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Abstract

In this work, we consider a model of a subsystem interacting with a reservoir and study
dynamics of entanglement assuming that the overall time-evolution is governed by non-
integrable Hamiltonians. We also compare to an ensemble of Integrable Hamiltonians.
To do this, we make use of unitary invariant ensembles of random matrices with either
Wigner-Dyson or Poissonian distributions of energy. Using the theory of Weingarten
functions, we derive universal average time evolution of the reduced density matrix and
the purity and compare these results with several physical Hamiltonians: randomized
versions of the transverse field Ising and XXZ models, Spin Glass and, Central Spin and
SYK model. The theory excels at describing the latter two. Along the way, we find general
expressions for exponential n-point correlation functions in the gas of GUE eigenvalues.
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1 Introduction

The question of emergence of thermal behavior in isolated quantum systems has attracted
considerable attention since the birth of quantum mechanics [1]. Recently intensive interest
from the community has been reawakened. In part it is motivated by the availability of new
experimental systems (see e.g. [2–11] for recent cold atomic experiments) that enable us to
probe thermalization or its absence through precise control of microscopic conditions. Stud-
ies of these experiments also deepened our theoretical understanding of the universal laws
governing dynamics of generic many-body systems and constraints in the contrasting case of
integrability.

There are several roads leading to thermalization in quantum systems: one is based on
the eigenstate thermalization hypothesis (ETH) [12–16] and is supported by a body of nu-
merical evidence. It asserts that sufficiently complex quantum system (in particular ones that
are chaotic in the classical limit) have eigenstates that are essentially indistinguishable from
thermal states with the same average energy. A similar claim holds for local operator averages
of almost all observables. In other words, a global pure quantum state is apparently indistin-
guishable from a mixed, globally-entropic thermal ensemble. In this respect it is interesting to
understand dynamics of the process of thermalization in generic closed quantum systems.

A different path to accessing universal features of thermalization is to assume that dynam-
ics are governed by a random Hamiltonian which smears out all microscopic detail. Assuming
some overall symmetries it can be postulated further that the randomized Hamiltonian is de-
scribed by one of the traditional random matrix ensembles (GUE, GOE, or GSE). This type of
setup has been implemented in several recent works [17–27], and most notably, [28]. In all
deference, this last paper predates the current work and shares the same perspective. In it,
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a number of our results were already independently established, along with some interesting
supplementary ones.

Among all of the recent works, quantum states converge dynamically to agree with the
predictions of a thermal ensemble, and the universal quantities accompanied by this conver-
gence have been established. Most of the above papers focus however on the asymptotic limit
of very large or even infinite Hilbert spaces. The perspective of the present work is on explicit
dependence on the finite system size.

While one can argue that the Hamiltonians drawn from one of the random matrix ensem-
bles correspond to somewhat unphysical situation, we believe that our results are applicable to
a large class of physically relevant models where long-range interactions dominate. For exam-
ple, this is realized in central-spin type models whose Hamiltonians HCS =

∑

k Jk~S0~Ik describe
interaction between a "central spin" ~S0 and the nuclear spins ~Ik with arbitrarily distributed
couplings Jk. This Hamiltonian, while integrable for arbitrary Jk ’s, is used to model quantum
dots and NV centers [29, 30] reduced BCS models and Dicke-type systems [31]. These inte-
grable models represent a subclass of more elaborate non-integrable counterparts which can
be used to describe more realistic setups [32]. The latter then are used to describe, for exam-
ple, dipole-dipole interacting spin models [33] used to describe e.g. ions in a trap or nitrogen
vacancy centers [34, 35] which were instrumental in observing time crystals. Recently, the
random Hamiltonian setup or random quantum circuits have been used for studying universal
features of the out-of-time correlation function [23, 26, 36, 37], entanglement features [27],
unitary design [25] and spectral decoupling [23], as well as entanglement tsunami [38], and
measurement induced phase transitions [39].

Having in mind all these recent developments, here we consider a model of a subsystem
interacting with a reservoir. We study dynamics of information transfer in this system assum-
ing that the overall system is described by non-integrable or integrable Hamiltonians with
uniformly random spectral basis, which are modeled by RMT from either Wigner-Dyson or
Poissonian distributions.

The paper is organized as follows. In the next section, the technical setup of the subsys-
tem/reservoir is explained, as well as the mathematical notation. The random matrix models
provide a distribution of systems, over which we must average. This averaging is done by
integrating over the degrees of freedom of the matrices, and similar to a polar coordinate sys-
tem on the plane, this integral is split into two parts. The angular part is treated in section
3, and the radial part in section 4. Along the way, we find quite general procedures to aver-
age functions of reduced density matrices, and also for vertex operator-esque correlators in
the field theory of random matrix eigenvalues. Then in section 5, the results of these aver-
ages are discussed, their properties highlighted, and notably they are compared to numerics
by sampling the studied matrix ensembles, and to ensembles of existing famous models from
(one-dimensional) condensed matter theory. In the final section, some outlook and discussion
is offered.

2 Setup

We are interested in using Random Matrix Theory (RMT), specifically the techniques of uni-
tary integrals and correlation functions, to gain insights in the statistics of bipartite discrete
quantum systems, induced by a Gaussian ensemble of Hamiltonians.

2.1 Bipartite Systems

The setup is as follows. We consider a discrete finite full quantum system A+ B consisting of
a subsystem A, and a bath B, with a tensor product Hilbert space H =HA⊗HB of dimension
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dA× dB = d. On the full space, a constant Hamiltonian, a d × d Hermitian operator or matrix,
governs time evolution. Notably, this Hamiltonian is thought to be a general random interac-
tion on H, and has no knowledge of locality or the division into A and B. The partition simply
arises because the experimenter has access to A via local observables O: Hermitian operators
that act as the identity on B: O = OA ⊗ 1B. B may be thought of as much larger than A, but
this is not crucial. We will repeatedly make use of the mapping of a Hermitian matrix to its
eigenvalues and eigenvectors

(V, E)↔ H = VΛV †, Λ :=









E1
E2

. . .
Ed ,









, (1)

found by diagonalizing H. In this context, this is known as the radial-angular-decomposition
[40]. Here E = {E j} is a vector of real eigenvalues (energies) and V ∈ U(d) is a unitary matrix
encoding the spectral basis1.

One assumption made in this work is that at time t = 0 the subsystem and bath are brought
into contact with each other, resulting in a full system product state |1〉= |1A〉⊗|1B〉= |1A; 1B〉:
the constituent systems are initially pure2. The choices of |1A〉 and |1B〉 are arbitrary, but our
notation will use a basis in which |1〉 is the first basis vector3.

At later times, by the Schrödinger equation, the state is

|t〉 := e−iH t |1〉=
∞
∑

n=1

(i t)n

n!

�

VΛV †
�n |1〉= Ve−iΛt V † |1〉 . (2)

V also diagonalizes the time-evolution operator, so |t〉 is polynomial in V , V †. In compo-
nent notation, with completed basis {|k〉} of H, it looks like

|t〉=
d
∑

j,k=1

|k〉Vk je
−iE j t V †

j1. (3)

From here, we can obtain the mixed state description of the subsystem A by tracing out
the bath,

ρA(t) = TrB (|t〉 〈t|) . (4)

Then, implicitlyρA is thus also a function of V and E. In the basis {|hA〉} ofHA, the elements
of this matrix are given by

〈gA|ρA(t) |hA〉=
dB
∑

hB=1

d
∑

j,k=1

V(gA,hB) je
−iE j t V †

j1V1keiEk t V †
k(hA,hB)

. (5)

The expression is visualized in a diagram in figure 1. The summation over hB results from
tracing out the bath. This is done by expanding the outer indices of ρ = |t〉 〈t| into a double-
index, not unlike the digits of a decimal number: a bath state tensored with a subsystem
state |h〉 〈g| = |hA; hB〉 〈gA; gB|, and contracting with δhB ,gB

. Others, namely j, k, are internal
full indices from the matrix multiplication of the diagonal decomposition, ranging over the

1This mapping is not exactly bijective, H is overcounted because right-multiplying V by a permutation matrix
or an element of U(1)⊗d results in the same Hamiltonian. However, in the results below this will be compensated
by normalization. This symmetry is larger for degenerate systems but these are measure zero in the full space, so
they do not affect the statistics either.

2Or we could imagine performing a selective measurement on A at t = 0 to the same effect.
3|1〉 is not an eigenstate of H.
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ρAgA hA
= V

e−iE j

V †

|1A〉 〈1A|
V

eiEk

V †
j j 1 1 k kgA hA

TrB : hB

Figure 1: Diagram of expression (5). Lines indicate matrix multiplication, with summed index
below. The outer indices are split into a subsystem and bath double-index, the trace sums over
the latter.

full dimensionality of H. In what follows, we will use the Einstein summation convention on
repeated indices4. In doing so, we remember that indices with a subscript A (e.g. gA) are
summed from 1 to dA, subscript B summed to dB and unsubscripted to d.

Local observables OA on A take the form of Hermitian operators on HA, and an expectation
value can be found: ō = TrA(OAρA). This is the main utility of ρA.

Another important quantity in this work is the purity [41]:

γ := TrAρ
2
A. (6)

It contains information about the entanglement between A and B: The lower the purity,
the higher the entanglement. A product state like |1〉 gives ρA = |1A〉 〈1A|, for which γ = 1.
On the other hand, an entangled state cannot be written in this product form and will have
γ < 1. The lowest purity is 1/dA, corresponding to the maximally mixed ρA = 1A/dA. Though
less studied than the Von Neumann entropy, it is computationally favorable because it does
not involve diagonalization of ρA or an infinite power series (the logarithm).

2.2 GUE Distribution and Measure

In random matrix theory, one treats matrices as random variables. They can be integrated,
and thus averaged over, if one takes care constructing the measure and probability density
function. We will use the Gaussian Unitary Ensemble (GUE) in the following. The weight on
the eigenvalues will be multivariate Gaussian,

P(E) = C exp

�

−
λ

2

d
∑

l=1

E2
l

�

, (7)

with C a normalization constant andλ set to 1 in this work. The measure is given by∆2(E)DEdV .

∆(E) := det
1≤ j,k≤d

(Ek−1
j ) =

∏

1≤ j<k≤d

�

E j − Ek

�

(8)

is the Vandermonde determinant, the Jacobian of the transformation to angular-radial coor-
dinates. DE is the product of Lebesgue measures on the eigenvalues, and dV is the Haar
measure on the Unitary group U(d). Some explanatory background information, as well as
the theory needed to integrate out these measures, is collected in appendix A.

3 Angular Integral: Unitary Average over Eigenstates

Now we make our first steps towards non-standard calculations. In the setup, we have cited a
probability density function (PDF) and measure P(E)∆2(E)DVDE on M, the space of possible

4Also triple indices are summed over, this is done rather than include the Kronecker delta and an additional
label.
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Hamiltonians. The next step will be to choose a suitable integrand to average over this PDF.
The choice we make, is the reduced density matrix ρA(t). In this section, we will perform
the equivalent of the angular integral in polar coordinates: we will average over the compact
unitary group U(d). A note on notation: when an average of some f has been carried out
over dV or DE we will write 〈 f 〉. If both have been done, we will use double brackets: 〈〈 f 〉〉.
The authors would like to be clear that although the results of this section were achieved
independently, most if not all were already established some years earlier in [28].

3.1 Reduced Density Matrix

Returning to expression (5) and taking time t as a fixed parameter, we first wish to average
(integrate) ρA(t) over the eigenbasis V ∈ U(d). We will average element-wise, so the result
is again a (dA × dA) matrix. The salient observation is that each element of this matrix ρA is
polynomial in the elements of V and V †. In fact it is second order in both. As we vary V , we
are interested in individual terms of expression (5), which are

∫

U(d) dV V(gA,hB) jV1kV †
j1V †

k(hA,hB)
.

This is handled using the theory of Weingarten functions, see appendix A for details.
In the language of equation (58), the sets of indices are:

I ≡ (i1, i2) =
�

(gA, hB), 1
�

; I ′ ≡ (i′1, i′2) =
�

1, (hA, hB)
�

J ≡ ( j1, j2) = ( j, k); J ′ ≡ ( j′1, j′2) = ( j, k) .
(9)

The inner product is linear, so we may write

〈gA| 〈ρA〉 |hA〉 :=

∫

U(d)
dV 〈gA|ρA|hA〉=

∑

σ,τ∈S2

δI ,σ(I ′)δJ ,τ(J ′)Wg(d,στ−1)ei(Ek−E j)t . (10)

Here, S2 is the symmetric group on two symbols, and δI ,σ(I ′) :=
∏

l δIl ,I ′σl
. Pulling this

all together, a consistent pattern emerges: the I , I ′-terms decouple from the J , J ′-terms into
a product structure: they do not depend on each other, neither in the contributions due to
equation (58), nor in the multiplicative factors that appear from the Schrödinger equation.
This is a feature that appears repeatedly in our unitary average calculations, so it warrants
some notation

〈ρA〉=
∑

σ,τ∈Sq

RσQτWg(d,στ−1). (11)

The objects Rσ and Qτ can be seen as vectors of length q!, with elements indexed by the
permutations of Sq. In the present case, ρA is quadratic in V and V †, so q = 2, and the former
are5:

Rσ := |gA〉 〈hA|δI ,σ(I ′), Qτ := δJ ,τ(J ′)e
i(Ek−E j)t . (12)

They are determined by checking, for each σ or τ, which Kronecker-delta’s are satisfied.
The four possibilites are listed below.

Then,

RId = |gA〉 〈hA|δ(gA,hB),1δ1,(hA,hB) = |gA〉 〈hA|δgA,1δhA,1δ
2
hB ,1 = |1A〉 〈1A|

R(12) = |gA〉 〈hA|δ(gA,hB),(hA,hB)δ1,1 = |gA〉 〈hA|δgA,hA
δhB ,hB

= dB1A = d1A/dA

QId = δ j, jδk,kei(Ek−E j)t ≡ χ(t)

Q(12) = δ j,kδk, je
i(Ek−E j)t = δ j, j · 1= d

. (13)

5As ρA is a matrix quantity, also these elements must in turn be expressed in bra and kets. Again here summation
is implied, regardless of some indices being inside bra’s/kets, and some inside the definition of the multi-indices.
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where we also define auxilliary functions which will reappear numerous times,

ι(t) :=
∑

j

eiE j t ∈ C, (14)

and

χ(t) :=
d
∑

j,k=1

ei(Ek−E j)t = |ι(t)|2 = d + 2
∑

j<k

cos((E j − Ek)t) , (15)

which holds all the time and energy dependence of the average. The latter function will be
prominent in the next section.

We can take this average in (11) as a type of inner product of vectors defined through a
real symmetric6 q!× q! matrix Wg(d,στ−1), that only depends on d and q.

As an example, for q = 2 the Weingarten matrix takes the form:
�

Wg (d, Id) Wg (d, (12))
Wg (d, (12)) Wg (d, Id)

�

=
1

d(d2 − 1)

�

d −1
−1 d

�

. (16)

Performing the inner product:

〈ρA(t)〉=
�

χ(t)− 1
d2 − 1

�

|1A〉 〈1A|+
�

d2 −χ(t)
d2 − 1

�

1A

dA
. (17)

The initial condition is visible in the first term and it competes with the maximally mixed
state in the second term. This expression satisfies a number of consistency checks: at t = 0,
χ(0) = d2 so 〈ρA(t)〉 is the inital state, and TrA 〈ρA(t)〉 = 1 ∀t, which is to be expected:
integrating and tracing are linear operations and should commute, and trivially

∫

dV TrAρA =
∫

1dV = 1. A more general form, valid for entangled initial states, is found in [28].

3.2 Purity

A larger, but similar calculation can be done for an average over all eigenbases of the purity,
defined in (6). For the technical details, see appendix B.

The expression for γ is again a polynomial, so we can integrate it over the whole unitary
group. In this case, as ρA was second order in V, V †, γ is fourth order, and q = 4. This means
the vectors Rσ,Qτ are 24-dimensional. However, the approach is the same and the result is
strikingly compact7:

〈γ(t)〉=
ξ(t)

d2(d − 1)(d + 3)

�

1−
dA+ dB

d + 1

�

+
dA+ dB

d + 1
. (18)

Here ξ(t) is again a real function accounting for the energy and time dependence. In terms
of ι(t) from (14):

ξ(t) :=
�

�

�ι2(t) + ι(2t)
�

�

�

2
− 4|ι(t)|2. (19)

As a consistency check, indeed ξ(0) = d2(d − 1)(d + 3) for any spectrum, so 〈γ(0)〉 = 1,
the initial state is pure. Also (19) is symmetric in A↔ B, which is to be expected: the nonzero
eigenvalues of the Schmidt decompositions of ρA and ρB are equal, so the purities of their

6Wg only has as many unique elements as there are partitions φ ` q, for instance, the diagonal elements are
all given by Wg(Id, d), because the Weingarten function only depends on the conjugacy class of στ−1.

7Even more expressions can be found, for instance for the matrix-valued variance of ρA. The calculation is
similar in scale to that of γ, but the result is not so aesthetically pleasing.
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Figure 2: The function χ(t), defined in
(15), for the spectrum of a Hamiltonian
drawn from the d = 4,5, 6 GUE, respec-
tively.

Figure 3: The function ξ(t), defined in
(19), for the spectrum of a Hamiltonian
drawn from the d = 4,5, 6 GUE, respec-
tively.

reduced density matrices agree [42]. Also note, for a trivial bath dB = 1, d = dA, we have
〈γ(t)〉 = 1. This makes sense: as nothing is traced out, no information is lost and the state
remains pure. Combining the last two observations, a trivial subsystem (dA = 1) is also always
pure.

3.3 The Functions χ(t) and ξ(t)

The time and energy dependence in both main expressions of this section collect neatly into
two functions, χ(t) for the density matrix, and ξ(t) for the purity. These functions deserve
some attention.

Though they administer the competition between the initial information remaining in A,
and it being swept into correlations with B, the χ(t) and ξ(t) remarkably don’t depend on
the partition A+ B, only on the product dAdB = d. Examples of χ(t) and ξ(t), for spectra of
Hamiltonians drawn randomly from the (λ= 1) GUE are plotted in figures 2 and 3. Physically,
at t = 0, the system is pure. This coincides with all the phasors in definitions of χ(t) and ξ(t)
in (15), (19) being evaluated at zero: they are in phase. A high value of χ(t) and ξ(t) is thus
associated with the state being pure. After some time, we expect the phasors to decohere.
Then the functions drop, and we associate this with a transition to a mixed ’phase’. More
quantitative statements will be made in the next sections, when eigenvalue distribution (and
thus dynamics) is treated.

The spectra used to plot the figures 2 and 3 exhibit level repulsion [40], so energies are
nondegenerate. Few of the oscillatory terms in χ,ξ are then coherent for long. By comparing
to more erratic figures (not shown) plotted with uncorrelated energies, this level repulsion
appears to be an important feature driving the rapid and sustained dying down of the functions
to a stable value as t →∞.

4 Radial Integral: Correlators in Energy

In the previous section, we computed the average over U(d) of a number of expressions in-
volving the reduced density matrix. In this section, we continue this job by also performing the
weighted average over the matrix ensemble of χ(t) in (15) and ξ(t) in (19). These hold the
energy dependence of 〈ρA(t)〉 and 〈γ(t)〉, respectively. After this we have a full average over
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the space M of GUE Hamiltonians. This is analogous to performing the radial part of an in-
tegral in polar coordinates. In a later section, we will also consider Poissonian (uncorrelated)
energies.

In fact, these calculations take the form of 2-, 3- and 4-point exponential correlators, when
we interpret the energies as the positions of the particles of a gas living in one dimension [40].
As explained in subsection A.2, we will make use of the theory of Orthogonal Polynomials.

4.1 Calculation of Two-Point Correlator

χ(t) in expression (15) is a sum of d2 terms. The strategy will be to average them each
separately, to obtain 〈χ(t)〉. An important simplification stems from the invariance of χ(t)
under exchange of any two variables E j , Ek. Specifically, it consists of a sum over j, k of terms
ei(Ek−E j)t , which, upon integrating out the energies, are of course all identical as long as k 6= j.
The d remaining terms with j = k are each constant unit and average to one. Let us therefore
set k = 1, j = 2 without loss of generality:

〈χ(t)〉= d(d − 1)



ei(E1−E2)t
�

+ d . (20)

In appendix B, the technique of these integrals is explained, allowing us to integrate out
directly all E j with j > 2 by introducing the symmetric kernel Kd . See equations (60) and (7),

d!
(d − n)!

∫

R
dEn+1 . . .

∫

R
dEd∆

2(E)P(E) = det
1≤ j,k≤n

�

Kd(E j , E j)
�

(21)

we evaluate the integral leaving the natural prefactor d(d − 1),

d(d − 1)



ei(E1−E2)t
�

=

∫

R2

dE1dE2 det
1≤ j,k≤2

[Kd(E j , Ek)])e
i(E1−E2)t

=

∫

R2

dE1dE2

�

Kd(E1, E1)Kd(E2, E2)− K2
d (E1, E2)

�

ei(E1−E2)t

= Tr F(t) · Tr F(−t)− Tr [F(t)F(−t)] .

(22)

Here we have defined a new symmetric matrix-valued function F(t). Its elements are given
for indices 0≤ µ,ν≤ d − 1:

Fµ,ν(t) := e−
1
2 t2p

µ!ν!
min(µ,ν)
∑

α=0

(i t)µ+ν−2α

α!(µ−α)!(ν−α)!
. (23)

It may be noted that Tr F(t) = Tr F(−t) = e−
1
2 t2
· L(1)d−1(t

2), for L(α)µ a generalized Laguerre
polynomial. The derivation is found in appendix C.

It appears 〈χ(t)〉 is a function of t2. For an example, in the simplest case8 of two coupled
qubits, the function looks like9:

〈χ(t)〉|d=4 =
�

12− 48t2 + 46t4 −
64
3

t6 +
25
6

t8 −
1
3

t10
�

e−t2
+ 4. (24)

We have plotted 〈χ(t)〉 for a number of dimensions. See figure 4. The plot begins at its
global maximum of 〈χ(0)〉 = d2, drops precipitously, oscillates a number of times somewhat

8Although χ(t) can be defined for d < 4, it is of no use for the study of composite Hilbert spaces.
9From the definition of Fµ,ν(t), one would expect the polynomial to be of higher degree, with leading term t4d−4

but the highest term always cancels, for any d.
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Figure 4: 〈χ(t)〉, for d ∈ {2, 3, . . . 8}.
λ= 1, the variance of the GUE used.

proportional to the dimension, and slowly climbs to its stable value of d at infinity. The posi-
tions of the extrema satisfy d〈χ〉

d t = 0 which amounts to finding the roots of a high-dimensional
polynomial. This is done via Powell’s method. Solving for the position of the global mini-
mum, the first local minimum, it appears more quickly as d increases and neatly follows the
fit tmin ≈ 1.93/

p
d + 0.45, found on d ∈ [2, . . . , 84]. Despite the initial maximum scaling as

d2, the global minimum converges from below to a constant as we increase d, empirically:
limd→∞〈χ(tmin)〉 ≈ 1.908.

These techniques readily generalize to larger correlators.

4.2 Calculation of Higher Correlators

Continuing the approach above, we will evaluate the integrals needed to find 〈ξ(t)〉. As a
more general application, seen as a field theory of an eigenvalue gas [43], these techniques
allow one to calculate vertex operators and n-point correlators in the GUE distribution.

All terms in ξ(t) are of the form ei(Ek+Em−E j−El )t , however some j, k, l, m may coincide.
Again, after it has been determined which indices are distinct, the actual value of each index
is irrelevant for the expectation value. A different correlator will appear for choosing k = m
than for k = j etc., due to signs. Upon careful inspection of expression (19), we decompose

〈ξ(t)〉= 4d(d − 1)



e2i(E1−E2)t
�

+
2d!
(d − 3)!




ei(2E1−E2−E3)t
�

+
2d!
(d − 3)!




ei(E1+E2−2E3)t
�

+
d!

(d − 4)!




ei(E1+E2−E3−E4)t
�

+ 4d(d − 1)2



ei(E1−E2)t
�

+ 2d(d − 1).
(25)

We recognize the two-point correlator from the previous section in the last pair of brackets.
Also, the first term is simply the same correlator with double time. What remains are the three-
and four-point correlators. In fact it will turn out that all these expressions are real, and as both
three-point correlators are each others complex conjugate, they are also equal. Rather than
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subsituting everything into a final, cumbersome expression, we will explain how to evaluate
general n-point functions, with more detail in appendix C.

The first characterization is in terms of an exponential generating function G({am}) of
dummy variables am, enumerated by the possible phase multiples m ∈ Z. Formally:

G({am}) := det
d×d

�

1+
∑

m∈Z
amF(mt)

�

. (26)

Indeed this determinant of a symmetric matrix is always real, and therefore also the re-
sulting correlators. For any n-point correlator characterized by integers {c1, . . . , cn}:

d!
(d − n)!

*

n
∏

j=1

eic j E j t

+

=

 

n
∏

j=1

∂

∂ ac j

!

G({am})
�

�

�

�

{am}={0}
. (27)

This coincides, in index notation, with the following10:

d!
(d − n)!

*

n
∏

j=1

eic j E j t

+

=
∑

σ∈Sn

d−1
∑

ν1,ν2,...νn=0

sgn(σ)
n
∏

j=1

Fν j ,νσ( j)(c j t)

=
d−1
∑

ν1,ν2,...νn=0

det
1≤ j,k≤n

Fν j ,νk
(c j t).

(28)

Going from expression (21) to (28), we expand the (n × n) determinant using the Leib-
niz formula into a sum over permutations σ ∈ Sn. In order to interpret this result, it is
best to try an example. For instance, in the case of d(d − 1)(d − 2)




ei(2E1−E2−E3)t
�

, n = 3
and (c1, c2, c3) = (2,−1,−1). The term corresponding to σ = Id, with sign +1, will re-
sult in tracing each instance of F with itself: Tr F(2t) · Tr F(−t) · Tr F(−t). The term in
σ = (12)will couple the first index to the second, the second to the first, and the third to itself:
−Tr[F(2t)F(−t)] · Tr F(−t), just as σ = (13). σ = (123) contributes Tr[F(2t)F(−t)F(−t)],
etc. All these contractions can be found by expanding the determinant in expression (27) as
det= exp◦Tr◦ log and collecting the suitable factors of am. In the current example, we would
be interested in any and all terms multiplied by exactly a2a2

−1. Replacing a2a2
−1 → 2 due to

the derivative ∂ac−1
results in the answer. Take note that from n= 4, the order inside the trace

will begin to matter.

d!
(d − 3)!




ei(2E1−E2−E3)t
�

= Tr F(2t) · (Tr F(−t))2 − 2 Tr[F(2t)F(−t)] · Tr F(−t)

− Tr F(2t)Tr[F2(−t)] + 2 Tr[F(2t)F(−t)F(−t)].
(29)

The explicit forms of all needed correlators are found in appendix C. Again, 〈ξ(t)〉 will
take the form of polynomials times exponents of t2. For instance, for d = 4, or 2 qubits, it

10The results of the correlators were confirmed by straightforward integration of equations (22), (29) and (106)
for Hilbert spaces up to d = 8.
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works out to

〈ξ(t)〉|d=4 = 24+
�

144− 576t2 + 552t4 − 256t6 + 50t8 − 4t10
�

e−t2

+
�

24− 192t2 + 448t4 −
1024

3
t6 +

256
3

t8
�

e−2t2

+
�

96− 1152t2 + 3312t4 − 3328t6 + 1548t8 − 216t10
�

e−3t2

+
�

48− 768t2 + 2944t4 −
16384

3
t6 +

12800
3

t8 −
4096

3
t10
�

e−4t2
.

(30)

For d = 4, 5,6 we have plotted the shape of 〈ξ(t)〉, in figure 5. It is clear that the function
begins at its global maximum 〈ξ(0)〉 = d2(d − 1)(d + 3), drops close to zero, and slowly
climbs to its steady state value of 2d(d−1). The positions of the global minima also follow an
inverse square root fit, with slightly different constants than in the 〈χ(t)〉 case. We find, on
d ∈ [4, . . . , 20]: tmin ≈ 1.95/

p
d + 1.69 minimizes 〈ξ(t)〉.

Figure 5: 〈ξ(t)〉 for d = 3, 4,5

5 Final Results and Discussion

Here we state the full expressions for the two main results of this paper, and discuss their
properties.

5.1 Dynamical GUE-averaged Reduced Density Matrix

The first result is the time-dependent, GUE average reduced density matrix of subsystem A.
When a bipartite system A+B is coupled by a λ= 1 GUE Hamiltonian, the average local state
of A is given by:

〈〈ρA(t)〉〉=
�〈χ(t)〉 − 1

d2 − 1

�

|1A〉 〈1A|+
�

d2 − 〈χ(t)〉
d2 − 1

�

1A

dA
, (31)

with

〈χ(t)〉= (Tr F(t))2 − Tr [F(t)F(−t)] + d. (32)
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The definition of the the matrix F(t) is given in (23). This can be thought of as a GUE-
induced, time-dependent ensemble on the basis states of HA. It satisfies some consistency
checks, for instance Tr 〈〈ρA(t)〉〉 = 1, as it should: the integrand always has unit trace. Also,
〈〈ρA(0)〉〉 = |1A〉 〈1A|, before time-evolution, the average is always in the initial state. Also, as
it appears 〈χ(t)〉 > 0, it is easy to see 〈〈ρA(t)〉〉 > 0: it is positive semi-definite and is thus a
well defined density matrix [41]. Besides the normalization (to unit trace) of the projectors,
it is remarkable that this expression does not depend on the partition of (dA, dB), only on their
product.

It is interesting to visualize the competition between the projectors |1A〉 〈1A| and 1A/dA in
equation (31). In order to be specific, we will consider coupling a single qubit as subsystem
A, to a bath with HB of dB = 2,3, 4. See figure 6. As the bath size increases, indeed the
mixed component becomes more dominant. We pointed out in the previous sections that χ(t)
administers the competition between the pure and mixed states of A. When the phases that
comprise χ(t) in (15) are coherent, χ(t) is large and A is pure. As they decohere, A mixes. We
observe that shortly (tmin ≈ 2/

p
d) following coupling A to B, the mixing becomes approxi-

mately complete. After this dip, the initial condition |1A〉 〈1A| resurfaces and then stabilizes to
a degree. Initial information disappears rapidly, then trickles back in. At high d, the coefficient
of |1A〉 〈1A| at tmin falls off as 0.908/d2. However, the late time limit is

lim
t→∞

〈〈ρA(t)〉〉=
�

1
d + 1

�

|1A〉 〈1A|+
�

d
d + 1

�

1A

dA
. (33)

Also taking dB →∞, the mixing becomes complete instantaneously. This is to be expected:
increasing the degrees of freedom of the bath without decreasing the interaction to each of
them.

It is almost futile to contrast the analytic results of figure 6 with numerical simulations,
so good is the agreement. See figures 7 and 8, in which three times N = 10000 randomly
generated GUE (λ = 1) Hamiltonians were used to couple a qubit to the same three baths as
in the analytic example. The initial product state was drawn randomly according to the Haar
measure from HA and HB. For each system, ρA(t) was calculated, and then averaged over the
set of N . Of this average, the |1A〉 〈1A| occupation is plotted, as well as that of the other state11,
|2A〉 〈2A|. To an accuracy ≈ 1/N , the cross-components vanish.

Using the same techniques, other polynomial functions of the reduced density matrix can
be averaged over the GUE. We have simply treated the most obvious candidates. On that note,
by linearity, the GUE-average of the expectation value ō(t) of any constant observable OA on
A can immediately be found from the average reduced density matrix. Integrating and tracing
are linear operators, and thus commute,

〈〈ō(t)〉〉=
∫

M
P(H)dH TrA (OAρA(t))

= TrA

�

OA

∫

M
P(H)dHρA(t)

�

= TrA (OA〈〈ρA(t)〉〉) .
(34)

The matrix-valued variance of the density matrix has also been averaged over the unitary
group. This is nowhere zero, as expected, with smaller elements along the diagonal and a
larger ones on the first row and column. In the large d limit, all go to zero at least at the same
rate as the density matrix elements. This adds credence to the average. However, the explicit
expression is cumbersome and not very insightful, so it has been omitted from this work.

11The difference in range of the plots is due to the normalization of the projectors, and the fact that element
occupations are the sum and difference of the projectors coefficients. In numerics, we have no access to the exact
decomposition of equation (31).
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Figure 6: coefficients of |1A〉 〈1A| vs 1A/dA in the 〈〈ρA(t)〉〉 of a qubit, coupled to a bath of
dB ∈ {2,3, 4}.

Figure 7: Numerically GUE-averaged
coefficients of |1A〉 〈1A| in ρA(t)
of a qubit, coupled to a bath of
dB ∈ {2, 3,4}.

Figure 8: Numerically GUE-averaged
coefficients of |2A〉 〈2A| in ρA(t)
of a qubit, coupled to a bath of
dB ∈ {2, 3,4}.

5.2 Dynamical GUE-averaged Subsystem Purity

The second result of this paper is the Dynamical GUE-average subsystem purity. It is the
average purity of A entangled to B under collective evolution of a λ= 1 GUE Hamiltonian.

〈〈γ(t)〉〉=
〈ξ(t)〉

d2(d − 1)(d + 3)

�

1−
dA+ dB

d + 1

�

+
dA+ dB

d + 1
, (35)

where 〈ξ(t)〉 is defined in (25). This expression also satisfies a number of consistency checks:
〈〈γ(0)〉〉= 1 by the setup, and also if dA = 1 or dB = 1, 〈〈γ(t)〉〉= 1, as a trivial system is always
pure and a trivial bath cannot entangle. In agreement with the behavior of 〈〈ρA(t)〉〉, the purity
quickly moves from a pure state to its most mixed value, and then recovers somewhat slowly.
We can visualize expression (35), for qubit and qutrit subsystems A coupled to varying baths.
See figures 9 and 10.

Numerics of the same strain again confirm these plots. For figure 11 in the case (dA, dB) =
(2, 2) and figure 12 in the case (dA, dB) = (2, 3), sets of Hamiltonians are sampled from the
GUE. For each H, the subsystem purity was calculated over time. Sample size varied between
1, 10, 100 and 1000 Hamiltonians. Then for each time, this value was averaged over the set.
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Figure 9: Dynamical GUE-averaged
Subsystem purity 〈〈γ(t)〉〉 of a qubit,
coupled to baths of dB ∈ [1, . . . , 7]. The
GUE variance λ= 1.

Figure 10: 〈〈γ(t)〉〉 of a qutrit, coupled
to baths of dB ∈ [1, . . . , 5]. dB = 5 in-
volves polynomials of degree up to 98
in t, admitting numerical error.

The result shows a convincing convergence to our calculated average.

Figure 11: Numerical average purity: a
qubit-qubit system for growing samples
of GUE-Hamiltonians. In black the ana-
lytic 〈〈γ(t)〉〉.

Figure 12: Numerical average purity: a
qubit-qutrit system for growing samples
of GUE-Hamiltonians. In black the ana-
lytic 〈〈γ(t)〉〉.

The late time behaviour is readily given. Remember that in expression (25), the exponents
will eventually shrink to zero, their prefactors are polynomial

lim
t→∞

〈〈γ(t)〉〉=
2

d(d + 3)

�

1−
dA+ dB

d + 1

�

+
dA+ dB

d + 1
. (36)

The plots teach us convergence to this limit is strong and uniform. Compare this to the trace
measure average purity obtained by drawing a random vector from a d = dB · dA dimensional
Hilbert space according to the Haar measure, and tracing out the dB dimensions of the bath
[44],

〈γ̄〉dA,dB
=

dA+ dB

d + 1
. (37)

The limit of the dynamical case, (36), exhibits an extra positive term: a remnant of the
initial purity. Note that there has been much research into such averages in RMT, results
include the Von Neumann and Renyi entropies of such trace measures, which are more general
or powerful descriptors, also at infinite dimensional Hilbert spaces [45,46]. What distinguishes
our work, is that the subsystem is found by evolving according to the random matrix as a
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Hamiltonian, instead of the full system state being uniformly random, which would result in
ρA being drawn directly from a matrix ensemble.

5.3 Oscillations: Comparison to Poissonian Ensembles

We will take a moment to spotlight a peculiar feature of our dynamical averages. They exhibit
oscillations, as shown in figures 4 and 6. We may count oscillations by the number of extrema.
For 〈χ(t)〉, containing the dynamics of 〈〈ρA(t)〉〉, the time at which extrema occur is plotted
against d. See figure 13. Note that they all have a maximum at t = 0, which is omitted. Until
d = 5, there is just one minimum, and in steps a new ’fold’ with a maximum and minimum is
added.

Figure 13: Plot of extremum positions
of 〈χ(t)〉 against d. until d = 5, there is
just one minimum, in steps new ’folds’
with a max and min appear.

Figure 14: Comparison of 〈χ(t)〉 to
〈χ(t)〉P , the former over the GUE and
the latter over Poisson energy statistics.

Each individual Hamiltonian will drive eternal oscillations, and there is always Poincaré
recurrence. Their averages however are characterized by finite dimensional Laguerre poly-
nomials, which form a landscape with a finite amount of ’features’. They will settle down
eventually. This allows us to classify a period of pre-equilibration rigorously, as the period be-
tween the first and last extremum. After this, the system is on its way to equilibrium. This plot
also portrays characteristic frequencies in the period of pre-equilibration, which stem from
the Gaussian distribution of the energies. The appearance of the Laguerre polynomials can
be traced back to the Vandermonde determinant: the repulsion of eigenvalues giving rise to
Wigner-Dyson statistics, causes the phases to decohere in a specific way. To illustrate, consider
a a very artificial ensemble where the eigenstates are still uniform in the Haar measure, but we
replace the distribution of energy differences such that all levels are decoupled. This results
in Poisson statistics between neighboring levels. Such level spacing is seen to describe inte-
grable systems more accurately. Specifically, all the above calculations can be repeated with
factorized eigenvalue distribution

P(E) =
d
∏

j=1

�

µe−µE j
�

= µd exp

 

−µ
∑

j

E j

!

, (38)

and then each absolute energy gap |E1 − E2| will also follow an exponential distribution12,
which is the hallmark of Poisson statistics for neighboring levels.

12The exponential distribution describes a random variable measuring the interval between instances of a Poisson
process. This can be thought of as the waiting time before a random event with a constant probability. The
difference of two such variables is then the time between two independent events. Assume an ordering, without
loss of generality. After the first has occurred, the distribution of the time until the second is independent of
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We may thus average χ(t) and even ξ(t) with respect to this, taking care to scale the
distribution sensibly with dimension. The considerably simpler calculation can be found in
Appendix D. The result is

〈χ(t)〉P = d +
d(d − 1)

(d + 1)t2 + 1
. (39)

This function has the same limiting behavior, for t = 0 and t →∞, but at intermediate
times, decays more slowly, and exhibits no oscillations. See figure 14. In integrable Systems
the degrees of freedom are more independent, or are thought to be less highly coupled, and
do not exhibit energy level repulsion. Instead the largest probability occurs at zero gap. [40].
In such systems, we expect entanglement to grow more slowly.

5.4 Bessel Function Scaling Limit

In a related work, discovered after most of our computations had been completed, we en-
countered a certain scaling limit of what is essentially the upper left coefficient in 〈〈ρA(t)〉〉
in expression (31) [28]. This function does not diverge or vanish as d →∞, so long as we
take care to scale time by a factor

p
d, equivalent to setting λ = d in the GUE distribution,

decreasing interaction strength as we increase dimension. This agrees with the square root
behaviour of the first minima. In a new time coordinate,

lim
d→∞

〈χ(τ)〉 − 1
d2 − 1

=

�

�

�

�

�

�

lim
d→∞

¬

∑

j eiE jτ
¶

d

�

�

�

�

�

�

2

=
�

J1(2τ)
τ

�2

, τ :=
p

d · t. (40)

J1 is a Bessel function of the first kind. Additionally, we infer the limit of what we will call
the ’Arbiter’ of the purity: the time dependent factor that mediates between the trace average
purity and its complement in (35)

lim
d→∞

〈ξ(τ)〉
d2(d − 1)(d + 3)

=

�

�

�

�

�

�

lim
d→∞

¬

∑

j eiE jτ
¶

d

�

�

�

�

�

�

4

=
�

J1(2τ)
τ

�4

, τ :=
p

d · t. (41)

Deviations from the limit are of order 1/d. The convergence is apparent in figures 15 and
16.

These results were found by Fourier transforming the d = ∞ eigenvalue distribution,
which is characterized by the semicircle law [40]. This invites a conjecture: after tentative
calculations of 〈Trρn

A〉 for n = 1, 2,3, we see that in the limit dA, dB →∞, dA/dB fixed, the
only term that does not scale to zero is (χ(t)/d2)n, with the exception of n = 1, where due
to normalization the trace is unit. Therefore we expect that 〈Trρn

A(τ)〉 = (J1(2t)/t)2n up
to O(1/d) corrections, for n > 1. This could be useful for series expansions. It has been
mentioned that this structure is reminiscent of the planar limit of diagrams contributing to
matrix model field theories. As this work is not carried out in a diagrammatic language, it is
hard to be certain, but what is certain is that it would be worthwhile to explore the connections
these theories as well as to other random matrix ensembles, for instance the quantum Rydberg
blockaded/Fibonacci chain [47,48].

the past, and is again exponentially distributed. It is true that the energies themselves are artificially all positive,
however that is of no concern as in this work, and generally in physics, we are only interested in energy differences.
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Figure 15: Simultaneous plot of the
first coefficient of 〈〈ρA(t)〉〉 for various
d against scaled time. Also the limit to
which they converge, in black.

Figure 16: Simultaneous plot the ar-
biter of 〈〈γ(t)〉〉 for various d against
scaled time. Also the limit to which they
converge, in black.

5.5 Numerical Comparison to Physical Models

The philosophy of this subsection is the following: we would like to compare entanglement
generation in our random matrix ensembles to ensembles of more physical models. Each ele-
ment of the latter type of ensemble is a well studied model, but it is characterized by unique
coordinates and coupling strengths. This way, we may hope their statistical moments equi-
librate to a constant state over time, while each individual instance of the model obviously
does not, but instead oscillates forever. This is necessary in order to compare to the GUE and
Poissonian ensembles, which show this behavior. To this end, we will need to introduce ran-
domness. We begin from the Transverse Field Ising Model (TFIM), Transverse Field XXZ-chain
(XXZ), Spin Glass (SG), Central spin (CS) and Sachdev-Ye-Kitaev (SYK), because they are all
integrable in the certain implementations. Contrary to what is common practice, we will be
looking at (exceedingly) low dimensional versions of these models, as that is the focus of the
article in general.

For each integrable ensemble, we construct a ’Disordered twin’, where the local interactions
are the same, but they are no longer globally coordinated, breaking integrability and introduc-
ing more randomness. The models all feature couplings h, g which are drawn from standard
normal distributions, and are in places scaled by external parameters labeled by J , B ∈ R. More
randomness is introduced by rotating the set of axes in the TFIM and its disordered twin, the
DTFIM, and the XXZ and its own disordered twin, DXXZ. This is achieved by choosing random
elements X from the 3-dimensional representation of SO(3), and using the first column of this
as the new x-axis, etc. Exact implementations are below.

HTFIM(J) =
∑

j,a

�∑

b

σa
jσ

b
j+1X

1aX 1b + J gX 3aσa
j

�

(42)

HDTFIM(J) =
∑

j,a

�∑

b

σa
jσ

b
j+1X

1a
j X 1b

j + J g jY3a
j σ

a
j

�

(43)

HXXZ(B, J) =
∑

j,a

�∑

b

�

σa
jσ

b
j+1X

1aX 1b +σa
jσ

b
j+1X

2aX 2b + J gσa
jσ

b
j+1X

3aX 3b
�

+ BhX 3aσa
j

�

(44)
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HDXXZ(B, J) =
∑

j,a

�∑

b

�

σa
jσ

b
j+1X

1a
j X 1b

j +σ
a
jσ

b
j+1X

2a
j X 2b

j + J g jσ
a
jσ

b
j+1X

3a
j X 3b

j

�

+Bh jY3a
j σ

a
j

�

.

(45)
When stochastic variables are given a subscript j, it means that a new element is drawn for

each site j, inside one Hamiltonian of the ensemble. As always, the σa, a = 1,2, 3, are Pauli
spin matrices, and j runs over the sites. Moving on, f are spinless Majorana Fermions. They
are implemented by Jordan-Wigner transforming Pauli matrices, in a one-to-two mapping [49].
We use them in the SYK model13

HSYK(J1, J2) =
∑

i< j<k<l

J2 gi, j,k,l fi f j fk fl . (46)

The Spin glass model used, is given by:

HSG(J1, J2, J3) =
∑

j,a,b

�

haδa,b + J1ha,b + J2ha,b
j

�

σa
jσ

b
j+1 +

∑

j,a

�

ga + J3 ga
j

�

σa
j . (47)

Finally, we have a central spin model, in an implementation allowing multiple central
spins. [50]. There is a random local magnetic field along the 3rd axis, random strength J
coupling inside the sA number of central spins which will always coincide with system A, and
unit random coupling between the central and sB number of bath spins, which have no other
interactions, and form system B. This system is

HCS(B, J) = B
sA
∑

j=1

g jσ
3
j + J

sA
∑

j,k=1

∑

a

ha
j,kσ

a
jσ

a
k +

sA
∑

j=1

sA+sB
∑

k=sA+1

∑

a

ha
j,kσ

a
jσ

a
k . (48)

For an example of the gap statistics, a common litmus test for the nature of the ensemble,
see figure 17. Pictured are the subsequent energy gaps for the XXZ/DXXZ, as well as SYK and
the GUE for comparison. It is clear that the introduced disorder has successfully broken the
Poissonian character of the XXZ, as its spectrum has changed to more resemble that of the GUE.
For other ensembles, the results follow the same trend from the original to the disordered. The
lower graph is the ratio of subsequent gaps, a naturally scale-invariant and robust measure for
the same distinction [51]. In the case of the CS model, the spectrum appears integrable for
B = 0, and chaotic otherwise.

Wherever applicable, periodic boundary conditions apply: j is taken modulo s, the num-
ber of sites, each having a 2-dimensional Hilbert space. In order to compare time evolution
quantitatively, after the ensemble is sampled, the energies of each system are scaled such that
the ensemble has numerical average 〈(Ei − E j)2〉 = 2(d + 1), i 6= j. The system is initialized
in a tensor product of a Haar-measure random state from HA and one from HB. Then time
evolution begins, according to H, and at each time, ρA is computed, and finally its elements
are averaged over 10000 samples from each ensemble.

As stated, the random variables are drawn from the following distributions:

X•,Y• ∈R SO(3), (49)

uniformly according to the Haar measure, and

g•• , h•• ∈R N (0, 1). (50)

13The order of the fermionic operator doesn’t matter: reordering would simply introduce minus signs, but the
prefactor g• is symmetric around zero.
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Figure 17: Distribution of energy gaps in various ensembles, along with subsequent gap ratio.
Of the four pictured, the XXZ has the Poissonian character of an integrable model, the other
three appear more Wigner-Dyson. XXZ is taken here with J = B = 1.

For each of these systems, we compare their evolution to the GUE and Poisson ensembles,
described earlier. See figures 18. This allows us to get a sense of how well these mathe-
matical predictions work for physical models. All systems initially entangle quadratically14.
There seems to be a general trend that the disordered versions of each ensemble have more
mixing, and conversely some integrable systems do not seem to equilibrate at all, which is to
be expected. For example, the J = 0 TFIM is even free, characterized by perfect harmonic
occupation.

We hypothesize the reason the physical systems often do not adhere to the predictions
of either average more faithfully, is that the requirement of unitary invariance of the basis
is very strong, even for the most exotic ensembles of systems. When the eigenbases of the
integrable ensembles are ’scrambled’, by multiplying them with a random unitary from U(d),
their behavior very strongly resembles the Poissonian curves in figure 18 (Not shown). Finally,
these systems still exhibit a number of symmetries leading to exact degeneracies, which may
further influence the results. Notably, the SYK model is quite faithful to the GUE in many ways,
hinting at a deeper connection. Such ties have been investigated, see e.g. [52].

In order to quantify the resemblance of the dynamics to either the exponential or the GUE
ensembles, we have devised a rather simple scheme. We define the distance between dynamics
of some model M and the GUE as

D(6)M ,GUE =

∫ 6

0

d t||ρM (t)−ρGUE(t)||, (51)

and similar for Poisson. Here ρ•(t) is shorthand for the reduced density matrix of subsystem

14This is a consequence of linearity of the Schrödinger equation. The occupation of non-initial states can only
grow linearly, and the corresponding density matrix element ( probability) grows quadratically, evocative of the
quantum Zeno effect.
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Figure 18: Average coefficient of element |1A〉 〈1A| in ρA(t) over different model ensembles.
In thick lines, also the GUE and Poissonian predictions. How well they agree varies wildly per
model.

A after tracing out B under the specified Hamiltonian Ensemble, and the norm is the regular
matrix 2-norm. This is admittedly a crude measure, but it fits with the notion that lines coin-
ciding in figures such 18, should give a distance of zero, and large variations are punished in a
squared manner. The cutoff in time of 6 is purely by eye: this captures the initial descent and
a large part of the equilibration period. We take into account that there is always statistical
noise as we can only sample 4000 instances from each ensemble. (Specifically, the SYK model
is computationally heavy), by reporting here on the ratio of D(6)M ,GUE/D

(6)
GUE,GUE, where the nu-

merator is the distance of the model to the analytic GUE average, and the denominator is the
distance from the numerical GUE average to the analytical GUE average. Then for the largest
system size we probed, A, B = 3,5 spins, the ratio to the GUE was plotted against the ratio to
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Poisson, for all the models discussed. It paints a picture of which models are best described by
our methods. See figure 19.

Figure 19: Relative distance of dynamics, in the sense of equation 51 of various models to
the GUE and Poisson ensembles. Note that by our normalization the horizontal coordinate of
the GUE ensemble must be unit, as well as the vertical of the Exponential. The closer another
model approaches these points, the better its dynamics are approximated by the theory in this
work.

We expect this behavior to continue into larger system sizes, and posit that the SYK model
in general is most closely related in dynamics to the GUE, followed by the chaotic versions of
the CS. Conversely, the XXZ in many incarnations doesn’t equilibrate at all, like the TFIM, and
is very dissimilar to both our analytical ensembles. Yet others land somewhere in between. For
a visualisation of the aptitude of our methods for these models at other subsystem proportions
than 3 coupled to 5 spins, see appendix E.

5.6 Conclusions and Outlook

In a nutshell, this work has shown how to average functions of the reduced density matrix over
the GUE, as a general approach to understanding thermalization and entanglement generation.
Along the way, we have gained understanding of calculation of general vertex operators and
higher point correlators in the GUE field theory. Summarizing the experience in numerical
works, we arrive at the following conclusion: information contained eigenvalue statistics are
not enough to classify thermalization properties, we can show that ensembles may have same
energy statistics as GUE, but don’t thermalize in the same way. Notably, a model such as
SYK does. A natural following step would be to focus on eigenfunction and matrix elements
statistics using similar tools.

A fair critique of this research is that the averages are more of mathematical than physical
significance. Most of the sets of eigenvectors V ∈ U(d) are highly non-local, exotic interactions.
This criticism is treated by section 5.5. It appears many models do not allow themselves
to be described by these results, but some, such as the SYK and CS models, do. Returning
to the analytic matrix averages, it would be insightful to take averages over ensembles that
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are non-uniform on U(d). Attempts have been made in this direction, using an additional
weight ∝ λ̃Tr

�

[V,Ω][V,Ω]†
�

, which rewards V that are in some sense ’close’ to a favored
Ω ∈ U(d). However, the constraints on probability distributions leave us with little power to
weigh systems too undemocratically. This means in particular that as d becomes large, the
corrections induced by this weight compared to the flat average vanish. All the while, the
calculation becomes dramatically enlarged. More thought on this matter is welcome. Also,
besides exponential and Gaussian, other distributions of energy may be interesting if they can
be physically motivated.

For anyone wishing to reproduce this work, or related questions, the required Python code
will be made available with the publication. Most notably, the script to perform all the ex-
act unitary integrals is free for examination. This includes a subroutine that produces sym-
bolic Weingarten functions corresponding to any conjugacy class, at any dimension using the
Murnaghan-Nakayama rule and hook-length formula, which may be useful in general [53].

There are several points we would like to mention at the end. First, to compute time
evolution of the entanglement entropy a common strategy is to employ a replica symmetry
trick, S = −Tr(ρ logρ) = −(∂ /∂ n)(logTr(ρn)|n=1. In order to carry this out, as it requires
an analytic continuation, we would need to analytically evaluate an average of an arbitrary
power of the density matrix. This would require control of unitary integrals of non-integer
polynomial degree. This may be within reach by means of a generating function technique.
Similar perhaps to a matrix model of the Gross-Witten type [54,55]. In future work, it would be
worthwhile to consider this and other techniques to perform unitary integrals. It is the authors’
hope generating functions for Weingarten functions might allow us to push past polynomials
of V to more general forms.
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Appendix A Random Matrix Theory

In this appendix, we will expound upon Random Matrix Theory (RMT) and the techniques
of performing matrix integrals. As stated in the setup, the idea is to model Hamiltonians as
Hermitian random matrices. A Hermitian matrix ensemble can be sampled by choosing matrix
elements independently at random, subject to the hermicity condition. The degrees of freedom
are the real parts of the diagonal, as well as the real and imaginary parts of the superdiagonal
elements.
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However, in Quantum Mechanics we are not so much interested in the individual elements
of H, but rather its eigenvectors and eigenvalues. We wish to change coordinates. This is
analogous to converting a 2d Cartesian integral into a polar coordinates, hence the reference
to angular and radial parts. It is conventional to split a uniform measure dH = d(VΛV †) over
(d × d) Hermitian matrices H ∈M into a product of the radial-angular form [56]:

dH =
d
∏

j=1

dH j j

∏

k<l

dIm(Hkl)dRe(Hkl) =DE · dV ·∆2(E) . (52)

In the middle expression, each factor is the familiar Lebesgue measure on the the indepen-
dent variables of the matrix element. Then on the RHS, DE :=

∏d
l=1 dEl with each dEl the

Lebesgue measure on an eigenvalue. dV is the symbolic Haar measure on the unitary group.
The Haar measure is the unique uniform, translationally invariant normalized measure on any
compact Lie group, and by definition satisfies

∫

U(d)
dV =

∫

U(d)
d(W V ) =

∫

U(d)
d(VW ) = 1, ∀W ∈ U(d), (53)

by the transitive nature of the group. In particular, using this measure, every eigenbasis V is
equally probable.

Finally, ∆(E) is the Vandermonde determinant. Its square is the Jacobian of the coordinate
transformation H 7→ (V, E), defined in (8).

We see that for uniformly distributed elements of H, the eigenvalues are spaced apart: they
repel. It is quite remarkable that such correlated eigenvalues result from uncorrelated simple
elements. It can be unerstood by analogy. In polar coordinates the size of the orbit of the
angle scales with the radius, which is reflected in the Jacobian. Analogously, the orbit in M
of action of the unitary group through the eigenvectors of H scales with ∆2(E), and becomes
measure zero when two eigenvalues are degenerate [40], and dH vanishes.

If we consider a weight on the matrices, we desire it to be basis independent, just like the
measure. One way to accomplish this is as follows:

P̃(H) = C̃ exp

�

−
∑

m

λm

m!
Tr(Hm)

�

= C̃ exp

�

−
∑

m

λm

m!

� d
∑

l=1

Em
l

��

. (54)

Then if we collapse the constants to λm = λδm,2, we recover the Gaussian Unitary Ensemble
(GUE). This weight is particularly useful, because it is easy to calculate averages with scalar
Gaussian distributions, which is now essentially what we have on the energies. With suggestive
notation, we see the weight only depends on the energies, P(H) = P(E), leading to expression
(7).

We demand for a well defined distribution
∫

M
P(H)dH =

∫

Rd

DEP(E)∆2(E)

∫

U(d)
dV = 1. (55)

It is known in this ensemble that the normalization C = C(d,λ) is fixed by [43]

C−1 =

∫

Rd

DE exp

�

−
λ

2

d
∑

l=1

E2
l

�

∆2(E) =

√

√(2π)d

λd2

d
∏

j=1

j! (56)

because dV is normalized by definition15.

15Technically, expression (52) and below should also incorporate the overcounting factor (d!)−1(2π)−d [40] from
the decomposition in (1), but this would simply be canceled again in the definition of C.
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In practice, we can obtain matrices from the GUE as follows. The real and imaginary
parts of the superdiagonal elements can each be drawn independently from a N

�

0, 1
2λ
−1
�

distribution, and the real diagonals from a N
�

0,λ−1
�

distribution, and the matrix completed
by the hermicity demand. The product of their independent distributions will result in a joint
probability distribution proportional to exp(−λ2 Tr

�

HT H
�

) as desired16.
The stage is set: we have constructed a distribution and are still free to choose any function

to average over it. To simplify equations in this work, we will fix λ= 1. We may do this because
λ merely rescales time. We can understand this in the following way. The functions whose
expectation value we seek come from the Schrödinger equation and will always have time
multiplying differences of energy. These yield calculations of the form

〈〈 f 〉〉 :=

∫

M
dHP(E) f

�

t(Ek − E j)
�

, (57)

for f some function in general depending on all t(Ek − E j), j, k ∈ {1, . . . , d}. Rescaling the
standard deviation of energies,

p
λ for the GUE, is thus equivalent to dilating time. To restore

the spread, one can substitute t 7→ t/
p
λ in the final result17. From this observation, the only

truly ’free’ parameters in this research of any consequence are dA and dB.

A.1 Nontrivial Unitary Integrals

Moving on to solution techniques, the integrals over energy (eigenvalues) can be performed
in a standard way from complex analysis. By contrast, the integrals over the unitary group
will require more modern machinery. Viewed as d × d matrices, there are standard identities
for integrals of polyvariate monomials of matrix elements of V ∈ U(d) of degree q and their
Hermitian conjugates. They involve Weingarten functions [58] [59].

∫

U(d)
dV Vi1, j1 . . . Viq , jq V †

j′1,i′1
. . . V †

j′q ,i′q
=

∑

σ,τ∈Sq

δi1,i′
σ(1)

. . .δiq ,i′
σ(q)
δ j1, j′

τ(1)
. . .δ jq , j′

τ(q)
Wg(d,στ−1) =

∑

σ,τ∈Sq

δI ,σ(I ′)δJ ,τ(J ′)Wg(d,στ−1) .

(58)

Here we have made the identification of the ordered set I = {i1, . . . , iq} and similar for
I ′, J , J ′, and the delta function δI ,σ(I ′) is only satisfied when the full sets agree element-wise.
From this equality, any polynomial integral is found by linearity.

We have also referenced the symmetric group of permutations of q symbols, Sq. We will
use notation that Sq consists of all bijective maps {1,2, . . . q} → {1, 2, . . . q}. It is implied that
any integral such as

∫

V1,1dV that does not contain an equal number of factors of V and V †

will vanish by symmetry, but they will also not arise in this work.
The Weingarten functions Wg(d,σ), which can be calculated to any dimension using rep-

resentation theory of Sq, in fact depend on the dimension d, and only on the conjugacy class
of the permutation σ, not the specific element. As can be learned from any text on finite group
theory, the conjugacy classes in Sq are determined by cycle type, characterized by a partition

16Computationally, one can also generate two auxiliary real matrices A1, A2 of (d × d) i.i.d. N (0,λ−1) random
variables, and construct H = 1

2

�

(A1 + AT
1 ) + i(A2 − AT

2 )
�

and it will have the desired statistical properties. [57]
17Rigorously, first substitute t =

p
λτ in (57), and then absorb

p
λ in the integrand by substituting

p
λE j = x j .

λ will drop from the Gaussian, and the powers of λ from the measure and Vandermonde determinant will cancel
against those from the modified normalization constant C. τ is now rescaled time.
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φ = {φ1, . . . ,φl} of the integer q, satisfying φ1 ≥ φ2 ≥ . . .φl ≥ 1 and
∑l

j=1φ j = q. Then we
write φ(σ) ` q. This means, for each q, there are finitely many Weingarten functions, which
are quotients of polynomials in d. In this paper, we will only need the functions for q = 2 and
q = 4. The denominator is

∏q−1
z=0(d

2−z2) for both cases18. The numerators can be found in ta-
ble 1 below19. For example, takingσ = (12)(34) ∈ S4, Wg(d,σ) = (d2+6)/

�

d2(d2−1)(d2−4)
(d2 − 9)

�

.

Table 1: Wg(d,σ) functions
φ(σ) ` q = 2 numerator Wg(d,σ) φ(σ) ` q = 4 numerator Wg(d,σ)
{1, 1} d2 {1, 1,1, 1} d4 − 8d2 + 6
{2} −d {2,1, 1} −d3 + 4d

{2,2} d2 + 6
{3,1} 2d2 − 3
{4} −5d

A.2 Orthogonal Polynomials and Symmetric Kernels

In section 4, it will be imperative to calculate the expectation value of functions that depend
on energy over the distribution P(E)∆2(E)DE from the GUE. We will be interested in large d
behaviour, so straightforward evaluation of the d-dimensional energy integral is prohibitively
complicated due to proliferation of factors in ∆(E). Luckily we will in practice be in need of
〈 f 〉 of functions f (E1, E2, . . . , En), with n ≤ d, where n does not scale with system size. Such
an average is naturally evaluated in the basis of Orthogonal Polynomials (OPs). This is an
indexed family of univariate polynomials pµ(x), µ ∈ {0, 1, . . .} together with a weight function
w(x). OPs obey a form of orthogonality according to the inner product

�

pµ, pν
�

w
:=

∫

R
d x pµ(x), pν(x)w(x) =

�

pµ, pµ
�

wδµ,ν. (59)

We cite from Forrester [43], due originally to Dyson [61]:

d!
(d − n)!

n
∏

l=1

w(x l)

∫

R d xn+1w(xn+1) . . .
∫

R d xd w(xd)∆2(x)
∫

R d x1w(x1) . . .
∫

R d xd w(xd)∆2(x)
= det

1≤ j,k≤n
[Kd(x j , xk)] (60)

for n≤ d, where the symmetric kernel Kd(x , y) is given by

Kd(x , y) :=

p

w(x)w(y)
(pd−1, pd−1)w

pd(x)pd−1(y)− pd−1(x)pd(y)
x − y

=
Æ

w(x)w(y)
d−1
∑

µ=0

pµ(x)pµ(y)

(pµ, pµ)w
.

(61)
The final equality is known as the Christoffel-Darboux formula [43]. This allows us to work

with a normalized expression where all but n dimensions have already been integrated out.
It reduces the d dimensional integral to an n dimensional one, which will prove crucial. One
more ingredient is needed for the determinant above. When taking the limit y → x , expression
(61) gives

Kd(x , x) =
w(x)

(pd−1, pd−1)w

�

p′d(x)pd−1(x)− p′d−1(x)pd(x)
�

. (62)

18Caution: this structure does not persist exactly in higher q.
19These expressions are only correct for d ≥ 4, luckily this is the smallest composite Hilbert space and they will

not be applied to smaller d. See, e.g. [60].
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In our case, the independent variables become {x j} → {E j} and the weights are Gaussian,
w(x j)→ exp (−1

2 E2
j ). Indeed, then the denominator of (60) is just the normalization defined

in (56). The OPs corresponding to the standard Gaussian distribution are the probabilist’s
Hermite polynomials, where we will keep the notation {pµ} instead of the conventional {Hµ}
to avoid confusion with the Hamiltonian. pµ is a monic polynomial of degree µ. Elementarily,
these satisfy

(pµ, pν)w =
p

2πµ!δµ,ν (63)

and
p′µ(x) = µpµ−1(x), x pµ(x) = pµ+1(x) + p′µ(x). (64)

A related set of polynomials are the generalized Laguerre polynomials, which have two
indices.

L(α)µ (x) :=
µ
∑

ν=0

�

µ+α
µ− ν

�

(−x)ν

ν!
. (65)

They will become relevant through the useful identity [62]:
∫

d xw(x)pµ(x + y)pν(x + z) =
p

2πµ!zν−µL(ν−µ)µ (−yz), µ≤ ν. (66)

Here w(x) is still the standard Gaussian. Of the Laguerre polynomials, these identities will
be needed [62]:

x L(α+1)
µ−1 (x) = (µ+α)L

(α)
µ−1(x)−µL(α)µ (x),

L(α)µ (x) = L(α+1)
µ (x)− L(α+1)

µ−1 (x).
(67)

L(α+1)
µ (x) =

µ
∑

ν=0

L(αν (x). (68)

Appendix B Unitary Technicalities of the Purity

In this appendix, we will work through the details of averaging the subsystem purity over the
eigenbasis V ∈ U(d). Combining expressions (5) and (6), we find20

〈γ(t)〉 :=

∫

U(d)
dV TrA(ρ

2
A(t)) =

∫

U(d)
dV

dB
∑

gB ,hB=1

dA
∑

gA,hA=1

d
∑

j,k,l,m=1
�

V(gA,gB) jV1kV †
j1V †

k(hA,gB)
ei(Ek−E j)t V(hA,hB)l V1mV †

l1V †
m(gA,hB)

ei(Em−El )t

�

=

∫

U(d)
dV V(gA,gB) jV1kV(hA,hB)l V1mV †

j1V †
k(hA,gB)

V †
l1V †

m(gA,hB)
ei(Ek+Em−E j−El )t .

(69)

20Summation is made explicit in the third form of (69), afterwards it is omitted, but all indices are
summed over in this entire appendix. Again, the subscript of the index indicates the range: e.g.
l ∈ {1, . . . , d}, gB ∈ {1, . . . , dB}, gA ∈ {1, . . . , dA}, j ∈ {1, . . . , d}.
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From this expression, we populate the multi-indices needed for expression (58).

I = ((gA, gB), 1, (hA, hB), 1) ; I ′ = (1, (hA, gB), 1, (gA, hB))
J = ( j, k, l, m); J ′ = ( j, k, l, m) . . (70)

As before, the terms dependent of I , I ′ decouple from those of J , J ′. We can construct new
Rσ,Qτ, which are similar to those used averaging the density matrix, although now they are
indexed by permutations of S4, and are thus 4!= 24 dimensional. Also, for scalar purity, these
are all scalar expressions. Then our final answer will take the form

〈γ(t)〉=
∑

σ,τ∈S4

RσQτWg(d,στ−1), (71)

with

Rσ := δI ,σ(I ′), Qτ := δJ ,τ(J ′)e
i(Ek+Em−E j−El )t . (72)

For the results, see table 2:

Table 2: Tr(ρ2
A(t)) Sum Factors

σ,τ ∈ S4 Rσ Qτ σ,τ ∈ S4 Rσ Qτ
Id 1 χ2(t) (12) dB d ·χ(t)
(123) dB χ(t) (13) 1 ι2(t)ι(−2t)
(132) dA χ(t) (14) dA d ·χ(t)
(124) dB χ(t) (23) dA d ·χ(t)
(142) dA χ(t) (24) 1 ι2(−t)ι(2t)
(134) dB χ(t) (34) dB d ·χ(t)
(143) dA χ(t) (1234) d · dB d
(234) dB χ(t) (1243) dB d
(243) dA χ(t) (1324) dA d
(12)(34) d · dB d2 (1342) dB d
(13)(24) 1 χ(2t) (1423) dA d
(14)(23) d · dA d2 (1432) d · dA d

We will go through the derivation and definition of terms briefly. Starting with Rσ, a look at
(70) tells us any permutation σ taking the pairs {1,3} → {1,3} ⊂ {1,2, 3,4} forces all indices
to 1, and the sum in (72) is trivially unit,

RId = δ
2
gA,1δ

2
gB ,1δ

2
hA,1δ

2
hB ,1 = 1= R(13) = R(24) = R(13)(24). (73)

Next,

R(12) = δ1,1δ(gA,gB),(hA,gB)δ(hA,hB),1δ1,(gA,hB) = δgB ,gB
δgA,hA

δhA,1δ
2
hB ,1δgA,1 = dB, (74)

as gB is left free. By the same token, any σ that maps 1 7→ 2 ∨ 3 7→ 4 will leave a single free
bath index.

R(12) = R(34) = R(123) = R(124) = R(134) = R(234) = R(1243) = R(1342) = dB. (75)

Conversely, for σ : 1 7→ 4∨ 3 7→ 1, there is a single free subsystem index

R(14) = R(23) = R(132) = R(142) = R(143) = R(243) = R(1324) = R(1423) = dA. (76)
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Lastly, mapping 1 7→ 4∧ 3 7→ 2 leaves both subsystem indices undetermined, and equates
the bath indices to each other, killing one summation

R(14)(23) = δ(gA,gB),(gA,hB)δ
2
1,1δ(hA,hB),(hA,gB) = δgA,gA

δ2
gB ,hB

δhA,hA
= d2

AdB = d · dA = R(1432). (77)

Likewise,

R(12)(34) = δgB ,gB
δ2

gA,hA
δhB ,hB

= dAd2
B = d · dB = R(1234). (78)

Moving on to Qτ, we note that J = J ′, so δJ ,τ(J ′) = δJ ,J ′ = δ j, jδk,kδl,lδm,m, and the first
element factorizes

QId = δJ ,J ′e
i(Ek+Em−E j−El )t =

 

d
∑

j,k=1

ei(Ek−E j)t

! 

d
∑

l,m=1

ei(Em−El )t

!

= χ2(t). (79)

Where we are reminded of the definition of χ(t) in (15)

Q(12) = δ
2
j,kδl,lδm,mei(Ek+Em−E j−El )t =

d
∑

j,l,m=1

ei(Em−El )t = d ·χ(t), (80)

with τ producing δ j,m ∨δl,k ∨δl,m, the same results:

Q(12) =Q(14) =Q(23) =Q(34) = d ·χ(t). (81)

Making use of definition (14), we have the pair

Q(13) = δ
2
j,lδk,kδm,mei(Ek+Em−E j−El )t = ι2(t)ι(−2t) =

d
∑

j,k,m=1

ei(Em+Ek−2E j)t ,

Q(24) = δ
2
k,mδ j, jδl,l e

i(Ek+Em−E j−El )t = ι2(−t)ι(2t)≡
d
∑

j,k,l=1

ei(2Ek−E j−El )t .

(82)

On to the first three-cycle, τ= (123). Here, as with all three-cycles, 3 out of 4 indices are
equated, such as j = k = l, and the 4th, h is left free. Always, two of the three equated indices
kill their energies in the exponent, i.e. Ek− E j− El 7→ −E j , and the 4th, +Em has opposite sign.
All three-cycles contribute a factor:

Q(123) =
d
∑

j,k,l,m=1

δ j,kδk,lδl, jδm,mei(Ek+Em−E j−El )t =
d
∑

j,m=1

ei(Em−E j)t ≡ χ(t)

=Q(132) =Q(124) =Q(142) =Q(134) =Q(143) =Q(234) =Q(243).

(83)

Analogously, all four-cycles equate all indices j = k = l = m. Three summations kill four
Kronecker-deltas, as the last is redundant (cyclic).

Q(1234) = δ j,kδk,lδl,mδm, je
i(Ek+Em−E j−El )t =

d
∑

j=1

e0 = d

=Q(1243) =Q(1324) =Q(1342) =Q(1423) =Q(1432).

(84)
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Continuing, in τ = (12)(34), two Kronecker delta’s cancel the whole exponent, leaving
two free summations:

Q(12)(34) = δ
2
j,kδ

2
l,mei(Ek+Em−E j−El )t =

d
∑

j,l=1

e0 = d2 =Q(14)(23) . (85)

And finally,

Q(13)(24) = δ
2
j,lδ

2
k,mei(Ek+Em−E j−El )t =

d
∑

j,k=1

ei(2Ek−2E j)t = χ(2t). (86)

We notice that exchanging indices 2↔ 4 in σ has the effect of exchanging A↔ B in Rσ,
or if the permutation is invariant, Rσ = 1. Conversely, this exchange in τ always leaves Qτ
invariant. This advises us that any multiple of dA in the final expression will also be present
in dB. The straightforward way to find the final expression, is by constructing the Weingarten
matrix.

In the basis index order Id, (123), (132), . . . , (1432) defined by table 4, the first few rows
and columns of the Weingarten matrix look like

Wg(d,στ−1) =
1

d2(d2 − 1)(d2 − 4)(d2 − 9)
×





















d4 − 8d2 + 6 2d2 − 3 2d2 − 3 2d2 − 3 2d2 − 3 . . .
2d2 − 3 d4 − 8d2 + 6 2d2 − 3 2d2 − 3 d2 + 6 . . .
2d2 − 3 2d2 − 3 d4 − 8d2 + 6 d2 + 6 2d2 − 3 . . .
2d2 − 3 2d2 − 3 d2 + 6 d4 − 8d2 + 6 2d2 − 3 . . .
2d2 − 3 d2 + 6 2d2 − 3 2d2 − 3 d4 − 8d2 + 6 . . .
2d2 − 3 d2 + 6 2d2 − 3 2d2 − 3 d2 + 6 . . .

...
...

...
...

...
. . .





















.
(87)

Performing the inner product was done symbolically by computer.

∑

σ,τ∈S4

RσQτWg(d,στ−1) =
1

d2(d2 − 1)(d2 − 4)(d2 − 9)
×

�

�

χ2(t) +χ(2t) + ι2(t)ι(−2t) + ι2(−t)ι(2t)− 4χ(t)
� �

d4 − 2d3 − 7d2 + 8d + 12
�

+

(dA+ dB)
�

d7 − d6 − 13d5 + 13d4 + 36d3 − 36d2−

�

χ2(t) +χ(2t) + ξ0(t) + ξ
∗
0(t)− 4χ(t)

� �

d3 − 3d2 − 4d + 12
�

�

�

=

1
d2(d2 − 1)(d2 − 4)(d2 − 9)

×
�

ξ(t)(d + 1)(d − 2)(d + 2)(d − 3) + (dA+ dB)

·
�

d2(d − 1)(d − 2)(d + 2)(d − 3)(d + 3)− ξ(t)(d − 3)(d + 2)(d − 2)
�

�

.

(88)

In the last equality, we have defined another function ξ(t) to hold the time and energy
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dependence.

ξ(t) :=χ2(t) +χ(2t) + ι2(t)ι(−2t) + ι2(−t)ι(2t)− 4χ(t)

=

 

d + 2
∑

j<k

cos
�

(E j − Ek)t
�

!2

+ 2
∑

j,k,l

cos
�

(2E j − Ek − El)t
�

+ 2
∑

j<k

�

cos
�

2(E j − Ek)t
�

− 4 cos
�

(E j − Ek)t
�

�

− 3d.

(89)

Another identity for ξ(t), which is computationally favorable, is printed in (19).
At present the origin of the terms (d ± z), z ∈ R in expressions such as (88) is unclear to

the authors, however their appearance is fortuitous: they cancel neatly with the denominator.
The final result is then equation (18).

B.1 Third power of the Density Matrix

Using similar techniques, any power of the density matrix is obtainable in principle. However,
already for the third power, (6!)2 = 518400 terms must be calculated and added. To this
end, a Python routine was created that constructs Rσ and Qτ, and performs the inner product.
For a copy of this routine, please contact the first author. The result is printed below without
derivation.

Recalling ι(t) from (14),

ζ(t) :=
�

�ι3(t) + 2ι(3t) + 3ι(t)ι(2t)
�

�

2 − 36|ι(t)|2. (90)

Using this, the trace of the third power of the reduced density matrix averages to

∫

U(d)
dV TrA(ρ

3
A(t)) =

(dA+ dB)2 + d + 1
(d + 1)(d + 2)

+
d + 1− dA− dB

d2(d + 1)2(d + 5)
×

��

ζ(t)− 9ξ(t)
�

(1− dA− dB)

(d − 1)(d + 2)
+ (dA+ dB)

�

3ξ(t)
d + 3

+
ζ(t)

(d − 1)(d + 4)

�

�

.

(91)

Appendix C Derivation of n-Point Correlation Functions

In this appendix, we elaborate on the details of deriving expression (22) and what follows. To
begin, we investigate the emergence of the generalized Laguerre polynomial L(1)d−1(t

2) = Tr F(t);
F(t) is defined in (23). An important component is the Fourier transform of the (diagonal el-
ement of the) symmetric kernel in (62).

∫

R
dE1Kd(E1, E1)e

iE1 t =

∫

R
dE1

e−
1
2 E2

1+iE1 t

(pd−1, pd−1)w

�

p′d(E1)pd−1(E1)− p′d−1(E1)pd(E1)
�

=

e−t2/2

p
2π(d − 1)!

∫

R
d Ẽ1e−

1
2 Ẽ2

1

�

p′d(Ẽ1 + i t)pd−1(Ẽ1 + i t)− p′d−1(Ẽ1 + i t)pd(Ẽ1 + i t)
�

.

(92)
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Here we have completed the squares in the exponent

−
1
2

E2
1 + iE1 t = −

1
2
(E1 − i t)2 +

(i t)2

2
, (93)

and made the substitution of integration variable Ẽ1 := E1−i t. Then technically the integration
domain is shifted up by a distance t into the complex plane, to a line parallel to the real line.
But we observe that the integrand dies at infinity and moreover has no poles. Then the domain
can be deformed continuously back to its original position. Employing the first of expression
(64) and subsequently (66) which expresses an integral of shifted Hermite polynomials in
terms of generalized Laguerre polynomials, we arrive at

∫

R
dE1Kd(E1, E1)e

iE1 t = e−
1
2 t2
�

d · L(0)d−1(t
2) + t2 L(2)d−2(t

2)
�

= e−
1
2 t2
· L(1)d−1(t

2). (94)

In the last equality we made use of the two standard identities (67). This expression is
manifestly a function of (t2), thus the sign of time doesn’t matter. We continue by observing

∫

R
dE1Kd(E1, E1)e

iE1 t

∫

R
dE2Kd(E2, E2)e

−iE2 t = e−t2
�

L(1)d−1(t
2)
�2

. (95)

This calculation will also prove useful in the larger correlators needed for the average
purity. But first we move on to the origin of F(t). Consider completing the square again and
using the same substitution of Ẽ1 1

2±
1
2
= E1 1

2±
1
2
± i t in

∫

R2

dE1dE2K2
d (E1, E2)e

i(E1−E2)t

=

∫

R2

dE1dE2w(E1)w(E2)

 

d−1
∑

µ=0

pµ(E1)pµ(E2)

(pµ, pµ)w

!2

ei(E1−E2)t

=
�

e−t2/2
�2
∫

R2

d Ẽ1d Ẽ2w(Ẽ1)w(Ẽ2)

 

d−1
∑

µ=0

pµ(Ẽ1 + i t)pµ(Ẽ2 − i t)
p

2πµ!

!2

=
d−1
∑

µ,ν=0

e−t2

2πµ!ν!

∫

R2

d Ẽ1d Ẽ2w(Ẽ1)pµ(Ẽ1 + i t)pν(Ẽ1 + i t)w(Ẽ2)pµ(Ẽ2 − i t)pν(Ẽ2 − i t).

(96)

We have also substituted the first equality of (61). From here, we construct

Fµ,ν(t) :=
e−

1
2 t2

p

2πµ!ν!

∫

R
d Ẽ1w(Ẽ1)pµ(Ẽ1 + i t)pν(Ẽ1 + i t)

=e−
1
2 t2 (minµ,ν)!

p

2πµ!ν!

p
2π(i t)|ν−µ|L(|ν−µ|)minµ,ν(t

2),
(97)

by again invoking (66), leading immediately to definition (23). From there,

∫

R2

dE1dE2K2
d (E1, E2)e

i(E1−E2)t =
d−1
∑

µ,ν=0

Fµ,ν(t)Fµ,ν(−t) = Tr [F(t)F(−t)] , (98)
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and we have a full derivation of expression (22). Incidentally, this is the squared Frobenius
norm of F(t). Let us examine the matrix function. Fµ,ν(t) ∈ R for µ+ ν even, and Fµ,ν(t) ∈ I
for µ+ ν odd. However its trace and traces of products of F(t) will turn out to be all real.

Fµ,ν(t) = e−
1
2 t2



















1 i t −t2
p

2
i −t3
p

6
. . .

i t −t2 + 1 i −t3+2tp
2

−3t2+t4
p

6
. . .

−t2
p

2
i −t3+2tp

2
1
2 t4 − 2t2 + 1 i t5−6t3+6t

2
p

3
. . .

i −t3
p

6
−3t2+t4
p

6
i t5−6t3+6t

2
p

3
−1

6 t6 + 3
2 t4 − 3t2 + 1 . . .

...
...

...
...

. . .



















. (99)

Miraculously, this definition of F(t) allows us to reconcile the diagonal elements of the
symmetric kernel with the off-diagonal, seeing as immediately from (97) and (68), Tr F(t) =
∑

µ Fµ,µ(t) = e−
1
2 t2

L(1)d−1(t
2). Moving on, F(t) is defined in such a way that

Fµ,ν(0) = δµ,ν . (100)

This allows us to quickly check the normalization. For t = 0, a look at expressions (22) and
(60) tells us that the integral in the numerator should equal that in the denominator. Indeed,
setting t = 0 there gives

d(d − 1)



e0
�

= e0





 

d−1
∑

µ=0

δµ,µ

!2

−
d−1
∑

µ,ν=0

δ2
µ,ν



= d2 − d, (101)

as desired.

C.1 Three- and Four-Point Functions

In this subsection, we will continue the work above, and explain the derivation of the correla-
tors that comprise the expectation value 〈ξ(t)〉.

Before we start though, with specific integrals, we will emphasize the pattern distilled
from the previous calculation. The determinant of kernels in (60), by the Leibniz expansion,
is a sum of products. Each product has factors of the form Kd(E j , Ek), which can be seen to
’couple’ E j and Ek. There are also factors of the form eicl El t , for cl ∈ {±1,±2} coming from the
integrand. Each energy appears exactly twice in a kernel and once in an exponent. If j = k,
energy E j is coupled to itself, and after integration results in a factor

∫

dE jKd(E j , E j)e
ic j E j t = e−(c j t)2/2 L(1)d−1

�

(c j t)
2
�

= Tr F(c j t). (102)

If j 6= k, then energies E j and Ek are coupled to each other, resulting in factors

∫

. . . Kd(E j , Ek)e
ic j E j t eick Ek t 7→

d−1
∑

α=0

Fµ,α(c j t) · Fα,ν(ck t) . . . (103)

We again view these Fµ,ν(c j t) factors as symmetric (d×d)matrices21, µ,ν ∈ {0,1, . . . , d−1},
and the coupling as matrix multiplication. The string of coupled matrices closes on itself: it

21For a correlator in d dimensions, we only use the upper left d × d subblock of the in principle infinite matrix.
As we increase dimension, we can simply calculate more rows and columns.
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forms a loop. This is accounted for by tracing over the matrix product. So dropping the indices,
for instance

∫

dE1dE2dE3Kd(E1, E2)Kd(E2, E3)Kd(E3, E1)e
i(c1E1+c2E2+c3E3)t =

e−(c
2
1+c3

2+c2
3)

t2
2 Tr

�

F(c1 t)F(c2 t)F(c3 t)
�

,

(104)

and the generalization to larger loops is evident. Trivially, from (22)

d(d − 1)



ei(E1−E2)(2t)
�

=
�

Tr F(2t) · Tr F(−2t)− Tr [F(2t)F(−2t)]
�

. (105)

For higher correlators, all that is left to do is to expand the determinant and collect like
terms22. The three-point correlator was included in the main text above, in expression (29).

For the four-point correlator, at times the order of the non-commutative coupling will be
important.

d!
(d − 4)!




ei(E1+E2−E3−E4)t
�

=

∫

R3

dE1dE2dE3dE4 det
1≤ j,k≤4

[Kd(E j , Ek)])e
i(E1+E2−E3−E4)t

=
�

Tr F(t)
�4
− 2

�

Tr F(t)
�2

Tr F2(t)− 4
�

Tr F(t)
�2

Tr
�

F(t)F(−t)
�

+ 8 Tr F(t)Tr
�

F2(t)F(−t)
�

+
�

Tr F2(t)
�2
+ 2

�

Tr
�

F(t)F(−t)
�

�2

− 4 Tr
�

F(t)F(t)F(−t)F(−t)
�

− 2 Tr
�

F(t)F(−t)F(t)F(−t)
�

.

(106)

The substitution can be made that F(−c t) = I±F(c t)I± for (I±)0≤µ,ν≤d−1 = (−1)µδµ,ν,
so I2

± = 1. This means, inside any trace of matrix products, we may substitute t → −t, e.g.
Tr F2(−t) = Tr

�

I±F(t)I± I±F(t)I±
�

= Tr F2(t), allowing us to group terms. Incidentally, this is
another manifestation that all correlators are real.

In general, this procedure is described by equation (28).
Combining equations (25), (22), (105), (29), and (106), we have all the information

needed to find expression (25).

C.2 Derivation of the Generating Function

In this subsection, we will prove that the generating function G({am}) in equation (26) indeed
procedurally generates equation (28). In the latter, let us say for concreteness we are looking
for an n-point correlator characterized by the sequence {c1, c2, . . . cn}, which in turn consists
of l < n distinct elements {mk} with respective multiplicities {nk}. I.e.

∑l
k=1 nk = n.

This is done using the Leibniz formula, notationally making use of the totally antisymmetric
Levi-Civita tensor ε.

G({am}) := εµ0,...,µd−1

d−1
∏

ν=0

�

δν,µν +
∑

m∈Z
amFν,µν(mt)

�

. (107)

Anticipating the final result, we will focus our attention on the terms in this large product
that have exactly a prefactor

∏

j ac j
=
∏

k

�

amk

�nk . For simplicity, first assume all c j distinct,
or all nk = 1. We will later relax this assumption.

22Besides duplicates in the expansion of the determinant of a symmetric matrix, if in expression (29) we can
obtain one term from another by exchanging E2↔ E3, they will result in the same integral.
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As a combinatoric exercise, we can imagine drawing the term containing ac j
in the infinite

series from any of the many factors (δ+
∑

m am . . .), i.e. corresponding to any ν. Once we have
drawn one term from every factor, their product is one final term in the expanded product. Let
us define ν j to be the index of the factor where we select ac j

. Then for any n distinct values
{ν1, . . . ,νn} ∈ {0, . . . , d − 1}⊗n, we will obtain one term with the correct prefactors. From the
excluded factors, all other values ν, we multiply the delta δν,µν . The sum of any and all such
terms out of (107) is then

G({am}) =
∑

{ν1,...,νn} 6=

εµ0,...,µd−1

n
∏

j=1

ac j
Fν j ,µν j

(c j t)
∏

ν/∈{ν1,...,νn}

δν,µν +O(6=
∏

j

ac j
). (108)

This second product of delta functions, after contraction, has the effect of setting the νth

index of the Levi-Civita tensor to ν. For example, if n = 2, d = 5,ν1 = 0,ν2 = 3, the corre-
sponding term would be εµ0,1,2,µ3,4ac1

F0,µ0
(c1 t)ac2

F3,µ3
(c2 t). Aside from the dummy variables

ac j
, this is simply the antisymmetrization over the remaining free indices, reducing the Levi-

Civita symbol to n effective dimensions, or the term to an n× n determinant

G({am}) =
∑

{ν1,...,νn} 6=

n
∏

j=1

ac j
det

1≤ j,k≤n
F(c j t)ν j ,νk

+O(6=
∏

j

ac j
). (109)

We can now generalize to degenerate c j: if some c j = c j′ , j 6= j′, then in fact some of the
terms in (108) correspond to the same combination in (107), and we must compensate for
overcounting by dividing by

∏l
k=1 nk!. And finally, any determinant of a matrix with duplicate

columns vanishes, so we may promote the sum to include also sets of nondistinct {ν j}: these
terms vanish regardless. Then we have arrived at the most general

G({am}) =
d−1
∑

{ν1,...,νn}=0

l
∏

k=1

�

amk

�nk

nk!
det

1≤ j,k≤n
F(c j t)ν j ,νk

+O(6=
∏

j

ac j
), (110)

which agrees with expression (27).

Appendix D Poisson Statistics Comparison

To contrast GUE-, also called Wigner-Dyson statistics of eigenvalues, there are Poisson statis-
tics. Either is characterized in terms of the distribution of gaps between consecutive energy
levels. For the former, as we have seen, levels repel due to the Vandermonde determinant and
so the probability to find any E j approach E j + 1 vanishes. The exact distribution of the gap
|E1−E2| is not known23 to arbitrary d > 2. By contrast in Poisson statistics, we don’t necessar-
ily know the distribution of single energies, but the gaps are weighted by their size according
to the exponential distribution:

P(|E j − E j+1|) = µe−µ|E j−E j+1|. (111)

The distribution is defined on R>0 and µ > 0 is a free parameter. We are curious how the
behavior of 〈χ(t)〉P compares to that of 〈χ(t)〉GUE, averaged under different distributions of
energy gap. Luckily χ(t) only depends on differences of energy. An exponential distribution of

23For d = 2 the exact result of the gap distribution is known as the Wigner Surmise, which is a good approximation
to general dimension [63]. However, we work in arbitrary d and do not require here that E1 and E2 are ordered
and therefore adjacent.
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gaps emerges if the probability to encounter a level is constant over R and does not depend on
the levels before or after it: all levels are uncorrelated. Therefore we posit that this exponential
behavior also persists between any two levels, not just adjacent ones, albeit with a different
µ. Then all terms in χ(t) have the same average, and analogous to the previous calculations,
we simplify

〈χ(t)〉P = d + d(d − 1)〈ei(E1−E2)t〉P . (112)

This gap distribution can be achieved by taking a product form joint PDF of exponential
distributions on each separate energy.

〈ei(E1−E2)t〉P =
∫ ∞

0

dEµd
∏

j

e−µE j ei(E1−E2)t

= µ2

∫ ∞

0

dE1

∫ ∞

0

dE2eE1(i t−µ)−E2(i t+µ) =
µ2

µ2 + t2
,

(113)

as µ > 0 by construction.
In order to interpret this result fairly, we must choose a value for µ. Of the exponential

distribution, it is known that average is 1/µ and the variance is 1/µ2. These readily yield

〈(E1 − E2)
2〉P =

∫ ∞

0

(E1 − E2)
2P(|E1 − E2|)d|E1 − E2|=

2
µ2

. (114)

This is useful, because we will set the parameter µ = µ(d) such that this second moment
of the gaps agrees between the exponential distribution and the GUE, where the statistics also
depend on d. Ideally, we would equate the first moment, but 〈E1 − E2〉GUE = 0 trivially and
〈|E1 − E2|〉GUE is not known.

A straightforward correlator calculation tells us,

d(d − 1)〈(E1 − E2)
2〉GUE =

∫

R
dE1

∫

R
dE2 det

1≤ j,k≤2
Kd(E j , Ek)(E1 − E2)

2 =
∫

R
dE1

∫

R
dE2

�

Kd(E1, E1)Kd(E2, E2)
�

E2
1 + E2

2 − 2E1E2

�

− K2
d (E1, E2)(E1 − E2)

2
�

.

(115)

We know
∫

d xKd(x , x) = d and it is also clear by symmetry that
∫

d xKd(x , x)x = 0, by
comparison to d · 〈E1〉GUE. Using these observations and substituting an alternative form of
the kernel [43],

Kd(x , y) =

p

w(x)w(y)
(pd−1, pd−1)w

pd(x)pd−1(y)− pd−1(x)pd(y)
x − y

, (116)

we transform to

d(d − 1)〈(E1 − E2)
2〉GUE = d

∫

R
dE1Kd(E1, E1)E

2
1 + d

∫

R
dE2Kd(E2, E2)E

2
2

−
∫

R
dE1

∫

R
dE2

w(E1)w(E2)
2π(d − 1)!2

�

pd(E1)pd−1(E2)− pd−1(E1)pd(E2)
�2

.

(117)
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In the last term, due to the orthogonal polynomials, the cross terms of the square vanish.
We are left to use the inner product in expression (63):

∫

R
dE1

∫

R
dE2

w(E1)w(E2)
2π(d − 1)!2

�

p2
d(E1)p

2
d−1(E2) + p2

d−1(E1)p
2
d(E2)

�

=

2πd!(d − 1)!+ 2π(d − 1)!d!
2π(d − 1)!2

= 2d.

(118)

Furthermore, from (62), we use properties of Hermite polynomials in (64) repeatedly to
modify

∫

R
d xKd(x , x)x2 =

∫

R
d x

w(x)
p

2π(d − 1)!

�

d
�

pd(x) + (d − 1)pd−2(x)
�2

− (d − 1)
�

pd−1(x) + (d − 2)pd−3(x)
��

pd+1(x) + dpd−1(x)
�

�

=
p

2π
p

2π(d − 1)!

�

d
�

d!+ (d − 1)2(d − 2)!
�

− (d − 1)d(d − 1)!

�

= d2 .

(119)

In the penultimate equality, we used orthogonality of the polynomials to discard most of
the terms, and integrate the rest. Putting together (117), (118) and (119), we find

〈(E1 − E2)
2〉GUE =

1
d(d − 1)

(2 · d · d2 − 2d) = 2(d + 1). (120)

We scale the Poisson statistics to agree on this value24, 2/µ2 = 2(d+1)⇔ µ= (d+1)−1/2,
so finally the Poisson average χ(t) is given by equation (39).

For sufficiently idealized ensembles of integrable systems, meaning specifically the model’s
eigenbases are uniformly Haar distributed over the Unitary group, we expect the subsystem
dynamics to follow this time-evolution.

D.1 Purity with Poisson Statistics

The same PDF used in expression (113) allows us to derive 〈ξ(t)〉P , as a modification of (25).
The result is

〈ξ(t)〉P = 4d(d − 1)
µ2

µ2 + 4t2
+

4d!
(d − 3)!

µ4(µ2 + 3t2)
(µ2 + t2)2(µ2 + 4t2)

+
d!

(d − 4)!

�

µ2

µ2 + t2

�2

+ 4d(d − 1)2
µ2

µ2 + t2
+ 2d(d − 1).

(121)

This can be used to describe the time-dependent purity of ensembles of integrable systems.

Appendix E Numerical Models Comparisons

In this appendix, we will include as a reference a ’heatmap’ of the relative distances of dynam-
ics of the various discussed established models, for various subsystem sizes, to our analytical

24In general, with the GUE λ 6= 1, this becomes µ=
p

λ/(d + 1).
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ensembles. The distance is as defined in equation 51, and is subsequently normalized by the
distance of the numerical implementation of either the GUE ensemble to its analytic coun-
terpart, or the same distance for the Poisson. This normalization helps compare systems at
different sizes. Without it, we are also measuring the dimensionality of the Hilbert space with
a norm like 51 as much as we are measuring the dynamics. Furthermore it accounts for the
numerical noise of sampling only a finite number of realizations from an ensemble, which
might be more or less valid at different system sizes as well.

To illustrate, first we will display the relative distances of the numerical implementations
of the GUE and Exponential ensembles themselves. Both have one map normalized to unity
by default. See figures 20 and 21.

Figure 20: Left: Distance of subsystem dynamics of the numerical GUE to the analytical GUE,
normalized to itself, Right: Distance of numerical GUE to the analytical Poisson distribution,
normalized to the distance of the numerical Exponential Distribution to the analytical Poisson.
These values are given for different number of subsystem and bath spins.

Figure 21: Left: Distance of subsystem dynamics of the numerical Poisson to the analytical
GUE, normalized to the distance of the numerical GUE to the analytical GUE. Right: Distance
of numerical Poisson to the analytical Poisson, normalized to itself. These values are given for
different number of subsystem and bath spins.

Note that although the legend indicates this is the distance D(6) proper, it is in fact normal-
ized, and note also that in the following figures, the legend scale varies from system to system
quite strongly.
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Figure 22: Left: Normalized distance of dynamics of Transverse Field Ising Model (see equa-
tion 42) to analytical GUE. Right: to analytical Poisson.

Figure 23: Left: Normalized distance of dynamics of Disordered Transverse Field Ising Model
(see equation 43) to analytical GUE. Right: to analytical Poisson.

Figure 24: Left: Normalized distance of dynamics of SYK Model (see equation 46) to analytical
GUE. Right: to analytical Poisson.

39

https://scipost.org
https://scipost.org/SciPostPhys.10.3.071


SciPost Phys. 10, 071 (2021)

Figure 25: Left: Normalized distance of dynamics of XXZ Model (see equation 44) to analytical
GUE. Right: to analytical Poisson.

Figure 26: Left: Normalized distance of dynamics of Disordered XXZ Model (see equation 45)
to analytical GUE. Right: to analytical Poisson.
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Figure 27: Left: Normalized distance of dynamics of Spin Glass Model (see equation 47) to
analytical GUE. Right: to analytical Poisson.

Figure 28: Left: Normalized distance of dynamics of Central Spin Model (see equation 48) to
analytical GUE. Right: to analytical Poisson.
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