5T =g§rPa,  §TJT=J8T, (bosons)

ab ba . (53)
6T =—8T°, 6TJT=J6T. (fermions)
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Knowing the change of the covariance matrix I' does not uniquely fix the change of the state
vector |J), as we could also change the complex phase. Such change would be proportional to
i|J). To remove such pure change of gauge, we require that the tangent vector |5T) = §T%? |V,;)
is orthogonal to |J) itself, i.e., (T'|V,;) = 0. Under this condition, one can derive [15]

|qu) _ { %gacwbdéiéi |J> (bosons) (54)

38acWhd éié‘i |[J) (fermions)

This allows us to compute the inner product between two different variations 6T and &T
as [15]

(5T|5T) = %(g((ﬂ“ﬁf‘) +iw(8T,5T)), (55)

where we introduced the real bilinear forms g and w on the tangent space, i.e., the space
of allowed variations 5T%? subject to (53). Interestingly, g is a metric (symmetric, positive-
definite) just as g and w is a symplectic form (antisymmetric, non-degenerate) just as w. We
can evaluate them using (55) and (54) leading to

g(6T,61) =3 Tr(6TgoTg) = 36T g, .61 g4q,

2y 1 = 1 crab #ed (56)
w(0T,0T) = g Tr(6Tg6Tw) = géT " gp 6T “ w4,

which establishes relationships between g, w, g and w.
Given a Gaussian state vector |J) and a Lie algebra element K € g, we compute the induced
variation

d

5T = —| eKre™® =KI +TKT, (57)
dt |,
d

5Jx=—| e®ge * =[K,J]. (58)
dt i

This is the linear map 6Tk : g — T M : K — 6Tk. Its kernel consists of all Lie algebra elements
that do not change the covariance matrix I' and is thus

u(N) = {K € g|[K,J]=0} (59)
from (43). We define its orthogonal complement12
u (N)={K e g|{K,J} =0}, (60)

which is isomorphic to the tangent space 7M. This will allow us to exploit the group structure
of Gaussian states to compute gradient descent with respect to g and symplectic evolution with
respect to @ without needing to evaluate them at every step.

Example 5 (Tangent space for bosons). We reconsider a single bosonic mode from example 4 at
the state vector |J,) with T,y and J defined in (51). The tangent space can be parametrized as

wfa b \aafa+ib 0
SGZ(b —a):( 0 a—ib)’ (61)

w(—b alwf O b+ia
(2 D)z(,9, P, e

2It is the genuine orthogonal complement on the Lie algebra g with respect to the Killing form
K(K,K) = 2N Tr(KK).
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The associated Hilbert space vector |5T) = 5T |V, ) is

ib .
I5T) = %az' o) - 63)

We further find (5T|5T) = ‘I&Jgfbi’ +i % which implies
- d+ bb " b—ba
g(5T,51) = % and (5T, 5T) = %. 64)

Example 6 (Tangent space for fermions). We reconsider Example 4. For a single fermionic mode,
the tangent space is trivial, i.e., zero-dimensional, because the set of pure Gaussian states consists
of two discrete elements. We therefore directly consider two fermionic modes with reference state
vector |Jy) defined in (51). The tangent space is then parametrized as

a b —ia —ib
a.p b —a |aa —ib ia
of1= —a —b = lia ib ’ (65)
—b a ib —ia
a b —ia —ib
a.p b —a |adg| —ib ia
oJ = —a —b = ia ib (66)
—b a ib —ia
The associated Hilbert space vector |5T) = 5% |V, ) is
8T) =—3(a+ib)aja} 1)) . (67)
We further find (ST|56T) = @ +i @ which implies
- G+ bb " b—ba
¢(6T,5) = aaT and (6T, 6T) = % (68)

2.5 Parametrization of Gaussian states

In the previous sections, we saw that a Gaussian state vector |J) is uniquely (up to a com-
plex phase) characterized by its complex structure J. For our purpose, it is more efficient to
parametrize Gaussian states by first choosing a reference complex structure J, and then label
the Gaussian state vector |J,,;) by the group transformation M, such that J,; = MJ,M~*. While
M is not unique for a given J,;, i.e., the map M — Jj,; is not injective, it suffices for the purpose
of optimization if we can efficiently compute gradients on the group manifold.

We will decompose the space of directions on the group into redundant directions (not
changing the state) and non-redundant directions (that change the state). This space is called
tangent space 7; M and it can be described by the allowed variations 6.Jy; of the complex
structure Jy;. These variations are not completely free, because we only allow variations that
respect the conditions on a complex structure J, i.e., J> = —1 and that are compatible with
symplectic form 2 or metric G.

For a reference J, and a group element M, we can associate to every Lie algebra element
K € g the variation

S5Jy(K)=MI[K,Jo]M L. (69)

This is the change induced from moving along Me® away from J,,.
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Figure 1: Parametrization of Gaussian states. We fix a (pure) reference Gaussian state
vector |J,) and then use the subgroup G’ C G to generate the manifold M described
by complex structures J,; = MJ,M ™! for M € G'.

In some situations, we may not wish to parametrize the full manifold of Gaussian states,
but only a subset. This applies in particular when optimizing over Gaussian purifications |J) of
a mixed Gaussian state py, i.e., we require py = Try,, |J ) (J| for Hilbert spaces H = H, ® Hy.
Any other Gaussian purification |J) of p, is related to |J) by a Gaussian transformation

1J) = S(1a @ My) |J) = Sy (Ma)1J) , (70)
i.e., the set of purifications of p, is generated from |J) by the subgroup

This group only affects the Hilbert space H,, such that the reduction of |J’) onto H, will not
change and thus stay to be p,. In summary, we will consider a subalgebra g’ C g that generates
the allowed transformations, e.g., the ones only changing the subsystem # . Analogous to the
decomposition g = u(N) ® u,; (N), we can then define

b ={K eg'|[K,J]=0},

b, ={K e[ {K,Jo} =0},
such that g’ = h’®1’, . In this case, a basis of b, consists of a maximal set of generators 2, € g’
that lead to linearly independent changes of the state Jj,.

In summary, our parametrization of Gaussian states or subfamilies is based on the following
ingredients, which are illustrated in fig. 1.

(72)

* Reference state vector |J,). We specify a pure Gaussian state vector |J,) as reference
by its complex structure J.

 Subalgebra g’ of allowed transformations. We specify a subalgebra g’ C g that we use
to generate any other allowed state (potentially g’ = g).

¢ Generated subgroup G’. The Lie subalgebra g’ generates the Lie subgroup G’ C G.

* Manifold of certain Gaussian states M. The resulting subgroup G’ generates all reach-
able complex structures J,; = MJ,M ! and the associated state vectors |Jy;).
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* Stabilizer b’ of J,. We define the subalgebra b’ = {K € ¢’ |[K,J,] = 0} C g’ generates
those transformation that leave J, invariant.

* Subspace i), changing J,. We define the subspace |, = {K € ¢'|[{K,J,} = 0} of gener-
ators K that are orthogonal to the space b'.

¢ Tangent space ’7}M M. We span the tangent space at a given Gaussian state J,; = MJyM -t
as 6J; = M[K;,Jo]M ™' withK; € b

We therefore choose a basis E = (Z4,...,2,,) of f)’L and then compute
8u» =8(6T,,6T,) and w,,=w(6I,,8T,), (73)
where 0T, =5, + FOEL. We can simplify this to find
l e e o o
8uv = 7 Tr(ELE, + EuoZ,J0), (74)
1
Wyy = 5 Tr(E,uJOEv)a (75)

where we have unified the expressions for bosons and fermions from (56).

2.6 Purification of mixed Gaussian states

An important class of sub-manifolds of pure Gaussian states that are related by the action of
some subgroup G’ C G are Gaussian purifications of a given mixed Gaussian state p. Various
measures of quantum correlations, such as entanglement of purification (EoP) or complexity
of purification (CoP), are defined as some critical value on such manifolds, which we review in
section 5. Here, we discuss the properties of the underlying manifold of Gaussian purifications.

In section 2.2, we focused on pure Gaussian states, which we introduced as those states,
for which the complex structure J satisfies J> = —1. A mixed Gaussian state p is still fully
characterized by J as computed in (13), but which now satisfies the condition

1<—J?, (bosons)

9 . (76)
0<—J*<1. (fermions)

This implies that the eigenvalues of J appear in conjugate pairs £ic; with ¢; € [1, 00) for
bosons and ¢; € [0,1] for fermions. We do not refer to such J as complex structures (unless
J2=—1,ie., all ¢; = 1, in which case p is pure), but rather as a restricted complex structure.
As all the eigenvalues are imaginary, we can diagonalize J only over the complex numbers.
If we only use real transformations, we can only bring J into a block-diagonal form with
antisymmetric 2 x 2 blocks.
In contrast to pure Gaussian states, it is not sufficient to require (76) to ensure that p is
Gaussian. Instead, we need to require that
e‘qabéaéb_co (bosons)
P= e~ 19¢€" =0 (fermions) ’ “n

where q,;, is a positive-definite bilinear form, i.e., p is the exponential of a quadratic operator
(co fixes the normalization Tr(p) = 1). We will later see in formula 8 how J, q and ¢, are
related.

We now consider purifications of Gaussian states. For this, we refer to the original Hilbert
space as H, with 2N, associated operators ég and classical phase space A. We consider a
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mixed Gaussian state p, in this system with restricted complex structure J,. From our pre-
vious discussion of the eigenvalues *ic; of J,, we can find for every fixed basis £, a group
transformation T, € G, (symplectic or orthogonal transformation on A) with

Ja= TR T, (78)

sta

with respect to &,. We have the mixed state standard form

cosh(2r)Ay - 0
Jgn = : - : , (bosons)
0 .-+ cosh(2ry )A
NP2 79)
cos(2r)A, - 0
Jgta = : : (fermions)
0 -+ cos(2ry,)A,

with squeezing parameters r; and the 2 x 2 matrix

0 1)ea(—i O
(—1 0):(0 i)' (80)

It is well-known that such a mixed Gaussian state p, can be purified by adding more degrees
of freedom. For this, we extend the Hilbert space from H, to H' = H, ® H, with operators
&' = (&4,&4). The purification of p, is then a state vector |J) in the larger Hilbert space H’,
such that

b
Sl

Ag

pa="Try, ) (] (81)

This requires H, to be sufficiently large, such that all mixed modes can be purified. In light of
our previous considerations involving the squeezing parameters r;, system 7, must contain at
least as many modes N, as there are non-zero parameters r; associated in the standard form of
J, to p,. The Gaussian purification can then be inferred by constructing the complex structure
J on the larger phase space A® A, such that the restriction [J], to A yields J4. Put differently,
every non-zero squeezing parameter r; corresponds to an individual bosonic or fermionic de-
gree of freedom that can and needs to be purified by correlating it with an additional auxiliary
degree of freedom. Of course, we are always free to add even more auxiliary modes that are
uncorrelated.

The resulting purified form of J with respect to an enlarged basis =€ A £ ) is given by

J=(Ty® Ty)JE (T e T, (82)

for arbitrary T, € Gy, i.e., any such T, will lead to a valid purification |J). The purified
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sta

has been derived in [25] as

( cosh(2r;)A, 0 sinh(2r1)S, 0 0 0 \
0 cosh(2ry )A, 0 sinh(2ry,)S; 0O 0
sinh(2r;)S, 0 cosh(2r)A, 0 0 0
Jspta = : : : : : : , (bosons)
0 sinh(2ry,)S, 0 cosh(2ry,)A, 0 0
0 0 0 0 A, 0
\ 0 0 0 0 0 A, )
( cos(2r;)A, 0 sin(2r1)S, 0 0 0 \
0 cos(2ry,)A, 0 sin(2ry )S, 0 0
—sin(2r))S, 0 cos(2r)A, 0 0 0
Jita = : : : : : . |, (fermions)
0 -+ —sin(2ry,)S, 0 o+ cos(2ry,)A; O 0
0 0 0 0 A, - 0
\ 0 0 0 0 0 A, ]
(83)
where we used the 2 x 2 matrices
e (0 1\aa(—i O e (0 1\aa (0 i
2% 0)E(G i),szz(l 0):(_i o) (84)

Let us now discuss how unique a chosen purification is. From the perspective of pure
states, we can act with arbitrary unitary operators U = 1, ® U, on the state vector |[J), i.e.,
|Yy) = UJ), while preserving the property py = Try,, [Yy) (¥yl|. This is well-known in
the context of the Schmidt-decomposition of |J). However, acting with such a general U will
generally lead to a non-Gaussian state vector [1;). Instead, we restrict to Gaussian unitaries of
the form S(M) = S;(1,® M,/ ) with My € G4, where S(M) has been introduced in Section 2.3.
Here, we used the representation theory of the Lie group G, i.e., the symplectic group for
bosonic systems and the orthogonal group for fermionic ones. From the requirement that
S(M) must act as the identity on #,4, we have

M:ﬂAQBMA/. (85)

We therefore recognize exactly the setup described in Section 2.5 with the subgroup G’ from (71).
We can use the standard form of the purified J to find the subalgebra i’ C g’ that preserves
J. More precisely, we have

b ={K=0,0K,|[K,J]=0}. (86)

If the restriction J, = [J], would describe a pure Gaussian state, the resulting algebra b’
would be isomorphic to u(Ny ). However, for a mixed state complex structure J,, the algebra
b’ will be smaller, which consequently means that its orthogonal complement h/i of those Lie
algebra elements that change the state vector |J) (J| will be of higher dimension than u; (N,).

It turns out that we have h’ = 0 if there are no r; = 0. Otherwise, we have b’ ~ u(N,) if
there are N, distinct parameters r; = 0, which correspond to the allowed Gaussian unitaries
that change the pure Gaussian state contained in p,. Put differently, we have

pa=Try, W) Jl=p; ®-®p, ,
pa =Ty, W) (Il =p, ® - @p, ®po®-®pg,
N———

N,/—N, times

(87)
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where p, is generally a mixed Gaussian state of a single bosonic or fermionic mode with

1 e—ﬁlncothr (bOSOIlS)
pr=

sinh r coshr
. (88)
—filntanr

sinrcosr e (fermions)

where 11 is the number operator of a single bosonic or fermionic mode associated to the creation
and annihilation operator of the corresponding block of J, or J, in their block-diagonal form.

In summary, provided that all r; # 0, we have b’ = 0, such that the set of orthogonal
generators is given by

where g, are the generators of G, . In this specific case, this orthogonal set forms itself a Lie
algebra. Note that the the prime in " and bi is not related to the prime in A’.

3 Representations of Gaussian states

The literature on quantum physics is for good reason full of Gaussian states for bosonic and
fermionic systems and they appear under various names and they a multitude of different
forms. In this section, we attempt to provide a comprehensive dictionary that collects the
commonly used notions of characterizing Gaussian states and explains how to convert between
them. Table 2 provides a summary of these notions, which we review in the following sections
including compact conversion formulas. We restrict to Gaussian states with z¢ = (J|£%|J) = 0,
but it is relatively straightforward by incorporating such displacements for bosons if necessary.

All conversions are based on standard linear algebra operations, i.e., matrix addition and
multiplication, evaluation of eigenvalues and so on. Our formulas will include matrix functions
f (M) which can be either evaluated as power series or by applying f on the eigenvalues of
M. Note that we do not require M to be symmetric or Hermitian, as it suffices that either the
power series of f(x) converges or that M is diagonalizable for f (M) to be well-defined.

In our formulas, we take great care to make any additional structures explicit. For exam-
ple, instead of writing a formula where we implicitly assume that the respective basis to be
orthonormal with respect to some reference inner product, we will write a basis independent
(covariant) formula, which explicitly includes the relevant metric. If we then express the for-
mula with respect to an orthonormal basis, the matrix g representing the metric is just the
identity.

3.1 Covariance matrix

Given any basis {£9} of (possibly complexified) linear observables, we compute the bosonic
covariance matrix G° and the fermionic covariance matrix Q° of a Gaussian state vector |J)
with (T|£%|T) = 0 as defined in (19) based on the following formula.

Formula 1 (Covariance matrices of pure Gaussian states). A Gaussian state vector |J) is fully
characterized by its bosonic or fermionic covariance matrix defined as

pab _ [ G20 = WIEWE + E2EN))  (bosons) °0)
|t = (1(E9EP - EPEN)J)  (fermions) |
We clearly have G?® = G and QP? = —Q?. The covariance matrix is the (anti-)symmetrised

autocorrelator of the quadrature operators and a key characteristic of Gaussian states is that
they are unambiguously defined by their first and second moments (the displacement in phase
space and covariance matrix) only [1-4].
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Table 2: Common representations of Gaussian states. We list commonly used repre-
sentations of bosonic and fermionic Gaussian states of both pure and mixed form.

Bosons Fermions
Covariance matrix (3.1) Covariance matrix (3.1)
G = (J|(§2EP + EPENI) Q= (7(§2€" —EPEN)
Linear complex structure (3.2) Linear complex structure (3.2)
3(8% +1J9)E0 ) =0 3(8% +1J9)EPI7) =0
@ Characteristic function (3.3) Characteristic function (3.3)
g 2s(w) = exp (—3wa(G +5Go) ") 2s(w) = exp (—3wa(Q—500)"ws)
s
§ Quasiprobability distribution (3.4) Quasiprobability distribution (3.4)
% Gaussian unitary (3.5) Gaussian unitary (3.5)
@ |G) = K 10) = exp(—3kqp£°€1) [0) 1) = ¢¥10) = exp(3Kap£°€¥) [0)
E Squeezed vacuum (3.6) Squeezed vacuum (3.6)
Bogoliubov transformation (3.7) Bogoliubov transformation (3.7)
by = a;;a; + B! b; = a;;a; + B!

Wave function (3.9)

Y(q) = y/det 2 exp(—3q* (A+1B)gpq?)

Covariance matrix (3.1) Covariance matrix (3.1)
G =Tr(p(€°€" +£PE)) Q® =Tr(p(€€" —£€))
_é Characteristic function (3.3) Characteristic function (3.3)
g 1:(w) = exp (—w, (G + 5Go)bwy) 7:(w) = exp (—w, (@ — 50w,
% Quasiprobability distribution (3.4) Quasiprobability distribution (3.4)
g W,(E) = exp(—j;(i:;fggifb) W,(£) = exp(—4\i/i“e(tﬂ%:;);; ")
ag Thermal state (3.8) Thermal state (3.8)
3 p = exp(—5qap€*E" + <o) p = exp(—5qar€*€" +¢o)
=

Wave function (3.9)

T
N yET _1(4q A+iB C+iD\(q
p(q,q) = 4/ det=; eXP( 2(51) (C—iD A—iB J\q

3.2 Linear complex structure

An alternative to parametrizing Gaussian states by their covariance matrix is to use the so called
linear complex structure. It is less commonly used in quantum information and condensed
matter, but has been extensively studied in the context of quantum field theory in curved
spacetime [12].

Formula 2 (Linear complex structure). Given a bosonic Gaussian state vector |J) with symplectic
form Q% or a fermionic Gaussian state vector |Q) with metric G2°, the associated linear complex
Jis

J% =—G*Q ) =G, . (91)
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We will see that the compatibility of these three structures shown in (91) imbues the man-
ifold of pure Gaussian states with the structure of a Kdhler manifold.

3.3 Characteristic functions

The characteristic function y of a quasiprobability distribution W on the phasespace V is de-
fined as the inverse Fourier transform

x :V*—>C:v'—>x(w)=J dNEe T WE W (E). (92)
v

We see that y is defined on the dual phase space V*. From the perspective of probability
theory, one usually first defines W, from which y is derived. However, in the context of quan-
tum theory, it is actually easier to first give explicit formulas for y and then define W as its
Fourier transform. This is why we first present the results for y in the present subsection and
then discuss the respective W in the next subsection. Note that for fermions, both y and W
are defined as a polynomial in Grassman variables w, and £¢, which anti-commute among
themselves and with each other in (92).

In the case of bosonic and fermionic quantum systems, there is a natural set of quasi proba-
bility distributions W, and their associated characteristic functions y, labelled by a real param-
eter s € [—1,1]. For s # 0, they are defined with respect to a notion of ordering creation and
annihilation operators associated to a Gaussian reference state |J,) with covariance matrix Ij,.
For most practical applications, only the following cases of s € {—1,0, 1} are studied.

Wigner. For s = 0, the quasiprobability distribution is independent of I}y and called Wigner
distribution & — W;y(&). The Wigner characteristic function y,(w) of an operator O can be
computed from the operator @ as

Zo(w) = Tr(Oe~1%eE%). (93)

Glauber. For s = 1, we have the Glauber—Sudarshan P characteristic function, which is the
Fourier transform of the Glauber-Sudarshan P quasiprobability distribution & — P(&§) = W_;.
The characteristic function is

71 (W) = Tr(OeWeft gimafly (94)

Husimi. For s = —1, we have the Husimi Q characteristic function, which is the Fourier
transform of the Glauber-Sudarshan P quasiprobability distribution & — P(&) = W_;. The
characteristic function is

x—1(w) = Tr(@e_iwaéie_iwaéi). (95)

In all these cases, we can compute the expectation value of an arbitrary polynomial in
linear observables {£%} as

(€. gy =0

Owg,

2s(w), (96)

a; lw=0

“ow

where (...), refers to the respective ordering with respect to a Gaussian reference state vector
|0) = |Jp), i.e., symmetric ordering for s = 0, normal-ordering for s = 1 and anti-normal
ordering for s = —1. From this condition, the following forms of y for Gaussian states can be
derived.
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Formula 3 (Characteristic functions of Gaussian states). The general formula for the character-
istic function of a pure or mixed Gaussian state with respect to the reference state vector |0) = |J,)
is

ex —lwa(G +5Go)%w (bosons)
xww={p(4 o)) 97)

exp (—}rwa(ﬂ—sQo)abwb) (fermions)

As can be seen from (92), the characteristic function y is defined on the dual phase space
V*, while the quasiprobability distribution W is directly defined on the phase space V. We can,
however, use the isomorphism w, < £9 given by w, = w,,&® for bosons and w, = g, &? for
fermions to map the characteristic function y,(w) into the phase space function ¥,(&), such
that

1s(0qpE?)  (bosons)

Xs(gab gb) (fel‘mions) (98)

Ys(g) = {
One can show that for pure Gaussian states W (&) o< ¥ (&) for all &.

3.4 Quasiprobability distributions

As foreshadowed in the previous section, bosonic and fermionic quantum states can also be
represented as quasiprobability distributions on the classical phase space, i.e., real valued func-
tions W : V — R satisfying deNE W(&) = 1. In contrast to regular probability distributions,
W (&) is allowed to also take negative values and in fact, this negativity can be directly linked to
the non-classicality of the respective quantum state [26,27]. For Gaussian states, all quasiprob-
ability distributions are themselves Gaussian functions and in particular positive, i.e., classical
in the sense of ref. [26].

More generally, operators O on Hilbert space can be related to a phase space distributions
W : V — C, which may not be normalized. To define W(£?), we need to write the operator O
as a power series

O =t +(t1)e€% + (t3)0pE%EP + ... (99)

in terms of linear observables £ (or as limit of a sequence of such series). Clearly, the sequence
is not unique, because we can use commutation or anti-commutation relations to change the
ordering of £2, &b and so on in (99), which will create additional terms. For example, we have
4p = pq +1i. Given a Gaussian reference state vector |0) = |J,), we can express everything in
terms of éi, which are defined with respect to |0), and then use commutation relations to
bring them into some standard ordering. The most common orderings are

symmetric ordering (s = 0): %(éiég — égéi) +.o
normal ordering (s = 1): éiéi +...,
anti-normal ordering (s = —1): éfé_’i +...,

where the parameter s € [—1,1] describes a continuum of intermediate orderings, as intro-
duced in ref. [28]. Let us emphasize that we bring the power series (99) by using the canoni-
cal commutation or anti-commutation relations and not by just reordering the terms by force,
which would change the resulting operator 0. We can then express £ in terms of £% via (17)
to find the coefficients (¢} ),, ., of a series expansion with ordering s. Plugging in the variables

q.p Jat 4 A )
EZ(q1,--,qn>P1s---> D) = (ay,. ..,ay,dy,...,ay) rather than operators £ then defines the
phase space distribution

Wi(8) =D (), 5 .. EY. (100)
n=0
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For Hermitian operators O, the associated W, will be real-valued on V. One can further show
that we have TrO = fdiZN W;(&). For a density operator p, we thus have f ENW,(E)=1.
Given an observable O and a density operator p, we can compute the expectation value

(0), =Tr(p ©O) = f de*Nwr(Ewe (&), (101)

i.e., the trace of the product of two operators can be computed by just integrating over the
pointwise product of the respective phase space functions. Note that this formula does not
generalize to computing the trace of a product of more than two operators.

In practice, W; is most efficiently computed from the respective characteristic function y,
via the regular Fourier transform

Wi(&) =

1 o
G J dw?N y,(w)elWas" (102)

With this in hand, we can compute the quasi-probability distributions W, for Gaussian states

as follows.

Formula 4 (Quasiprobability distributions). For a Gaussian state with covariance matrix T', we
have the quasiprobability distribution

oA (GHsGoYf gP

£———— (bosons)
v/detn(G+Gy)

VVS(S) = i{afniﬂo);l}iob 5 (103)
£ (fermions)

Q-5
i det -

with respect to the reference state vector |0) = |Jy).

3.5 Gaussian unitaries

We can parametrize Gaussian states also by the unitary Gaussian transformation S(M) that
takes us from a reference state (vacuum |0) = |Jy)) to the state under consideration, i.e., |G) or
|©2). This unitary is not unique, because we can always compose U with some other Gaussian
unitary satisfying u |0) = e'¥ |0).

We have the reference covariance matrix I}, of the state |J,) = |0) and a target covariance
matrix I of the state |J), such that the relative complex structure (45) is

A% =—J%(Jo) p =TTy ep - (104)

With this, we can define the group element T = +/A, satisfying J = TJ,T !, from which we
can deduce the Lie algebra generator'®

1
K,=logT = ElogA. (105)

The unitary transformation S satisfying |J) = S |0) is

S =k — { exp (—§wq (K, )°pE9EP)  (bosons) (106)

a exp (38q (K )pE%EP)  (fermions)

13We denote it by K, because if we define K, = %(K +J,KJ,) for any K, our choice of K, = %logA will be of
this type. They are called pure squeezing transformations as explained in [16].
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Vice versa, if we know the anti-Hermitian quadratic operator K = —%hab E2EP for bosons or
K= %hab £2EP for fermions (which may not be of the type K, ), we can compute the associated
generator

Q%h (bosons)
a __ cb
Ky = { G%h., (fermions) °’ (107)
from which we find the transformed covariance matrix as
I'=MIoMT with M =eX. (108)

In summary, we have the following formulas.

Formula 5 (Pure Gaussian state transformations). Given a reference Gaussian state vector |0)
with covariance matrix T, we can compute for every Gaussian state vector |J) the quadratic
operator K, such that

5 1
|J) =eX|0)  with KzilogA, (109)

where A%y, =T(I D).p- Vice versa, for the same setup (reference state vector |0) with covariance
matrix T,), we compute for every Gaussian unitary eX the covariance matrix

I=MIoMT with M =eX. (110)

Note that all equalities of quantum state vectors are only up to a global complex phase. In partic-
ular,

3.6 Squeezed vacuum

Given a bosonic or fermionic Gaussian state vector |0) together with a complete set of anni-
hilation operators §; satisfying d; |0) = 0, a Gaussian state vector |J) can be described by a
squeezing matrix y, which is a complex N x N matrix that is symmetric for bosons and an-
tisymmetric for fermions. For bosonic systems, we can thereby reach any covariance matrix
G, while for fermionic systems we can reach any covariance matrix Q%° with the same parity
as explained around (38). In the following, we will derive the relations between K, y, I and
I,

We choose our standard bases such that the Kéhler structures associated to reference state
|Jo) take the standard forms from (21). We consider |J) = S(T)|0), where T2 = A = FFo_l.

By construction, we have S(T) = eK with K = %log A. Here, K takes the standard forms

@.p K1 | KZ a,af 0 |K1 +1K2
K:(K2|—K1):(K1—iK2| 0 ), (111)

which both anti-commute with J,. Note that the decomposition into K; and K, still has a U(N)
redundancy, i.e., we would preserve the standard forms (21) of Jy, [, and Q2 for bosons or G
for fermions, while K; and K, will mix with each other.

A matrix u € U(N) satisfies [u,J,] = 0 and is

P uq |UZ a,:a‘i' ul—iuZ | 0
u_(—u2|u1)_( 0 |U1+iuZ). (112)

Under a change of basis K — uKu ™!, we thus have the change K; +iK, — (u; —iuy)(K; +iK,)
(uy +iuy). Mathematically speaking, we have the complex N-dimensional vector space Vi

24


https://scipost.org
https://scipost.org/SciPostPhys.10.3.066

Scil SciPost Phys. 10, 066 (2021)

of annihilation operators and Vg of creation operators. The two spaces are embedded in the
complexified phase space V® and can be canonically identified using complex conjugation on
vE.

Our goal is to find a compact expression of |J). We consider K with {K,J,} = 0, which
satisfies

I? — _%wacch(éiéi + égéi) (bOSOHS) (113)
18ackp (898D +£2£D)  (fermions)
We can simplify ¢k based on the known relations
exp[5(e'?(a")? — e %a2)] = exp[2e® (tanh r)(@")?]
i 11
x exp[—(In cosh r)(# + 1)] exp[—1(e~1? tanh r)a2], (bosons) 114
explr(ei®alal +e7194,4,)] = exp[e'® tanralal] (fermions) a1s)

x exp[—(Incosr)(fi; + fi, —1)]exp[e ¢ tanr d,d,],

which are derived in ref. [29]. Using them and the definition L. = tanh K, we find the covariant
expressions

ei€ — e_%wachbéiég e_%wac log(ﬂ_Lz)Cb(éiék‘F%Qba)e_%waclfcbéiéﬁ 5 (bosons) (116)

eK = ¢38ac L pELEY 380 108(1—L7) (64 €0 —3G") 320 L EXED (fermions) (117)
where we emphasize that they only apply to algebra elements K € g with {K,Jy} = 0. When
applied to |0), we find

- dets (1—L2) e 29al¢5€210)  (bosons)
) (118)

|J>:€K|O>: 1 ) 1 ¢ £ath .
det 5(‘“ —L )eigacL b€+€+ |O> (fermlOnS)

where we used e*5T198(1-1%) — der*5 (1 — L.2). The relevant linear map L = tanhK takes the

form
p L L a,at O L + lL
pe( L]l e .|1 2, (119)
L2 | _Ll L]_ —1L2 | 0
which is analogous to (111). We find
2 @ LI+L3 | LiLy—L,L, Yaai( vy | O
L= ( LyL,—L,L, | L}+L] - o [y )’ (120)
where we defined in this basis the complex matrix
Y = L]_ +iL2. (121)

The matrix representations L, and L, are symmetric for bosons and antisymmetric for fermions.
This leads to

det’(1—yy") (bosons)

det(1—L1L%) = { (122)

det?(1+yy") (fermions) ’

where the sign changes due to the anti-symmetry of L; for fermions. Using the fact that the
spaces of Vg of creation and annihilation operators are Hilbert spaces with Hermitian inner
product, we can use y as bilinear form y"/, which satisfies

{ —%wachbé‘}rc‘fi (bosons)

384 L,E9EY  (fermions)

Zyiigial =

Sr7ai; (123)

This leads to our final formula as follows.
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Formula 6 (Parametrizing squeezed state vectors). Given a Gaussian reference vacuum |0) with
covariance matrix T and creation operators d;, we can parametrize the squeezed state vector |J)
by an arbitrary symmetric complex matrix y, such that

. Ny Lloijatat
(det(ﬂ -7 y))“ e%yjai “10) (bosons)
) = : (124)
(det(1 + }f"'y))_ ar7aid |0}  (fermions)

We can seamlessly convert between the matrix y and the covariance I'. In particular, we have

_ Rey | Imy e« O |y
L—tanh( logA) ( Tmy | “Rey )_( - | 0 ), (125)

which can be used to compute y from A%, = T'*(Ty D).} or vice versa. Note that the block-
decomposition from (125) only requires the standard forms of (21) of the state vector |0).

For bosons, when we express 2 in the real standard basis (i.e., such that £ takes the real
standard form), we have

G | gab , 1
G = 2 2_ | QZ 0 , (126)

where a, 8, &, f are indices running over 1,...,N, while a = (a, &) and b = (B, B) describe
the full 2N -by-2N block. The elements of this bosonic covariance matrix can again be directly
expressed in terms of y:
Gy =Re[(Ty +2y +y"(Ix—v"1)],
Gz =Im[(Iy +2y +7y" DOy =",
=Im[(~1y +2y —y"(y—y"7],
=Re[(Iy =2y +y"M(Ix—v"] .

The inverse operation is given by

(127)

G, — G4 +i(Gy+ G
y= 1 4 (% 3) ' (128)
21y + G+ G4 +i(Gy—G3)

Similarly, for fermions in the real (Majorana) basis (i.e., such that G = 1), we have

B B
Qab%( Qgﬁ Qgﬂ ) , Gab%’( ! %’ ) (129)
i | af 0

In this basis, we find

=Im[2(-Ty -y +r'M],
Qz =Re[(Iy +2r =Yy +r'M7],
[

N + a1 (130)
Q3 =Re[(=Ty +2r +7" Iy +r"7],
Qu=Im[2(=1y + 1)Uy +7")7] .
Again, this relationship can be inverted, leading to
Qy+ Q3 —i(2; — 02
y= 2 3 — iy 4) (131)

where the fraction A/B denotes AB™.
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3.7 Bogoliubov transformation

The transformation from one Gaussian state to the other is sometimes encoded in a Bogoliubov
transformation. This is an indirect way to describe the transformation from a reference vacuum
|0) annihilated by d; to the new Gaussian state vector |J) annihilated by b; with

s, At

b; = a;;a; + f;;a; (132)
where we sum over the repeated index j. We will see that the information contained in a;; and
Bi; is equivalent to the one contained in a group transformation M € . In fact, a Bogoliubov

transformation is nothing else than a symplectic or orthogonal group transformation expressed
in a complex basis £°.

Formula 7 (Bogoliubov transformations). Given a Gaussian reference state vector |0) with co-
variance matrix Ty and annihilation operators &;, we reach any Gaussian state vector |J) by a
Bogoliubov transformation

T

such that i)i |J) = 0. We compute T from a and f3 via

ep (Rea+Ref | ImBp—Ima Yaa( a |
M:( Ima+Imf | Rea—Ref3 ):( B | o ), (134)

and then evaluating T = MTyMT. Vice versa, for a given T, there are many choices of a and .
They can be computed from (134) by setting M = Tu, where T?> = A = [Ty ! and choosing an
arbitrary u € U(N), suchasu = 1.

3.8 Thermal states

Every mixed Gaussian state can be written as a thermal state p = e PH /Z, where H is a
quadratic Hamiltonian with a unique ground state and Z = Tr(e_/m ). Without loss of gener-
ality, we can assume 3 = 1 and Z = 1 by redefining H. With this choice, H is also known as
the modular Hamiltonian. A general quadratic Hamiltonian can be written as

R Co+ é“é b (bosons)
0= 0 T qab = , (135)
Co+iqapE?EY  (fermions)

where q,; is symmetric for bosons and anti-symmetric for fermions. Note that there is no
factor of % as in (35), which will simplify later conventions. Because H has a unique ground
state, it follows that there exists a basis of creation and annihilation operators with number
operators fi;, such that

Aol
= {Co +>,w;(A; £3) (bosons) (136)

o+ O wi(A; £3) (fermions) ’

where w; > 0 and #; is the respective bosonic or fermionic number operator. In this specific
basis, the density operator p decomposes into a tensor product over single modes, from which
we can derive the respective standard forms of J¢;, G2°, Q% and g, listed in table 3.
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Table 3: We list the standard forms of J, G, €, q and ¢, for a mixed Gaussian state
p = exp(—co—qapE EP).

Bosons Fermions

Na e—2hiIncothr; Na .
P ® ® (cosr; sinre2hilnanri)

coshr,sinhr; r;sinhr; et

S A ( 0 cosh 2r; ) A ( 0 cos 2r; )
~ 4\ —cosh2r, 0 =7\ —cos2r; 0
ot 4 ( —icosh2r; 0 ) i ( —icos2r; 0 )
- 0 icosh2r; Pt 0 icos2r;
w ([ cosh2r, 0 A1 0
G= '
- - 0 cosh 2r, ~ 0 1
i=1 t i=1
aat M 0 cosh 2r; Moo o1
6= W\ cosh2r, 0 Dl 1 o0
i=1 i i=1
Q2 24 ( 0 1 ) A ( 0 cos 2r; )
et e SV =\ —cos2r; 0
Qi i ( 0 —i ) M ( 0 —icos2r; )
- \Ui o 7\ icos2r; 0
@p M [ Incothr, 0 év’é 0 Intanr;
1= Pt 0 Incothr; =7 \ —Intanr; 0
aat M 0 Incothr, évé 0 ilntanr;
1= =7 \_ Incothr, 0 =7 \ —ilntanr; 0
Na Ng
Co Zlog(cosh r;sinhr;) —Zlog (cosr;sinr;)

i=1

Formula 8 (Thermal states). For a mixed Gaussian state p with covariance matrix T', we can
always write p = e~ with H from (135) and

—iwg arccoth(iJ), (bosons)
dap = . e ) (137)
—igs arctanh(iJ)";, (fermions)
1 7 log det(“” ) (bosons)
Co= , (138)
—= log det(“” ) (fermions)
where q;, and c, diverge for J?> = —1 in such a way that the limit of p describes the projector

= |J) (J|. These relations can be easily inverted to compute J and T in terms of q.

3.9 Wave functions

Most physicists encounter Gaussian states for the first time when studying the quantum har-
monic oscillator. The ground state is a Gaussian state with Gaussian wave function g — (q),
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where g € Q is a vector in position space Q. In this section, we show how every pure bosonic
Gaussian state can be represented as Gaussian wave function, either as pure wave function
g — Y(q) or as mixed wave function (g,q) — p(q,q), and how to convert between wave
functions and covariance matrices.

In order to write down a wave function, one needs to make a choice by splitting the classical
phase space V into the direct sum V = Q@ P with dimQ = dim P = N, such that the symplectic
form vanishes on Q, P C V. More precisely, we find the block form

ap 0 W
Q“bz( Qg QO )and wabz( oo ) (139)
a

where we have g € Q and p € P. The phase space decomposition V = Q @ P induces a dual
decomposition V* = Q* @ P*. The off-diagonal blocks in Q and « induce isomorphism Q ~ P*
and Q* ~p.14

3.9.1 Pure states

We write the most general pure Gaussian state as

1
Y(q) = (det %)1/4 exp (—Eq“(Aaﬁ +iBygp )qﬁ) . (140)

Note that the determinant of the bilinear form A implies that the wave function is not a
scalar function, but rather a scalar density of weight 1/2, i.e., if we change our coordinates
q — § = Cq forsome C € R, we have y(q) — ¥(§) = CV/%4(C1§), such thatf [p(q)[?dNq =
f |4)(§)|2dN §. This ensures that the square modulus of the wave function can be integrated
over Q to give probabilities. We decompose the bosonic covariance matrix G*® and the sym-
plectic form Q2 based on our decomposition of the phase space V = Q @ P, such that

NV ap | qab
G = (p|(E2EP + EPEN) yp) = (%’%) . (141)

Note that the only requirement for the respective decomposition V = Q & P is that the restric-
tions Q* and Q% vanish.

Formula 9 (Pure state wave function). Given a bosonic Gaussian state vector |G) and a phase
space decomposition V.= Q& P, we can convert between the covariance matrix decomposed in the
blocks (141) and the wave function representation from (140) containing the bilinear forms A,
and B,p using

Gaﬁ — (A—l)a/j ,
G = —Q¥(A+BA'B),sQ°°

. . (142)
G(lﬂ — _(A_l)aYBy6Q6ﬁ )
G =%B (AP,
Vice versa, we can solve these equations for A and B in terms of G to find
Aup=Go and Bus=G,lG"wsy. (143)

Note that Ga_/; is the inverse of the N x N block G*? satisfying G*/ Gfgyl =5% overQCV

which should not be confused with the full 2N x 2N inverse g,, of G* with Gg,. = &%,
over V.

14This isomorphism means that we can identify the position vector q* with dual momentum q”w,g and similar.
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3.9.2 Mixed states

Similarly, we can also write out the most general mixed Gaussian state in the position repre-
sentation as

- 1(q\"(A+iB C+iD
P(q,Q):ZeXP (_5 (g) (C—iD A—:B)(g)) 5 (144)
where ¢ =(q4,.--,95), § = (G4, ---,qy) and the normalization is given by
7 = (det €)' (145)

Again, the wave function representation of the mixed state p is density of weight 1/2. As
before, we would like to relate the bilinear forms A, B, C and D in terms of the covariance

matrix
A A G*P Gaﬁ
G =Tr[p(E°EP +EPEN)] = (W’W) (146)

We find the following relations.

Formula 10 (Mixed state wave function). The different blocks of the covariance matrix G are
related to the matrices A,B,C, D via

G = ((a+C))*
Gib — _ar (A—C+(B+D)A+C)H(B— D))Yg of,

. ar iy (147)
G =—((a+c)™)" (B—D),s0°F,
G = Q¥ (B+ D)5 ((A+C) 1),
which can be inverted to give
_ Ll /6 e 106
Agp = 5 (Gp =043 (670~ 676167 ) gy )
1/ oy o
Bup =~ (Gof 6" sy — oy G G55)
. | | (148)
_ -1 o % —1-(6 .
Caﬁ—E(Gaﬁ+way~(GY — GGG ) wsp)

L(n1pr6 /5 ~—1
Dup =~ (G 6 s + 0oy G7G35)

9,p a,p

In our standard basis, we will have Qeb £ 1, Q4P E -1, Wop = —1 and Wop = 1, which simplifies

above expressions further

Note here the signs. Notice also that formula (147) reduces to formula (142) if the state
is pure, i.e., C=D =0.

4 Optimization algorithm
Having reviewed the parametrization of Gaussian states using complex structures and having
related this formalism to the other most commonly used parametrizations in the literature,

we now return to our initial goal of efficient local optimization over the class of Gaussian
states. Finding the minimal value (or maximum) of a function f on some large manifold M
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is in general a hard problem and the primary goal in the field of mathematical optimization.
One distinguishes between global and local optimization, i.e., if one is able to find the global
minimum or if one may get stuck in a local one. In this section, we present a schematic
overview of our approach to efficient local optimization over the class of pure Gaussian states,
based on the geometric considerations of section 2.4. We also allude to the flexibility of our
optimization algorithm in finding global minima and avoiding the pitfalls of poor convergence.
We use a rudimentary gradient descent implementation [30], but exploit the natural geometry
of Gaussian states and exploit the Lie group structure of G.

4.1 Gradient descent on matrix manifolds

Given a function f : M — R on some manifold M, we can find its minimum from some
starting point using gradient descent. At any point x € M in the manifold, the range of possible
directions of motion can be expanded in a basis of the vectors in the tangent space to M at x,
denoted 7, M. Gradient descent is one of the most basic methods of finding a minimum by
moving iteratively in directions which locally decrease the function. This means picking out
suitable vectors in 7, M directed along those directions which minimise the function value.
Specifically, these are the components of the gradient descent vector field on the manifold,
which is given by

uw 9F

Fr=—-G )
axv

(149)
i.e., it associates with each point x € M the directional derivative of f. The inverse metric
G*” is included in this definition to remove the sensitivity of the gradient to the choice of local
basis x*.

The analytical solution to the gradient descent problem is the integral curve associated
with the vector field (149). In a numerical realization of gradient descent, we approximate
this continuous curve by sufficiently small discrete incremental steps. This notion of moving
a certain distance along one of the tangent vectors in 7, M while remaining on M, which is
trivial when M is flat, is realized for the general non-flat case by a so-called retraction map.
This is a map R : T M — M, with restrictions to the domains 7, M given by the maps

R,: TM—->M, (150)
which is required to satisfy
Rx(O) =x and de(O) = 1d7;./\/[ , (151)

where id- y, denotes the identity mapping on the tangent space. It is important to note that
the retraction map is not unique and that the most convenient choice of a retraction map
will be that which minimizes the computational effort while remaining a sufficiently accurate
approximation to the continuous integral curve.!®

If we optimize over a Lie group G, a natural choice for the retraction map is the exponential
map, which, for a matrix Lie group, is simply given by the matrix exponential,

oo
Kn
K _
et = EO e (153)
n=

151n the flat case M = R", the natural choice of the retraction map is
R.(u)=x+u, (152)

since in this case the manifold and its tangent space are globally isomorphic. This is the familiar notion of moving
forward by some step u from a point x.
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since for Lie groups tangent vectors and Lie algebra elements K are equivalent. When op-
timizing over a Lie group G, we divide the integral curve into continuous segments, curves
y(t) = Met¥ t € [0,1] connecting subsequent points M and M’ = MeX in the group man-
ifold. Here, K denotes the tangent vector to the group manifold at M corresponding with
motion to M’ and this motion is realized by the exponential (retraction) map.

In practice, computing the full power series in (153) is expensive and we would prefer a
more computationally viable approximation to the exponential. In principle, we can consider
small Lie algebra elements K under the norm ||K||?> = Tr(KKT) and then perform a reasonable
truncation of the power series. The issue here is that a power series approximation of the
exponential will not lie in the desired Lie group i.e., it cannot serve its purpose as a retraction
map. There is, however, another approximation to the matrix exponential, which does fulfill
this criterion: For algebra elements K, we have [31]

~—(]] 260 -0 (154)
(1—<K) as € ,

eK

which will always map into the associated Lie group. It is important to note that evidently, if
one of the eigenvalues of 5K is 1, then the expression in (154) cannot be inverted. We avoid
this by choosing e sufficiently small. Evaluating the RHS of (154) is much more efficient than
computing the exponential of the LHS, as the computation of the inverse (1 — 5K )~! and its
multiplication with (1 4 §K) can be performed with a single method with the complexity of
matrix multiplication.'®

4.2 Optimization on the Gaussian state manifold

As discussed in Section 2, the Gaussian state manifold is equipped with a Riemannian metric
8,» with inverse G"” and therefore the vector field (149) can be naturally defined for both the
bosonic and fermionic state manifolds (1) and (2). In general, the inverse metric G*” needs
to be re-evaluated at every point of the manifold, but as suggested previously, by moving into
one of the standard basis choices in (21), the matrix representation of the inverse metric is
constant. This is the first of the properties of Gaussian states which allows for a particularly
computationally efficient implementation of gradient descent optimization over this class of
states. Section 2.5 outlines in some detail the parametrization of the Gaussian state manifold
in terms of transformations M of some reference state complex structure J,. Based on this
parametrization, when optimizing over the manifold M of all pure Gaussian states we may
equally say that we are optimizing over the matrix groups (33) quotiened by the redundancies
associated U(N), which form manifolds of dimensions

dimM, =N(2N +1)—N2=N(N +1), (155)
dimM; =N(2N —1)—N?*=N(N —1). (156)

This means that in practice, the vector field 7* is computed not with respect to the local basis
of a tangent space to M at a state Jy;, but rather with respect to an orthonormal basis =, of
the Lie algebra g or, more precisely, of the subspace bl C g introduced in (72) which generates
non-zero variations in the complex structure. This idea is what leads to the expression for the
variation of a state in terms of a Lie algebra element in (69).

We can relate the gradient vector F* to the associated Lie algebra element K as

K =F'g, (157)

16Exact matrix inversion X = A~! can be performed by solving the linear system AX = 1, which is as fast as
matrix multiplication. Computing AB™ is just as efficient, as we now merely solve XB = A.
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3 [1]
(%)

N
7

Sub tangent space to G, gen-
$ =, erated by orthonormal basis of 3
generators E,, of b}

, Tangent space to M, with local

coordinates x*

Figure 2: Gradient descent on the Gaussian state manifold. Visualization of the gradi-
ent descent geometry for a two-dimensional state manifold. The state manifold M
is parametrized in terms of complex structures J,, which in turn are parametrized by
the transformations M,, in the Lie group G as given in (44), with respect to some
reference state J,. The blue surface indicates a tangent space to M at state J;. The
vector field F in this tangent space is also included, as well as the retraction map
R(F) which is shown as a projection of the vector field onto M to visualize the no-
tion of moving in the direction of a tangent vector but in the manifold. The associated
group G is also shown and crucially it should be noted that the tangent spaces at each
point in the group are aligned with the manifold tangent spaces (to highlight the iso-
morphism between the two) but do not reproduce the smooth manifold M, since
the equivalent of the curve traced out on M by successive retraction maps simply
connects matrix elements which lie along the (light blue) fibers which represent the
stabilizers b’ as indicated illustratively at the identity. In G, the gradient vector field
at points M, is denoted by K,, as defined in (157). The lines connecting points M,,
and M, ; in the group are defined by e with s € [0, 1] as written in (160).
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Choose state vector |J,) with complex
structure J,. Compute g, to find
orthonormal basis Z, of . Choose
initial M; with J; = MyJoM; .

setn=1
Calculate F,, = f(M,;J,) and
K, =F"8, 2.
Define My, ;1(s) := M exp (—sK,/[|IK;|l)

define0<s <1

Calculate F,1(s) = f (M,.;1(s); Jo) ‘

NO Decrease
step s

Fn+1(s) < Fn

YES

Re-define M, (s) — M,

NO

Stop?

YES

’ Return final result F,

Figure 3: Graphical representation of the algorithm. We show a step-by-step explana-
tion of the optimization algorithm described in the main text. Gray shading indicates
a decision box and the color-coded sections correspond with those distinguished in
the main text. The "Stop?" decision box indicates the implementation of a stop crite-
rion.

using local basis =, of b/r A second key point arises from the left-invariance of the Riemannian
metric on the Gaussian state manifold: Since this leads to the preservation of the orthonor-
mality of any choice of £, under transformations in the group, we do not need to compute a
new orthonormal basis at different points in the manifold. Instead, we can choose Z, to be the
generators of the Lie group, which form the natural orthonormal basis of the tangent space
to the identity. This leads to significant computational speedups, particularly when optimiz-
ing over high-dimensional manifolds. The setup for gradient descent on the Gaussian state
manifold is visualized in fig. 2.
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4.3 Performing gradient descent

Since we work in a parametrization of the state manifold solely in terms of the transforma-
tions of a reference state, a computational implementation of the algorithm should be able
to evaluate the target function f for any state vector |J,;) with only J, and M as arguments.
Here, we write this as (M,J,) — f(M,J,). To define local derivatives, we introduce a local
coordinate system x* around a point M € G, such that f(x) = f (Me* =, J,) leading to

of _ @

-2 MeX"Su,J,) , 158
dxk attzof( ¢« 0) (158)

which allows us to define the vector field 7* according to (149) with respect to the basis =M
of h’, . We re-emphasize here that (158) lets us naturally express the gradient in terms of the
variation of the group element only, i.e., at no point are we required to move from the group
G to the state manifold M. This approach is shown for various examples in Section 5.

We now provide a step-by step explanation of the realization of an iterative gradient de-
scent minimization algorithm based on the considerations above. The steps are summarized
graphically in fig. 3, which complements fig. 2.

1. Initialization. Our algorithm is initialized on a Gaussian state vector |J,) with covari-
ance matrix Iy and complex structure J;,, such that the action of the subgroup G’ C G generates
the state manifold under consideration. We then construct an orthonormal basis Z, for [)1,
which are both defined with respect to Ij. For this, we compute the metric G"” explicitly. We
evaluate g,,, in an arbitrary basis =, so we can orthogonalize it, such that both g,,, and G*”
are equal to the identity. The metric g, is efficiently computed as

1
8uv = 7 E 2, +E,ETT), (159)

where we use (74) with respect to the reference state vector |J,) = |0). By construction, we
identify the tangent spaces at all group elements M,, with the ones at M, = 1. While |J,) is
usually chosen in some standard form, we can still initialize the algorithm on some M; based
on the problem at hand.

2. Gradient computation. We now perform successive steps in the group as

K,
Mn+1 = Mn exp (_S - ) , 0<s<1, (160)
|IK |

where K, = F*E, with F* calculated at the point M,, and s chosen such that f(M,,11;Jp) <
f(Mn; JO)'

3. Sub-routine to determine step-size. To choose an appropriate step-size s, we use a
sub-routine at each iteration which should be chosen so as to balance the efficiency gained by
needing fewer steps to reach the minimum and the extra computational effort of executing
the subroutine. In the examples discussed in later section, we found that the very rudimen-
tary approach of iteratively halving the step size was sufficient to ensure good convergence.
However, a simple line search methods like a quasi-Newton routine can also be used.

4. Stop condition. This iterative motion is repeated until some pre-determined stopping
criterion (e.g., a tolerance on the gradient norm or the difference between subsequent function
values) is reached.

4.4 Practical considerations

While the focus of this work is not on elaborate numerical methods for implementing the
algorithm described above, we mention here for the sake of completeness some additional
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considerations regarding the practical implementation the algorithm. These have been added
in our implementation of the algorithm to varying degrees to enhance its efficiency.

Constrained optimization. Our approach lends itself intuitively to constrained optimiza-
tion, since we can choose to restrict our optimization to a smaller range of states, being some
subspace of G, by truncating the Lie algebra basis. We show an example of this is in the section
on Complexity of Purification, where those algebra elements which do not generate non-zero
variations of the complex structure can be explicitly cut out of the basis.

Extension to global optimization. There is ultimately no fail-safe way to locate global
minima using gradient descent. However, we can increase the probability of convergence to the
global minimum by performing gradient descent from a number of sufficiently far separated
starting points in the manifold and choosing the lowest of the local minima from a large enough
sample size. Here "sufficiently far" refers to sprinkling the manifold evenly in the region of
interest. For fermions, this can be achieved by randomly generating matrices in SO(2N,R)
with respect to the Haar measure. This does not work for bosons, as the group Sp(2N,R) is
non-compact, but one could try a Gaussian measure instead that is concentrated in the region
where the function f is expected to have minima.

Identifying suitable starting points. In choosing different starting points, it may be pos-
sible, given some analytical intuition about the physical system at hand, to identify starting
points in the manifold from which the risk of landing in a local minimum is particularly low.
Additionally, there may be some starting points in the manifold from which gradient descent
will converge the fastest (i.e., from which it will take a much lower number of iterations to
reach the minimum).

Parallel optimization. Where the most suitable starting points cannot be found analyt-
ically, we must resort to numerical methods: If, rather than minimizing successively from
different starting points, we choose to perform the optimizations simultaneously, we can dis-
criminate between trajectories which promise to converge more or less quickly to the mini-
mum. In our algorithm, we implement this feature, and after each set of 5 iterations, only the
10% of trajectories with the lowest function value and the highest gradient, respectively, are
pursued further. While this does generally speaking greatly reduce the total number of itera-
tions required, there is of course a trade-off between this improvement and the computational
effort of an initially large number of trajectories.

4.5 The GaussianOptimization.m package

To complement the theory outlined in this paper, we supply the public GaussianOptimizati
on.m Mathematica package with a simple implementation of the optimization algorithm dis-
cussed in the previous sections. The package revolves around the function GOOptimize, which
performs the gradient descent optimization from some initial complex structure and transfor-
mation. The input arguments to this function are divided into three categories:

Problem-specific. These are the arguments related to the specific optimization problem at
hand, the scalar function and its derivative with respect to some Lie algebra element, expressed
in terms of the initial complex structure and an arbitrary transformation, in the spirit of Table 4.

System-specific. These relate to the geometry of the optimization problem. Fundamen-
tally, this includes the symplectic or orthogonal basis (which can be generated using the built-
in functions GOSpBasis and GOOBasis), but also the corresponding metric (generated by
GOMetricSp and GOMetric0). It also includes the initial complex structure and the (list of)
initial transformations.
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Table 4: Function and gradient parametrization. We list the quantities discussed in
this section as scalar functions of the complex structure J,; = MJ,M ! at M in the
state manifold. We also list the associated gradient functions, parametrized by the
infinitesimal changes in the complex structure 6J,,(K), as given in (69). The ex-
pressions for the CoP are defined in terms of A = —J,,J¢, introduced as the relative
covariance matrix in ref. [20], and 6 A = 5JM(K)J1;1.

(A) Approximate ground states (B) Entanglement of (C) Complexity of purification
purification
Bosonic f E=(A) Saw = 3 TrDlog D? C= \/éTrlogz(A)
Bosonic d f dE = %(Kr +TKT)eb dSyy = 3 TrdDlog D? dC =2Trlog(A)ATISA
Fermionic f E=(H) Saw = —% TrDlogD C=4 éTrlogz(A)
Fermionic d f dE = %(KF+FK7)“1’ dSpy =—TrdDlogD dC =—2Trlog(A)ATISA

Procedure-specific. These are the parameters related to the numerical implementation of
the algorithm, including stopping criteria based on step limits and tolerances on the function
value and gradient.

The GaussianOptimization.m package is designed to be user-friendly and all functions
come with comprehensive documentation. It is accompanied by an example notebook which
includes a systematically organized overview over the functions included in the package, as
well as implementations of the applications discussed in the next section. The functions and
function gradients for these applications are also implemented as part of the package.

5 Applications

In this section, we show how our optimization algorithm may be used in several relevant
physical contexts: approximating the ground state of Hamiltonians and computing the entan-
glement and complexity of purification for fermionic and bosonic systems. We indicate how
to parametrize the function to be extremized in terms of the complex structure and how to
compute the associated local derivatives (158). As discussed in the previous section, this is
essential to unlocking the full computational efficiency of the algorithm. We also provide sug-
gestions regarding convenient starting points and parametrizations. In the examples of this
section, the gradient of the function f could be obtained analytically in terms of the complex
structure J using the chain rule and properties of matrix calculus. However, this may not be
possible in general, e.g., if a function f is the result of some numerical algorithm, it may not be
possible to compute its derivative analytically. In this case, automatic differentiation (AD) pro-
cedures [32], which provide a numerical algorithm to compute the gradient without the need
of an analytical derivative and also without the drawbacks of a purely numerical derivative,
present a computationally feasible alternative.

5.1 Approximate ground states

The energy function E = (H) is one of the most prominent functions on families of pure
quantum states that should be minimized. This is particularly relevant in the context of finding
variational ground states, i.e., finding states within a given variational family of ansatz ground
states that approximate the true ground state most accurately with respect to some merit
function, which typically is the energy expectation value E = (H).

Pure Gaussian states and certain submanifolds are known to be very suitable variational
families to approximate ground states of bosonic and fermionic Hamiltonians with local inter-
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actions. The approximation typically improves with the dimension of the system, i.e., Gaussian
states often only capture qualitative features in one spatial dimension, but improve when mov-
ing to two and and three dimensions, as mean field descriptions become more accurate. Gaus-
sian states are also heavily used as trial states in mathematical physics to find upper bounds
to the energy of quantum gases, e.g., when studying the dilute limit of Bose gases [5]. There
exists a range of different tools to find the best Gaussian state, i.e., the Gaussian state with the
lowest energy expectation value E. A prominent example is the Hartree-Fock method, which

is typically applied to fermions, but can also be used to approximate bosonic ground states.
—tH -
i

Another established method is imaginary time evolution, where the geometric flow of e
approximated on the given manifold.

From a purely numerical perspective, many optimization methods are suitable to find the
minimum of a function on conveniently parametrized family. However, in the context of Gaus-
sian states many standard parametrization (using squeezing parameters or quadratic Hamil-
tonians acting on a reference state) tend to converge unreliably or get stuck in local minima.
Taking the natural Riemannian geometry of Gaussian states (induced by the Fubini-Study met-
ric) into account can significantly improve the convergence of such numerical methods. In
fact, one can show that gradient descent with respect to this natural geometry coincides with
projected imaginary time evolution [15], which is known to have favorable convergence prop-
erties. Both, the group-theoretic parametrization and the resulting straight-forward gradient
descent algorithm are therefore perfectly suitable to find approximate ground states within
the Gaussian state families.

Finding the minimum of energy function E = (H) requires us to evaluate E and its deriva-
tive dE efficiently. For this, we assume that H can be written as finite series

S

A=ho+(h)e+ -+ (tp)a,.q £ ... &%, (161)

whose expectation can be evaluated using Wick’s theorem. For a Gaussian state |J) = |J,0)
with n-point correlation function Cp' " = (£% ... £%), Wick’s theorem states the following.

(a) Odd correlation functions vanish, i.e., Cy,,1 =0.

(b) Even correlation functions are given by the sum over all two-contractions

a;as, _ lo| A5(1)06(2) 9o (2n-1)%0(2n)

coima —Z;Cz @.c, , (162)
— n!

where Cgb = %(Gab +109%) has been introduced in (19) and the permutations o satisfy

0(2i—1) < 0(2i) and |o| =1 for bosons and |o| = sgn(c) for fermions.

We can always use canonical commutation or anti-commutation relations to ensure that (¢;),,. q,
is totally symmetric (bosons) or anti-symmetric (fermions), in which case Wick’s theorem only
leads to all contractions with %Fab , Le., either way, we find E = E(T) as polynomial in the en-
tries of I'. A Lie algebra element K perturbs I at linear order (tangent vector) as 6T = K['+TKT,
such that

_ OE
- orab

5T = oF (KT +TKT)?P. (163)

dE = 3rab

This allows us a straight-forward implementation of gradient descent on the manifold of all
pure Gaussian states (or appropriate submanifolds) based on the algorithm discussed in sec-
tion 4.

As an interesting observation, let us mention that the described approach can also be used
to approximate real time evolution on the manifold of pure Gaussian states. Due to the fact that
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the manifold of pure Gaussian states is a Kdhler manifold the commonly used variational prin-
ciples (Lagrangian, McLachlan, Dirac-Frankel) agree [15] and can be implemented as Hamil-
tonian equations of motion. Our gradient descent algorithm implements the vector field

JOE
Ft=—-G""—, 164
P (164)
which must be replaced by the Hamiltonian time evolution
JE
P =—t” , 165
e (165)

i.e., we only need to adjust our algorithm in step 2. Gradient computation, where we replace
K, = FYE, by K, = AYE,. Here, Q"” is the inverse of w,, computed from (75). Just
as in the case of G*” our group-theoretic parametrization (left invariance) of the Gaussian
state manifold ensures that we only need to evaluate Q“” once and can use the same matrix
for subsequent steps in the algorithm. Note, however, that there are important differences
between imaginary time evolution (gradient descent) and real time evolution. For imaginary
time evolution, the step size is only used to ensure that the energy decreases, while for real
time evolution we need to keep track of it to know the current time parameter. Moreover,
for imaginary time evolution, we just need to make sure that the energy function decreases
with each step, while other errors due to the finite step size are not a problem. For real time
evolution, we will always make small errors due to the finite step size and can only try to
decrease it by enforcing relevant conservation laws. In particular, the energy function should
stay exactly constant, so we can try to use the step size to keep the accumulated error under
control.

We can also use (163) in combination with (164) and (165) to derive the real and imagi-
nary evolution equations of the covariance matrix I', namely [15, 33]

LT =-4GEGc+0%Q), (real)

(166)
%F = —4(G‘;—EG + Q‘Z—?Q). (imaginary)

For bosonic systems, it is natural to also allow for a non-zero displacement vector z¢ = (é a,
which can be seamlessly integrated in the presented formalism, as discussed in refs. [15,33].

In summary, our group-theoretic parametrization of Gaussian states and the resulting op-
timization algorithm are suitable to find approximate ground states and to perform projected
real time evolution on the manifold of pure Gaussian state. In practical applications, we can
typically reduce the dimension of the manifold by implementing certain symmetries, e.g., trans-
lational symmetry, from scratch by reducing the number of Lie algebra generators =,, accord-
ingly and choosing an initial state respecting the chosen symmetry.

I

5.2 Gaussian entanglement of purification (EoP)

The entanglement of purification (EoP), first introduced in ref. [34], quantifies the degree of
entanglement between subsystems in a composite quantum system. As such, it serves as a
valuable correlation measure and has recently become of interest in quantum many body sys-
tems [35]. Suppose we are given a mixed state in some Hilbert space H = H,4 ® Hz which can
be described by a density operator p,5. We now define a new Hilbert space,

H/:HA®HB ®HA/®HB/, (167)

choosing the ancillary H, ® Hp in such a way that there exists a purification [)) € H’ such
that

PaB = Tr'HA/®HB/ |'lp> (1/)' . (168)
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Of course, this purification is not unique, and the EoP is defined in terms of the von Neumann
entropy S(p) = —Tr(plogp), as

Ep:= inf S(Trgg |J) (J]), (169)
\T)eH!

i.e., the minimum of the entanglement entropy between subsystems A®A’ and B@® B’. Accord-

ingly, determining the EoP in general requires an optimization over the full Hilbert space H’,

which is a computationally intensive task that quickly becomes unfeasible.

A much more reasonable problem is to focus instead on the Gaussian EoP, obtained by
assuming that both the initial mixed state and the purification are Gaussian. The optimization
over all purifications then reduces to the familiar problem of optimization on the sub-manifold
of Gaussian states composed from purifications of p,5. The properties of these states have been
discussed in some detail in section 2.6 — in fact, the only difference to note here is that in the
context of EoB we label the original subsystem by A @ B rather than A and the ancillary by
A’ @ B’ rather than A’.

We recall from the previous discussion on Gaussian purifications that the manifold of pu-
rifications can be parametrised in terms of complex structures J with restrictions to the sub-
systems given by the restricted complex structures Jug,Jap/,Jaa,JJpp- In Refs. [18,36], an
expression based on this parametrization was derived for the Gaussian entanglement entropy,
first defined in [37] for bosons and [38] for fermions. The expression reads

Ta+idan
Tr( 51

og ﬂ“;JAA’D (bosons)

Ty+id 1y+id .
—Tr( A Jog A ) (fermions)

San(1J)) = , (170)

and once again makes use of the complex structure formalism to provide a unified expression
for both bosons and fermions. This expression can be framed more concisely by defining
D= %(1] +iJ,y) as

3 Tr(DlogD?) (bosons)
—Tr(DlogD) (fermions)

where we used log|D| = %log D?, as D has real eigenvalues. The derivative of the entangle-
ment entropy can be obtained by a straightforward application of the product rule and the
cyclicity of the trace as

5 Tr(dDlogD?) (bosons)

dSpu = ) (172)
—Tr(dDlogD) (fermions)

where we have defined dD = %5JAA/. Note that we have Tr(dD) = 0 due to fact that 6J is
anti-symmetric in a basis where G proportional to the identity. These results are summarized
in Table 4.

Equipped with a manifold of pure Gaussian states and a scalar function and its derivative
defined on this manifold in terms of the complex structure, we are now in a position to employ
our optimization algorithm to efficiently compute the Gaussian EoP

In practice, we begin with a matrix representation of the mixed state reduced complex
structure J,p in a basis £E=(¢ A £ ) which decomposes over the two subsystems A and B. We
denote the transformation by T which relates J45 to its mixed state standard form J3, defined
in (79), so that

Jyp=TJ2 T, (173)

sta
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The transformation is obtained from the eigenvectors of J,5 as discussed in section 2.6. We
can now construct an initial purification of the form in (79). In doing so, we are free to choose
any dim(A'B’) > dim(AB), and we speak of a minimal purification when the number of modes
in AB is the same as that in A’B’.

The convenience of our choice of basis as é = (é > é B> é A é p’) now becomes evident: In
this basis, the complex structure of the purified state will take the block form

Jag | Japa
J:( | s ) (174)
Japap | Jaw

where the blocks on the main diagonal are the restricted complex structures defining the mixed
states p,p and pyp. It should be noted that, in contrast, the off-diagonal blocks do not repre-
sent complex structures as they map from A® B to A’ & B’ or vice versa. While J 5 is fixed to
preserve the restriction to the original subsystem, varying J, 5, and the off-diagonal blocks in a
compatible way corresponds to different purifications of p,5. The state manifold of interest is
therefore parametrized by the transformations M, acting on the reduced complex structure
Jygr, which act on the full complex structure as M = 1,5 @ Myp:.

We initialize the optimization algorithm at the initial purification, which is in the standard
form and therefore the very first transformation must be of the form

M0:T®M0, (175)

where M, denotes an arbitrary starting point in the variational manifold and the leading block
in the transformation returns J3; to its initial form J,5. This ensures that the restriction of
J1 = MyJoM,, ! to A® B returns the initial reduced complex structure J,5. The optimization
can then proceed in the way outlined in the previous section, with steps

M, =1,3®M, (176)

to ensure that the optimization procedure leaves J,5z unchanged.
A comprehensive study of Gaussian entanglement of purification in free quantum field
theories based on our methods can be found in [17].

5.3 Gaussian complexity of purification (CoP)

In ref. [39], it has first been suggested that a notion of (circuit) complexity might provide
fresh insights and might meaningfully complement notions of entanglement in holography.
Motivated by the subsequent interest in holographic complexity as well as a preceding geometric
interpretation of complexity in quantum circuits [40], significant attention has been dedicated
to extending notions of complexity to quantum field theories [41,42]. Since the thermal and
ground states of free quantum fields are Gaussian, a framework for the complexity of Gaussian
states has been developed in refs. [20,21], which we draw on here.

A particular area of recent interest has been the study of complexity of purification (CoP)
as a correlation measure in composite quantum systems based on the notion of complexity
rather than entanglement [43]. In this context, a typical problem would be the following: We
are given a mixed state in some Hilbert space 7, which is characterized by a density matrix
pa. We now define a new Hilbert space,

H =Hs® Hy, (177)
choosing the ancillary system A’ in such a way there exists a purification |11) € H’ such that

pa=Try Y1) (Y1 . (178)
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We refer to this purification as the target state. The CoP is defined as the minimum of a
complexity function C with respect to some reference state 1 over all purifications of the
initial state i.e.,

Cp= WIBLI;{IC(W’T), [Yr))- (179)

There are several distinct proposals for the complexity function C(|y 1), [3g)) in the literature.
In the context of this work, we will once again focus only on Gaussian CoP by making the
assumption that both the reference and target states are Gaussian in nature. For bosonic and
fermionic Gaussian states, there exists a consensus definition!” associated with the geodesic
distance between reference and target states, whose analytical expressions have been derived
in ref. [21] for bosons and in ref. [20] for fermions.

The most concise formulation of this complexity function unsurprisingly involves the rela-
tive complex structure, introduced in (45), of the target and reference states,

A=—JpJg, (180)

which captures all the information between the two. In terms of A, the complexity is then

defined as
2
C= w , (181)

although for the purposes of a numerical optimization, the square root is irrelevant and can
be neglected.

Given this parametrization of the complexity in terms of complex structures, we may obtain
the CoP by optimization on the manifold of Gaussian purifications of the initial Jy, as in the
previous section. However, we may also choose a more computationally efficient approach, by
noting a somewhat subtle point regarding the complexity function. By the cyclicity of the trace,
any transformation J; — MJ;M ™! will change the complexity (181) in a way equivalent to the
transformation Ji — M ~1JzM. This means that we can choose to optimize over the manifold
of pure reference states rather than target states. This seems arbitrary until we note that we
may assume without loss of generality that the reference state is a product state between A
and A’ i.e., that the matrix representation of Jg in our basis is simply

Jr=[Jr]a®[Jrls, (182)

where the subscripts A and A’ denote the restrictions to either subsystem.
A comprehensive study of Gaussian complexity of purification in free quantum field theo-
ries based on our methods can be found in [17].

6 Optimality of Gaussian EoP

This section focuses on a specific application defined and reviewed in the previous section 5.2,
namely entanglement of purification. We combine our numerical results from our numerical
algorithm with several analytical arguments to support the conjecture that for mixed Gaussian
states only Gaussian purifications are required to compute the entanglement of purification.

7Note, however, that even for Gaussian states, there also exist alternative p-norm definitions [44].

42


https://scipost.org
https://scipost.org/SciPostPhys.10.3.066

Scil SciPost Phys. 10, 066 (2021)

6.1 Conjectures on optimality

We will present numerical and analytical arguments for the validity of the following two con-
jectures.

Conjecture 1 (Gaussian optimality conjecture). Given a mixed Gaussian state p of a bosonic
or fermionic system and a system decomposition V = A@® B with Ny and Ny degrees of freedom,
respectively, it is sufficient to optimize over all Gaussian purifications to compute the entanglement
of purification (minimal entanglement entropy Sy, over all purifications in Hy® Hg @ H @ Hp/),
i.e., the global minimum of S,y is reached on the submanifold of Gaussian states.

Conjecture 2 (Minimum purification conjecture). When minimizing the Sy, over all Gaussian
purifications, the minimum is reached when choosing the numbers of degrees of freedom of the
purifying systems A’ and B’ to be given by the respective numbers of degrees of freedom in A and
B, i.e., Ny = N4 and Ng = Np.

At first sight, this conjecture may appear rather ambitious, considering that we assume
that the optimization over the generally exponentially small family of Gaussian purification
(compared to all non-Gaussian purifications) is sufficient and that the number of purifying de-
grees of freedom just need to match the ones of the original system (in contrast to the bounds
for finite dimensional non-Gaussian systems from ref. [34]). However, for researchers familiar
with typical properties of Gaussian states, our conjectures will likely appear much more real-
istic, considering that Gaussian states provide in many settings one of the simplest non-trivial
realizations of quantum information concepts. This appears in the context analytical formu-
las for the entanglement entropy and other correlations measures (such as the logarithmic
negativity).

Let us emphasize that we have formulated two distinct conjectures that only together pro-
vide us with clear instructions on how the full entanglement of purification can be computed
numerically from the Gaussian optimization algorithm presented in the previous section. Con-
jecture 1 ensures that for mixed Gaussian states, we only need to consider Gaussian purifica-
tions, but to actually run the algorithm, we need to choose both the total number N of degrees
of freedom to purify as well as how we split these purifying degrees of freedom into the aux-
iliary subsystems A’ and B’.

6.2 Numerical evidence

We provide numerical support for conjectures 1 and 2 based on two paradigmatic models.
For bosons, we consider the Klein-Gordon scalar field with mass m, discretized on a one-
dimensional periodic lattice with N sites, equipped with the Hamiltonian

19) N m? 1
H= By (ﬁlz + =¥+ g(@t - ¢i+1)2) , (183)

where & > 0 represents the lattice spacing. For fermions, we consider the transverse field Ising
model

N
A== (2J858%  +h8?), (184)
i=1

in the critical limit J = h. Here, S} and S} represent the local spin-1/2 x- and z-component
operators on the i-th site (the conventions match [45-47]).

Providing categorical numerical evidence for the first conjecture proves a substantial chal-
lenge, since it requires an optimization over the entire Hilbert space, which is the daunting
problem that our Gaussian approach is trying to circumvent.
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Table 5: Numerical evidence for conjecture 1. We present the numerically computed
non-Gaussian EoP to 7 s.f. for disjoint intervals of width Ny = Ny = 1 (which we
purify with Ny, = Np, = 1) at a distance of d sites in the fermionic critical transverse
Ising model, on a circle with N = 100, with J = h = 1. We contrast this with the
Gaussian EoP result.

d Non-Gaussian Gaussian

10 0.00306129 0.00306101
30 0.00038316 0.00038291
50 0.00000166 0.00000151
70 0.00046825 0.00046801
90 0.00434489 0.00434461

Table 6: Numerical evidence for conjecture 2. We present the numerically computed
Gaussian EoP to 9 s.f. for disjoint intervals of width N, and Ny at a distance of d sites
in the Klein-Gordon model (top) and critical transverse Ising model (bottom), on a
circle with N = 100 sites. For the Klein-Gordon model, we set the masstom/6 = 0.1,
and for the Ising model, we set J = h = 1. The optimal purification, highlighted in
color, is evidently obtained for equal numbers of degrees of freedom in the original
subsystems and the corresponding subsystems of the ancillary, i.e., Ny = Ny and

NB = NB’ .
Ny +Np 1+1 1+2 1+3 242
Ny + Np/ 1+1 1+2 2+1 1+3 2+2 3+1 1+3 2+2 3+1
Klein-Gordon field
d=10 0.01861871 0.02073452 0.11482986 0.02187326 0.02371109 0.17471765 0.11708904 0.02307170 0.11708905
d=30 0.00022978 0.00026256 0.09482403 0.00028175 0.00223536 0.15435431 0.09486090 0.00029999 0.09486090
d =50 0.00001590  0.00002022 0.09458539 0.00002412 0.00197901 0.15410719 0.09459102 0.00002588 0.09459102
d=70 0.00034749  0.00048793 0.09504583 0.00064375 0.00259556 0.15470108 0.09523927 0.00068457 0.09523927
d =90 0.03052751  0.04357474 0.13688870 0.05929784 0.06093414 0.20883147 0.15464517 0.06226844 0.15464518
Critical transverse field Ising model
d=10 0.00288040 0.00639951 0.06677170 0.00933387 0.01324964 0.11126531 0.07202181 0.01234729 0.07202181
d =30 0.00057335 0.00135921 0.06301066 0.00210074 0.00604134 0.10643203 0.06426257 0.00276998 0.06426256
d =50 0.00040596 0.00098339 0.06273091 0.00155212 0.00549403 0.10606776 0.06367226 0.00204620 0.06367227
d=70 0.00062304 0.00153900 0.06314448 0.00247813 0.00641779 0.10668275 0.06466840 0.00326765 0.06466840
d =90 0.00408126 0.01078810 0.07007032 0.01883801 0.02269729 0.11772862 0.08218632 0.02506887 0.08218632

In the fermionic case, the finite-dimensional Hilbert space allows us to adapt our approach
to gradient descent using Lie groups and algebras to this problem by optimizing over the
(compact) group of unitary transformations U(2") of an N-mode density operator. On the
manifold of transformations U € U(2N) with respect to some reference state p, parametrizing
the non-Gaussian purifications according to py; = UpoU', we can define the entanglement
entropy function as

Sax =—Tr(pan 10goan) , (185)

with pay = Trpp (U pOU_l). In line with the previous discussion, we can also define the
derivative of S,y as

dSpy =—Tr(6pan 108 Pan) » (186)

with §pa = Trgg (U[po, KJU™Y) for K € u(2N).
It should be noted that computing the partial trace for a fermionic density operator in
this context is non-trivial. In practice, we construct the initial purified density operator in
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the convenient basis é = (é " &:’ B> é A é 5). Tracing out the subsystem BB’ therefore involves
a permutation of the degrees of freedom, in the sense pspap — Pawpp- While such a re-
ordering is trivial for commuting bosonic degrees of freedom (or spin degrees of freedom),
the permutation of fermionic creation operators do anti-commute, so the computation of the
partial trace to find p,y will lead to extra sign flips due to the required permutations. This is
subtle, but well-understood in various contexts [48-51] and already taken into account when
we computed the entanglement entropy of fermionic Gaussian states in (170).

Evidence for conjecture 1. This approach to non-Gaussian optimization proves efficient
at small system sizes, however, the computational effort grows exponentially in the number
of degrees of freedom in the system and it soon becomes unfeasible. Table 5 shows the non-
Gaussian EoP for the fermionic (critical) Ising model, within the numerically accessible regime.
Evidently, this data supports the conjecture that the optimal purification of a mixed Gaussian
state is Gaussian.

Evidence for conjecture 2. We can tackle the second conjecture in a more comprehensive
way, since it only requires us to perform Gaussian optimization. Table 6 shows the numerical
Gaussian EoP for a variety of dimensions, for both the bosonic and fermionic cases. Evidently,
here we also see good agreement between the numerical results and our expectations based
on the conjecture.

6.3 Analytical bounds

As alluded in the previous section, it is highly plausible to conjecture that the purification for
which the entanglement entropy is minimized belongs to the class of Gaussian states (conjec-
ture 1). We have some further analytical evidence for this: After all, the map from quantum
states on H’ to ones on H, ® H, performing a partial trace over the complement of H, ® H
can be seen as a constrained Gaussian channel, reflecting the constraint that the inputs must
be such that the reductions to H, ® Hp are precisely the given Gaussian states p, 5. Captured
in this way, the entanglement of purification can be seen as a solution to a minimum output en-
tropy problem of a Gaussian quantum channel [52,53], a problem in which the von-Neumann
entropy of the output of a quantum channel is minimized under varying the input of the chan-
nel. At least for Gaussian bosonic systems this question has been settled under rather general
conditions [52,53] (albeit not under the specific constraints considered here). This connection
will be made more precise elsewhere. Not referring to this conjecture, the Gaussian entangle-
ment of purification (only allowing for Gaussian purifications), constitutes an upper bound for
Ep.

That said, the quality of approximation can be bounded by a lower bound to E, that can
be computed [34]. This is the entanglement of formation (EoF) Ep of psp [54], satisfying

Ep(pag) < Ep(pag), (187)
and being defined as the infimum
Ep(pag) == ianPjS(TrB ;) (¥;D), (188)
J
with
ij 1Y) (Yil = pag - (189)
J

The entanglement of formation can be in instances computed and also conveniently
bounded [55]. The easiest such lower bounds, valid for arbitrary as well as for Gaussian
states, for which it is extremal both in the bosonic and fermionic [56] setting, is the hashing
bound

S(Trg pag) —S(Pag) < Ep(pap) < Ep(Pag) - (190)
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Another insight helpful in the numerical optimization of the Gaussian entanglement of purifi-
cation is a bound to the number of auxiliary modes constituting systems A’'B’ that is required
without restricting generality. Naively, one might expect that one needed a squared number
of bosonic or fermionic modes in the purification. In fact, it is easy to see that one can restrict
systems A’B’ to be composed of as many modes N, and Np, as A and B consist of, i.e., N, and
Nj.

Given a quantum state p g, it will be associated with some J,5. As discussed in section 2.6,
we can always find a basis, such that J,5 takes the standard form of a mixed state given by (79).
Note, however, that this will be in general with respect to a basis that mixes the degrees of
freedom of A and B. If we start with a basis & 1= & e £ ), there exists a group transformation
Tap € Gap, such that

— JA JA,B _ -1

where the mixed state standard form was defined in (79). We can use this T,5, which combines
A and B to construct a purification |J) 4z, in which A" and B’ are correlated in the same way.
For this, we complete the basis é = (éA, éB) from (191) to é’ = (éA, éB, éA/, éB/) and choose in
this basis
J=TJE, T with T=Tyo Ty, (192)
i.e., we use the same transformation T,z to combine £ 4 and £ B as we use to mix £ 4 and £ B
Here, we have the purified standard form Jslia from (83). From our numerical studies, we
know that this choice is generally not the optimal one, but it provides a meaningful starting
point for our optimization algorithm.
We can also move on to arrive at analytical upper bounds, however. For this purpose, we

block-diagonalize the submatrices [J], and [J ] individually (rather than [J],5 as a whole as
in (191)), i.e., we write

J=MJM™' with M=M,®&Mz&l,p, (193)

with M, € G, and My € Gg, so that

(e \

) 0 EQAAz
&a, -0

—XT e
\ o gn)

where A, has been introduced in (84) and X is some 2N, X 2N rectangular matrix and 6;.“ and

ElB are real numbers in [0, 00) for bosons and [0, 1] for fermions. As J is just originating from

a basis transformation of the purified J and J5,, we have

J2=-1. (195)

One can now arrive at analytical upper bounds, acknowledging the following insight. The
von-Neumann entropy of AA’ can be computed from the reduction [J ], via (170). This way,
the von-Neumann entropy formula can directly be computed on the level of [J]. Let P be
the pinching that projects the matrix J into the 2 x 2 block diagonal form both in the main
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block and the off diagonal block of J. Since iJ is Hermitian (with respect to the inner product
of g), such a pinching will render the resulting matrix P(iJ) more mixed than iJ in the sense
of majorization [57], i.e., if the non-increasingly ordered eigenvalues of i.J,, are i, and the
ones of P(iJ,y ) are :I:iig, we will have

Np+Ny Np+Ny

Zjligszjjii and > A= > A, (196)
i i i=1 i=1

for all j in the first equation. Since the function S, (J) as a function of J is Schur-concave
both for bosons and fermions, we have

San(P(AJ)) = Sun(iJ), (197)

again for both bosons and fermions. In other words, the pinched matrix gives rise to an upper
bound to the von-Neumann entropy of the involved quantum states and hence also an upper
bound to the entanglement of purification. That said, now the eigenvalues entering the ex-
pression can be read off directly, giving rise to an explicit formula of an upper bound of the
entanglement of purification. This mindset can be used to avoid costly numerical optimization
and to study systems in the thermodynamic limit, while still arriving at reasonable bounds.

6.4 Proof of local optimality

Some further analytical evidence in support of conjecture 1 is provided by the fact that the
entanglement entropy S, is locally optimal for a Gaussian purification, i.e., we will prove
that after finding the optimal Gaussian purification |J) yg4p With minimal S, any infinitesimal
non-Gaussian change of |J) g5 Will not lower Sy, For simplicity of notation, we write |J)
for the purification |J) 545 on ABA'B’. We consider the mixed Gaussian state p,z. Let us
define |J) as the optimal Gaussian purification, i.e., a Gaussian state vector such that

Pag = Trap [J) (J] (198)

and such that the entanglement entropy Suu (|J) (J|) = S(pax ) is minimal among all Gaussian
states. In practice, we would choose here N, = N, and Nz = Np/ as suggested by conjecture 2,
but this is not important for the argument.

As discussed in section 3.8, we can write the mixed Gaussian psy = exp(—Hay)/Z with
Huy = qabéaé b and Z = e% based on formula 8. If we now perturb our optimal purification
in a non-Gaussian way, i.e., by applying a unitary

[Ye) =148 15 ® Uyp(e))|J), (199)

with Uyp/(0) = T4 ® 15/, the first law of entanglement entropy [58-60] states that the linear
change of 6S,, around e = 0 is given by

d N
8Sp = = (elHarle) |- (200)

However, we note that H,, is a quadratic Hamiltonian, which implies that the first order
change of the entanglement entropy will only feel the change of the two-point function of
[1.). This means that at linear order, we can replace the change of |¢,.) by a Gaussian change
of the state. However, by assumption the state vector |J) has been the optimal Gaussian pu-
rification, such that any Gaussian perturbation will always increase the entanglement entropy
Sax. Moreover, as the Gaussian purification |J) has been assumed to be optimal among all
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Gaussian purifications, the variation 654, will vanish at linear order. In summary, even if we
allow for non-Gaussian perturbations of |J), we will have

8Suy =0. (201)

However, this does not exclude the possibility of a finite transformation U, to lower the en-
tanglement entropy, but constitutes a first step towards proving that the Gaussian purification
is optimal.

7 Discussion

We have presented a geometric approach to optimize over arbitrary differentiable functions
on the manifolds of pure bosonic or fermionic Gaussian states. Our method is based on the
well-known gradient descent algorithm, but exploits the natural action of a Lie group onto
these manifolds to move between different Gaussian states. This way, we can efficiently per-
form gradient descent with respect to the Fubini-Study metric associated to the manifold of
Gaussian states. In the context of variational families, it is an important question if a given
manifold satisfies the so-called Kéhler property [15], but for the purpose of gradient descent
on Gaussian manifolds this property is not important and we show explicitly how our approach
can be applied to suitable Gaussian submanifolds (generated by subgroups of the symplectic
or orthogonal group).

For the most part of this manuscript, we used a new formalism for the treatment of Gaus-
sian states that largely unifies the bosonic and fermionic case and emphasizes their similarities.
This formalism is based on the geometric Kéhler structures consisting of a metric G, a symplec-
tic form © and a complex structure J on the classical phase space V of the theory, as reviewed
in section 2. In order to carefully distinguish if a matrix represents a linear map (such as J), a
bilinear form (such as G and 2) or a dual bilinear form (such as g and w), we used the index
position of a respective matrix entry (such as J¢, vs. G9). As there are many equivalent
ways to describe and parametrize Gaussian states, we provided a comprehensive dictionary
in section 3 to allow for a seamless conversion between different formalisms. This dictionary
may also be of use to other applications involving Gaussian states.

We have further implemented our optimization algorithm numerically to study three appli-
cations that are relevant for condensed matter physics, quantum information and high energy
theory, namely finding approximate ground states, computing the Gaussian entanglement of
purification (EoP) and finally calculating the so-called Gaussian complexity of purification
(CoP). For each of these applications, we have reviewed the key ingredients of our optimiza-
tion procedure, namely an analytical expression for the function and its gradient in terms of
the complex structure J parametrizing our Gaussian state family.

In section 6, we have combined numerical and analytical insights to support a conjec-
ture on the optimality of Gaussian entanglement of purification, i.e., we have claimed that
for a mixed Gaussian state it is sufficient to optimize entanglement of purification only over
Gaussian states. This claim has been supported by numerical evidence from small fermionic
systems, where we can also perform the full optimization over all purifications and find that
it agrees with one over only Gaussian purifications. Moreover, we have shown analytically
that the Gaussian entanglement of purification is locally optimal even in the larger set of non-
Gaussian optimizations. Finally, our conjecture also makes a statement about the required
number of degrees of freedom (and their distribution) in the purifying subsystem. This is
supported by our numerics as well.

The key reason why we do not need to re-evaluate the Fubini-Study metric at each step of
our optimization algorithm lies in the fact that our optimization manifold (Gaussian states or
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suitable submanifolds) are generated by the Lie group G (Sp(2N, R) for bosons, O(2N, R) for
fermions) or a suitable subgroup G’. As we have a unitary representation /(M) of group ele-
ments M € G, the Hilbert space inner product is preserved under the left-action of this group.
It therefore suffices to choose an orthonormal basis of Lie algebra elements at one point (at
a given reference state vector |J,) in the manifold) and this basis will stay orthonormal when
moving to other states via the group action U(M) |J,) = |[MJ,M'). Another advantage is that
we naturally ensure to not overparametrize, i.e., we can remove those Lie algebra elements
that do not change the reference state vector |J,) which ensures via the natural group action
that we also do not have redundant directions at other states. All of these desirable properties
also apply to other families of pure states, as long as they are generated from some unitary
representation of a Lie group. A prominent example of such families are the so-called group
theoretic coherent states introduced by Gilmore [61, 62] and Perelomov [63, 64]. The only
difference to the Gaussian case is that we may not have equally simple analytical formulas
for the functions we would like to optimize, such as expectation values (Wick’s theorem) or
entanglement entropies. Of course, our method also applies to the family of all pure states
(projective Hilbert space) and in fact, we already used an appropriately adjusted version of our
algorithm when we computed the full non-Gaussian entanglement of purification in section 6.2
for small fermionic systems (large fermionic or general bosonic systems are not feasible due
to the large or infinite dimension of the associated Hilbert space). In practice, we find that
our algorithm significantly outperforms approaches in which the optimization space does not
take the Lie algebra symmetries into account. For example, we find an order-of-magnitude
speedup of entanglement of purification calculations relative to previous methods used by
one of the authors [35], even though this previous method relied on a limited-memory Broy-
den-Fletcher—-Goldfarb—Shannon (L-BFGS) implementation usually considered superior to the
gradient descent method used here. This highlights the potential of using our approach to
achieve even faster Gaussian state optimization relying on more involved optimization step
functions.
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