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Abstract

Non-canonical degrees of freedom provide one of the most promising routes towards
characterising a range of important phenomena in condensed matter physics. Poten-
tial candidates include the pseudogap regime of the cuprates, heavy-fermion behaviour,
and also indeed magnetically ordered systems. Nevertheless it remains an open ques-
tion whether non-canonical algebras can in fact provide legitimate quantum degrees of
freedom. In this paper we survey progress made on this topic, complementing distinct
approaches so as to obtain a unified description. In particular we obtain a novel exact
representation for a self-energy-like object for non-canonical degrees of freedom. We
further make a resummation of density correlations to obtain analogues of the RPA and
GW approximations commonly employed for canonical degrees of freedom. We discuss
difficulties related to generating higher-order approximations which are consistent with
conservation laws, which represents an outstanding issue. We also discuss how the inter-
play between canonical and non-canonical degrees of freedom offers a useful paradigm
for organising the phase diagram of correlated electronic behaviour.
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1 Introduction

The task of understanding interacting quantum systems is an inherently challenging one, as
the complexity of a quantum system increases exponentially with size. Nevertheless our mi-
croscopic understanding of the world is built upon quantum foundations. A cornerstone of
this success is the semi-classical notion of a quasi-particle, which reflects the organisation of
correlations around underlying quantum degrees of freedom (DOF). As with all modelling,
the identification of appropriate DOFs permits the most relevant correlations to be isolated,
allowing for an accurate and efficient description of a system.

A quantum DOF is specified by the algebra it obeys. Correlations in a system are in-
duced through the action of the Hamiltonian, as dictated by Heisenberg’s equation of motion
d
dtO = i[H ,O], and it is the DOF’s algebra which governs how correlations are organised (here
and throughout the text we adopt units such that ħh= 1).

The best understood quantum DOFs are the canonical ones, bosons and fermions. These
obey the familiar algebra of the form

[a, a†]∓ = 1, [n, a†] = a†, [n, a] = −a , (1)

with [a, a†]∓ = aa† ∓ a†a and [·, ·] = [·, ·]−. The defining characteristic of the canoni-
cal algebra is that the first relation yields the trivial operator. This has the consequence
that a non-interacting Hamiltonian, i.e. H0 =

∑

i, j εi ja
†
i a j , has a linear action on the a†

i ,

i.e. [H0, a†
i ] =

∑

j εi ja
†
j , which allows for the straightforward identification of single-particle

modes. Interactions by contrast induce non-linear terms, which serve to impede a single-
particle description. The semi-classical ideology is encapsulated by the Dyson equation

G = G0 + G0ΣG , (2)

which relates the single-particle Green’s function G of an interacting system to that of a cor-
responding non-interacting system G0, together with a self-energy Σ which encodes the in-
teractions. In principle for model systems one can obtain an exact closed expression for Σ
(see e.g. Eq. (5-25b) of Ref. [1]). In practice Σ is computed in a perturbative manner, where
the lowest order contributions, or certain resummations thereof, characterise the dressing of
the single-particle modes as quasi-particles. Behaviour which is well described in this way is
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commonly referred to as ‘weakly correlated’. In particular this provides the microscopic foun-
dation of Landau’s Fermi liquid theory, the scheme by which the electronic properties of a wide
variety of systems are understood.

The purpose of this manuscript is to examine whether non-canonical algebras can also
provide useful quantum DOFs. Specifically we consider a family of algebras of the form

[a, a†]∓ = 1−λn, [n, a†] = a†, [n, a] = −a , (3)

where λ is a scalar parameter which is inherent to the algebra. Such algebras appear naturally
for spin, electronic and local moment systems. The non-canonical contribution λn presents
an immediate obstruction to invoking a representative non-interacting system, as in this case
the action [H0, a†

i ] =
∑

j εi j(1 − λni)a
†
j is non-linear. This is not such a severe restriction

however, as single-particle modes can nevertheless be naturally identified at a mean-field level,
in a manner analogous to the Hartree/Hartree–Fock approximations commonly employed for
canonical DOFs. The challenging question is whether it is possible to systematically organise
the remaining correlations, e.g. as done through the self-energy in the canonical case, so as
to obtain an effective quasi-particle formalism. There is as yet no definitive consensus, but
substantial progress has been made.

The legitimacy of non-canonical DOFs is a question of central importance for condensed
matter physics. It is well established that the weakly correlated paradigm is insufficient to cap-
ture the great wealth of behaviour of interacting quantum systems, and non-canonical DOFs
provide one of the most promising routes for characterising a range of the most interesting
phenomena. Potential candidates include the pseudogap regime of the cuprates [2,3], heavy-
fermion behaviour [4], and also indeed magnetically ordered systems [5–10]. In addition,
competition between canonical and non-canonical quasi-particle descriptions may account for
the emergence of quantum criticality, as outlined in the Discussion.

1.1 Historical summary

Efforts to employ non-canonical algebras for organising correlations in interacting quantum
systems have a long and rich history. They arise naturally for spin systems, as spins are in-
herently governed by the non-canonical algebra su(2). They were introduced for electronic
systems by Hubbard [11], who employed the graded algebra of local projection operators to
obtain approximations for the electronic Green’s function of the Hubbard model [11–13].

There are three prominent lines of approach:

• The first is based around the operator projection/equations of motion methods of Mori
[14, 15], Zwanzig [16], and Tserkovnikov [17], which organise correlations in hierar-
chies of orthogonality around mean-field single-particle modes. A key issue here is when
and how to truncate the higher order contributions. Very early efforts along these lines
are found in the works of Rowe [18] and Roth [19], while more recent efforts can be
found in [20–26]. There are in particular two bodies of work which have extensively
investigated strongly correlated electronic behaviour in this manner, that of Plakida and
coworkers [2, 27–30], and the composite operator method of Avella–Mancini [3, 31].
These studies go a long way towards demonstrating the promise of non-canonical DOFs.

• A second line of approach is built upon organising correlations in an expansion about the
atomic limit, or high-temperature limit. For a spin model this can be viewed equivalently
as the high-field limit, and for the electronic lattice models as the limit of strong on-site
repulsion (or attraction). Isolated sites admit exact mean-field solution, and a detailed
diagrammatic framework has been developed for incorporating interactions between
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sites [7, 8, 32–36]. This technique has proved complicated to implement in practice
however, which has limited its application in general.

• The third line of approach utilises the Schwinger method [1,37], where correlations are
related to fluctuations induced by the inclusion of external sources. Here correlations
may be organised by arranging variations of the external sources order by order in a
perturbative expansion. To this end non-canonical algebras of the form of Eq. (3) are
particularly useful, as they come endowed with an internal parameter λ which provides
a natural means of organising the expansion. Efforts in this direction have advanced
only relatively recently, see [38–43]. A challenge here is to identify which are in fact the
best correlation functions to construct an expansion for, as non-canonical correlations
obstruct the canonical expansion of the inverse Green’s function. This is a direction that
is far from having been broadly explored.

In this paper we align the first and third of these approaches. In doing so we derive an closed
expression for a self-energy-like object for non-canonical DOFs, and furthermore obtain an
approximation capturing the screening of density correlations.

1.2 Overview

The paper offers a detailed overview of the concept of non-canonical DOFs. We adopt a ped-
agogical style, highlighting connections between various perspectives. We also keep analogy
with canonical DOFs as transparent as possible.

Firstly in Sec. 2 we summarise and discuss several important non-canonical algebras, pro-
viding examples for spin, electron, and local moment lattice models. We demonstrate in partic-
ular that the electronic DOF may be cast in either a canonical or non-canonical form. The first
underlies the Landau quasi-particle description, while the latter corresponds to the approach
initiated by Hubbard.

The core of the paper is comprised of Secs. 3–5. In Sec. 3 we introduce a simple repre-
sentative model system which is useful for developing the non-canonical approach. We anal-
yse this from the Mori–Zwanzig–Tserkovnikov perspective in Sec. 4, demonstrating that the
single-particle Green’s function of the non-canonical DOF admits a Dyson form, arranging
correlations between mean-field single-particle modes and an irreducible self-energy-like ob-
ject M?

p(ω). We then switch to the Schwinger method in Sec. 5. Building upon the analysis of
Sec. 4, we derive a novel exact representation for M?

p(ω), taking a functional differential form.
We discuss issues related to generating conserving approximations in Sec. 5.3, and consider
routes by which this may be addressed. We make a resummation of density-induced correla-
tions in Sec. 5.4, and obtain an approximation which can be viewed as an analogue of the RPA
and GW approximations for a canonical DOF.

In Sec. 6 we provide a discussion where we explore the non-canonical paradigm on general
grounds. We demonstrate that if one assumes that non-canonical algebras do indeed provide
legitimate quantum DOFs, then one arrives at a powerful governing principle for the phase
diagram of correlated electronic behaviour.

We conclude in Sec. 7. There follow two appendices: in App. A we provide a formal
overview of the algebraic structures underlying the discussion of Sec. 2, and in App. B we
highlight the connection between the analysis of Sec. 4 and the more familiar Mori–Zwanzig
formalism.
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2 Key examples of non-canonical degrees of freedom

In this section we discuss several important examples of non-canonical DOFs. These serve to
offer both a foundation and a motivation for the subsequent sections. First we highlight the
well-known fact that the spin may be regarded as a non-canonical DOF, see e.g. [5], despite
that spin-wave theory is more commonly formulated through the Holstein–Primakoff/Dyson–
Maleev mapping to canonical bosons. Then we consider the settings of electronic and local
moment lattice models, and demonstrate in both cases that the electron may be formulated in
two ways, either as a canonical DOF as underlies Landau’s quasi-particle framework, or as a
non-canonical DOF as advanced by Hubbard. Our discussions here combine and extend those
of Refs. [4,43]. To complement this section we provide a general overview of the underlying
algebraic structures, and their representations, in App. A.

2.1 Spin

A spin provides the simplest example of a non-canonical DOF, and one we will consider
throughout the paper.

First we remind that an isolated spin is governed by the non-canonical algebra su(2),

[Sα,Sβ] = iεαβγSγ , (4)

with α,β ,γ ∈ {x , y, z}. It has a basis of of 2S + 1 states, where S is the magnitude of the spin
fixed through the Casimir identity ~S·~S = S(S+1), and S is quantised in units of half-integer. The
su(2) algebra is commonly re-expressed through raising and lowing operators S± = Sx ± iS y ,
yielding the relations [S+,S−] = 2Sz and [Sz ,S±] = ±S±. It is then convenient to label the
basis states of a given spin by the eigenvalues of Sz , which take values−S,−S+1,−S+2, . . . , S.

A spin can be interpreted as a non-canonical DOF in the sense of Eq. (3) through the
identification

a = 1p
2S

S+, a† = 1p
2S

S−, n = S − Sz , (5)

after which the algebraic relations Eq. (4) become

[a, a†] = 1− 1
S n, [n, a†] = a†, [n, a] = −a . (6)

Here 1/S plays the role of λ, offering a parameter for organising correlations. The operator
n has eigenvalues 0,1, 2, . . . , 2S, with 0 corresponding to a spin polarised in the z-direction,
and low values of 〈n〉 corresponding to small deviations from this. We can thus anticipate
that this non-canonical DOF offers a quasi-particle description appropriate for magnetically
ordered systems, i.e. spin-wave theory.

An expression for n is obtained as a rewriting of the Casimir identity

n = a†a+ 1
2S n(n − 1) . (7)

For simplest case of S = 1/2 this reduces to n = a†a.
We remark however that spin-wave theory is not conventionally formulated upon Eq. (6).

In the absence of a consensus on the legitimacy of non-canonical DOFs, the spin is instead
most commonly treated within the canonical quasi-particle framework as in the approaches of
Holstein–Primakoff [44] and Dyson–Maleev [45, 46]. This is achieved by employing a repre-
sentation of the spin generators in terms of canonical bosons b as follows

S+ =
p

2S
�

1− 1
2S b†b

�1−γ
b, S− =

p
2S b†

�

1− 1
2S b†b

�γ
, Sz = S − b†b , (8)

with γ = 1/2 for Holstein–Primakoff and γ = 0 for Dyson–Maleev. Again correlations are or-
ganised around the large-S limit. While this approach has proved highly effective in practice,
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it lacks the robustness of a true weakly correlated theory. The kinetic term still induces correla-
tions, and these obstruct application of the canonical diagrammatic framework. Further issues
stem from the fact that the representative bosonic system includes multitudes of unphysical
states, as a single boson has infinitely many basis states while a spin has a strictly finite num-
ber. Although the algebraic relations of the operators in Eq. (8) close on the physical Hilbert
space, there is no clear way to maintain this restriction when analysing dynamical correlations
at finite-temperature based on a 1/S expansion. By contrast, there are no unphysical states for
the above non-canonical formulation of the spin DOF. The challenge instead is how to account
for the non-canonical contribution in Eq. (6), which is the core focus of this paper.

2.2 Electron

We now turn our attention to the setting of electronic lattice models. An isolated electronic
site has a basis of four states

|◦〉 , |↓〉 , |↑〉 , |•〉 , (9)

corresponding respectively to an empty site, a singly occupied site with spin either down or
up, and a doubly occupied site. A key point we wish to stress is that there are two distinct
ways of interpreting the electronic DOF, one of which takes the canonical form of Eq. (1), and
another which takes the non-canonical form of Eq. (3).

The canonical formulation is simple and familiar. The electronic DOF is expressed through
the algebra

{cσ, c†
σ′
}= δσσ′ , [nσ, c†

σ′
] = δσσ′c

†
σ, [nσ, cσ′] = −δσσ′cσ , (10)

with nσ = c†
σcσ and σ ∈ {↓,↑}. We can view this as grouping the four electronic states as two

copies of canonical fermions
�

|0〉 ; |↓〉
	

⊗
�

|0〉 ; |↑〉
	

, (11)

where the semicolon denotes a relative grading of the states to either side. This canonical
way of characterising the electronic DOF offers one route to organise electronic correlations
in interacting systems. In particular it underlies our understanding of conventional metals as
Landau Fermi liquids.

The non-canonical formulation is less simple and less familiar. This algebra mixes all four
electronic basis states, and to describe it let us group the states as follows

�

|↓〉 , |↑〉 ; |◦〉 , |•〉	 . (12)

The algebra is composed first of a set of su(2) generators ~s acting on the spin-doublet {|↓〉 , |↑〉},
a second set of su(2) generators ~η acting on the charge-doublet {|◦〉 , |•〉}, and a generator θ
which weights the two doublets oppositely, and thus commutes with both ~s and ~η. In addition
there are 8 fermionic generators qσν and q†

σν, with σ ∈ {↓,↑} and ν ∈ {◦,•}, which act
between the two doublets. The non-zero anti-commutation relations of the qσν are

{qσν,q†
σν}=

1+κ2

4 − κ (σs z − νηz),

{q↓ν,q†
↑ν}= κ s+, {qσ◦,q

†
σ•}= −κη

+,

{q↑ν,q†
↓ν}= κ s−, {qσ•,q

†
σ◦}= −κη

−,

{qσν,qσ′ν′}= {q†
σν,q

†
σ′ν′
}= 1−κ2

4 εσσ′ενν′ ,

(13)

where σ takes values −1,1 for σ =↓,↑, and ν takes values −1,1 for ν = ◦,•, and
ε↓↑ = −ε↑↓ = ε◦• = −ε•◦ = 1. The commutation relations of the qσν with ~s are

[s z ,q†
σν] =

σ

2
q†
σν, [s+,q†

↓ν] = −q†
↑ν, [s−,q†

↑ν] = −q†
↓ν ,

[s z ,qσν] = −
σ

2
qσν, [s+,q↑ν] = q↓ν, [s−,q↓ν] = q↑ν ,

(14)
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with ~η are

[ηz ,q†
σν] =

ν

2
q†
σν, [η+,q†

σ◦] = −q†
σ•, [η−,q†

σ•] = −q†
σ◦ ,

[ηz ,qσν] = −
ν

2
qσν, [η+,qσ•] = qσ◦, [η−,qσ◦] = qσ• ,

(15)

and with θ are

[θ ,q†
σν] =

1+κ2

4κ q†
σν −

1−κ2

4κ εσσ′ενν′qσ′ν′ ,

[θ ,qσν] = −
1+κ2

4κ qσν +
1−κ2

4κ εσσ′ενν′q
†
σ′ν′

.
(16)

We can regard these relations as a matrix version of the non-canonical form of Eq. (3), with
the qσν playing the role of a, and the generators ~s , ~η, θ playing the role of n. The continuous
parameter κ then plays the role of λ.

There are a number of remarks to be made. Firstly we emphasise that this non-canonical
formulation of the electron has a natural origin. It may be viewed as a generalisation of su(2)
to the electronic setting, see App. A. Formally we may call the canonical form of Eq. (10)
above as u(1|1)⊗u(1|1), and this non-canonical formulation as u(2|2), where the vertical line
indicates the graded structure of the algebra. Here the electron corresponds to the fundamen-
tal representation of u(2|2), just as spin-1/2 corresponds to the fundamental representation of
su(2).

The continuous parameter κ couples to the non-canonical terms in Eq. (13), allowing us to
organise the correlations they induce. It is perhaps worthwhile to highlight that the appearance
of κ is in fact highly non-trivial. It has an exceptional origin as discussed in App. A, which can
be traced to the exceptional Lie superalgebra d(2,1;ε), see e.g. App. A of Ref. [47]. The
κ-dependence of the algebra underlies the integrability of the Hubbard model in 1D [48–
50], and plays a similarly crucial role in instances of quantum integrability in the AdS/CFT
correspondence [51,52].

It may not be immediately obvious that the algebra comprised of Eqs. (13)-(16) closes on
the four electronic basis states. This is seen however by expressing the generators in terms of
spinful canonical fermions as follows

q†
σ◦ =

1+κ
2 c−σ −κnσc−σ, q†

σ• = σ
�1−κ

2 c†
σ + κn−σc†

σ

�

,

qσ◦ =
1+κ

2 c†
−σ −κnσc†

−σ, qσ• = σ
�1−κ

2 cσ + κn−σcσ
�

,

s+ = c†
↑ c↓, s− = c†

↓ c↑, s z = 1
2

�

n↑ − n↓
�

,

η+ = c†
↓ c

†
↑ , η− = c↑c↓, ηz = 1

2

�

n↑ + n↓ − 1
�

,

θ = (n↓ −
1
2)(n↑ −

1
2) ,

(17)

from which the algebraic relations Eqs. (13)-(16) can be directly verified. (The signs of qσ•
and q†

σ• are flipped with respect to Refs. [4, 43], which gives the algebra a more symmetric
form.)

Ultimately to characterise the electronic properties of a system we wish to compute corre-
lation functions of the c. It is a somewhat remarkable fact that these follow immediately from
the correlation functions of the q . The inversion of Eq. (17) takes a linear form

c†
↓ = q↑◦ − q†

↓•, c†
↑ = q↓◦ + q†

↑• , (18)

and so the q may be thought of as splitting the electron (as opposed to a fractionalisation).
As a consequence, correlation functions of the c are obtained directly as linear combinations
of correlation functions of the q . In this way, the non-canonical formulation offers a second
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distinct route by which to organise electronic correlations. An essential difference with the
canonical formulation is that the q lead to a splitting in two of the electronic band, driven
by an interaction built from θ obeying Eq. (16), which allows for the emergence of a Mott
gap [11,12,43].

The non-canonical formulation of the electron thus offers the possibility of a quasi-particle
description of an unconventional metal, i.e. one which is not a Landau Fermi liquid. Given
the seminal contributions of Hubbard in this direction [11–13], it would be appropriate to
term this a ‘Hubbard Fermi liquid’. In general it is not possible to tell a priori whether a
given system can be characterised as either a Landau or Hubbard Fermi liquid, in principle
one should examine all known possible ways of organising correlations and identify which
describe behaviour consistent with observations/simulations of the system.

Let us then consider conditions under which we may anticipate that the q do provide
an effective quasi-particle description. Firstly, based on the appearance of the non-canonical
terms in Eq. (13) we may expect the quasi-particle description is most robust when 〈 ~s 〉 ∼ 0
and 〈 ~η 〉 ∼ 0, i.e. for a paramagnetic state in the vicinity of half-filling1. Secondly, we note
that a kinetic contribution to the Hamiltonian density of the form

Hkin
i j = −

∑

σ=↓,↑

∑

ν=◦,•
tν
�

q†
iσνq jσν + q†

jσνqiσν

�

, (19)

generically incorporates correlated hopping interactions, as discussed in detail in Ref. [43].
By contrast, correlations in hopping conflict with the canonical quasi-particle framework, ob-
structing the use of diagrammatic techniques. We may thus anticipate that their presence
favours the non-canonical regime. Thirdly, we highlight that the Hubbard interaction can be
expressed as U

∑

i θi , up to a shift of the chemical potential. As the action of θ in Eq. (16)
is linear, we see that U then plays a role akin to an additional chemical potential. That is, it
does not induce correlations from the perspective of the q . Instead it controls the splitting
in two of the electronic band, differentiating the split electrons of Eq. (18). We see here no
restriction on the value of U , but due to the singular nature of Eq. (16) we should take U → 0
when considering κ → 0. Finally, in systems with strong spin-orbit the spin and charge of
the electron get coupled, and it would be interesting to investigate to what extent this drives
correlations governed by the non-canonical formulation of the electron.

We next address a criticism sometimes made of the non-canonical formulation, which is
that it generically leads to a violation of the Luttinger sum rule [53], see e.g. Refs. [13, 43].
The sum rule states that the volume enclosed by the Fermi surface is directly proportional
to the electron density, and independent of interactions. Luttinger’s proof however is tied to
the Luttinger–Ward functional, which is defined through the canonical perturbative expansion
[54]. A later non-perturbative proof due to Oshikawa is also often cited in this context [55],
but this proof also makes the crucial assumption that the underlying DOF is canonical (see
e.g. Eq. (5) of [55]). The non-canonical formulation of the electronic DOF lies outside the
realm of these proofs. Here as U acts as an additional chemical potential for the q , via Eq. (16),
the non-canonical formulation displays a broader class of mean-field single-particle modes
than the canonical formulation, and the Luttinger sum rule is generically violated for U 6= 0.
There is no inconsistency. Instead, violation of the Luttinger sum rule can be regarded as an
observable feature which distinguishes the Hubbard Fermi liquid from the more conventional
Landau Fermi liquid. Indeed this violation inidcates that the Hubbard Fermi liquid is not
adiabatically connected to the Landau Fermi liquid, a topic which is further explored in the
Discussion.

1Indeed, that the splitting of the electron is a finite-density effect explains why it escapes the classification of
elementary particles coming from high-energy physics.
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To connect to earlier literature we highlight that the non-canonical relations above, Eqs. (13)-
(16), are equivalent to the Hubbard algebra when κ = 1. That is, we can introduce the Hub-
bard operators [11] through

Xνσ = ν̄q†
σ̄ν, Xνν = νη

z + θ + 1/4, X•◦ = η+, X◦• = η− ,

Xσν = ν̄qσ̄ν, Xσσ = σs z − θ + 1/4, X ↑↓ = s+, X ↓↑ = s− ,
(20)

evaluated at κ= 1, with σ̄ = −σ and ν̄= −ν. These satisfy the Hubbard algebra

[Xab, Xcd]∓ = δbcXad ∓δad Xcb , (21)

where the plus sign is only used when both operators in the bracket are fermionic.
Finally we remark upon a reduced description of electronic systems frequently employed,

for example in the context of the t-J model, which projects out the doubly occupied site |•〉
from the electronic basis of states. Here one may consider employing the sub-algebra gener-
ated by qσ◦ and q†

σ◦. We highlight however this admits a 3-dimensional representation only
when κ= ±1, while more generally the smallest non-trivial representation corresponds to the
4-dimensional electronic basis. The parameter κ is thus not available to organise correlations
on the reduced Hilbert space in a manner independent of the full electronic formulation. In-
deed we see from Eq. (18) that we need incorporate qσ• and q†

σ• in order to access the true
electronic correlations.

2.3 Local moment

The third and final setting we consider are local moment systems. Specifically we mean ef-
fective lattice models which have at each site both an electron and a spin (referred to as a
spin-moment to distinguish it from the electronic spin). Here an isolated site has a basis of
4×(2S+1) states, where S is the magnitude of the spin-moment. As in the previous electronic
case, there are again two distinct ways of expressing the local DOF, which cast the electron
through either a canonical or non-canonical algebra.

The canonical formulation is again the conventional one. Here the electron and the spin
are treated as independent. That is, with the electrons governed by cσ obeying the canonical
relations of Eq. (10), and the spin-moment governed by ~S obeying the su(2) relations of Eq. (4).
Formally we can denote the combined DOF as u(1|1) ⊗ u(1|1) ⊗ su(2), i.e. as two species of
fermion and a spin. One may expect that this characterisation is appropriate for behaviour
where the electrons form a Landau Fermi liquid and the spin-moments are free to order.

The non-canonical formulation of the local moment DOF can be understood as a higher di-
mensional representation of the non-canonical electronic DOF. Formally it is again the algebra
u(2|2), which now mixes all 4× (2S + 1) basis states. Here the spin-moment ~S gets entwined
with the electronic spin ~s , and it is the total spin operator

~Σ= ~s + ~S , (22)

which enters the algebra. In addition to ~Σ there are again ~η and θ , along with fermionic
generators qσν and q†

σν. The non-zero anti-commutation relations of qσν are here

{qσν,q†
σν}=

1+κ2

4 − κ
2S+1(σΣ

z − νηz),

{q↓ν,q†
↑ν}=

κ
2S+1Σ

+, {qσ◦,q
†
σ•}= −

κ
2S+1η

+,

{q↑ν,q†
↓ν}=

κ
2S+1Σ

−, {qσ•,q
†
σ◦}= −

κ
2S+1η

−,

{qσν,qσ′ν′}= {q†
σν,q

†
σ′ν′
}= 1−κ2

4 εσσ′ενν′ .

(23)
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The commutation relations of qσν with ~Σ are identical to those of Eq. (14) with ~Σ replacing
~s , and the commutation relations of qσν with ~η and θ are given by Eqs. (15) and (16) re-
spectively. Thus again we obtain a matrix version of the non-canonical form of Eq. (3). The
non-canonical electronic DOF above is included here as the case S = 0, for which ~Σ= ~s .

In Eq. (23) we have two parameters which play the role of λ in Eq. (3), both the continuous
parameter κ and the discrete parameter 1

2S+1 . We may again anticipate that employing κ to
organise correlations offers a quasi-particle description of an unconventional metal, i.e. an
analogue/another instance of the ‘Hubbard Fermi liquid’. As argued in Ref. [4], this non-
canonical formulation may be appropriate for characterising heavy-fermion behaviour found
in local moment systems. On the other hand, we may expect that employing 1

2S+1 to organise
correlations offers a quasi-particle description for magnetically ordered behaviour, useful for
both electronic and local moment systems. We further remark that as opposed to entwining a
spin-moment with the electronic spin, one could instead consider entwining a charge-moment
with the electronic charge. This would offer a distinct large-S limit, providing a means of
characterising charge order driven by electronic correlations. Neither of these two routes to
treating electronic ordering have been explored in any detail.

The non-canonical q of Eq. (23) again manifest a splitting of the electron

c†
↓ = q↑◦ − q†

↓•, c†
↑ = q↓◦ + q†

↑• . (24)

Here the q are given explicitly by

q†
↓◦ =

1
2 c↑ +

κ
2S+1

�1
2 c↑ − n↓c↑ + c↓S

− + c↑S
z
�

,

q†
↑◦ =

1
2 c↓ +

κ
2S+1

�1
2 c↓ − n↑c↓ + c↑S

+ − c↓S
z
�

,

q†
↓• = −

1
2 c†
↓ +

κ
2S+1

�1
2 c†
↓ − n↑c

†
↓ + c†

↑ S
− − c†

↓ S
z
�

,

q†
↑• =

1
2 c†
↑ −

κ
2S+1

�1
2 c†
↑ − n↓c

†
↑ + c†

↓ S
+ + c†

↑ S
z
�

,

(25)

along with their hermitian conjugates. To verify Eq. (23) algebraically it is necessary to employ
the Casimir identity ~S · ~S = S(S + 1). Both ~s and ~η take the same form as in the electronic
case, Eq. (17), while

θ = 1
2 −

1
2S+1

�

~Σ · ~Σ+ 1
3 ~η · ~η

�

, (26)

also gets modified. We may rewrite this final equation (employing ~S · ~S = S(S + 1) and
~s · ~s + ~η · ~η= 3

4) to express the Kondo coupling operator through θ as follows

~s · ~S = 1
3 ~η · ~η−

2S+1
2 θ −

1+4S2

8 . (27)

which clarifies how it acts on the q .

3 A model system

Having outlined three important examples of non-canonical DOFs in the previous section, our
goal now is to understand how they can be employed to organise correlations.

To proceed it is convenient to introduce a representative model system, so as to keep both
notations and discussion as simple as need be. We thus consider a model on a d-dimensional
hypercubic lattice with Hamiltonian

H =
∑

i, j

εi ja
†
i a j +

1
2

∑

i, j

Vi jnin j −µ
∑

i

ni , (28)
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expressed through a non-canonical DOF obeying

[ai , a†
j ]∓ = δi j

�

1−λni

�

, [ni , a†
j ] = δi ja

†
i , [ni , a j] = −δi jai , (29)

and set ni = a†
i ai . We consider the cases of bosonic and fermionic DOFs in parallel, and

take the convention that in instances of a sign ambiguity the upper/lower sign corresponds to
bosonic/fermionic ai , a†

i . We let µ control the on-site term, and so εii = Vii = 0. We assume
full translational invariance, and for simplicity we take real εi j = ε ji and Vi j = Vji , and will
use these properties freely in the following.

Let us highlight that this is not an artificial system, but is in fact an important example.
The above is a rewriting of the Heisenberg model of magnetism. Consider the Heisenberg
Hamiltonian

H = − J
S

∑

〈i, j〉

~Si · ~S j − h
∑

i

Sz
i , (30)

where 〈·, ·〉 denotes summation over nearest-neighbour pairs of sites. Employing Eq. (5) to
re-express the spin as the non-canonical DOF of Eq. (6), for which λ= 1/S, this becomes (up
to an additive constant)

H = −J
∑

〈i, j〉

�

a†
i a j + a†

j ai

�

− J
S

∑

〈i, j〉

nin j + (h+ zJ)
∑

i

ni , (31)

where z = 2d is the coordination number of the lattice. As we take n = a†a, we are fo-
cusing on the simplest S = 1/2 case. We can thus regard our model system as the spin-1/2
Heisenberg model, and our subsequent discussion can be read as an effort to formulate a non-
canonical version of spin-wave theory. The description here corresponds to ferromagnetism
for J > 0, and more complex ordering patterns are straightforwardly attained by appropri-
ately orientating the ni within the corresponding unit cell. Moreover, the model system also
covers very general electronic and local moment models upon addition of a matrix notation,
see e.g. [4, 43], but we do not incorporate this here in favour of simplicity. We emphasise
though that in the electronic setting in particular we have a matrix form of n = a†a for all
κ, and so a satisfactory quasi-particle description of our model system will yield a satisfac-
tory quasi-particle description of an unconventional metal, i.e. the Hubbard Fermi liquid of
Sec. 2.2.

We also highlight that our model system, and our subsequent analysis, reduces to the
canonical case upon setting λ= 0.

In developing a quasi-particle description the central object of interest is the retarded
single-particle Green’s function

Gi j(t − t ′) = −iϑ(t − t ′) 〈[ai(t), a†
j (t
′)]〉 , (32)

considered here at finite temperature 〈O〉 = Tr(e−βHO)
Tr(e−βH ) , with β = 1/T , and ϑ is the Heaviside

function. In the next two sections we will obtain the same Dyson form for the Green’s function
along the lines of the first and third approaches outlined in Sec. 1.1 of the Introduction.

4 Structure of the retarded Green’s function

Our objective is to understand how correlations may be organised around non-canonical DOFs.
In this section we review how this is achieved along the lines of the Mori–Zwanzig–Tserkovnikov
approach, which leads to an instructive Dyson form of the Green’s function. Specifically, here
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we follow the formalism of Tserkovnikov [17] which results in the most transparent expres-
sions. For completeness we highlight how this is related to the more familiar Mori–Zwanzig
variant of the approach in App. B. We focus our discussion on the retarded Green’s function,
which is the physical correlation function we are ultimately interested in.

It is convenient to first introduce some compact notations [56]. We define two inner prod-
ucts on the space of operators

〈O|O′〉= 〈[O,O′]〉 ,

〈〈O(t)|O′(t ′)〉〉= −iϑ(t − t ′) 〈O(t)|O′(t ′)〉 ,
(33)

in terms of which the retarded Green’s function takes the form Gi j(t − t ′) = 〈〈ai(t)|a
†
j (t
′)〉〉.

Despite translational invariance in both time and space, it proves useful to keep both site
indices and times explicit. We Fourier transform according to

Gp(ω) =
1
V

∑

i, j

∫ ∞

0

d(t − t ′) eiωt−ip(i− j)Gi j(t − t ′), Imω> 0 , (34)

with V the total number of sites, or more generally as

〈Op|O′p〉=
1
V

∑

i, j

e−ip(i− j) 〈Oi|O′j〉 ,

〈〈Op|O′p〉〉ω =
1
V

∑

i, j

∫ ∞

0

d(t − t ′) eiω(t−t ′)−ip(i− j) 〈〈Oi(t)|O′j(t
′)〉〉 , Imω> 0 .

(35)

The Green’s function is determined through its equation of motion. For this we need eval-
uate

[H , ai] = µai −
∑

l

εil(1−λni)al −
∑

l

Vilnl ai ,

[H , a†
i ] = −µa†

i +
∑

l

εl ia
†
l (1−λni) +

∑

l

Vl ia
†
i nl ,

(36)

and it is useful to express these compactly as

[H , ai] = −
∑

l

(ε̃il −µδil)al − bi ,

[H , a†
i ] =

∑

l

(ε̃l i −µδl i)a
†
l + b†

i ,
(37)

where ε̃i j denotes an effective dispersion, and bi denotes the remaining terms and in particular
the non-linear contributions responsible for inducing correlations. Let us not make an attempt
to specify ε̃i j for now.

We begin by taking the left equation of motion for Gi j(t − t ′),

i∂t 〈〈ai(t)|a
†
j (t
′)〉〉= δ(t − t ′) 〈ai|a

†
j 〉+ 〈〈iȧi(t)|a

†
j (t
′)〉〉

= δ(t − t ′) 〈ai|a
†
j 〉+

∑

l

(ε̃il −µδil) 〈〈al(t)|a
†
j (t
′)〉〉+ 〈〈bi(t)|a

†
j (t
′)〉〉 . (38)

Here the final term is responsible for correlations, and to process it we take its equation of
motion on the right,

−i∂t ′ 〈〈bi(t)|a
†
j (t
′)〉〉=δ(t − t ′) 〈bi|a

†
j 〉+

∑

l

〈〈bi(t)|a
†
l (t
′)〉〉 (ε̃l j −µδl j) + 〈〈bi(t)|b

†
j (t
′)〉〉 .

(39)
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Upon Fourier transforming, these two equations become
�

ω+µ− ε̃p

�

〈〈ap|a†
p〉〉ω = 〈ap|a†

p〉+ 〈〈bp|a†
p〉〉ω , (40)

〈〈bp|a†
p〉〉ω

�

ω+µ− ε̃p

�

= 〈bp|a†
p〉+ 〈〈bp|b†

p〉〉ω , (41)

and combining them results in

〈〈ap|a†
p〉〉ω =

〈ap|a†
p〉

ω+µ− ε̃p
−

1
ω+µ− ε̃p

�

〈bp|a†
p〉+ 〈〈bp|b†

p〉〉ω
� 1
ω+µ− ε̃p

. (42)

This already takes an instructive form. Defining for convenience the correlators2

Ii j = 〈ai|a
†
j 〉 , Ki j = 〈bi|a

†
j 〉 , Mi j(t − t ′) = 〈〈bi(t)|b

†
j (t
′)〉〉 ,

Ip = 〈ap|a†
p〉 , Kp = 〈bp|a†

p〉 , Mp(ω) = 〈〈bp|b†
p〉〉ω ,

(43)

we may cast Eq. (42) as

Gp(ω) = G0,p(ω) + G0,p(ω)Tp(ω)G0,p(ω) , (44)

with bare Green’s function

G0,p(ω) =
Ip

ω+µ− ε̃p
, (45)

and scattering matrix
Tp(ω) = I−1

p

�

Kp +Mp(ω)
�

I−1
p . (46)

4.1 Dyson form

We now recast Eq. (44) as a Dyson equation

Gp(ω) = G0,p(ω) + G0,p(ω)Σp(ω)Gp(ω) . (47)

Formally, this is immediately achieved upon introducing a self-energy through

Tp(ω) = Σp(ω) +Σp(ω)G0,p(ω)Tp(ω) . (48)

In practice, we can obtain a useful explicit expression for Σp(ω) following Tserkovnikov [17].
It is worthwhile to present the derivation, to see which information is employed.

First we re-express the left equation of motion Eq. (40) above as
�

ω+µ− ε̃p − 〈〈bp|a†
p〉〉ω 〈〈ap|a†

p〉〉
−1

ω

�

〈〈ap|a†
p〉〉ω = 〈ap|a†

p〉 , (49)

and similarly the corresponding right equation of motion as

〈〈ap|a†
p〉〉ω

�

ω+µ− ε̃p − 〈〈ap|a†
p〉〉
−1

ω
〈〈ap|b†

p〉〉ω
�

= 〈ap|a†
p〉 . (50)

Extracting 〈〈ap|a†
p〉〉
−1

ω
from the later and multiplying by 〈〈bp|a†

p〉〉ω, we obtain

〈〈bp|a†
p〉〉ω 〈〈ap|a†

p〉〉
−1

ω
=
�

〈〈bp|a†
p〉〉ω

�

ω+µ− ε̃p

�

− 〈〈bp|a†
p〉〉ω 〈〈ap|a†

p〉〉
−1

ω
〈〈ap|b†

p〉〉ω
�

〈ap|a†
p〉
−1

=
�

〈bp|a†
p〉+ 〈〈bp|b†

p〉〉ω − 〈〈bp|a†
p〉〉ω 〈〈ap|a†

p〉〉
−1

ω
〈〈ap|b†

p〉〉ω
�

〈ap|a†
p〉
−1

,

(51)

2We remark that Ii j = δi j(1−〈ni〉), and 〈ni〉 is independent of i due to translational invariance. Consequently
Ip is independent of p. It is worthwhile however to maintain site and momentum dependence as it reflects that
Ip has a matrix structure when working with DOFs more complex than that of our model system. Indeed, for the
case of multi-species DOFs we may regard the site index as a compound index which also denotes the species.
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with the second line following from Eq. (41). Substituting this back into Eq. (49) results in
�

(ω+µ)Ip − ε̃p Ip − Kp −M?
p(ω)

�

I−1
p Gp(ω) = Ip , (52)

and so we obtain that Gp(ω) takes the Dyson form of Eq. (47) with self-energy

Σp(ω) = I−1
p

�

Kp +M?
p(ω)

�

I−1
p , (53)

where the irreducible M?
p(ω) is given by

M?
p(ω) = 〈〈bp|b†

p〉〉
?

ω
= 〈〈bp|b†

p〉〉ω − 〈〈bp|a†
p〉〉ω 〈〈ap|a†

p〉〉
−1

ω
〈〈ap|b†

p〉〉ω , (54)

or explicitly in space and time as

M?
i j(t − t ′) = Vik Vl j 〈〈nk(t)ai(t)|a

†
j (t
′)nl(t

′)〉〉
?
+λ2εikεl j 〈〈ni(t)ak(t)|a

†
l (t
′)n j(t

′)〉〉
?

−λVikεl j 〈〈nk(t)ai(t)|a
†
l (t
′)n j(t

′)〉〉
?
−λεik Vl j 〈〈ni(t)ak(t)|a

†
j (t
′)nl(t

′)〉〉
?

,

(55)

with site indices in bold font denoting summation over all sites.
This final object M?

p(ω) is universal in the sense that it is insensitive to how ε̃i j is chosen

in Eq. (37). We can replace bi → iȧi , b†
i →−iȧ†

i in Eq. (54) and not alter the expression. The
combination

K?p = ε̃p Ip + Kp , (56)

is also independent of how ε̃i j is chosen. Indeed we can express this equivalently as
K?i j = 〈iȧi +µai|a

†
j 〉, which is given explicitly by

K?i j =
�

1−λ 〈ni〉
�

εi j

�

1−λ 〈n j〉
�

−λδi j

∑

l

εil 〈al a
†
i 〉+λ

2εi j

�

〈nin j〉 − 〈ni〉 〈n j〉
�

+δi j

�

1−λ 〈ni〉
�

∑

l

Vil 〈nl〉+ Vi j 〈aia
†
j 〉 −λδi j

∑

l

Vil

�

〈ninl〉 − 〈ni〉 〈nl〉
�

.
(57)

To summarise this formal analysis it is instructive to cast the Dyson equation in the form

Gp(ω) = Ip
1

(ω+µ)Ip − K?p −M?
p(ω)

Ip . (58)

Let us analyse the various contributions:

• The three factors of Ip account for the non-orthogonality of non-canonical DOFs, in con-
trast to a canonical DOF for which Ii j = δi j . The factors of Ip at each side encode a
non-trivial overlap onto the propagator in between. This becomes particularly transpar-
ent if one considers a multi-species non-canonical DOF, where the Green’s function of
one particle type may be influenced by correlations induced by the propagation of other
particle types.

• The term K?p gives the mean-field single-particle modes, encoding static correlations.
That is, neglecting M?

p(ω) gives a generalisation of the canonical Hartree–Fock approx-
imation (which is reobtained at λ= 0).

• The term M?
p(ω) encodes dynamical correlations. These are orthogonal to the mean-

field single-particle modes, and characterise their dressing as quasi-particles. The task
of computing Gp(ω) has thus been transferred to the task of computing M?

p(ω). In prin-
ciple one can recursively apply the analysis to M?

p(ω), thereby generating a hierarchical
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structure successively organising correlations in orders of orthogonality [15,17]. In prac-
tice one may seek to find an adequate approximation for M?

p(ω). The most commonly
employed approximation is the mode-coupling approximation [2,29], which decouples
the density-density correlations in Eq. (55) (see Eq. (105) below). This indeed leads to
well-defined quasi-particles, which are long-lived at low energy and low temperature,
as follows generally from Landau’s phase space argument [57].

For a closely related discussion, albeit at the level of a hydrodynamic description, see Sec. 5.6
of Ref. [58].

5 Organising correlations – the Schwinger method

We now turn to the Schwinger method [1,37], which offers a complementary means of organ-
ising the correlations of our model system. We mirror our analysis with the previous section,
and in doing so we reobtain the Dyson form of Eq. (58). This leads us to a closed expression
for M?

p(ω) taking a functional differential form. We discuss issues related to generating ap-
proximations consistent with conservation laws. We then analyse a resummation of density
correlations and derive an approximation capturing screening.

We remark that our analysis here differs from a related approach developed by Shastry
[40–42], employed also in [4,43], where a factorisation ansatz in employed to cast the Green’s
function through two self-energy-like objects. This approach also faces issues in generating
conserving approximations.

5.1 Imaginary-time formalism

The Schwinger method employs the imaginary-time formalism, where O(τ) = eτHOe−τH .
We consider here τ-ordered correlation functions in the presence of an external source U as
follows

〈O(τ1,τ2, . . .)〉=
Tr
�

e−βHT
�

UO(τ1,τ2, . . .)
�

�

Tr
�

e−βHT [U]
� , (59)

where T is the τ-ordering operator
T
�

O(τ)O′(τ′)
�

= ϑ(τ − τ′)O(τ)O′(τ′) ± ϑ(τ′ − τ)O′(τ′)O(τ). We will focus on inhomo-
geneous sources coupling to the local density,

U = exp
�

∑

i

∫ β

0

dτζi(τ)ni(τ)
�

. (60)

Denoting variations with respect to the sources as ∇i(τ) =
δ

δζi(τ+)
, we then have that

∇i(τ) 〈O(τ1,τ2, . . . ,τn)〉= 〈ni(τ)O(τ1,τ2, . . . ,τn)〉 − 〈ni(τ)〉 〈O(τ1,τ2, . . . ,τn)〉 . (61)

(Here τ+ = τ+0+ incorporates an infinitesimal regulator which ensures a consistent ordering
when τ is one of the τ1,τ2, . . . ,τn. In the following we will suppress this when unimportant.)

Our primary object of interest is the Green’s function

Gi j(τ,τ′) = −〈ai(τ)a
†
j (τ
′)〉 . (62)

This is fixed through its imaginary-time equation of motion, combined with the KMS boundary
condition

Gi j(β ,τ) = ±Gi j(0,τ) , (63)
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which follows from the cyclicity of the trace.
The Schwinger method provides a means of generating systematic approximations for

Gi j(τ,τ′). Once an approximation is identified the external sources can be set to zero, restoring
space and τ translational invariance. From the KMS boundary condition, the Fourier transform

Gp(iωn) =
1
V

∑

i, j

∫ β

0

d(τ−τ′) eiωn(τ−τ′)−ip(i− j)Gi j(τ,τ′) , (64)

is defined at the Matsubara frequencies ωn = (2n + 1/2 ∓ 1/2)πβ with n ∈ Z. Provided the
resulting approximation is manifestly causal, we can in principle then analytically continue
Gp(iωn) to all ω away from the real axis, and as a result obtain the corresponding retarded
Green’s function as

Gp(ω) = Gp(ω+ i0+) . (65)

5.2 Paired equations of motion

We proceed to analyse Gi j(τ,τ′) through its equation of motion. Let us consider simultane-
ously both the left and right equations of motion, as in the derivation of the Dyson form of the
retarded Green’s function from Eqs. (49) and (50) in Sec. 4. Here we have3

−∂τGi j(τ,τ′) + ζi(τ)Gi j(τ,τ′)− 〈[H , ai(τ)]a
†
j (τ
′)〉= Ii j(τ,τ′) ,

∂τ′Gi j(τ,τ′) +Gi j(τ,τ′)ζ j(τ
′) + 〈ai(τ)[H , a†

j (τ
′)]〉= Ii j(τ,τ′) ,

(67)

with
Ii j(τ,τ′) = δ(τ−τ′)δi j

�

1−λ 〈ni(τ)〉
�

. (68)

Evaluating the commutators from Eq. (36), and decoupling the correlations via Eq. (61), we
re-express the left-hand sides of Eqs. (67) as
�

δik

�

− ∂τ +µ+ ζi(τ)
�

− εik +λεik

�

〈ni(τ)〉+∇i(τ)
�

−δik Vil

�

〈nl(τ)〉+∇l(τ)
�

�

Gk j(τ,τ′) ,
�

δk j

�

∂τ′ +µ+ ζ j(τ
′)
�

− εk j +λεk j

�

〈n j(τ
′)〉+∇ j(τ

′)
�

−δk jVl j

�

〈nl(τ
′)〉+∇l(τ

′)
�

�

Gik(τ,τ′) .

(69)

Here site indices in bold are summed over all sites, and we will further employ τ in bold to
denote a variable integrated from 0 to β . Employing the identity ∇G = −G(∇G−1)G, we then
cast the equations of motion compactly as

Dil(τ, τ̃)Gl j(τ̃,τ′) = Ii j(τ,τ′) ,

Gil(τ, τ̃)Dl j(τ̃,τ′) = Ii j(τ,τ′) ,
(70)

upon defining

Di j(τ,τ′) = (−∂τ +µ)δ(τ−τ′)δi j +δ(τ−τ′)δi jζi(τ)−Fi j(τ,τ′) ,

Di j(τ,τ′) = (−∂τ +µ)δ(τ−τ′)δi j +δ(τ−τ′)δi jζi(τ)−F i j(τ,τ′) ,
(71)

3The contributions of both I on the right-hand side and the source ζ on the left-hand side are consequences
of the τ-ordering operator T . For the latter, the τ dependence can be seen for example as follows

Gi j(τ,τ′) = −
Tr
�

e−βHT
�

e
∑

i
∫ β
τ dτ̃ ζi (τ̃)ni (τ̃)ai(τ)e

∑

i
∫ τ

0 dτ̃ ζi (τ̃)ni (τ̃)a†
j (τ
′)
�

�

Tr
�

e−βHT [e
∑

i
∫ β

0 dτ̃ ζi (τ̃)ni (τ̃)]
�

. (66)
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with

Fi j(τ,τ′) = δ(τ−τ′)
�

1−λ 〈ni(τ)〉
�

εi j +λεilGlk(τ, τ̃)∇i(τ)G−1
k j (τ̃,τ′)

+δ(τ−τ′)δi jVil 〈nl(τ)〉 − VilGik(τ, τ̃)∇l(τ)G−1
k j (τ̃,τ′) ,

F i j(τ,τ′) = δ(τ−τ′)εi j

�

1−λ 〈n j(τ)〉
�

+λ
�

∇ j(τ
′)G−1

ik (τ, τ̃)
�

Gkl(τ̃,τ′)εl j

+δ(τ−τ′)δi j 〈nl(τ)〉Vl i −
�

∇l(τ
′)G−1

ik (τ, τ̃)
�

Gk j(τ̃,τ′)Vl j .

(72)

Here we have introduced a notation of putting a line over objects originating from the right
equation of motion.

We now combine the left and right equations to establish a direct equivalence with the
analysis of Sec. 4. To proceed we can either evaluate F using G−1 =DI−1, i.e. that

Gik(τ, τ̃)∇l(τ
′′)G−1

k j (τ̃,τ′) = Gil(τ,τ′′)I−1
l j (τ

′′,τ′)− Gik(τ, τ̃)
�

∇l(τ
′′)Fkk ′(τ̃, τ̃′)

�

I−1
k ′ j(τ̃

′,τ′)

+λ
�

∇l(τ
′′) 〈ni(τ)〉

�

I−1
i j (τ,τ′) ,

(73)

where for the final term we use GD = I and I∇I−1 = −(∇I)I−1 = λ(∇〈n〉)I−1, or alterna-
tively evaluate F using G−1 = I−1D, i.e. that
�

∇l(τ
′′)G−1

ik (τ, τ̃)
�

Gk j(τ̃,τ′) = I−1
il (τ,τ′′)Gl j(τ

′′,τ′)− I−1
ik (τ, τ̃)

�

∇l(τ
′′)Fkk ′(τ̃, τ̃′)

�

Gk ′ j(τ̃
′,τ′)

+λI−1
i j (τ,τ′)

�

∇l(τ
′′) 〈n j(τ

′)〉
�

.

(74)

Focusing first on the left equation of motion, we can thus express F as

Fi j(τ,τ′) =K?il(τ)I
−1
l j (τ,τ′) +M?

il(τ, τ̃)I−1
l j (τ̃,τ′) , (75)

where

K?i j(τ) =
�

1−λ 〈ni(τ)〉
�

εi j

�

1−λ 〈n j(τ)〉
�

+λδi jεilGl i(τ,τ) +λ2εi j∇i(τ) 〈n j(τ)〉

+δi j

�

1−λ 〈ni(τ)〉
�

Vil 〈nl(τ)〉 − Vi jGi j(τ,τ)−λδi jVil∇l(τ) 〈ni(τ)〉 ,
(76)

which reduces to K?i j of Eq. (57) upon switching off the sources, and

M?
i j(τ,τ′) = VilGik(τ, τ̃)∇l(τ)Fk j(τ̃,τ′)−λεilGlk(τ, τ̃)∇i(τ)Fk j(τ̃,τ′) . (77)

In this way we have cast the left equation of motion in the form
�

�

−∂τ+ζi(τ)
�

Iil(τ, τ̃)−K?il(τ)δ(τ−τ̃)−M
?
il(τ, τ̃)

�

I−1
lk (τ̃, τ̃′)Gk j(τ̃

′,τ′) = Ii j(τ,τ′) , (78)

which is a direct analogue of Eq. (52) above. As a consequence it follows that M?
p(ω+ i0+)

is precisely equivalent to M?
p(ω) of Eq. (55) in the zero source limit, and a straightforward

yet lengthy manipulation of the∇F terms in Eq. (77) from Eq. (72) indeed demonstrates that
this is so.

Similarly the right equation of motion takes the form

Gik(τ, τ̃)I−1
kl (τ̃, τ̃′)

�

�

∂τ′ + ζ j(τ
′)
�

Il j(τ̃
′,τ′)−δ(τ̃′ −τ′)K?l j(τ

′)−M?
l j(τ̃

′,τ′)
�

= Ii j(τ,τ′) ,
(79)

where here we use Eq. (74) to express

F i j(τ,τ′) = I−1
il (τ,τ′)K?l j(τ

′) + I−1
il (τ, τ̃)M?

l j(τ̃,τ′) , (80)

17

https://scipost.org
https://scipost.org/SciPostPhys.10.3.075


SciPost Phys. 10, 075 (2021)

with

K?i j(τ) =
�

1−λ 〈ni(τ)〉
�

εi j

�

1−λ 〈n j(τ)〉
�

+λδi jGil(τ,τ)εl i +λ
2εi j∇ j(τ) 〈ni(τ)〉

+δi j

�

1−λ 〈ni(τ)〉
�

Vl i 〈nl(τ)〉 − Vi jGi j(τ,τ)−λδi jVl i∇l(τ) 〈ni(τ)〉 ,
(81)

and

M?

i j(τ,τ′) = Vl j

�

∇l(τ
′)Fik(τ, τ̃)

�

Gk j(τ̃,τ′)−λεl j

�

∇ j(τ
′)Fik(τ, τ̃)

�

Gkl(τ̃,τ′) . (82)

We have Ki j(τ) = K?i j(τ) as ∇i(τ) 〈n j(τ)〉 = ∇ j(τ) 〈ni(τ)〉 = 〈ni(τ)n j(τ)〉 − 〈ni(τ)〉 〈n j(τ)〉
is the static susceptibility, and using symmetries of εi j and Vi j . Again M?

p(ω + i0+) can be
explicitly seen to be equivalent to M?

p(ω) in the zero source limit.
This paired set of functional differential equations, Eqs. (75)-(77) and Eqs. (80)-(82), thus

provide exact closed expressions for K?p and M?
p(ω) appearing in Eq. (58), framed in terms of

the unknown Gp(ω). There are no known methods for solving such equations in general
however. Instead we may proceed as is done in the canonical case by evaluating the above
functional derivatives in a perturbative manner, yielding self-consistent equations for Gp(ω),
and thereby organising the correlations around the underlying DOF.

As we cast our analysis here largely in parallel with that of Sec. 4, let us emphasise the dif-
ference. Previously Eq. (52) was obtained by treating correlated terms through their equations
of motion, whereas here Eq. (78) is obtained by relating the correlated terms to variations of
the external sources via Eq. (61). The advantage of the present approach is that we can ma-
nipulate the functional derivative, providing a systematic means of organising correlations.
Moreover, the Schwinger approach provides a powerful framework upon which resummations
of correlations can be formulated. We return to this below in Sec. 5.4 where we obtain an
approximation which captures the screening of density correlations.

5.3 Conserving approximations

Key to our derivation here has been to analyse the left and right equations of motion in tandem.
This enabled us to identify M?, or equivalently M?

, related to the Dyson form of Sec. 4. Ulti-
mately the purpose of these equations is to generate approximations for the Green’s function,
and the question arises whether results obtained from Eqs. (77) and (82) are consistent. From
Eq. (70) we have that DI = ID, and consequently we should require that any approximate
computation should yield a result satisfying the consistency condition

M?
i j(τ,τ′)

?
=M?

i j(τ,τ′) . (83)

This is an important issue. Consistency guarantees that an approximation is manifestly
causal, thus permitting access to the retarded Green’s function through Eq. (65). Moreover,
that Eq. (83) is obeyed in the presence of external sources is the key condition for having
a conserving approximation in the sense of Baym–Kadanoff [1, 59], whose analysis carries
over to the non-canonical case largely unchanged. That is, it is essential for ensuring that an
approximation respects conservation laws for conserved charges, as well as for momentum
and energy, and is thus capable of adequately describing transport phenomena.

This is also a delicate issue. To demonstrate, let us note that any effort to compute and
equate M? and M?

gives rise to corresponding terms of the form

∇i(τ) 〈n j(τ
′)〉 ?
=∇ j(τ

′) 〈ni(τ)〉 . (84)

Indeed the τ = τ′ version of this condition already appears upon equating K? of Eq. (76)
with K? of Eq. (81). Formally this equality is certainly true, as both sides equal the dynam-
ical susceptibility χi j(τ,τ′) = 〈ni(τ)n j(τ′)〉 − 〈ni(τ)〉 〈n j(τ′)〉. The question is whether this
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equality can be maintained upon evaluating the source derivatives, and ultimately taking an
approximation. Let us first discuss the issues that arise, and we then comment upon possible
routes towards a resolution.

To compute the source derivatives in Eq. (84) we relate the local expectation value of the
density to the Green’s function through 〈ni(τ)〉= 〈a

†
i (τ)ai(τ)〉= ∓Gii(τ,τ+), which yields

∇i(τ) 〈n j(τ
′)〉= ±G jk(τ

′, τ̃)
�

∇i(τ)G−1
kl (τ̃, τ̃′)

�

Gl j(τ̃
′,τ′ + 0+) . (85)

As in the previous subsection, we can evaluate∇G−1 using either G−1 =DI−1 or G−1 = I−1D,
i.e. Eq. (73) or Eq. (74). In the previous case there was a natural asymmetry between the left
and right equations of motion, and it was unambiguous which form of G−1 to use in evaluating
F and F from Eq. (72). In contrast here Eq. (85) has a symmetric form, which now gets
broken. Employing Eq. (73) gives

∇i(τ) 〈n j(τ
′)〉= ±λ

�

∇i(τ) 〈n j(τ
′)〉
�

G j j(τ
′,τ′ + 0+)± G ji(τ

′,τ)I−1
il (τ, τ̃)Gl j(τ̃,τ′)

∓ G jk(τ
′, τ̃)

�

∇i(τ)Fkk ′(τ̃, τ̃′)
�

I−1
k ′l(τ̃

′, τ̃′′)Gl j(τ̃
′′,τ′) ,

(86)

while employing Eq. (74) gives

∇i(τ) 〈n j(τ
′)〉= ±λ

�

∇i(τ) 〈n j(τ
′)〉
�

G j j(τ
′,τ′ + 0+)± G jl(τ

′, τ̃)I−1
l i (τ̃,τ)Gi j(τ,τ′)

∓ G jl(τ
′, τ̃)I−1

lk (τ̃, τ̃′)
�

∇i(τ)Fkk ′(τ̃
′, τ̃′′)

�

Gk ′ j(τ̃
′′,τ′) .

(87)

The resulting expressions differ, but only slightly through the (∇F)I−1 vs. I−1(∇F) terms,
recalling that I is given by Eq. (68). Neither expression however, nor a combination of them,
are symmetric under i ↔ j, τ↔ τ′, and thus the consistency condition of Eq. (84) is in
general violated.

It is perhaps worth highlighting that for a canonical DOF this issue is bypassed. There
one has λ = 0 and I−1

i j (τ,τ′) = δ(τ− τ′)δi j . Then perturbatively evaluating ∇F or ∇F one
does obtain symmetric expressions. Indeed it is consistency conditions, of which Eq. (84) is a
special case, which underlie the Baym–Kadanoff construction of the canonical Luttinger–Ward
functional [60]. We may view the difficulties faced here as an obstruction to a straightforward
construction of an analogous functional for non-canonical DOFs.

One route forward is to switch attention to more general external sources of the form

U = exp
�∑

i, j

∫ β

0 dτdτ′ ζi j(τ,τ′)a†
i (τ)a j(τ′)

�

. Indeed such source terms are useful for
analysing vertex corrections, which play an important role in the microscopic derivation of
a Fermi liquid. A subtlety here is that such sources induce correlations for a non-canonical
DOF, i.e. Eqs. (67) become

−∂τGi j(τ,τ′) + ζil(τ, τ̃) 〈
�

1−λni(τ)
�

al(τ̃)a
†
j (τ
′)〉 − 〈[H , ai(τ)]a

†
j (τ
′)〉= Ii j(τ,τ′) ,

∂τ′Gi j(τ,τ′) + 〈ai(τ)a
†
l (τ̃)

�

1−λn j(τ
′)
�

〉ζl j(τ̃,τ′) + 〈ai(τ)[H , a†
j (τ
′)]〉= Ii j(τ,τ′) .

(88)

It is not immediately clear to what extent these additional non-canonical contributions permit
a convenient reorganisation of correlations. We leave this as an interesting direction for further
study.

We also comment that the consistency issue encountered here may be attributed to the use
of the operator identity n = a†a in the evaluation of Eq. (85), whereas aside from this we
have limited ourselves to the algebraic relations defining the DOF, Eq. (29). An alternative
route forward is to use the exact equivalence of both sides of Eq. (84) with the dynamical
susceptibility χi j(τ,τ′). It is not straightforward to organise correlations for χi j(τ,τ′) directly
as the n may commute to zero, but it can instead be convenient to proceed via the Kubo–Mori
relaxation function [61–63], or equivalently to analyse density correlations in combination
with current correlations. Indeed this is employed extensively in the study of collective modes
in the works of Plakida and coworkers [2]. It may prove instructive to reformulate this within
the Schwinger approach, and we leave this as another interesting direction for further study.
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5.4 Screening of density correlations

A great power of the canonical framework is its diagrammatic formulation, which allows for
an intuitive analysis of the resummation of correlations. Such resummations can nevertheless
be equivalently formulated within the Schwinger approach. In this section we set aside the
question of how to generate conserving approximations, and now focus on making a resum-
mation of density-induced correlations [1,64,65] within our formalism. In doing so we obtain
a screening approximation which can be viewed as an analogue of the commonly employed
RPA and GW approximations for canonical DOFs.

We return to the equations of motion for G above, Eqs. (70). We now proceed by intro-
ducing effective sources, combining the density contributions with the external sources,

ξi j(τ) = δi j

�

ζi(τ)− Vil 〈nl(τ)〉
�

+λεi j 〈ni(τ)〉 ,

ξi j(τ) = δi j

�

ζi(τ)− 〈nl(τ)〉Vl i

�

+λεi j 〈n j(τ)〉 .
(89)

It is then convenient to re-express Eqs. (71) as follows

Di j(τ,τ′) =
�

−δi j∂τ + ξi j(τ)− εi j

�

δ(τ−τ′)−Ri j(τ,τ′) ,

Di j(τ,τ′) =
�

−δi j∂τ + ξi j(τ)− εi j

�

δ(τ−τ′)−Ri j(τ,τ′) ,
(90)

with

Ri j(τ,τ′) = λεilGl l ′(τ, τ̃)∇i(τ)G−1
l ′ j (τ̃,τ′)− VilGil ′(τ, τ̃)∇l(τ)G−1

l ′ j (τ̃,τ′) ,

Ri j(τ,τ′) = λ
�

∇ j(τ
′)G−1

il ′ (τ, τ̃)
�

Gl ′l(τ̃,τ′)εl j −
�

∇l(τ
′)G−1

il ′ (τ, τ̃)
�

Gl ′ j(τ̃,τ′)Vl j .
(91)

We further introduce effective vertices

Γi j,kl(τ,τ′;τ′′) =
δG−1

i j (τ,τ′)

δξkl(τ′′)
, Γ kl,i j(τ

′′;τ,τ′) =
δG−1

i j (τ,τ′)

δξkl(τ′′)
, (92)

related to the bare vertex as

∇l(τ
′′)G−1

i j (τ,τ′) = Γi j,kk ′(τ,τ′; τ̃)Ykk ′,l(τ̃,τ′′) = Y l,kk ′(τ
′′, τ̃)Γ kk ′,i j(τ̃;τ,τ′) , (93)

where

Yi j,l(τ,τ′) =∇l(τ
′)ξi j(τ), Y l,i j(τ,τ′) =∇l(τ)ξi j(τ

′) . (94)

Maintaining the logic of Sec. 5.2 above, Eq. (91) then takes the form

Ri j(τ,τ′) =λεilGl l ′(τ, τ̃)Y i,kk ′(τ, τ̃′)Γ kk ′,l ′ j(τ̃
′; τ̃,τ′)

− VilGil ′(τ, τ̃)Y l,kk ′(τ, τ̃′)Γ kk ′,l ′ j(τ̃
′; τ̃,τ′)

Ri j(τ,τ′) =λΓil ′,kk ′(τ, τ̃; τ̃′)Ykk ′, j(τ̃
′,τ′)Gl ′l(τ̃,τ′)εl j

− Γil ′,kk ′(τ, τ̃; τ̃′)Ykk ′,l(τ̃
′,τ′)Gl ′ j(τ̃,τ′)Vl j .

(95)

The objects Yi j,l(τ,τ′) and Y i j,l(τ,τ′) are analogues of the inverse dielectric function, and
upon evaluating the variational derivative we can relate them to the dynamical susceptibility
χi j(τ,τ′) = 〈ni(τ)n j(τ′)〉 − 〈ni(τ)〉 〈n j(τ′)〉=∇i(τ) 〈n j(τ′)〉=∇ j(τ′) 〈ni(τ)〉 as follows

Yi j,l(τ,τ′) = δi jδilδ(τ−τ′)−δi jVikχk l(τ,τ′) +λεi jχil(τ,τ′) ,

Y l,i j(τ,τ′) = δi jδilδ(τ−τ′)−δi jVk iχlk(τ,τ′) +λεi jχl j(τ,τ′) .
(96)
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Let us further define analogues of the polarisation

Pl,i j(τ,τ′) =
δ 〈nl(τ)〉
δξi j(τ′)

, P i j,l(τ,τ′) =
δ 〈nl(τ′)〉

δξi j(τ)
. (97)

Then expressing the dynamical susceptibility through variations of the effective source

χi j(τ,τ′) = Pi,kk ′(τ, τ̃)Ykk ′, j(τ̃,τ′) = Y i,kk ′(τ, τ̃)Pkk ′, j(τ̃,τ′) , (98)

leads to a pair of closed equations for χ,

χi j(τ,τ′) = Pi, j j(τ,τ′)−Pi,kk(τ, τ̃)Vklχl j(τ̃,τ′) +λPi,kl(τ, τ̃)εklχk j(τ̃,τ′) ,

χi j(τ,τ′) = P ii, j(τ,τ′)−χil(τ, τ̃)VlkPkk, j(τ̃,τ′) +λχil(τ, τ̃)εklPkl, j(τ̃,τ′) .
(99)

These equations capture the resummation of density-induced correlations. For a conserving
approximation the results they yield are equivalent.

We now focus on the simplest approximation which is to take the leading contribution to
the effective vertices

Γi j,kl(τ,τ′;τ′′) = I−1
ik (τ,τ′)δ jlδ(τ

′ −τ′′) ,

Γ kl,i j(τ
′′;τ,τ′) = δikδ(τ−τ′′)I−1

l j (τ,τ′) .
(100)

We also now set the external sources ζi(τ) to zero. It is convenient here to write
Ii j(τ,τ′) = δ(τ−τ′)δi jI, with I = 1−λ 〈n〉 which is now independent of both i and τ. Con-
sidering first the resummed dynamical susceptibility, we employ
〈ni(τ)〉= 〈a

†
i (τ)ai(τ)〉= ∓Gii(τ,τ+) to write

Pl,i j(τ,τ′) = ±Gl i(τ,τ′)I−1G jl(τ
′,τ), P i j,l(τ,τ′) = ±Gl i(τ

′,τ)I−1G jl(τ,τ′) . (101)

The pair of closed Eqs. (99) then become

χi j(τ,τ′) = ±Gi j(τ,τ′)I−1G ji(τ
′,τ)∓ Gik(τ, τ̃)I−1Gk i(τ̃,τ)Vklχl j(τ̃,τ′)

±λGik(τ, τ̃)I−1εklGl i(τ̃,τ)χk j(τ̃,τ′) ,

χi j(τ,τ′) = ±G ji(τ
′,τ)I−1Gi j(τ,τ′)∓χil(τ, τ̃)VlkG jk(τ

′, τ̃)I−1Gk j(τ̃,τ′)

±λχil(τ, τ̃)G jk(τ
′, τ̃)εklI−1Gl j(τ̃,τ′) ,

(102)

which upon Fourier transforming give

χp(iνn) =
Xp(iνn)

1+ VpXp(iνn)−λX ε
p (iνn)

, (103)

where

Xp(iνn) = ±
1
βV

∑

m,q

Gp+q(iνn + iωm)I−1Gq(iωm) ,

X ε
p (iνn) = ±

1
βV

∑

m,q

Gp+q(iνn + iωm)I−1εqGq(iωm) .
(104)

This generalises the canonical RPA approximation (which is reobtained at λ = 0) to non-
canonical DOFs.
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Finally, we return to R and R of Eqs. (95). Substituting the approximation of Eqs. (100),
and Fourier transforming, they both lead to the same approximation, conveniently expressed
as

K?p = εpI2 + V0I 〈n〉 − 1
βV

∑

m,q

(Vq −λεp−q)Gp−q(iωm) ,

M?
p(iωn) =

1
βV

∑

m,q

(Vq −λεp−q)
2χq(iνm)Gp−q(iωn − iνm) .

(105)

The expression forK? suppresses the subleading static susceptibility contributions from Eq. (57).
The expression for M? gives the mode-coupling approximation referred to above in our dis-
cussion of Eq. (58), with the improvement that here χ takes the RPA form of Eq. (103). This
approximation can be viewed as a non-canonical analogue of the GW approximation [64,65],
which is reobtained at λ= 0 as follows

Gp(iωn) =
1

iωn +µ− εp − V0 〈n〉+
1
βV
∑

m,q Gp−q(iωn − iνm)Wq(iνm)
, (106)

where V0 〈n〉 is the Hartree contribution and Wp(iνn) = Vp − V 2
p χp(iνn) =

Vp

1+VpXp(iνn)
is the

dynamically screened exchange interaction. For a non-canonical DOF the approximation does
not admit such a simple interpretation as a screening of the interaction, but it is not so much
more complicated either. We leave detailed study of specific applications of this approximation
to future work.

6 Discussion

We stop short of investigating specific applications. Indeed there already exist extensive bodies
of work demonstrating the usefulness of non-canonical DOFs for magnetically ordered systems
[6–10], as well as for the pseudogap regime of the cuprates [2, 3]. Our purpose here is not
to redo these works, but rather to more generally justify their approach so that a broader
consensus on their value can be formed.

In this Discussion we wish instead to explore in general terms what the non-canonical
paradigm can offer. To proceed let us adopt the perspective of assuming that non-canonical
algebras do indeed provide legitimate quantum DOFs, to see where this leads. We will find
that the interplay between canonical and non-canonical regimes provides a powerful principle
for organising the phase diagram of correlated electronic behaviour, as summarised in Fig. 1.

Canonical and non-canonical DOFs offer different ways of organising correlations, i.e. they
lead to distinct quasi-particle descriptions. This is most clearly the case in the electronic and
local moment settings, where the electron’s DOF can be cast in either a canonical or non-
canonical form as discussed in Secs. 2.2 and 2.3. To better discuss the interplay between the
two, it is useful to first consider some limits to their range of applicability.

We can associate the breakdown of a quasi-particle description with the emergence of crit-
ical correlations in a system. Perhaps the most prominent instance of this is the occurrence of
second order phase transitions. Here universal power-law correlations take over, as most con-
veniently characterised through the formalism of renormalisation group [68]. It is illustrative
to take briefly the example of spin systems. As discussed throughout this paper, the spin-wave
quasi-particle description of magnetically ordered systems may be formulated through the
non-canonical spin DOF of Eq. (6). As the transition temperature is approached however, we
have that 〈n〉 approaches S, leading to the breakdown of the perturbative expansion underly-
ing the quasi-particle description concurrent with the divergence of the correlation length and
the emergence of critical correlations.
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Figure 1: A schematic phase diagram for the metallic behaviour of correlated elec-
trons. There are two distinct ways of organising electronic correlations, the canonical
(Landau) description and the non-canonical (Hubbard) description, and critical be-
haviour emerges where these compete. At low temperature there may be a first-order
transition, as seen for example within DMFT [66], or more generally this may be hid-
den by an ordered phase, for example d-wave superconductivity in the case of the
cuprate compounds [67].

In a similar vein, a quasi-particle description generically breaks down as a system’s ge-
ometry becomes strictly 1D [69–71]. Here again criticality emerges, with low-energy gapless
behaviour characterised by the conformally invariant Luttinger liquid. The underlying DOFs
are fractionalised, as is clearly seen for certain high-symmetry models solvable by Bethe ansatz,
which correspond to limits where the excited modes scatter elastically [72, 73]. In spin sys-
tems magnons deconfine into spinons [74, 75], while electronic systems exhibit spin-charge
separation [76, 77]. Indeed, in passing let us remark more generally that we may not ex-
pect local DOFs as discussed in this paper to be appropriate for phenomena characterised by
fractionalisation, e.g. quantum spin liquids [78] and fractional quantum Hall states [79].

Another key example is the Kondo effect. The critical nature of this phenomena has
been established through Wilson’s renormalisation group analysis [80], the Bethe ansatz solu-
tion [81,82], and the conformal field theory description [83,84]. These place it beyond reach
of a quasi-particle description. Nevertheless, Nozières demonstrated that the low-energy fixed-
point admits a Fermi liquid description where one electron forms a singlet with the impurity
spin [85] (c.f. Eq. (130) of App. A). On the other hand, the high-energy fixed point corre-
sponds to a canonical Fermi liquid and a decoupled spin. The emergence of criticality at the
Kondo temperature arises from the competition between these two distinct ways of organising
correlations.

A closely related phenomena is the Mott metal-insulator transition [86, 87]. This occurs
when electronic correlations induce the opening of a gap within an electronic band, in conflict
with the essence of Landau’s conception of an electronic quasi-particle. A powerful frame-
work for addressing this is dynamical mean-field theory (DMFT) [66]. The method is exact in
infinite dimensions, where spatial correlations are suppressed but dynamical correlations sur-
vive. DMFT allows for the computation of the local Green’s function through a self-consistent
mapping to an Anderson impurity model [88]. This mapping is formal, it does not reflect any
choice of underlying DOFs. Indeed the Anderson impurity model exhibits the Kondo effect,
and in general it is solved via unbiased numerical methods. DMFT thus offers an approach
which is complementary to a quasi-particle description. Although often its results are inter-
preted through a quasi-particle lens, its great strength lies in its ability to characterise phe-
nomena beyond the reach of a quasi-particle framework. Its limitation however is that, being
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inherently local, it is not well-suited to capturing spatial correlations, and for this task a quasi-
particle description is more appropriate. Let us proceed to briefly summarise what DMFT tells
us, and then discuss how this can be interpreted through the interplay of the canonical and
non-canonical quasi-particle descriptions.

Within the context of the Hubbard model, single-site DMFT exhibits a Mott transition be-
tween metallic and insulating states which is first-order at low temperatures [66]. Critical scal-
ing is observed in the crossover region at temperatures above the end-point of the first-order
transition [89–91]. More modern cluster DMFT studies indicate that the low-temperature
first-order transition extends away from the Mott transition to finite doping [92,93]. Here the
Mott gap is seen to border an unconventional metallic state, with the first-order transition to
a conventional metallic state occurring subsequently upon increased doping. The first-order
transition may also get hidden behind an ordered phase [94,95].

These results admit a natural interpretation in view of the two formulations of the elec-
tronic DOF discussed in Sec. 2.2. The conventional metallic state is straightforwardly identified
as the canonical quasi-particle regime, i.e. as a Landau Fermi liquid. It is similarly automatic to
identify the unconventional metallic state as that of non-canonical electronic quasi-particles,
i.e. as a Hubbard Fermi liquid. Indeed we recall that this non-canonical regime manifests
a splitting of the electron, Eq. (18), which inherently describes a metallic state bordering a
Mott gap. We thus interpret the DMFT results as indicating a first-order transition between
the canonical (Landau) and non-canonical (Hubbard) quasi-particle regimes at low tempera-
ture (which may get hidden behind an ordered phase), along with a critical regime at higher
temperatures.

We attribute the critical regime to competition between the two distinct ways of organ-
ising electronic correlations, as summarised in Fig. 1. This is similar in spirit to the notions
of local quantum criticality [96] and Mott quantum criticality [90], and is also reminiscent of
the holographic description of quantum criticality [58, 97]. It may be convenient to visualise
its emergence as follows. Distinct quasi-particle descriptions represent distinct structures in
the energy spectrum. To continuously interpolate between two quasi-particle regimes neces-
sitates that these structures get washed out in between, giving rise to a maximally ergodic
regime (up to global symmetries) exhibiting critical dynamical correlations. In the absence of
a quasi-particle structure, such a regime could be characterised by a hydrodynamic description
accounting for the diffusion of the globally conserved charges, see e.g. [58].

We have focused the discussion on the theoretical description of electronic systems. Let us
round out by highlighting that the above analysis is mirrored by the experimental situation.
A unifying theme in the study of strongly correlated materials is the observation of distinct
metallic regimes separated by a regime of quantum criticality. Hallmark examples are the
cuprates, where a critical ‘strange metal’ lies between the pseudogap and Fermi liquid metallic
regimes [67], and the heavy-fermion compounds where a similarly quantum critical regime
is seen to separate conventional Fermi liquid and heavy Fermi liquid regimes [98]. In both
cases, a low-temperature transition between the distinct metallic regimes is unambiguously
observed in Hall coefficient measurements [99, 100]. These systems are thus naturally inter-
pretated through the generic phase diagram of Fig. 1, with the pseudogap and heavy Fermi
liquid regimes identified as potential examples of Hubbard Fermi liquids. This is indeed con-
sistent with the theoretical studies cited above [2–4].

By contrast, the more conventional way to characterise the phase diagrams of these systems
is to attribute the critical regime to an underlying quantum critical point [101–105], i.e. to a
continuous phase transition taking place at zero temperature. This has some relevance for the
heavy-fermion compounds where there may occur a magnetic transition concurrent with the
transition between conventional and heavy Fermi liquid regimes [104]. It has perhaps clouded
interpretations of systems such as the cuprates however, where all evidence points against the
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existence of an analogous quantum critical point, even one of a hidden variety [99]. If though
we instead attribute the critical behaviour to competition between quasi-particle regimes we
reconcile this discrepancy in a simple manner. A magnetic transition may occur at the quasi-
particle transition in the heavy-fermion case as in the canonical regime there is a spin-moment
which is free to order, whereas this gets entwined into the electronic DOF in the non-canonical
regime. There is no analogue in an effective purely electronic setting as neither formulation
of the electronic DOF leave something independent of it.

7 Conclusion

In this paper we have addressed interacting quantum systems from the perspective of how cor-
relations may be organised. We have focused in particular on whether non-canonical algebras
can provide legitimate quantum DOFs. While we have not obtained a definitive answer, we
have seen that this is still very much a work in progress. We have obtained a closed expression,
Eqs. (75)-(82), for a self-energy-like object M?

p(ω) appearing in the Dyson form of Eq. (58).
We further made an RPA-like resummation of density-induced correlations, Eq. (103), leading
to a GW-like approximation for the Green’s function, Eq. (105), which has a comparable level
of complexity to its canonical counterpart. We have also highlighted issues related to gener-
ating conserving approximations, and have discussed routes forward related to the study of
vertex corrections, collective modes and transport.

We have provided a coherent description of key examples of non-canonical DOFs, those for
spin, electron and local moment systems. We have emphasised the appearance of parameters
λ inherent to their respective algebras, and have discussed the role these play in organising
correlations. We have also highlighted large-S limits suitable for characterising spin and charge
order of electronic origin, which have yet to be analysed.

We have paid particular attention to the non-canonical formulation of the electronic DOF.
We have argued in favour of a non-canonical Hubbard Fermi liquid, distinct from the canonical
Landau Fermi liquid. We have clarified how this provides a unified description of electron
and local moment systems. We have complemented our analysis with discussions of both the
emergence of criticality and of DMFT, resulting in a proposal of a generic phase diagram for
the metallic behaviour of correlated electrons, Fig. 1.

Acknowledgements. We are grateful to M. Grandadam and C. Pépin for useful discussions,
and E. Ilievski and N. Plakida for valuable comments on the manuscript. This work is supported
by the ANR IDTODQG project grant ANR-16-CE91-0009 of the French Agence Nationale de la
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A Lie superalgebra u(N |M)

In Sec. 2 we described non-canonical DOFs for spin, electron, and local moment systems.
In this appendix we provide a more formal overview of the underlying algebraic structures,
along with their representations. This allows for a better understanding of the origins of the
non-canonical DOFs, and also reveals how they relate to certain slave-particle formulations
of lattice models frequently invoked in theoretical studies of condensed matter systems [106–
108].

We focus on the family of Lie superalgebras u(N |M) (we adopt a physicist’s convention
and do not distinguish between u(N |M) and gl(N |M), nor between su(N |M) and sl(N |M)).
Firstly, the algebra su(N |M) is generated by a set of operators Qa

α, Q†α
a , La

b, Rα
β

and C , with
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a = 1,2, . . . , N and α = 1, 2, . . . , M . The pair Qa
α and Q†α

a are fermionic, obeying the anti-
commutation relations

{Qa
α,Q†β

b }= δ
a
bδ
β
αC +δβαLa

b +δ
a
bRβα . (107)

The La
b and Rα

β
generate two bosonic sub-algebras, su(N) and su(M) respectively,

[La
b, J c] = δc

bJ a − 1
N δ

a
bJ c , [Rαβ , Jγ] = δγ

β
Jα − 1

Mδ
α
β Jγ ,

[La
b, Jc] = −δa

c Jb +
1
N δ

a
bJ c , [Rαβ , Jγ] = −δαγ Jβ + 1

Mδ
α
β Jγ ,

(108)

where J denotes any generator with appropriate index. The generator C obeys

[C ,Qa
α] =

M−N
N M Qa

α, [C ,Q†α
a ] =

N−M
N M Q†α

a , (109)

and is central if N = M , i.e. it then commutes with all generators. The algebra su(N |M) is
extended to u(N |M) by incorporating an additional generator D obeying

[D,Q†α
a ] = Q†α

a , [D,Qa
α] = −Qa

α , (110)

and commuting with all other generators.
It is useful to introduce an oscillator (slave-particle) realisation of u(N |M) as follows

Qa
α = b†

a fα, Q†α
a = f †

α ba ,

La
b = b†

abb −
1
N δ

a
bb†

c bc , Rαβ = f †
α fβ −

1
Mδ

α
β f †
γ fγ ,

C = 1
N b†

aba +
1
M f †

α fα ,

D = −1
2 b†

aba +
1
2 f †
α fα ,

(111)

where ba and fα are canonical bosons and fermions respectively, summation over repeated
indices is implied, and D is defined up to a constant shift. In the following we shall denote
the common vacuum of b†

a and f †
α by |Ω〉. As b†

aba + f †
α fα commutes with all generators, a

representation can be constructed for each positive integer N by restricting to the space of
states obeying the constraint

b†
aba + f †

α fα =N . (112)

Representations obtained in this way are commonly referred to as ‘atypical’ or ‘short’. In par-
ticular, if N = M then C is central and its eigenvalue is fixed through NC =N , referred to as
the shortening condition.

The fundamental representation of u(N |M) is (N + M)-dimensional. In the oscillator re-
alisation this corresponds to taking N = 1, i.e. the basis is given by the one-particle states.
It is instructive also to consider a matrix realisation for the fundamental representation. The
generators of su(N |M) are then regarded as the (N + M) × (N + M) matrices with zero su-

pertrace, where for a general matrix M =

�

A B
C D

�

the condition of zero supertrace is

str M = trA− trD = 0. Schematically the generators take the form

Q =

�

0 ∗
0 0

�

, Q† =

�

0 0
∗ 0

�

, L=

�

∗ 0
0 0

�

, R =

�

0 0
0 ∗

�

, (113)

where ∗ denotes the existence of non-zero entries. The generator C is diagonal, and for N = M
it is proportional to the identity. The extension to u(N |M) is given by

D =

�

−1
2IN×N 0

0 1
2IM×M

�

, (114)

which has non-zero supertrace.
Next we consider specific examples, which are both of interest in their own right and

moreover serve to illustrate the general structure.
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Spin su(2): We can regard su(2) in terms of su(N |M) as either N = 2, M = 0 or N = 0,
M = 2. In either case the fermionic generators Q, Q† drop out, and the algebra reduces to one
or other of the bosonic subalgebras.

In the first case N = 2, M = 0 the surviving non-trivial generators are L. These can be
related to ~S through Sz = L2

2 = −L1
1, S+ = L2

1, S− = L1
2. The oscillator realisation of L gives

the Schwinger boson formulation of su(2). The family of representations determined through
the constraint b†

1b1 + b†
2b2 = N , provide all (2S + 1)-dimensional multiplets |S, m〉 of su(2),

where N = 2S and S is the magnitude of the spin. For each N , the basis can be expressed
explicitly as

|S, m〉=
(b†

2)
S+m(b†

1)
S−m

p

(S +m)!(S −m)!
|Ω〉 , m ∈ {−S,−S + 1, . . . , S} . (115)

For the alternative case N = 0, M = 2 the R are the remaining generators. These are related
to S similarly as above Sz = R2

2 = −R1
1, S+ = R2

1, S− = R1
2. Here the oscillator realisation

gives the Abrikosov fermion formulation for the spin-1/2 representation of su(2). Due to the
Pauli exclusion principle for fermions, the oscillator realisation here provides a non-trivial
representation only for N = 1, with basis given by the doublet

|↓〉= f †
1 |Ω〉 , |↑〉= f †

2 |Ω〉 . (116)

The matrix realisation of the generators for the fundamental representation of su(2) over

this basis are given by Sz =

�

−1
2 0

0 1
2

�

, S+ =

�

0 0
1 0

�

, S− =

�

0 1
0 0

�

. The extension to

u(2) is obtained by incorporating the identity, which commutes with all other generators.

Canonical fermion u(1|1): The simplest Lie superalgebra is su(1|1), which is none other
than the familiar anti-commutation relation of canonical fermions, {c, c†}= 1. To see this we
note that for N = M = 1 the two bosonic subalgebras trivialise, i.e. L = R = 0, and the only
non-trivial relation is {Q1

1,Q†1
1} = C , where C = C1 is proportional to the identity 1. The

operator D extending the algebra to u(1|1) further obeys [D,Q†1
1] = Q†1

1 and [D,Q1
1] = −Q1

1.
We can thus interpret c = 1p

C
Q1

1, c† = 1p
C

Q†1
1 and n as D, and in doing so we reobtain the

canonical fermionic relations of Eq. (1). We remark that the representations obtained through
the oscillator realisation are two dimensional for all N , with basis

(b†
1)

N
p
N !
|Ω〉 , (b†

1)
N−1

p
(N−1)!

f †
1 |Ω〉 , (117)

and C = N . For the N = 1 representation we can identify |0〉 = b†
1 |Ω〉 and c† |0〉 = f †

1 |Ω〉,
and the corresponding matrix realisation is given by

1=

�

1 0
0 1

�

, c =

�

0 1
0 0

�

, c† =

�

0 0
1 0

�

, n =

�

0 0
0 1

�

. (118)

Comparing u(1|1)with su(2)we see that their 2×2 matrix realisations are essentially iden-
tical. Let us emphasise for clarity then that their algebras are distinguished by their grading.
This detail is not very significant when dealing with operators at the same site, but it becomes
crucial when operators at different sites are involved. Bosonic generators at different sites
commute to zero, whereas fermionic generators at different sites anti-commute to zero, with
the consequence that u(1|1) and su(2) encode non-local correlations in distinct ways.
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Non-canonical electron u(2|2): The final example we take is u(2|2) [47, 48, 109], which
plays a central role in our discussion of electronic and local moment DOFs in Secs. 2.2 and
2.3. We begin by highlighting an important subtlety, which is that u(2|2) admits an exceptional
central extension. Whereas for general u(N |M) the fermionic generators obey

{Qa
α,Qb

β}= 0, {Q†α
a ,Q†β

b }= 0 , (119)

for the case of u(2|2) these relations can be made non-trivial

{Qa
α,Qb

β}= εαβε
abA, {Q†α

a ,Q†β
b }= εabε

αβB , (120)

where the generators A, B are central, and ε12 = −ε21 = 1, ε11 = ε22 = 0. This is special to
N = M = 2, as only then are the antisymmetric tensors εab and εαβ well-defined. So as not to
labour notations we refer to this exceptionally extended algebra also as u(2|2).

The extension deforms the oscillator realisation of the generators to

Qa
α = u b†

a fα + v εabεαβ f †
β

bb, Q†α
a = u∗ f †

α ba + v∗ εαβεabb†
b fβ ,

La
b = b†

abb −
1
2δ

a
bb†

c bc , Rαβ = f †
α fβ −

1
2δ
α
β f †
γ fγ ,

A= uv (b†
aba + f †

α fα), B = u∗v∗ (b†
aba + f †

α fα) ,

C = 1
2(|u|

2 + |v|2)(b†
aba + f †

α fα) ,

D = −1
2 b†

aba +
1
2 f †
α fα ,

(121)

where the deformation parameters are constrained to obey |u|2 − |v|2 = 1. We we can thus
again construct representations for each positive integer N by restricting to the space of states
obeying the constraint Eq. (112). Here the shortening condition becomes 2

p
C2 − AB = N ,

where A, B, C are the eigenvalues of A, B,C .
The fundamental 4-dimensional representation is obtained by restricting to the single-

particle states
b†

1 |Ω〉 , b†
2 |Ω〉 , f †

1 |Ω〉 , f †
2 |Ω〉 . (122)

The bosonic and fermionic states are respectively su(2) doublets of L and R. These are naturally
identified with the four basis states of an electron

|↓〉 , |↑〉 , |◦〉 , |•〉 , (123)

from Eq. (9). This electronic interpretation of u(2|2) is discussed in detail in Sec. 2.2. The
fermionic generators can be identified through

q↑◦ =
p
κQ1

1, q↑• = −
p
κQ1

2, q†
↑◦ =

p
κQ†1

1, q†
↑• = −

p
κQ†2

1 ,
q↓◦ =

p
κQ2

1, q↓• = −
p
κQ2

2, q†
↓◦ =

p
κQ†1

2, q†
↓• = −

p
κQ†2

2 ,
(124)

for which the deformation parameters are u= u∗ = 1+κ
2
p
κ

and v = v∗ = 1−κ
2
p
κ

.
The choice of whether to assign spin/charge to the bosonic/fermionic sector is not of great

importance for the fundamental representation. It does however play an essential role in the
identification of higher dimensional representations. As the Pauli exclusion principle limits
growth of the fermionic sector, increasing N primarily corresponds to an increasing number
of bosons. To proceed we focus on the case of assigning spin to the bosonic sector, although
we highlight that the alternative possibility is also of interest as commented upon in Sec. 2.3.
For the fundamental N = 1 representation we thus adopt the identification of states

|↓〉= b†
1 |Ω〉 , |↑〉= b†

2 |Ω〉 , |◦〉= f †
1 |Ω〉 , |•〉= f †

2 |Ω〉 . (125)
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Increasing N then yields 4N states which are comprised of four su(2) spin-multiplets. Writing
N = 2S + 1 these are as follows: two spin-S multiplets,

(b†
2)

S+m(b†
1)

S−m

p

(S +m)!(S −m)!
f †
1 |Ω〉 , m ∈ {−S,−S + 1, . . . , S} ,

(b†
2)

S+m(b†
1)

S−m

p

(S +m)!(S −m)!
f †
2 |Ω〉 , m ∈ {−S,−S + 1, . . . , S} ,

(126)

a spin-(S + 1
2) multiplet,

(b†
2)

S+
1
2+m(b†

1)
S+

1
2−m

q

(S + 1
2 +m)!(S + 1

2 −m)!
|Ω〉 , m ∈ {−S − 1

2 ,−S + 1
2 , . . . , S + 1

2} , (127)

and a spin-(S − 1
2) multiplet,

(b†
2)

S−1
2+m(b†

1)
S−1

2−m

q

(S − 1
2 +m)!(S − 1

2 −m)!
f †
1 f †

2 |Ω〉 , m ∈ {−S + 1
2 ,−S + 3

2 , . . . , S − 1
2} . (128)

This basis of states admits a natural interpretation as combining a spin-S local moment with the
electron. Firstly, the two spin-S multiplets of Eq. (126) can be written as |◦; S, m〉 and |•; S, m〉,
which are the states of a spin-moment with the electronic state respectively unoccupied and
doubly occupied. The remaining two multiplets arise as S⊗ 1

2 =
�

S+ 1
2

�

⊕
�

S− 1
2

�

, manifesting
the entwining of the spin-moment with the electronic spin. Specifically, the the spin-(S + 1

2)
multiplet takes the form

γ+
m+ 1

2
|↑; S, m− 1

2〉+ γ
−
m− 1

2
|↓; S, m+ 1

2〉 , (129)

and the spin-(S − 1
2) multiplet the form

γ−
m− 1

2
|↑; S, m− 1

2〉 − γ
+
m+ 1

2
|↓; S, m+ 1

2〉 , (130)

with γ±m =
q

S±m
2S+1 . In this way we see that these higher dimensional representations corre-

spond directly to the local moment DOF, as discussed in Sec. 2.3. Through this identification
of basis states we obtain q of Eq. (25) from Eq. (121).

B Mori–Zwanzig projection scheme

In this appendix we briefly summarise the Mori–Zwanzig projection scheme [14–16], see also
[58, 62]. This complements the analysis of Sec. 4, allowing one to connect to the literature
more broadly.

Here we formulate time evolution through the Liouville operator, LO = [H ,O], as follows

dai(t)
dt

= iµai(t) + iLai(t) , (131)

where we have extracted explicit dependence on the chemical potential to match with the
conventions of Sec. 4.1. This has the formal solution a(t) = eiµt eiLt a = eiµt ae−iLt , allowing
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the retarded Green’s function to be expressed as Gi j(t) = −iϑ(t) 〈ai|ei(µ−L)t a†
j 〉. Switching to

frequency this gives,

Gi j(ω) = −i

∫ ∞

0

dt eiωt 〈ai|ei(µ−L)t a†
j 〉= 〈ai

�

�

1
ω+µ−La†

j 〉 , Imω> 0 , (132)

which is a formal rewriting of the equation of motion.
We proceed to project correlations onto the local DOFs by decomposing L = Lp +Lq in

terms of the projection operators

p =
∑

i, j

|a†
i 〉 〈ai|a

†
j 〉
−1
〈a j|=

∑

i, j

|a†
i 〉 I
−1
i j 〈a j| , q = 1− p . (133)

We then write

1
ω+µ−L

=
1

ω+µ−Lq
+

1
ω+µ−Lq

Lp
1

ω+µ−L
, (134)

employing the operator identity 1
a−b =

1
a +

1
a b 1

a−b , with a =ω+µ−Lq and b = Lq , resulting
in

Gi j(ω) =
Ii j

ω+µ
+
∑

k,l

〈ai|
1

ω+µ−Lq
La†

k〉 Ikl Gl j(ω) . (135)

Further decomposing 1
ω+µ−Lq L=

L
ω+µ +

Lq
ω+µ−Lq L, we arrive at

∑

k,l

�

(ω+µ)Iik − K?ik −M?
ik(ω)

�

I−1
kl Gl j(ω) = Ii j , (136)

where

K?i j = 〈ai|La†
j 〉= 〈aiL|a

†
j 〉 , M?

i j(ω) = 〈aiL|q 1
ω+µ−qLq qLa†

j 〉 . (137)

We see that this matches Eq. (58) upon switching to momentum space. The expressions for K?i j
are identical, and consequently the expressions for M?

p(ω) are formally equivalent. We thus see
that the Mori–Zwanzig projection scheme organises correlations in precisely the same manner
as the Tserkovnikov approach of Sec. 4.1. The distinction is that here M?

i j(ω) is formulated
through a static projection operator normalised by Ii j , whereas in Eq. (54) it is formulated
through a dynamic projection operator normalised by Gi j(ω) [17]. We find this latter formu-
lation more convenient for practical purposes, and its derivation more instructive.
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