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Abstract

Utilizing the unbiased time-dependent density-matrix renormalization group technique,
we examine the photoemission spectra in the extended Falicov-Kimball model at zero
and finite temperatures, particularly with regard to the excitonic insulator state most
likely observed in the quasi-one-dimensional material Ta2NiSe5. Working with infinite
boundary conditions, we are able to simulate all dynamical correlation functions di-
rectly in the thermodynamic limit. For model parameters best suited for Ta2NiSe5 the
photoemission spectra show a weak but clearly visible two-peak structure, around the
Fermi momenta k ' ±kF, which suggests that Ta2NiSe5 develops an excitonic insulator
of BCS-like type. At higher temperatures, the leakage of the conduction-electron band
beyond the Fermi energy becomes distinct, which provides a possible explanation for
the bare non-interacting band structure seen in time- and angle-resolved photoemission
spectroscopy experiments.
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1 Introduction

In solid state physics, superconductivity is a classic example of emerging quantum coherence
on a macroscopic scale. An essential prerequisite for this is the pairing of electrons, nor-
mally of opposite spin and close to Fermi surface of metals. Similarly, valence-band holes and
conducting-band electrons may form excitonic pairs in semimetals with small band overlap or
in semiconductors with a small band gap, triggered by their Coulomb attraction, where the
excitons are expected to “condense” in a macroscopic coherent state at low temperatures un-
der restrictive conditions [1–5]. This state is called excitonic insulator (EI) because it exhibits
no “super-transport" properties. It is stabilized by the opening of a gap in semimetals or by
the flattening of the valance-band top (conduction-band minimum) in semiconductors, which
both can be detected by angle-resolved photoemission spectroscopy (ARPES). Usually exciton
condensation in a semiconductor setting is discussed in terms of Bose-Einstein condensation
(BEC), while those appearing for a semimetallic (noninteracting) band structure should be
described in close analogy with the Bardeen-Cooper-Schrieffer (BCS) theory [4–9].

Even though the obvious EI scenario was predicted almost 60 years ago, it was only re-
cently that some material classes have shown some signatures of an EI ground state. In this
respect one of the most promising candidates seems to be the quasi-one-dimensional mate-
rial Ta2NiSe5, which possesses a tiny direct gap at the Γ point of the Brillouin zone. At a
critical temperature Tc ≈ 328K, Ta2NiSe5 encounters a second-order transition from an or-
thorhombic (T > Tc) to a monoclinic (T < Tc) structure [10]. ARPES experiments revealed a
flattening of the valence band when cooling below the transition temperature [11,12], which
has been taken as indication of an EI state within a model simulation [13]. Motivated by this,
various experiments have recently performed for this material, using NMR [14], inelastic x-
ray scattering [15], scanning tunneling microscopy or spectroscopy [16, 17], and time- and
angle-resolved photoemission spectroscopy (t-ARPES) [18–20]. Besides there is the isostruc-
tual compound Ta2NiS5, which opens up the possibility to perform comparative measurements
and analysis, not only of the photoemission [21] but also of the magnetic susceptibility [10]
and the optical conductivity [22,23].

Unfortunately, some experimental findings and theoretical predictions are inconsistent so
far. For instance, the optical conductivity spectra in Ta2NiSe5 [23] show an extra peak in the
low-energy regime (at aboutω' 0.4 eV) that cannot be reproduced by the density-functional-
theory-based simulation [24]. The authors of Ref. [23] attributed this low-energy peak to the
giant oscillator strength of spatially extended exciton-phonon bound states, while the the-
oretical work [24] concluded that the interorbital Coulomb interaction between valence and
conduction bands should be sufficient to explain this peak. Another important issue is whether
the formation of the EI in Ta2NiSe5 follows a BCS or a BEC scenario. While the small value of
the transport gap [22] implies that the excitonic state in Ta2NiSe5 is of BCS type, the spectral
weight broadening of the flat band with increasing temperature has been taken as a signature
of a breaking of the quasiparticle peak structure, i.e., of dissolving a Bose-Einstein conden-
sate [13].

In contrast to the advanced experimental investigations performed for Ta2NiSe5 in the last
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few years, most of the theoretical studies are mainly based on weak-coupling approaches,
especially if the single-particle spectra have been addressed [13, 25, 26]. When focusing on
strictly one-dimensional (1D) systems this is not necessary, however, because we can calcu-
late both ground-state and dynamical quantities for the considered model Hamiltonians by
rather unbiased numerical techniques like the density-matrix renormalization group method
(DMRG) [27] and its further developments for dynamical quantities [28, 29]. For sure, such
a de-facto approximation-free treatment is essential to resolve some of the issues carved out
above.

To this end, in this work, we re-examine the properties of the ground state of the 1D
extended Falicov-Kimball model (EFKM), as well as the behavior of various spectral functions
in the EFKM at zero and finite temperatures, by means of the time-dependent DMRG (t-DMRG)
technique in the matrix-product-state (MPS) representation [30–33]. The EFKM at half band
filling can be considered as the perhaps minimal model for Ta2NiSe5. We demonstrate that
the best-suited parameter set typifies Ta2NiSe5 as an EI in the BCS regime; here, the zero-
temperature photoemission spectra exhibit two-peak structure. At finite temperatures the gap
melting is clearly visible in the photoemission spectra, and the leakage of the conduction band
beyond the Fermi energy becomes distinct as temperature increases, which might be related
to the bare band structure obtained in the t-ARPES experiment [19].

The paper is organized as follows. In section 2, we introduce the EFKM Hamiltonian,
present its ground-state phase diagram, including the BCS-EI�BEC-EI crossover regime de-
duced from pair-condensation amplitude, and comment on the best model parameters used
for describing Ta2NiSe5. Section 3 contains our numerical data for the photoemission spec-
tra in the EFKM, which are discussed with regard to the experimental results for Ta2NiSe5.
Our main conclusions are presented in section 3. Details of the used numerical scheme can
be found in Appendix A. For comparison, Appendix B provides results for the photoemission
spectra in the 1D half-filled Hubbard model.

2 Theoretical modeling

2.1 Extended Falicov-Kimball model

Let us first introduce the 1D EFKM [34–37], which has been argued to be the minimal theo-
retical model for Ta2NiSe5 [26,38,39]. The Hamiltonian reads

Ĥ = −
∑

α=c, f

tα
∑

j

�

α̂†
j α̂ j+1 +H.c.

�

+ U
∑

j

n̂c
j n̂

f
j +

D
2

∑

j

�

n̂c
j − n̂ f

j

�

−µ
∑

α, j

n̂αj , (1)

where α̂†
j (α̂ j ) denotes the creation (annihilation) operator of a spinless fermion in the α=

{c, f } orbital at Wannier site j, n̂αj = α̂
†
j α̂ j , U is the local Coulomb repulsion between c and f

electrons staying at the same lattice site, D parametrizes the level splitting of c and f orbitals,
and µ is the chemical potential. Representing the orbital flavour of the EFKM by a pseudospin
variable [40, 41], tc → t↑, t f → t↓, ĉ j → ĉ j,↑, and f̂ j → ĉ j,↓, the model (1) can be viewed as
asymmetric Hubbard model with spin-dependent hopping in a magnetic field. In other words,
the standard Hubbard model (see. Eq. (8) in Appendix B.1) is obtained by setting tc = t f
and D = 0 in the EFKM. In what follows, we take tc as the unit of energy and, with a view to
Ta2NiSe5, consider the half-filled band case only. Note that direct f -c hopping is prohibited by
symmetry for this material [26].

The DMRG ground-state phase diagram of the half-filled 1D EFKM has been worked out
previously [37]. Depending on the strength of the orbital level splitting, the system realizes
one of three insulating phases: a state characterized by staggered orbital order (SOO) which
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Figure 1: (a) DMRG ground-state phase diagram of the 1D half-filled EFKM, showing
an excitonic insulator (EI) state (of BCS- respectively BEC-type) sandwiched between
band insulator (BI) and staggered orbital order (SOO) phases. Star (?) and diamond
(�) symbols mark the parameter sets that will be used in simulations of the spectral
functions A(k,ω) in Sec. 3. (b) and (c): Condensation amplitudes F(k) at various
〈n̂c

j〉 for U/tc = 1 and 8. Data obtained by DMRG with periodic boundary conditions
for L = 60 (we checked that for such a large system finite-size effects are negligible).
Dashed lines give the corresponding Fermi momenta kF = π〈n̂c

j〉 in the noninteracting
limit. In all cases, t f /tc = −0.5.

corresponds to an Ising-like antiferromagnet in the strong-coupling limit [34,42], the EI where
the c- f electron coherence emerges (here, 0< 〈n̂c

j〉< 1/2< 〈n̂ f
j 〉< 1), and the (rather trivial)

band insulator (BI) with 〈n̂c
j〉 = 0 and 〈n̂ f

j 〉 = 1. While the EI-BI phase boundary is given
analytically [43],

Dc2
=
r

4
�

|t f |+ |tc|
�2
+ U2 − U , (2)

the SOO-EI quantum phase transition has to be determined numerically, e.g., from

Dc1
= E0(L/2+ 1, L/2− 1)− E0(L/2, L/2) , (3)

where E0(N f , Nc) is the ground-state energy for a finite system with L lattice sites, N f f -
electrons, and Nc c-electrons.

Figure 1(a) shows the ground-state phase diagram of the 1D EFKM in the U-D plane for
t f /tc = −0.5. Obviously, the SOO phase takes up only a small space in the vicinity of D = 0.
Its boundary (3) can be easily extracted from DMRG calculation of the various ground-state
energies at fixed system sizes, supplemented by a finite-size extrapolation to the thermody-
namic limit [37]. The EI and BI phases are separated by the transition line (2). We note that
mean-field [44, 45] and slave-boson [35, 36] approaches cannot be used to determine the EI
phase in the 1D EFKM system because there is no continuous symmetry that is broken. As a
result, we do not have a suitable order parameter. For example, the expectation value 〈ĉ† f 〉,
which serves as excitonic order parameter in higher dimensions, becomes zero in the limit of
vanishing (explicit) c- f -band hybridization [46]. However, critical excitonic correlations can
be detected in a certain parameter regime of the 1D EFKM [34]. Exploiting the off-diagonal
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anomalous Green function scheme [47], these correlations are captured by the condensation
amplitude

F(k) = 〈ψ1|ĉ
†
k f̂k |ψ0〉 (4)

in the momentum space. In (4), |ψ0〉 is the ground state for a finite system with L lattice
sites and N f (Nc ) f -electrons (c-electrons); |ψ1〉 is the excited state with (N f −1) f -electrons
and (Nc + 1) c-electrons. If the electron-hole pairs are only weakly bound (EB/tc � 1, BCS-
EI regime), F(k) develops a sharp peak at the Fermi momentum kF = π〈n̂c

j〉 [cf. Fig. 1(b)
for U/tc = 1]. Here, “Fermi surface” effects play an important role. On the other hand, for
tightly bound excitons (EB/tc � 1, BEC-EI regime), F(k) has a (broad) maximum at k = 0,
see F(k) for 〈n̂c

j〉 = 0.1 and 0.2 at U/tc = 8 in Fig. 1(c). One can therefore define a BCS-BEC
crossover region, where F(k) shows a maximum for 0 < k < kF. Within the EI, the respective
defined BCS-BEC crossover range is visualized in Fig. 1(a) by the shaded region. We see that
for the t f /tc = −0.5 ratio used, an EI of BEC type appears for U/tc ¦ 3 in the vicinity of
the EI-BI transition line only. In this respect we note that for U/tc = 1 [U/tc = 8] the EI-
BI transition occurs at Dc2

/tc ' 2.16 [Dc2
/tc ' 0.54], and the results depicted in Fig. 1(b)

[Fig. 1(c)] for 〈n̂c
j〉 = 0.1, 0.2, 0.3, and 0.4 correspond to D/tc ' 2.10, 1.85, 1.37, and 0.73

[D/tc ' 0.53, 0.47, 0.37, and 0.21], respectively. The nature of the EI is further characterized
by a fast, almost exponential (slow power-law) decay of the exciton-exciton correlations and a
finite (divergent) exitonic momentum distribution function in the weak-coupling BCS (strong-
coupling BEC) regime, see Ref. [37].

2.2 Ta2NiSe5 model parameters

To determine the optimal parameter set for an (extended) Falicov-Kimball-model-based de-
scription of Ta2NiSe5, ARPES data is mainly used. For this, Seki et al. [13] utilized a temperature-
dependent variational cluster approach for the three-dimensional EFKM, assuming tc = −t f ,
however, not least because of the reduced computational costs due to particle-hole symmetry
in this case. A perhaps more realistic approach was put forward by Kaneko et al. [26] who
considered a three-chain electron-phonon-coupled system and exploited band-structure cal-
culations together with a mean-field analysis. Here, the estimated parameter set is tc = 0.8,
t f = −0.4, U ' 0.55 and D = 0.2 (in units of eV). In all these efforts, it is worth observing that
band flattening detected in the ARPES experiments only occurs in a relative narrow region of
momentum space, specifically for |kx |® 0.1Å

−1
(taking into account that the lattice constant of

the chain direction is a = 3.51232 Å [48], this means for |k|/a ® 0.35). Since for t f /tc = −0.5
and U/tc ® 1 the system is in the EI-BCS regime where the maxima of F(k) are almost equal to
the peak position of the single-particle spectral functions [37], the flat band can appear only for
|k|® kF. This also implies that the strength of the level splitting should be very close to the EI-
BI phase transition line, as for 〈n̂c

j〉= 0.1 where kF = 0.1π(< 0.35). Therefore, in this study, we
discuss the spectral functions of the 1D EFKM using the parameter set t f /tc = −0.5, U/tc = 1
(which is slightly larger than above estimation U/tc = 0.55/0.8 ' 0.69), and D/tc = 2.11.
This allows us to carry out the DMRG simulations for a mean c-electron density 〈n̂c

j〉 = 1/10
at T = 0. This parameter set is marked by a star (?) in Fig. 1(a).

To provide a contrasting perspective, we will also consider the strong-coupling regime,
specifically for U/tc = 8, where the BEC-type EI is realized in a wider region of the density
(i.e., for 〈n̂c

j〉 ® 0.25). Here, we use D/tc = 0.53, and again 〈n̂c
j〉 = 1/10, for the calculation

of the spectral functions at T = 0 [cf. the � symbol in Fig. 1(a)].
Let us finally emphasize that we will approximate the doubly-degenerate conduction c-

electron bands [26] by a single band and neglect any electron-phonon coupling effects [49]
on the EI formation.
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3 Numerical results for the extended Falicov-Kimball model

3.1 Spectral functions

The full single-particle spectrum A(k,ω) consists of two parts, A(k,ω) = A−(k,ω) + A+(k,ω),
where A−(k,ω) and A+(k,ω) denote the photoemission spectrum (PES) and inverse PES (IPES),
respectively. In the case of the EFKM, A±(k,ω) splits into contributions from the c and f elec-
trons, i.e., A±(k,ω) =

∑

α=c, f A±α(k,ω). As a result, to determine A(k,ω) for tc 6= |t f |, we
have to compute four dynamical correlation functions, A±α(x , t) with α ∈ {c, f }. These cir-
cumstances distinguish the EFKM from the simple Hubbard model, where only one of the four
correlation functions A±σ(x , t) with σ ∈ {↑,↓} is needed to obtain the full spectra at half fill-
ing owing to the particle-hole and spin-flip symmetries. To obtain A±(k,ω) numerically, we
simulate the dynamic correlation function in real space

A±(x , t) = 〈eiĤ tÔ†
j+x e−iĤ tÔj 〉β , (5)

and then carry out a Fourier transform

A±(k,ω) =
∑

x

e−ikx

∫ ∞

−∞
d teiωt e−ηL|t|A±(x , t) , (6)

where 〈·〉β denotes the expectation value at inverse temperature β . In doing so, we exploit
the t-DMRG technique together with the purification method [50, 51] for MPS and so-called
infinite boundary conditions (IBC) [52]. The damping factor e−ηL |t| needed in Eq. (6) because
of the finite simulation time leads to a Lorentzian broadening in the frequency space. More-
over, within t-DMRG framework, we use a second-order Trotter-Suzuki decomposition with a
time step τ = τβ = 0.01 for the real- and imaginary-time evolutions and a maximum bond
dimension of 800, so that the truncation error will be smaller than 10−6 in all the calculations
presented. Appendix A gives a more detailed description of our numerical scheme, whose
accuracy is tested for the Hubbard model in Appendix B. .

3.2 Single-particle spectra at zero temperature

We now discuss the single-particle spectrum of the EFKM at half-filling for both zero (T = 0)
and finite (T = 1/β) temperatures with a particular focus on the flattening of the band struc-
ture observed in ARPES experiments for the quasi-1D potential EI material Ta2NiSe5 around
the Γ point. Although in our strictly 1D model system the excitonic correlations will become
critical at T = 0 only, the spectral properties of the 1D EFKM at low but finite temperatures
will reflect the existence and nature of the zero-temperature EI state.

Figure 2 displays the zero-temperature, wave-vector- and energy-resolved spectral func-
tions in the EFKM, using the parameter set best-suited for Ta2NiSe5: t f /tc = −0.5, U/tc = 1
and D/tc = 2.11 [marked by the star in Fig. 1(a)]. Here, panels (a) and (b) give the c- and f -
orbital parts of the spectral functions Ac(k,ω) = A+c (k,ω)+A−c (k,ω) and A f (k,ω) = A+f (k,ω)+
A−f (k,ω), respectively, which are combined in panel (c). In this regime, starting out from a
semi-metallic bare band situation, the EFKM realizes an EI phase of BCS type built up from
weakly-bound electron-hole pairs. Since the Coulomb attraction is relatively weak, Ac(k,ω)
and A f (k,ω) almost follow the unrenormalized c- and f -band dispersions. Concomitantly, we
find a more or less uniform distribution of the spectral weight and weak incoherent contribu-
tions close to band edge only. Nevertheless, a gap develops at the “bare” Fermi momentum
kF = π〈n̂c

j〉, which is exponentially small, however, and therefore difficult to detect in panels
(a)-(c) in view of the used Lorentzian broadening ηL/tc = 0.1. It is actually only confirmed
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Figure 2: Zero-temperature single-particle spectral functions Aα(k,ω), A(k,ω) and
A−(k,ω) in the 1D half-filled EFKM with t f /tc = −0.5, D/tc = 2.11, and U/tc = 1.
The mean c-electron density is fixed to be 〈n̂c

j〉 = 0.1. The dashed lines in panel (d)
mark the momentum interval considered in ARPES experiments on Ta2NiSe5 [11].
Results are obtained by t-DMRG using IBC and a window size LW = 200 to keep the
values of the dynamical correlation functions on the boundaries less than 10−8 up to
the target time tfin · tc = 16. We note that the unit cell for the iDMRG simulations
needs to be large (Nuc = 10) to realize the small c-electron density 〈n̂c

j〉= 0.1.

in the zoomed-in panel for the photoemission part [Fig. 2(d)]. Most notably the PES shows
an “M"-shaped band structure with two peaks close to ±kF, just as detected in the Ta2NiSe5–
ARPES experiments at low temperatures in the vicinity of the Γ point [13, 20], even though
the energy minimum at k = 0 turns out to be somewhat too low in our EFKM simulations.
In this respect, better agreement with experiments might be reached by reducing the den-
sity of c-electrons further (〈n̂c

j〉 < 0.1). In any case, the “flat-band” region falls entirely into
the restricted momentum window monitored within the ARPES measurements, see dashed
lines in Fig. 2(d). It should be noted at this point that simple BCS-like mean-field approaches
will cover the gap opening effect and basically reproduce the dispersions of the coherent part
of the spectral functions but fail in giving the correct distribution of the spectral weight and
describing the incoherent contributions to the spectra.

If the attraction between electrons and holes is strong, tightly bound excitons will be
formed. At the same time the Hartree shift enlarges the orbital splitting and drives the system
further into a semiconducting situation [36]. As a result the EI (low-temperature) phase ap-
pears as BEC of preformed (excitonic) pairs [6]. This needs to be reflected in the spectral prop-
erties of the EFKM as well, which can not longer be described adequately by weak-coupling
approaches, such as Hartree-Fock [44], random phase approximation [41] or (projector-based)
renormalization methods [25].

Figure 3 shows the different single-particle spectra Ac, f (k,ω), A(k,ω) and A−(k,ω) for the
strong-coupling model parameters belonging to the diamond symbol (�) in Fig. 1(a). Quite
clearly, now the essential characteristics of the spectra are a huge gap for single-particle exci-
tations [see panel (c)], reflecting the fact that tightly bound electron-hole pairs have to be bro-
ken, and a strongly flattened top (bottom) of the valence (conduction) band, pointing towards
strong band renormalization and a BEC mechanism. Thereby panel (a) [(b)] indicates that
the spectral weight rests mainly above [below] the Fermi energy in the inverse-photoemission
[photoemission] part of the c [ f ] electrons and is concentrated near the band’s center and
edges. In view of the pronounced band flattening, the obvious question is whether Ta2NiSe5
fits into such a EI BEC-type scenario, especially because this material is in truth semiconduct-
ing. The answer, however, is no, as can be seen from the results for A(k,ω) alone. In the
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Figure 3: Single-particle spectral functions in the 1D half-filled EFKM with
t f /tc = −0.5, D/tc = 0.53, and U/tc = 8 (simulated with LW = 100).

BEC-EI regime of the EFKM, a two-branch structure emerges in the PES A−(k,ω) in the vicin-
ity of the Brillouin zone center (Γ point), just as in the strong-coupling regime of Hubbard
model (see Fig. 8(d) in Appendix B.2), which is not observed in ARPES. Furthermore, the
flat-band region in momentum space appearing in the EFKM PES spectrum is notably wider
than that for Ta2NiSe5; cf., the zoomed-in panel Fig. 3(d).

To draw an interim balance, it seems that the ARPES experiments on Ta2NiSe5 can be
explained in the framework of the pure 1D EFKM with parameters deep in the weak-coupling
region and very close to the EI-BI transition, suggesting an EI state of BCS type.

3.3 Photoemission spectra at finite temperatures

To further substantiate that the possible EI state of Ta2NiSe5 might be of BCS type, we now
analyze the single-particle spectral functions at finite temperatures. It is of specific interest
to prove the leakage of spectral weight of the lower band to energies above the Fermi energy
in the EFKM, similar to the melting of the Mott gap in the Hubbard model, see Ref. [53] and
Appendix B.2. Such leakage reflects the intensity tail above EF after pumping observed in a
recent t-ARPES experiment for Ta2NiSe5 [19]. Likewise we should verify in terms of the EFKM
that the upper band in the PES at T > 0 is missing or merged into a single band due to the
small value of U , just as indicated by ARPES on Ta2NiSe5 [11,12,21].

To achieve this technically, we perform finite-temperature simulations, working with a
grand canonical ensemble and employing t-DMRG with IBC and an Nuc = 2 (2 physical and 2
auxiliary sites) unit cell for the iMPS. The chemical potential µ is fixed by the infinite TEBD so
as to fulfil the condition 〈n̂c

j〉+〈n̂
f
j 〉= 1 for each target temperature, before starting simulations

for the dynamical correlation functions.
Figure 4 provides the PES A−(k,ω) spectrum of the 1D EFKM for the same parameters

as in Fig. 2 but at finite temperatures. Clearly, at low temperatures (T/tc = 0.1 [Fig. 4(a)])
the results differ marginally from their zero-temperature counterparts given in Fig. 2; only
the peak height is slightly reduced. Because of the small charge gap, the gap melting occurs
already at very low temperatures. This is particularly apparent in the c-orbital contribution,
which exhibits a significant spectral weight for |k| ® kF below the Fermi energy at T = 0
[see Fig. 2(a)]. If T gets larger than tc , the c-orbital band leaks into the region above Fermi
energy [Fig. 4(c)] and, as a consequence, c and f bands nearly follow the non-interacting
band dispersions εα(k) = −2tα cos k with α ∈ {c, f }, see Fig. 4(d). While ARPES on Ta2NiSe5
has not indicated such a behaviour so far, t-ARPES experiments detect the almost bare-band
structure showing spectral weight even above Fermi energy [19]. This further supports that
the EI state observed in Ta2NiSe5 is of BCS type. Note that the flat valence band shifts to higher
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Figure 4: Photoemission spectra A−(k,ω) in the 1D half-filled EFKM at finite tem-
peratures. Model parameters are t f /tc = −0.5, D/tc = 2.11, and U/tc = 1. We use
LW = 256.

−8

−4

0

4

−π 0 π

ω
/t

c

k

0 1 2 3

U/tc = 8

(a) T/tc = 0.1

−π 0 π

k

0 0.5 1

(b) T/tc = 0.5

−π 0 π

k

0 0.5 1

(c) T/tc = 1.0

−π 0 π

k

0 0.4 0.8

(d) T/tc = 2.0

Figure 5: Finite-temperature PES A−(k,ω) in the strong-coupling regime of the 1D
EFKM with t f /tc = −0.5, D/tc = 0.53, and U/tc = 8. In the simulations, we use
LW = 128.

energies (but is still located below the Fermi energy) when the temperatures is raised [13].
Since we observe no difference between the location of the flat band near k = 0 at T = 0 and
T/tc = 0.1, see Fig. 2(d) and Fig. 4(a), respectively, this might be attributed to the higher
dimensionality of the real material.

Let us finally comment on the behavior of the finite-temperature PES in the strong-coupling
regime (U/tc = 8; see Fig. 5). Here, by and large, the situation is reminiscent to that in the
Hubbard model for U/t = 8, cf. Appendix B.2. While, at the low temperature T/tc = 0.1,
the PES barely changes compared to T = 0, at about T/tc = 0.5, a noticeable part of the
spectral weight is redistributed to (large) negative energies [see Fig. 5(b)]. As the temperature
is further raised up to T ' Jeff = 4|t f |tc/U , a PES band appears above the Fermi energy
[Fig. 5(c)]. It becomes more distinct for T > Jeff [Fig. 5(d)]. Note that in ARPES experiments
on Ta2NiSe5 none of these effects have been reported.

4 Conclusions

To sum up, we examined the ground-state and spectral properties of the half-filled extended
Falicov-Kimball model (EFKM) in one spatial dimension where mean-field-like approaches usu-
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ally fail. Combining the time-dependent density-matrix renormalization group technique with
the purification method and infinite boundary conditions, we are able to obtain unbiased nu-
merical results that hold in the thermodynamic limit, i.e., for the infinite system, at both zero
and finite temperature.

Regarding the ground-state phase diagram we confirmed the existence of an excitonic
insulator state exhibiting quasi-long-range order, sandwiched between staggered-orbital-order
and band-insulator phases in the Coulomb-interaction orbital-splitting plane. The excitonic
insulator typifies a BCS (Bose-Einstein) macroscopically coherent quantum state for weakly
(strongly) coupled c and f electrons. Our analysis of the pair condensation amplitude allows
to quantify the BCS-BEC crossover region, where the character of the constituting electron-
hole pairs changes from “Cooper-like” (on the semimetal side) to tightly-bound excitons (on
the semiconductor side).

The spectral properties of the EFKM are further evidence for a BCS-BEC crossover of the
excitonic condensate. Hallmarks of the BCS-BEC crossover are an increasing band renormal-
ization, including a widening of the charge gap, as well as spectral weight transfer (also from
the coherent to the incoherent part of the single-particle spectrum) and a weakening of Fermi
surface effects.

Most interesting in view of recent ARPES experiments on Ta2NiSe5 seems to be the band
flattening, which has been taken as strong indication for the formation of an excitonic insulator
state. Simulating the zero-temperature photoemission in the weak-coupling regime of half-
filled EFKM with a parameter set that (independently) has been shown being most suitable for
Ta2NiSe5, the flat valence band is confirmed in the narrow region of momentum space detected
by ARPES. Therefore we believe that Ta2NiSe5 typifies a BCS-type excitonic insulator. Findings
that Ta2NiSe5 behaves semiconductor-like in some circumstances might be because it is located
close to the band insulator boundary in the EFKM model parameter space.

At finite (high) temperatures, a signature of the conduction band appears in the photoe-
mission spectra above the Fermi energy. Here, both valence and conduction bands follow a
rescaled cosine dispersion with different hopping amplitudes. It would be interesting to esti-
mate the effective temperature after pulse irradiation by comparing our numerical data with
experimental results. Pulse irradiation can be treated within the t-DMRG scheme as demon-
strated in Ref. [54], i.e., we can carry out a real-time evolution to simulate A(k,ω) in this
case. Such a direct comparison with time-dependent ARPES experiments on Ta2NiSe5 is left
for further studies.

Finally we wish to stress that the investigated EFKM has to be considered as a generic
but very simplistic model for the excitonic transition in solids. For example, the interplay
between the electronic and lattice instability [49], which is intensively discussed for Ta2NiSe5
too [55–58], cannot be addressed. Moreover, recent and perhaps more realistic models of
Ta2NiSe5 [59] include also an off-site hybridization: In such a system the excitonic insulator
transition arises from the spontaneous breaking of a residual discrete symmetry, rather than
by that of a continuous symmetry related to the conservation of the relative charge between
valence and conduction electrons [26].
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A Numerical approach

In this Appendix, we explain how to simulate the time-dependent correlation functions A±(x , t)
of Eq. (5) by combining the t-DMRG technique with the purification method for matrix-product
states (MPS).

The density matrix ρ(β) of the system can be regarded as the reduced density matrix of a
pure state |ψ(β)〉 in an enlarged Hilbert space, ρ(β) = TrQ|ψ(β)〉〈ψ(β)|, where the trace is
taken over the space Q spanned by the auxiliary sites. The expectation value of an operator
Ô therefore becomes 〈Ô〉β = 〈ψ(β)|Ô|ψ(β)〉. To determine the equilibrium density matrix at
target temperature T , we first construct a state |ψ(0)〉 corresponding to ρ(β = 0) and then
perform an imaginary time evolution |ψ(β)〉 = e−β Ĥ/2|ψ(0)〉 on the physical subsystem. For
|ψ(0)〉 in the grand-canonical ensemble, we choose a state with a simple MPS representation,
in which each physical site is in a maximally entangled state with an auxiliary site. The time
evolution is then carried out, e.g., by using the time-evolving block decimation technique [61,
62] and swap gates [63].

To obtain a high momentum resolution for the spectral functions, the correlation functions
need to be calculated up to long enough distances. It is therefore important to consider large
systems or even work directly in the thermodynamic limit by using infinite MPS (iMPS) with
a translationally invariant unit cell. Following the latter approach, we calculate the purifica-
tion |ψ(β)〉 of the equilibrium density matrix using the infinite time-evolving block decimation
technique [61, 62] with reorthogonalization [64]. Similar to the zero-temperature case, dy-
namic properties are calculated by switching to real-time evolution after a local perturbation
is applied to |ψ(β)〉. The perturbation lifts the translation symmetry of the state so that it can
no longer be described by an iMPS with a repeated unit cell. It is sufficient, however, to update
only the tensors of the MPS in the finite region over which the perturbation spreads during
the time evolution. The resulting algorithm is essentially that for a finite-system with specific
infinite boundary conditions (IBC) [52].

To extend the simulated time and thereby increase the resolution in energy space, we
furthermore exploit the time-translation invariance as described in Refs. [65,66]. The idea is
to consider two states Ôj|ψ(β)〉 and Ôj+x |ψ(β)〉, and evolve one forward and one backward
in time so that their scalar product yields the correlation function for distance x . When doing
this, it is important that in addition to the time evolution of the physical sites, the auxiliary sites
are evolved in the reverse direction, which also slows down the buildup of entanglement in the
purification state [67]. An advantage of IBC, in addition to the absence of finite-size effects, is
that we can exploit the spatial translation symmetry of the equilibrium state when calculating
the correlation functions with the above method. As demonstrated in Ref. [68], the correlation
function at an arbitrary distance can be obtained from a single state just by shifting the two
states with forward and backward time evolution relative to each other, while one would need
a separate simulation for each distance with open boundary conditions. Special care should
be taken in implementing this procedure if the operator Ôj in Eq. (5) is fermionic as in the
calculation of the (I)PES. The Jordan–Wigner strings F̂ j = exp(iπn̂ j) with n̂ j = n̂ j,↑ + n̂ j,↓,
which appear in the mapping of spinful fermionic operators into spinful bosonic operators,
need to be taken into account when preparing the MPS for the real time evolution. We define

ĉ j,↑ =

 

j−1
∏

`=1

F̂`

!

â j,↑ , ĉ j,↓ =

 

j−1
∏

`=1

F̂`

!

(F̂ j â j,↓) , (7)

where â(†)j,σ and â(†)j′,σ′ obey fermionic anticommutation relations if j = j′ and σ = σ′, and

bosonic commutation relations otherwise. For Ôj = ĉ j,↑ (Ôj = ĉ j,↓), we have to apply the
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Figure 6: Graphical representation of the iMPS state for the calculation of dynamical
correlation functions. The blue circles represent the tensors in the finite window, the
squares correspond to the operators to be applied to the states, and the gray tensors in
panel (e) represent the iMPS unit cell. Panel (e) shows how the correlation functions
can be calculated for arbitrary distance by shifting the states relative to each other,
i.e., by inserting an n-site translation operator T̂n. For further explanation see text.

mapped operator
�

∏ j−1
`=1 F̂`

�

Ô′j , where Ô′j = â j,↑ (Ô′j = F̂ j â j,↓). Note, that the Jordan-Wigner
strings only act on the physical sites.

In the following, we give the step by step explanation of the complete algorithm (for sim-
plicity at T = 0):

0) Simulate the ground state |ψ0〉 in iMPS representation using iDMRG [69]. Here, we
consider a two-site unit cell iMPS in the canonical form with tensors Λ[n] and Γ [n]

(n ∈ {0,1}).

1) Construct an MPS with IBC with appropriate window size LW by repeating the iMPS. The
resulting state can be written as

|φ(t = 0)〉=
∑

σ

· · ·Λ[1]Γ [0]σ0A[1]σ1 · · ·A[LW]σLW Γ [1]σ1Λ[1] · · · |σ〉 ,

where σ j denotes the basis states of the local Hilbert space at site j.

2) Construct the wave functions |φA(0)〉= ÔxM
|φ(0)〉=

�

∏xM−1
`=1 F̂`

�

Ô′xM
|φ(0)〉 and

|φB(0)〉= ÔxM+1|φ(0)〉=
�

∏xM−1
`=1 F̂`

�

Ô′xM+1|φ(0)〉 with xM ≡ LW/2, see Figs. 6(a)
and (b), respectively.

3) Evolve both states in time by TEBD as |φA/B(t)〉= e−i(t/2)ĤÔxM/xM+1|φ(0)〉.

4) Evaluate two-point correlators 〈Ô†
j+r(t)Ôj (0)〉 by shifting |φA/B〉 relative to each other,

see, e.g., Fig. 6(c) for r = 0, (d) for r = 1 and (e) r = 2. Extra attention should be paid
to Jordan-Wigner strings F̂† for the two-site iMPS in panel (e).

After step 4 we go back to step 3 until the target time is reached. At finite temperatures this
process can be performed in an analogue manner. Finally, obtained data can be extrapolated
to longer times through linear prediction [70]. We apply an exponential windowing function
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to the obtained time-dependent correlation functions, which, after the Fourier transform, cor-
responds to a convolution of the spectral functions by a Lorentzian ηL/(π(ω2 −η2

L)) with the
broadening parameter ηL. In Appendix B we will exemplarily calculate the spectral functions
in the Hubbard model by means of the presented t-DMRG-based scheme. Again the time step
τ = τβ = 0.01 and the maximum bond dimension is 800 so that the truncation error is less
than 10−6.

B Spectral functions in the Hubbard model

B.1 Model Hamiltonian

The 1D Hubbard model reads

Ĥ = −th

∑

j

�

ĉ†
j,σ ĉ j+1,σ +H.c.

�

+ U
∑

j

�

n̂ j,↑ −
1
2

� �

n̂ j,↓ −
1
2

�

, (8)

where ĉ†
j,σ (ĉ j,σ) creates (annihilates) a fermion with spin projection σ ∈ {↑,↓} at lattice site

j, and n̂ j,σ = ĉ†
j,σ ĉ j,σ. Remarkably, at zero temperature, the model (8) can be solved by the

Bethe ansatz [71]. Let us again consider the half-filled case where the number of particles N
is equal to the number of lattice sites L. In this case, the model has a Mott insulating state for
any U > 0+ with a finite charge gap that increases exponentially with U in the weak-coupling
regime and grows linearly for large interactions. The spin-degree-of-freedom excitations, how-
ever, are gapless, so that the spin-spin correlations decay with a power-law.

The momentum-resolved spectrum of the physical excitations can be obtained by consider-
ing two different types of elementary excitations: gapped spinless excitations carrying charge
±e called holons (h) and antiholons (h̄), respectively, and gapless charge-neutral excitations
carrying spin ±1/2 called spinons (Sz = 1/2 spinon s and Sz = −1/2 spinon s̄). At half filling,
the Bethe ansatz yields the following dressed energies and momenta for these excitations in
the thermodynamic limit [71]:

Es/s̄(Λ) = 2

∫ ∞

0

dω
ω

J1(ω) cos(ωΛ)
cosh(ωU/4)

, (9)

Ps/s̄(Λ) =
π

2
−
∫ ∞

0

dω
ω

J0(ω) sin(ωΛ)
cosh(ωU/4)

, (10)

Eh/h̄(k) = 2cos k+
U
2
+ 2

∫ ∞

0

dω
ω

J1(ω) cos(ω sin k)e−ωU/4

cosh(ωU/4)
, (11)

Ph(k) = Ph̄(k) +π=
π

2
− k− 2

∫ ∞

0

dω
ω

J0(ω) sin(ω sin k)
1+ exp(|ω|U/2)

, (12)

where Jn(ω) are n-th-order Bessel functions. The dispersion relations are obtained by varying
the parameters Λ ∈ (−∞,∞) and k ∈ (−π,π] . The physical excitations follow from permit-
ted combinations of the elementary excitations. For example, the spin-charge scattering states
whose energy and momentum are given by:

ESC(Λ, k) = Es(Λ) + Eh(k) , PSC(Λ, k) = Ps(Λ) +Ph(k) . (13)

In the following section B.2, our numerical approach will be benchmarked against the Bethe
ansatz results (9)-(13).
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Figure 7: Photoemission spectra in the strong-coupling regime of half-filled 1D Hub-
bard model with U/th = 20 (top) and 8 (bottom). Results in the left panels and
symbols in the right panels are obtained by t-DMRG. The blue (red) line denotes
the holon (spinon) branch, the green line gives the lower onset of the spinon-holon
excitation continuum according to the Bethe-ansatz solution in the thermodynamic
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gap −∆c/2th.
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Figure 8: A(k,ω) in the half-filled 1D Hubbard model for various Coulomb repulsions
U at T = 0. Dashed lines in (c) and (d) mark the Bethe-ansatz single-particle gap
±∆c/2.

B.2 Spectral functions at zero temperature

Figure 7 presents the PES, A−(k,ω), for a half-filled Hubbard chain in the strong-coupling
regime with U/th = 20 (upper panels) and 8 (lower panels) at T = 0. Data are obtained by
the t-DMRG technique with IBC. We observe two separately dispersing peaks in the momentum

14

https://scipost.org
https://scipost.org/SciPostPhys.10.3.077


SciPost Phys. 10, 077 (2021)

interval [0,π/2] that merge at the Fermi momentum kF = π/2 where the gap opens. In the
interval [π/2,π] we also find two dispersive peaks merging at the zone boundary. Comparing
the course of the t-DMRG peak positions with the exact Bethe-ansatz dispersions (9)-(13), we
are able to identify the physical nature of each dispersion, see right panels of Fig. 7. Since
agreement is excellent, not only in the limit of large Coulomb interaction U/th = 20 but also
for U/th = 8, we can clearly assign the excitations as spinon (red lines) or holon (blue lines)
branches, and can also identify the onset of the holon-spinon continuum (green lines). As
an advantage, the t-DMRG data also provide the spectral weight as a function of momentum
(cf., the color code). Because the spinon bandwidth is about the effective exchange coupling
Jeff = 4t2

h/U , it is almost flat for very large U and gets wider when U shrinks (cf. upper and
lower panels). We would like to point out that the upper onset of the peaks of A−(k,ω) nicely
agree with half of the single-particle gap ∆c/2 , see white and black lines.

The whole single-particle spectrum A(k,ω), which includes also the IPES contribution, is
shown Fig. 8 for interaction strengths ranging from U/th = 1 to 8. Since the Mott gap ∆c
is exponentially small in the weak-coupling regime [∆c/th ' 0.005 (0.173) for U/th = 1
(2)], the dispersion for U/th = 1 [Fig. 8(a)] is practically identical to that of the bare cosine
band with the holon bandwidth Wh = 4, without opening a gap due to the finite Lorentzian
broadening (ηL/th = 0.1). Increasing U slightly, both spinon and antiholon branches appear,
see Fig. 8(b) for U/th = 2. In the intermediate-to-strong-coupling regime, also the opening of
the charge gap∆c at the Fermi momenta k = ±kF becomes visible [cf. Figs. 8(c) and (d)]. The
spectral weight of the PES (IPES) is mainly located in the antiholon and spinon branches in the
interval [−kF,kF] ([−π,−kF] and [kF,π]). We note that A(k,ω) for U/th = 4 was previously
discussed within t-DMRG in Ref. [53], but only for finite systems. Our infinite-system data
validate these results to a large extent.

B.3 Photoemission spectra at finite temperatures

Figure 9 demonstrates the temperature effects on PES in the half-filled 1D Hubbard model
at various Coulomb interaction strengths obtained by combining the t-DMRG technique with
the purification method as described in Appendix A. Clearly, at low temperature (T/th = 0.1)
the spectral functions are very similar to their zero-temperature counterparts, whereby the
peak maxima are slightly reduced (see the different scales of the color bars with increasing
temperature). In the strong-coupling regime, the two-brunch structure of the spectral func-
tion only survives up to T ∼ Jeff (cf. the panels for U/th = 4 and 8 in Fig. 9). Furthermore,
the “V-shaped” structure of the spectrum and the concentration of spectral weight around
ω = −U/2 − 2th, k = 0 and ω = −U/2 + 2th, k = ±π found in the strong-coupling ap-
proach [53] is corroborated by our numerical results. A signature of upper Hubbard band is
also visible here, which can be qualitatively described by the Hubbard-I mean-field approxi-
mation [72,73] (note that we have shown only the PES part of A(k,ω) in Fig. 9).

Most interesting seems to be the melting of the Mott gap in the vicinity of the Fermi level:
The zero-temperature PES spectral weight leaks into the Mott gap regime in the doped Mott
insulator (two holes in the finite-size system), which leads to the extension of the spinon-
antiholon continuum [53]. Similarly, holes in the lower Hubbard band left behind as a result
of doublon creations can be occupied by thermally excited quasiparticles. This leads to the
melting of the Mott gap with increasing temperature, which becomes more distinct when de-
creasing the Coulomb repulsions U .

At very high temperatures (T > th), the energy distance between upper and lower Hubbard
bands is insignificant (provided U is not too large) and finally both bands merge into a single
band ε(k) = −2th cos k, see Fig. 9(p).
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