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Abstract

Motivated by recent experimental progress in 2D magnetism, we theoretically study
spin transport in 2D easy-plane magnets at finite temperatures across the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition, by developing a duality mapping to the 2+1D
electromagnetism with the full account of spin’s finite lifetime. In particular, we find that
the non-conservation of spin gives rise to a distinct signature across the BKT transition,
with the spin current decaying with distance power-law (exponentially) below (above)
the transition; this is detectable in the proposed experiment with NiPS3 and CrCl3.
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1 Introduction

Progress in the experimental detection of the celebrated Brezinskii-Kosterlitz-Thouless (BKT)
phase transition has varied between the different types of physical systems. This phase tran-
sition was one of the first example of the continuous phase transition outside the Landau
paradigm, involving not the symmetry breaking but rather the topological defect pair unbind-
ing. It was theoretically formulated for the 2D XY systems [1, 2], examples of which include
the 2D easy-plane magnets and the thin films of superfluids / superconductors. Experimental
efforts have been devoted almost entirely to the latter, e.g. Refs. [3–5], with only a few ex-
ceptions such as Ref. [6, 7]. By contrast, there has been much less experimental study of the
magnetic BKT transitions, not the least due to the absence of good material candidate until
the recent fabrication of the monolayer van der Waals (vdW) material such as NiPS3 [8–10]
and CrCl3 [11–14]; the latter in particular has been experimentally shown to combine a very
strong easy-plane anisotropy with a nearly perfect in-plane isotropy [12,14]. However, experi-
mental methods used so far to probe 2D easy-axis magnetism such as the Kerr rotation [15,16]
and the Raman spectroscopy [17, 18] detects the long-range order parameter, making them
unsuitable for probing the BKT transition. Hence, to unambiguously detect the magnetic BKT
transition in these materials, theoretical study of its phenomenology is required. For instance,
while the transport measurements have been often used to confirm the BKT transition in 2D
superconductors, e.g. Refs. [4,19,20], the transport signature of the magnetic BKT transition
should be different as spin, unlike charge, is not conserved. However, this interplay of spin
dissipation and the magnetic BKT transition has not been studied yet.

Related to the transport signature of the magnetic BKT transition is the issue of the long-
range spin transport in 2D magnetic insulators. The spin transport via collective magnetic
excitations may not show the exponential suppression in the long-distance limit that charac-
terize the single-electron spin transport in metals. One simple example of this spin transport
arises when there is a planar spiraling of the order parameter in magnetic insulators with the
easy-plane anisotropy [21–24]. Given that this order parameter requires a spontaneously bro-
ken U(1) symmetry, a close analogy (summarized in Appendix A) can be developed with the
superfluid transport, which can be described by the gradient of the U(1) phase of the conden-
sate wavefunction [25, 26]. While the realization of such superfluid spin transport has been
reported recently [27,28], there remains the question whether the long-range spin ordering is
a necessary condition. Given that the magnetic BKT transition, unlike the three-dimensional
magnet analyzed in Ref. [29], does not arise from the long-range spin ordering, the answer
to this question would determine the extent of both the impact that the magnetic BKT can
have on spin transport, and the applicability of the 2D magnetic atomic monolayer to spin-
tronics [30,31].

In this work, we examine the possibility of the long-distance spin transport in proximity
to the magnetic BKT transition using the duality mapping from the 2D easy-plane magnetism
to the electromagnetism (EM) in the d = 2 + 1 spacetime [32–35]. This allows us to both
pursue close analogy to the current transport and pinpoint the difference that arises when the
phenomenological finite spin lifetime is inserted. We find that the superfluid spin transport,
i.e. decaying algebraically with distance, persists below the BKT temperature, while above the
BKT temperature it decays exponentially with distance. In particular, we identify the vortex-
induced temperature dependence of the decaying behavior of non-local spin-transport signal,
which includes the previously known result for zero temperature [22] as a special case. For
the remainder, we will first review the dual d = 2 + 1 EM formalism and its application to
the current transport near the BKT transition in the thin superconducting film; then we will
discuss how this transport result is modified for spin transport in 2D XY magnets near the
magnetic BKT transition due to the finite spin lifetime, together with the result for a realistic
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experimental setup.

2 Dual EM formulation of superconducting films

We first review the qualitative derivation of the transport near the BKT transition in the super-
conducting films using the dual d = 2+ 1 EM theory [32–35]. We start with the Lagrangian
density,

L= 2π(−na0 + j · a) +
1

2K
(e2 − v2 b2); (1)

n and j are the density and the current density, respectively, of superconducting vortices, and
v is the dual EM wave velocity. For L to be useful, the dual electric (e = −∇a0 − ∂ta) and
magnetic (b = ẑ ·∇ × a) fields together with the parameter K need to be defined. The first
step is to note the relation

n=
ħh

2πqK
ẑ · (∇× J) (2)

(where q = 2e is the charge of a single Cooper pair) between the Cooper charge current J and
the vorticity that holds at the long-wavelength limit (K is the phase stiffness). Given that we
want to map vortices to particles in this formulation, a natural course is to figure out a way to
make Eq. (2) equivalent to the Gauss’ law. This can be accomplished by setting e= ħhq J× ẑ, i.e.
taking the dual gauge field to originate from the Cooper pair density and current density. This
concisely expresses the equivalence between the dual EM wave and the phase mode, e.g. the
logarithmic vortex-vortex interaction that Eq. (1) readily yields is identical to the integration
of the Cooper pair current density energy ħh2J2/2q2K between two vortices. The combination
of the vorticity conservation ∂t n+∇ · j = 0 and the divergence of the London penetration in
the thin film limit, which leaves the phase mode gapless, we obtain for the vortex current

j=
ħh

2πqK
ẑ×

�

∂ J
∂ t
+ v2∇ρ

�

, (3)

which, by taking b = ħhqρ, is the equivalent of the Ampère-Maxwell law with ρ being the charge
density. 1 Lastly, the Cooper pair current conservation is the Bianchi identity for constructing
this dual theory, and therefore the Faraday’s law in the EM language:

0=∇× e+
∂ b
∂ t
=
ħh
q

�

∇ · J+
∂ ρ

∂ t

�

. (4)

Within the context of the dual d = 2 + 1 EM theory of Eq. (1), the effect of the vortex-
antivortex unbinding on the superconducting film transport is most clearly manifest through
the constitutive relation between j and e (that is, J). A single vortex is phenomenologically
known to have a finite mobility, i.e. v = wµe where w, µ, v are the winding number, the mo-
bility and the velocity, respectively, of the vortex [36,37]. Hence, above the BKT temperature,
where a finite density of free vortices is present, the constitutive relation is

j= σduale=
ħhµ
q

n f J× ẑ for T > TBKT , (5)

whereσdual = µn f is the dual (or vortex) conductivity above TBKT, with n f being the combined
density of free vortices and free antivortices, that vanishes singularly on approaching TBKT as
ln n f ∝ −1/

p

T/TBKT − 1 [36, 37]. By contrast, for T < TBKT, there is no free vortex in

1From the fluid mechanic, the combination of the Euler equation and the gyrotropic effect
∂ J/∂ t = −q∇P + (2πqK/ħh)j× ẑ, where P is the pressure, also gives us this result by noting v2 = q∂ P/∂ ρ.
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absence of J, so j arises only through the vortex-antivortex unbinding driven by J. In this case,
one part of the vortex energy arises from the Cooper pair current exerting the dual electric
force, i.e. the J× ẑ Magnus force, on each vortex, which pushes vortices and antivortices in
the opposite directions with the strength proportional to the Cooper pair current magnitude
J = |J|. The other part is the attractive vortex-antivortex logarithmic interaction, which is
independent of J. Equating these two energies give us the free energy barrier against the
vortex-antivortex pair unbinding of ∆F ≈ πK ln(qK/ħhξJ), where ξ is the vortex radius [38].
The resulting n f would be proportional to exp(−∆F/kB T ) [36,37,39]. Combined, this gives
us the low-temperature constitutive relation of [36,37]

j=
ħh
q
σ̃dual

�

J
J0

�2TBKT/T

J× ẑ for T < TBKT , (6)

where σ̃dual and J0 are phenomenological parameters in units of the dual conductivity and
the 2D current density, respectively, below TBKT with the exponent coming from the famous
relation formula kB TBKT = πK/2. Through the DC Josephson relation E = h

q ẑ × j, Eqs. (5)
and (6) give rise to the experimentally observed [19,20,40] change in the DC current-voltage
relation at T = TBKT, i.e. the exponent in V ∝ Iα dropping from α= 3 to α= 1 [37,38,41].

3 Dual EM formulation of easy-plane magnets

Both the dual d = 2+1 EM theory of Eq. (1) and the constitutive relations Eqs. (5) and (6) are
applicable to the 2D easy-plane magnetic insulator [34, 42] with the exception for the finite
spin lifetime, which we will show to be crucial in spin transport. As their deconfinement drives
the magntic BKT transition [2], merons are now the dual particles of Eq. (1), i.e. n and j as the
density and the current density, respectively, of merons, with n 6= 0 only for T > TBKT. Starting
from this identification, we will now explicitly list as Eqs. (2a)-(6a) the spin analogues of the
equations Eqs. (2)-(6) for the superconducting films.

First, a meron represents the vortex spin-field configuration - an example being shown in
Fig. 1 (a) - and hence carries the quantized spin current vorticity [34, 43–45]. By using the
formal analogy (see Appendix A) between the charge current carried by the Cooper pair con-
densate J= qK∇φ/ħh (with K the phase stiffness and φ the Cooper-pair wavefunction phase)
and the spin current carried by the easy-plane order-parameter texture Jsp

z = −K∇ϕ (with K
the spin stiffness and ϕ the azimuthal angle of the magnetic order parameter) and by consid-
ering that the vorticity is defined in terms of the gradient of the dimensionless phase/angle
variables (∇φ and ∇ϕ), we substitute on the right-hand side of Eq. (2) ħhJ/qK by Jsp

z /K to
obtain

n=
1

2πK
ẑ · (∇× Jsp

z ) (2a)

(K is now the spin stiffness). Second, given that the dual EM wave from Eq. (1) now should be
identified with magnons and that the meron vorticity should be conserved due to its topological
nature, we now have a straightforward translation of Eq. (3) to

j=
1

2πK
ẑ×

�

∂ Jsp
z

∂ t
+ v2∇sz

�

, (3a)

where the Cooper pair charge density ρ is replaced by the perpendicular spin density sz . Simi-
lar analogy also holds for the constitutive relation as the average meron mobility is also analo-
gous to the vortex mobility, i.e. v= wµe [46,47]. While merons in ferromagnet have transverse
mobility arising from the core magnetization with a constant Hall angle [34], their average
effect cancels out in the absence of an external magnetic field which would give us the zero
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average core magnetization [48–50]. We hence obtain the third equation for the spin analogue
- the Eq. (5) high-temperature constitutive relation in the 2D easy-plane magnet language,

j= µn f Jsp
z × ẑ for T > TBKT , (5a)

where n f is the combined density of free merons and free antimerons. Likewise, the fourth
equation is the Eq. (6) low-temperature constitutive relation,

j= σ̃dual

�

J sp
z

J sp
0

�2TBKT/T

Jsp
z × ẑ for T < TBKT , (6a)

as Jsp
z applies a purely Magnus force to each meron on average while the attractive meron-

antimeron interaction is logarithmic at long distance. Yet, the exact analogy between the 2D
easy-plane magnet and the thin superconducting film stops here, for the spin in the former is
not conserved but has a finite lifetime τ in contrast to the charge in the latter. This modifies
the dual Faraday law into 2

−
sz

τ
=∇ · Jsp

z +
∂ sz

∂ t
. (4a)

4 Spin transport change at BKT transition

Due to this spin non-conservation, an analysis of the magnetic BKT transport needs to go
beyond the local relation between the spin current density and the spin torque gradient [51]
and compute the inhomogeneity of the spin current density and/or the spin density. Given that
leads are essential features of tranport experiments, Eq. (4a) means that, unlike in the thin
superconducting film, the inhomogeneity of both the spin current density and the spin torque
gradient is unavoidable. It determines the possibility of the long-distance spin transport.

For the DC spin transport, a qualitative change in the spin current density inhomogeneity
occurs at T = TBKT, 3 which limits the spin transport to a finite distance only for T > TBKT but
not for T < TBKT. We first note that when the T > TBKT finite dual conductivity of Eq. (5a) is
inserted into the dual Ampère-Maxwell law of Eq. (3a), the DC terms give us the spin diffusion,
Jsp

z = −(v2/µn f )∇sz . Diffusive transport, when combined with the finite lifetime as in Eq. (4a),
gives rise to the ‘mean free path’

λ0 =

√

√

√

�

v2

µn f

�

τ= v
√

√ τ

µn f
, (7)

which in this case means the decay length for the DC spin current [57] from the following
equation

Jsp
z = λ

2
0∇(∇ · J

sp
z ) for T > TBKT . (8)

We can see here that for T > TBKT, the range of spin transport is limited to a length scale that
is proportional to the average distance between free merons ∝ n−1/2

f , which diverges upon
approaching TBKT due to the same singular vanishing of n f as in the superconducting film [51].

2This modification implies the existence of a Rayleigh dissipation power density P ∝ sz
2, which has no coun-

terpart in the superfluid / superconductor. To obtain Eq. (4a), we need to write the Lagrangian density L of Eq. (1)
in terms of ϕ and sz , from which the generalized equation of motion ∂tsz = −

δL
δϕ − ∂sz

P can be obtained.
3For CrCl3 with its extreme easy-plane anisotropy, TBKT should be around its estimated magnetic interaction

strength ∼0.8meV≈9.3K [13].
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2D magnetPt Pt

2D magnet

Pt PthBN
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V(a) Top view:

(b) Side view:

Figure 1: (a) The top and (b) the side view of the proposed experimental setup for
spin transport in 2D XY magnets. Spin is transported through 2D XY magnets such as
NiPS3 and CrCl3 that are encapsulated by the hexagonal boron nitride (hBN), which
is an experimental setup akin to what has already been used for studying 2D Ising
magnets, e.g. for CrI3 in Refs. [52, 53] and for CrBr3 in Ref. [54]. The injection
and the detection of a spin current J sp

z are performed by using a heavy metal such
as Pt as spin-current source and drain (via the spin Hall effect and the inverse spin
Hall effect), which is analogous to the experimental realization of the injection and
the detection of charge current in monolayer and bilayer graphene using Au e.g.
Refs. [55,56].

By contrast, below the BKT temperature, we obtain by combining Eq. (6a) with Eqs. (3a), (4a)
and retaining only the DC terms,

�

J sp
z

J sp
0

�2TBKT/T Jsp
z

J sp
0

= λ̃2∇
�

∇ ·
Jsp

z

J sp
0

�

for T < TBKT , (9)

where λ̃2 = v2τ/σ̃dual. That the power-law ansatz Jsp
z = c(x+ x0)αx̂ gives us a solution to this

equation with α = −T/TBKT indicates that the spin current for T < TBKT decays algebraically
rather than exponentially with the distance, giving us the superfluid spin transport. This repre-
sents one of the main results of our work: 2D easy-plane magnets support the superfluid spin
transport not only at zero temperature [22] but also at finite temperatures despite the lack of
the long-range order so long as free merons are absent. The power-law asymptotic solutions of
Eq. (9) that accounts for a realistic spin-current boundary conditions will be discussed below
with a concrete experimental setup.

For an experimental setup to detect the predicted behavior of spin transport at the BKT
transition, we propose to utilize two heavy-metal leads with strong spin-orbit coupling such
as Pt or W (separated by distance L) to inject and detect a spin current as shown in Fig. 1; we
note that this setup has already been fabricated for the transport measurement of a monolayer
vdW material [54]. In this setup, the uniform DC charge current density Jc along the interface
(parallel to ŷ) in the left lead exerts the interfacial spin torque via the spin Hall effect [58],
which gives rise to the spin current flowing in the x direction: Jsp

z = x̂J sp
z (x) (spin-polarized

in the z direction). The injected spin is transported through the easy-plane magnet with finite
dissipation rooted in the finite spin lifetime as well as the vortex interference. The output spin
current from the 2D magnet flowing into the right lead induces the electromotive force via
the inverse spin Hall effect [58], which gives rise to the inverse spin Hall voltage signal in the
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right lead. 4 For the DC case, we have the following boundary condition, which supplements
the bulk equations shown in Eq. (8) (for T > TBKT) or Eq. (9) (for T < TBKT):

J sp
z (0) =ϑJc −

ħhg↑↓

4π
φ̇(0) = ϑJc + g̃

dJ sp
z

d x

�

�

�

�

x=0
,

J sp
z (L) =

ħhg↑↓

4π
φ̇(L) = − g̃

dJ sp
z

d x

�

�

�

�

x=L
, (10)

where ϑ is the effective spin Hall coefficient, g↑↓ is the effective interfacial spin-mixing con-
ductance, φ̇ is the local spin precession rate and g̃ ≡ (ħhg↑↓/4π)(v2/K)τ parametrizes the
spin pumping at the interface within the spin Hall phenomenology [58]. To connect the spin
precession rate to the spin current derivative, we used φ̇ = (v2/K)sz together with Eq. (4a).

10 20 30 40

0.025

Figure 2: The numerical solution of the differential equations for the bulk spin cur-
rent spatial variation Eqs. (8) and (9) and the boundary conditions of Eq. (10) for
J sp

z (L) and the sample length L; the black, the blue, the red, the green, and the orange
curves are for the temperatures T = 0, T = 0.9 TBKT, T = 1.1 TBKT, T = 1.2 TBKT, and
T = 1.3 TBKT respectively; we have set λ̃ = 0.1λ0 exp

�

π
2 (T/TBKT − 1)−1/2

�

(shown
to fit well with numerical calculation for TBKT < T ≤ 1.33TBKT) following Ref. [51]
for temperatures above TBKT.

The transition in the spin transport across TBKT can be seen in Fig. 2, which shows our
numerical calculation of the spin current J sp

z as a function of the distance L [Eqs. (8) and (9)]
with the boundary conditions of Eq. (10). Note that the decaying behavior of J sp

z (L) does
not look strikingly different between the T = 0 case and the T = 0.9 TBKT case, despite the
long-range spin ordering that is present in the former but absent in the latter. This result can
be supported analytically, as the exact solution for the outgoing spin current at T = 0 comes
out to be J sp

z (L) = ϑJc g̃/(L + 2 g̃) [22], while the general asymptotic behavior below the BKT
temperature for the outgoing spin current is

J sp
z (L)∼

g̃
L

L−T/TBKT for T < TBKT , (11)

which we shall derive in Appendix. However, once the temperature is above TBKT, Eq. (8)
gives us a qualitatively different asymptotic behavior, an exponential decay

J sp
z (L)∼ exp(−L/λ0) for T > TBKT . (12)

4Note that the relation between the interface spin torque and the spin current in heavy-metal / textbar magnet
junction is analogous to the relation between the interface voltage and the current in metal / textbar supercon-
ductor junction [59].

7

https://scipost.org
https://scipost.org/SciPostPhys.10.3.068


SciPost Phys. 10, 068 (2021)

This should be readily detectable by the inverse spin Hall voltage in the right lead of Fig. 1,
which is proportional to J sp

z (L). The divergence of λ0 just above TBKT, as shown in Eq. (7),
should allow us to distinguish the meron contribution obtained here from the thermal magnon
contribution.

5 Conclusion

Transport signature of a BKT transition should arise from the presence (for T > TBKT) or the
absence (for T < TBKT) of the finite density n f of topological defects in any 2D XY systems,
yet we have shown that its manifestation would be different in 2D easy-plane magnets due to
the spin non-conservation of Eq. (4a), which contrasts with thin superconductor / superfluid
films possessing the charge / mass conservation of Eq. (4). For the 2D easy-plane magnet, the
main impact at TBKT lies in the transport range rather than the disspation, which is present
even at the low temperature and is the cause of the spin non-conservation.

We expect our results to be relevant in any systems where the BKT transition occurs but
the analogue of the charge conservation does not hold. Recently, the spin superfluidity in the
spin-triplet superconductor has been analyzed with the effect of the spin lifetime included [60].
Given the recent advance in fabricating the thin film samples [61–63], this may provide us with
yet another venue for detecting the spin transport described in this work.

Lastly, it would be worthwhile to derive a more general dual theory for spin transport which
can include the breaking of the U(1) in-plane spin rotational symmetry that has been assumed
in this work. Physically, such symmetry breaking may arise from the additional anisotropy
within the easy plane, which may give rise to the critical barrier for superfluid spin trans-
port [21,22] 5, or from the random anisotropy [66]. Such approach may benefit from taking
an alternative perspective within topological hydrodynamics, relying on the conservation of
topological charges rather than spins [67].
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A Analogy between 2D superconductors and 2D easy-plane mag-
nets

In this section, we discuss the analogous structure between the low-energy dynamics of 2D
superconductors and those of 2D easy-plane magnets by closely following the discussion in
Ref. [26]. The effective Hamiltonian describing a smooth change of the Cooper pair wave-
function ψ=pρ exp(iφ) is given by

Hc =

∫

d xd y

�

Kc(∇φ)2

2
+
(ρ −ρeq)2

2C

�

, (13)

where ρeq is the equilibrium Cooper pair density, Kc is the phase stiffness and C is the capaci-
tance. Here, we truncated the expansion at the leading, quadratic order in the deviations from
the equilibrium. The phase and the density are a pair of canonically conjugate variables, and
their Hamilton equations are given by

ħh
∂ φ

∂ t
= −

δH
δρ
= −

ρ −ρeq

C
, (14)

∂ ρ

∂ t
=

δH
ħhδφ

= −
Kc∇2φ

ħh
. (15)

The first equation is the Josephson relation with the identification of (ρ − ρeq)/C as the lo-
cal non-equilibrium voltage. The second equation is the particle-number continuity equation,
from which the expression for the number current can be identified: Kc∇φ/ħh. The corre-
sponding charge current is given by Jc = qKc∇φ/ħh, where q = 2e is the charge of a single
Cooper pair.

Now, let us turn to the easy-plane magnets. The effective Hamiltonian for the low-energy
dynamics of the 2D easy-plane magnet is given by

H =

∫

d xd y

�

Ks(∇ϕ)2

2
+

s2
z

2χ

�

, (16)

where ϕ is the azimuthal angle of the order parameter within the x y plane, sz is the z-
component of the spin density, Ks is the spin stiffness, and χ parametrizes the magnetic sus-
ceptibility. In quantum mechanics, the spin density sz is the generator of the spin rotations
within the x y plane, which, in the Hamiltonian formalism, corresponds to that the angle ϕ
and the spin density sz are a pair of canonically conjugate variables. Their Hamilton equations
are given by

∂ ϕ

∂ t
=

δH
δsz
=

sz

χ
, (17)

∂ sz

∂ t
= −

δH
δϕ
= Ks∇2ϕ , (18)

where the spin dissipation is neglected. The first equation describes the spin precession in-
duced by the non-equilibrium spin density, resembling the Josephson relation. The second
equation is the spin continuity equation, from which the expression of the spin current is
obtained: Jsp

z = −Ks∇ϕ. Note that analogous structure between Eqs. (14, 15) for 2D super-
conductors and Eqs. (17, 18) for 2D easy-plane magnets. In real magnets, there is always
finite spin dissipation and, at the simplest level, it can be accounted for by adding −sz/τ to
the right-hand side of the second equation, where τ is the spin lifetime.
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By using this analogy between 2D superconductors and 2D easy-plane magnets, a theoret-
ical study of spin transport with the account of the finite spin life time has been undertaken
in Refs. [22,23,59], but with no consideration of thermal vortices. A non-local spin transport
signal over a distance L between a spin-current source and a spin-current detector is shown
to decay algebraically |Jsp

z | ∝ 1/L at sufficiently low temperatures much below the BKT tran-
sition [22]. In this work, we study spin transport at finite temperatures with full account of
thermal vortices, by extending the previous works.

B Analytic approximation of the spin current spatial variation

For T > TBKT, Eq. (7) with the boundary condition Eq. (9) of the main text can be solved
analytically as

J sp
z (L) =

4 g̃
λ0
ϑJc

�

(1+ g̃/λ0)
2eL/λ0 + (1− g̃/λ0)

2e−L/λ0
�−1

, (19)

clearly giving us an exponential decay with L for L� λ0.
Meanwhile, for T < TBKT, we may use g̃/L as a small parameter and consider the first-

order expansion J sp
z = J̄ sp

z +( g̃/L)δJ sp
z , where J̄ sp

z is the solution of Eq. (8) with the boundary
condition Eq. (9) of the main text modified by g̃ = 0, i.e. J̄ sp

z (0) = ϑJc and J̄ sp
z (L) = 0. This

small g̃ limit then would give us

J sp
z (L) = − g̃

d J̄ sp
z

d x

�

�

�

�

x=L
. (20)

To obtain d
d x J̄ sp

z (L), we note that assuming ϑJc > 0, we can take d2 J̄ sp
z /d x2 > 0 and dJ̄ sp

z /d x < 0
for 0≤ x ≤ L, and so, by integrating Eq. (8) of the main text, we obtain

λ̃
d

d x
J̄ sp

z

J sp
0

= −

√

√

√

√

1
1+ TBKT/T

�

J̄ sp
z

J sp
0

�2+2TBKT/T

+

�

�

�

�

�

λ̃ d
d x J̄ sp

z (L)

J sp
0

�

�

�

�

�

2

.

We use
∫∞

0 d x/
p

xα + 1= Γ (1/2− 1/α)Γ (1+ 1/α)/
p
π for α > 2 to derive

lim
L/λ̃→∞

L

λ̃

�

�

�

�

�

λ̃ d
d x J̄ sp

z (L)

J sp
0

�

�

�

�

�

1
1+T/TBKT

=
1
p
π

�

1+
TBKT

T

�
1

2+2TBKT/T

Γ

�

1
2+ 2T/TBKT

�

Γ

�

2+ 3T/TBKT

2+ 2T/TBKT

�

.

(21)
Eqs. (20) and (21) together gives us Eq. (11) of the main text.
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