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Abstract

Many theoretical problems in quantum technology can be formulated and addressed as
constrained optimization problems. The most common quantum mechanical constraints
such as, e.g., orthogonality of isometric and unitary matrices, CPTP property of quantum
channels, and conditions on density matrices, can be seen as quotient or embedded Rie-
mannian manifolds. This allows to use Riemannian optimization techniques for solving
quantum-mechanical constrained optimization problems. In the present work, we in-
troduce QGOpt, the library for constrained optimization in quantum technology. QGOpt
relies on the underlying Riemannian structure of quantum-mechanical constraints and
permits application of standard gradient based optimization methods while preserving
quantum mechanical constraints. Moreover, QGOpt is written on top of TensorFlow,
which enables automatic differentiation to calculate necessary gradients for optimiza-
tion. We show two application examples: quantum gate decomposition and quantum
tomography.
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1 Introduction

Many quantum-mechanical problems can be solved using optimization methods as illustrated
by the following examples. The ground state of a quantum system with Hamiltonian H can be
found using the variational method, which is akin to an optimization problem [1]:

|Q) = argmin WIHTY) (D

W (W)

where |¢) is a non-normalized trial state, |Q2) is the non-normalized ground state. This formu-
lation of a ground state search problem was successfully used for the study of many-body quan-
tum systems [2,3]. In particular, the ground state of a correlated spin system can be found in
the following forms: matrix product states [4-6], projected entangled pair states [7,8] or neu-
ral networks [9-11]. To perform variational energy optimization one can utilize optimization
algorithms such as the density matrix renormalization group [12,13], the time evolving block
decimation [14-16] for tensor network architectures, the quantum natural gradient [17], and
adaptive first-order optimization methods like the Adam optimizer [18] for neural-networks-
based quantum parametrization.

Problems of reconstruction of quantum states, quantum channels and quantum processes
from measured data can also be formulated as optimization problems. For example, the state
of a many-body quantum system can be reconstructed with neural networks by maximization
of the logarithmic likelihood function on a set of measurement outcomes [19-22]. The Choi
matrix of an unknown quantum channel can be reconstructed in a tensor network form via
the minimization of the Kullback-Leibler divergence [23]. Non-Markovian quantum dynamics
can be reconstructed from measured data in different ways [24, 25] by use of optimization
algorithms.

Some quantum mechanics problems require keeping certain constraints while minimizing
or maximizing an objective function. For example, quantum phase transitions can be described
using an entanglement renormalization technique, which requires an optimization over ma-
trices with orthogonality constraints, i.e. isometric matrices. To solve this problem, Vidal and
Evenbly suggested an algorithm [26-28] that does not have analogs in standard optimization
theory. Another example of a constrained optimization problem emerging in quantum mechan-
ics is quantum channel tomography. It requires preservation of natural “quantum” constraints,


https://scipost.org
https://scipost.org/SciPostPhys.10.3.079

Scil SciPost Phys. 10, 079 (2021)

i.e. the completely positive and trace preserving (CPTP) property of quantum channels [29].
Constraints preservation here can be achieved by using a particular parametrization or by
adding regularizers that ensure that the constraints are satisfied.

Adding regularizers into a loss function merely provides approximate preservation of con-
straints, and a naive parametrization may lead to over-parametrization and result in the op-
timization slowing down. One therefore needs a universal approach to quantum technology
optimization. As many natural “quantum” constraints can be seen as Riemannian manifolds,
Riemannian optimization can become a candidate well-suited for the role of universal frame-
work for constrained optimization in quantum mechanics. In the present work, we introduce
QGOpt (Quantum Geometric Optimization) [30], a library for Riemannian optimization in
quantum mechanics and quantum technologies. It allows one to perform an optimization
with all typical constraints of quantum mechanics.

This article is organized as follows. In Sec. 2, we give an overview of Riemannian opti-
mization. We then turn to Riemannian manifolds in quantum mechanics in Sec. 3. In Sec.
4, we present the QGOpt application programming interface (API), and we illustrate its use
in Sec. 5, with two examples: quantum gate decomposition and quantum channel tomogra-
phy. In Sec. 6, we also show that QGOpt can handle optimization over an arbitrary Cartesian
product of manifolds.

2 Overview of the Riemannian optimization

While optimizing an objective function defined on the Euclidean space, one performs a se-
quence of elementary operations like points and vectors transportation. We call these elemen-
tary operations optimization primitives. For example, one iteration of the simplest gradient
descent method involves an update of the current estimation of the optimal point x, as follows:
X¢41 = X; +v;, where v, = —nVf(x,) is a vector tending to improve the current estimation, t
is the number of previous iterations, and 7 is the step-size. This update can be seen as a trans-
portation of a point x, along a vector v,. More sophisticated algorithms may require keeping
additional information about the optimization landscape in terms of vectors {mgo), et mEN)}
associated with the current point x,. These vectors should be transported together with x, to
a new point and then updated according to a particular algorithm. However, as transportation
of vectors in a Euclidean space is the trivial identity transformation, it may be safely skipped.
Optimization on curved spaces requires a generalization of optimization primitives in a certain
way. As an example of optimization algorithms we consider a gradient descent with momen-
tum [31] and its Riemannian generalization [32,33]. We keep our overview simple, and for
an in-depth introduction to the topic, we recommend references [34,35].

Let us assume that we aim to minimize the value of a function f : R" — R, and that
we have access to its gradient Vf(x). In the Euclidean space R", a gradient descent with
momentum consists of the following steps wrapped into a loop:

1. Calculation of the momentum vector m,,; = fm; + (1 —B)IVf(x,),
2. Taking a step along the direction of a momentum vector x,,; = X; — WM,

where the initial momentum vector my is the null vector, 8 is a hyperparameter whose value
is usually taken around 8 ~ 0.9, and 7 is the size of the optimization step.

Let us assume now that a function f is defined on a Riemannian manifold M that is
embedded in the Euclidean space: f : M — R. Then we can no longer apply the standard
scheme of gradient descent with momentum because it clearly takes x; out of the manifold
M. This scheme can be generalized step by step. First, we have to generalize the notion of
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gradient. The standard Euclidean gradient is not a tangent vector to a manifold and it does
not take into account the metric of a manifold. One may introduce the Riemannian gradient
that can be constructed based on the standard gradient Vf (x). The Riemannian gradient lies
in the space tangent to a point x and properly takes the metric of a tangent space into account.
Although an optimization algorithm takes a step along a vector tangent to a manifold, it still
takes a point out of the manifold. In order to fix this issue, one can replace a straight line step
with a proper curved line step. In the Riemannian geometry the generalization of the straight
line step is given by the notion of exponential map that reads

Xout = Eprin(V) =7r(1), (2)
where y(t) is a geodesic [36] such that y(0) = x;, and dz(tt) —o = V» Xin Is an initial point
on a manifold, x,, is a final point. However, in practice the calculation of a geodesic is
often computationally too inefficient. In these cases, one can use a retraction instead of an
exponential map, which is a first-order approximation of a geodesic [36]:

jz‘Ol,lt = inn (V)J (3)

where X, also lies in a manifold and ||%,y — X o/l = O(||V]|?). A retraction is not unique so it
can be chosen to be computationally efficient.

The gradient descent with momentum also requires to transport the momentum vector at
each iteration from a previous point to a new point. The Euclidean version of the gradient
descent with momentum does not have an explicit step with transportation of the momentum
vector because in the Euclidean space transportation of a vector is trivial. However, this step
is necessary in the Riemannian case, where the trivial Euclidean vector transportation takes
a vector out of a tangent space. A vector transport 7, ,,(v) is the result of transportation of
a vector v along a vector w which takes into account that a tangent space varies from one
manifold’s point to another in the Riemannian case. The overall Riemannian generalization
of the gradient descent with momentum can be summarized as follows:

1. Calculation of the momentum vector m,,; = fm; + (1 — B)Vrf(x,),
2. Taking a step along a new direction of the momentum x;,; =R, (—n41),
3. Transport of the momentum vector to a new point X 1: Mey1 = Ty, _nm,,, (Me41)-

Note that other first-order optimization methods can be generalized in a similar fashion.

3 Riemannian manifolds in quantum mechanics

Many objects of quantum mechanics can be seen as elements of smooth manifolds. However,
their mathematical description, suitable for numerical algorithms, may involve some abstract
constructions that should be clarified. In this section we consider an illustrative example of
the set of Choi matrices and describe this set as a smooth quotient manifold. We restrict our
consideration to a plain description of all necessary mathematical concepts. At the end of the
section, we also list all the manifolds implemented in the QGOpt library and describe their
possible use.

The evolution of any quantum system that interacts with its environment can be described
by a quantum channel. Here, we consider quantum channels defined as the following CPTP
linear map: ® : C"*" — C™". Any quantum channel can be represented through its Choi
matrix [29]. A Choi matrix is a positive semi-definite operator C € C™*"* that has a constraint
Tr,(C) = 1, where Tr,, is a partial trace over the second subsystem and 1 is the identity matrix.

4
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Figure 1: a) Diagrammatic representation of the Choi matrix. The block denoted by
1 represents the identity map in the definition of the Choi matrix. b) One can note
that the state of a two-component quantum system |[¥") can be seen as the identity
matrix. c¢) Finally, we note that the Choi matrix is a quantum channel itself.

To make the notion of the partial trace less abstract, let us consider a piece of the TensorFlow
code, which computes a partial trace of a Choi matrix. First, we apply a reshape operation to
a Choi matrix that changes the shape of a matrix as follows

C_resh = tf.reshape(C, (n, n, n, n))

The tensor C.g, € C™*™ ™" is an alternative representation of the Choi matrix. Further in the
text, we distinguish two equivalent representations of a Choi matrix: C and C,.g,. The partial
trace of a Choi matrix can be calculated using Cieg, as follows [Tr,(C)];;, = >, [ Creshliyjiyj-
Practically it can be done by running

tf.einsum(’ikjk->ij’, C_resh)

which means that we take a trace over the first and third indices (with numeration of indices
starting from 0).

The Choi—Jamiotkowski isomorphism [37] establishes a one-to-one correspondence be-
tween quantum channels and Choi matrices. One can calculate the Choi matrix of a known
quantum channel as follows

C=1e)[|¥")(¥], €y

where [¥*) =" |i) ® [i) and {|i)}"", is an orthonormal basis in C". In order to show that
the Choi matrix is a quantum channel itself, we consider the representation of Eq. (4) in terms
of tensor diagrams [38,39]. The reshaped version of a Choi matrix [Creg J;, j,i,j, 1S shown in
Fig. 1. The tensor diagrams in Fig. 1 show that |[¥*) and 1 in the definition of the Choi matrix
lead only to relabeling of multi-indices.

The set of all Choi matrices of size n? x n? (the corresponding quantum channel acts on
density matrices of size n x n) C,, is the following subset of crixn®

2

C,={cec™|c>0, Tr,(C)=1}, (5)

where C > 0, and Tr,(C) = 1 corresponds to the CPTP property of the corresponding quan-
tum channel. This subset can be described as a Riemannian manifold that admits different
Riemannian optimization algorithms. In order to describe C, as a Riemannian manifold, we

. . o s . 252
may parametrize the Choi matrix with an auxiliary matrix A€ C™ *™":

C =AA". (6)
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Figure 2: a) Decomposition of a Choi matrix into A and A'. b) Diagrammatic repre-
sentation of the isometric property of A.

Figure 3: Diagrammatic representation of the reshape operation turning the tensor
Aeqn INtO an isometric matrix.

o . e . T 2y n2 .
The matrix C is positive semi-definite by construction. We also distinguish A€ C* *™ and its

. 2 . .
reshaped version A, € C™*™™ that are connected by the reshape operation. The condition
on a partial trace of a Choi matrix transforms to the following equality:

[Tr,(C)]i,i, = [Tr,(ATA)); i, = Z[Aresh]iilj[Aresh]kizj =0y, (7)
kj

and its diagrammatic form is given in Fig. 2. One can see that if in Eq. (7) we recast the two
indices k and j into one index q, we then end up with the following relation:

Z:[Aresh]zi1 [Aresh]qiz = 51'11‘2; 8

q

which means that [Aes]g; is an isometric matrix and the corresponding tensor [Ayeg, Jxij is @
reshaped isometric matrix. The corresponding diagrammatic representation of Eq. (8) is given
in Fig. 3. We call such a tensor obtained by reshaping an isometric matrix an isometric tensor.
The set of all complex isometric matrices of fixed size forms a Riemannian manifold called
complex Stiefel manifold [40] that we denote as St. Equations (7) and (8), and the diagram
in Fig. 3 show that the set of tensors A,.q, can be seen as a complex Stiefel manifold.

At first glance, it looks like we have shown that the set of Choi matrices can be seen as a
Stiefel manifold, but there is a problem that invalidates this statement: the matrices A and AQ,
where Q is an arbitrary unitary matrix, correspond to the same Choi matrix; in other words,
we have an equivalence relation AQ ~ A. Indeed,

C =AQQ'AT = AA". 9

A diagrammatic version of Eq. (9) is depicted in Fig. 4. It shows that for any A there is a family
of equivalent matrices [A] = {AQ|Q € (C”ZX”Z, Q'Q =QQ" =1}, which is the equivalence class
of A and leads to the same Choi matrix. One can eliminate this symmetry by turning to a quo-
tient manifold St/Q = {[A]|A € St}, which consists of equivalence classes. This rather abstract
construction can be imagined as a projection of a manifold along surfaces representing equiv-
alence classes (see Fig. 5). Having a map 7(A) = [A] and a horizontal lift [34], that connects

6
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Figure 4: Diagrammatic representation of Eq. (9).

,—F={acece™ qor=oo=1} =

e

A e 2%n2 |Tr (AfA) St/Q = [A]lA € St

Figure 5: Graphical representation of the transition from the manifold St of all ma-
trices A, to the quotient manifold St/Q that eliminates undesirable symmetry of the
parametrization. The red curve represents a particular equivalence class F that is
also called a fiber.

tangent spaces of St/Q and tangent spaces of St, one can describe the abstract manifold St/Q
through St. The quotient manifold St/Q can be further identified with the set of Choi matrices
C,. It allows one to perform a Riemannian optimization on C,,, by using the parametrization
C = AA". Mathematical details of this construction are given in Appendix A.

The example of the quotient manifold representing the Choi matrices through their
parametrization shows all the necessary steps that emerge while building the mathematical
description of quantum mechanical manifolds. The set of all manifolds implemented in QGOpt
library is listed below.

* The complex Stiefel manifold St, , = {V eC™PlVV = ]1} is a set of all isometric matri-
ces of fixed size. A particular case of this manifold is a set of all unitary matrices of fixed
size; therefore, this manifold can be used for different tasks related to quantum con-
trol. Some architectures of tensor networks may include isometric matrices as building
blocks [41,42]; thus, one can use this manifold to optimize such tensor networks.

* The manifold of density matrices of fixed rank
Onr = {Q € (C”X"‘Q =o', Tr(p) =1, o >0, rank(p) = r} is a set of all fixed-rank Her-
mitian positive semi-definite matrices with unit trace. Since density matrices represent
states of quantum systems, one can use this manifold to perform state tomography and
optimization of initial quantum states in different quantum circuits. This manifold is
implemented through a parametrization with a quotient structure on top of it.

* The manifold of Choi matrices of fixed rank
Cor = {C € (C”ZX”ZTC =C", Tr,(C)=1, C 20, rank(C) = r} is a set of all fixed-rank
Hermitian positive semi-definite matrices with auxiliary linear constraint (equality of
the partial trace to the identity matrix). Choi matrices are used as representations of
quantum channels; hence, one may use this manifold to perform quantum channel to-
mography and optimization of quantum channels in different quantum circuits. This
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manifold is implemented through a parametrization with a quotient structure on top of
it.

* The manifold of Hermitian matrices H, = {H eCcmn

H=H T} is a linear subspace of

a space C™*". Since Hermitian matrices represent measurable physical operators in the
quantum theory, one can use this manifold to perform a search of optimal measurable
physical operators in different problems.

* The manifold of Hermitian positive definite matrices S}, = {S ecm™n"

s:sis>0}
is a set of all positive definite matrices of fixed size. One can use it to search the optimal
non-normalized quantum state in different tasks.

* The manifold of positive operator-valued measures (POVMs) with full rank elements

POVM,,, = {{Ei};n:l eC™™ME, =E!, E >0, ZEi =1, rank(E;) = n ; can be considered as a ten-

sor with Hermitian positive semi-deﬁnitlelfull-rank slices that sum into the identity ma-
trix. Since POVMs describe generalized measurements in quantum theory, one can use
this manifold to perform a search of optimal measurements that give the largest infor-
mation gain. This manifold is implemented through a parametrization with a quotient
structure on top of it.

Mathematical details of the implementation of manifolds are given in Appendix A.

4 QGOpt API

4.1 Manifolds API

In this section we discuss the API of the version 1.0.0 of the QGOpt library. The central class
of the QGOpt library is the manifold base class. All particular manifold types are inherited
from the manifold base class. All manifold subclasses admit working with the direct product
of several manifolds. Optimization primitives of each particular manifold are implemented as
methods of the corresponding class describing a manifold. This list of methods allows one not
to pay particular attention to the details of the underlying Riemannian geometry.

Let us consider basic illustrative examples. First, one needs to import all necessary libraries
and create an example of a manifold. As an example we consider the complex Stiefel manifold.

import QGOpt as qgo
import tensorflow as tf

# example of complex Stiefel manifold
m = ggo.manifolds.StiefelManifold ()

Here, m is an example of the complex Stiefel manifold that contains all the necessary infor-
mation on the manifold’s geometry. Some manifolds allow one to specify a type of metric and
retraction as well. Using this example of a manifold one can sample a random point from a
manifold:

u = m.random((4, 3, 2))

Here, we sample a random tensor u, that is a complex valued TensorFlow tensor of size 4x3x 2.
This tensor represents a point from the direct product of four complex Stiefel manifolds. The
first index of this tensor enumerates a manifold and the last two indices are matrix indices.
Therefore, the tensor u can be seen as a set of four isometric matrices. One can generate a
random tangent vector drawn from u.
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v = m.random_tangent (u)

Here, v is a complex-valued TensorFlow tensor of the same size and type as u, and represents
the random tangent vector drawn from u. Now let us assume that we have a random vector
w which is of the same size and type, but is not tangent to u. One can make the orthogonal
projection of this vector on the tangent space of u:

w = m.proj(u, w)

The updated vector w is an element of the tangent space of u now. The projection method of
quotient manifold performs the projection on the horizontal space. To get the scalar product
of two tangent vectors one can use the following line of code:

wv_inner = m.inner(u, w, V)

Here we pass u to the inner product method to specify the tangent space where we compute
the inner product, because in Riemannian geometry the metric and inner product are point-
dependent in general.

To implement first-order Riemannian optimization methods on a manifold one needs to be
able to move points and vectors along the manifold. There are retraction and vector transport
methods for this purpose. As an example let us move a point u along a tangent vector v via
the retraction map:

u_tilde = m.retraction(u, v)

The new point i is the result of transportation of u along vector v. To perform transportation
of a vector along some other vector one can run:

v_tilde = m.vector_transport(u, v, w)

Here we start from point u and transport a tangent vector v along a tangent vector w, and
obtain ¥ that is the result of the vector transportation.

The last important method converts the Euclidean gradient of a function to the Riemannian
gradient. The Riemannian gradient replaces the Euclidean gradient to take into account the
metric of a manifold and the tangent space in a given point. To calculate the Riemannian
gradient one can use:

r = m.egrad_to_rgrad(u, e)

where we denote the Euclidean gradient as e and the Riemannian gradient as r.
The numerical complexity of each optimization primitive varies from one manifold to an-
other. The complexity of all primitives is summarized in Appendix B.

4.2 Optimizers

The Riemannian optimizers implemented in QGOpt are inherited from TensorFlow optimizers
and hence have the same API. The main difference is that one should also pass an example of
manifold while defining an optimizer, which guides the optimizer and preserves the manifold’s
constraints. Two optimizers are implemented, that are among the most popular in machine
learning: Riemannian versions of Adam [18] and SGD [43].

If m is a manifold element and Ir is a learning rate (optimization step size), then the Adam
and SGD optimizers can be initialized as:
# Riemannian ADAM optimizer
opt = qgo.optimizers.RAdam(m, 1lr)

# Riemannian SGD optimizer
opt = qgo.optimizers.RSGD(m, 1lr)

Note that some other attributes like the momentum value of the SGD optimizer or the AMSGrad
modification of the Adam optimizer can also be specified.

9
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4.3 Auxiliary functions

It is important to keep in mind that TensorFlow optimizers work well only with real variables.
Therefore, one cannot use complex variables to represent a point on a manifold because they
are being tuned while optimizing. The simplest way of representing a point from a complex
manifold through real tensors is by introducing an additional index that enumerates real and
imaginary parts of a tensor. For example a complex-valued tensor of shape (a, b, ¢) can be rep-
resented as a real-valued tensor of shape (a, b, c,2). During calculations, we need to convert
tensors from their real representation to their complex representation and back.

Let us initialize a complex-valued tensor as a point from a manifold using the method
“random”. In order to make this tensor a variable suitable for an optimizer, one needs to
convert it to the real representation. Then, while building a computational graph, one may
need to have a complex form of a tensor again:

# a random real tensor, last index enumerates
# real and imaginary parts
w = tf.random.normal ((4, 3, 2),

dtype=tf.float64)
# corresponding complex tensor of shape (4, 3)

wc = qgo.manifolds.real_to_complex (w)
# corresponding real tensor (wr = w)
wr = qgo.manifolds.complex_to_real (wc)

5 Examples of application of QGOpt

5.1 Quantum gate decomposition

In this subsection we consider an illustrative example of quantum gate decomposition. It is
known that any two qubit-quantum gate U can be decomposed [44]:

U = [{iy; ® li15 |Ucnorliing ® Tigy JUcnorliis1 ® fizy [Ucnor[iia ® Tigs], (10)

where Ugyor is the CNOT gate and {i;; }f"jz:l is a set of unknown one qubit-gates. Since a set

{a; j}f’le can be seen as the direct product of 8 complex Stiefel manifolds, one can use Rie-
mannian optimization methods to find all #i;;. First, we initialize randomly a trial set {u;; }?}2:1
that will be tuned by Riemannian optimization methods. For simplicity, we denote the decom-

position introduced above as

D (uij) = [u11 ® ug2]Ucnor[u21 ® ugs JUcnorlus: ® uss JUcnor[Uus ® gy ] (11)
The optimal set of one-qubit gates can be expressed as:

argmin ||U — D(u;;)|l, (12)

4,2
{uij }i’jzl

where each u;; obeys the unitarity constraint and || - || is the Frobenius norm.
Before considering the main part of the code that solves the above problem, we need to
introduce a function that calculates the Kronecker product of two matrices:
def kron(A, B):
AB = tf.tensordot (A, B, axes=0)
AB = tf.transpose(AB, (0, 2, 1, 3))
AB = tf.reshape (AB, (A.shape[0]*B.shapel[0],

A.shape[1]*B.shape[1]))
return AB

10
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Now, we define an example of the complex Stiefel manifold:

m = ggo.manifolds.StiefelManifold ()

We use a randomly generated target gate that we want to decompose,

U = m.random((4, 4), dtype=tf.complex128)

4,2

We initialize the initial set {u;;}, 1 randomly as a rank-4 tensor,

u = m.random((4, 2, 2, 2), dtype=tf.complex128)

The first two indices of this tensor enumerate a particular one-qubit gate, the last two indices
are matrix indices of a gate. We turn this tensor into its real representation in order to make
it suitable for an optimizer and wrap it up into the TensorFlow variable:

u = qgo.manifolds.complex_to_real (u)
u = tf.Variable (u)

We initialize the CNOT gate Uy as follows:

cnot = tf.constant ([[1, O, O, O],
(o, 1, o, ol,
[o, o, o, 11,
[o, o, 1, 011,
dtype=tf.complex128)

As the next step, we initialize the Riemannian Adam optimizer:

lr = 0.2 # optimization step size
opt = qgo.optimizers.RAdam(m, 1r)

and run the forward pass of computations:

with tf.GradientTape () as tape:
# turning u back into its
# complex representation
uc = qgo.manifolds.real_to_complex (u)
# decomposition
D = kron(uc[0, 0], uclO, 11)

= cnot @ D

= kron(uc[1, 0], ucl[1, 1]) @ D

= cnot @ D

= kron(uc[2, 0], ucl[2, 1]) @ D
cnot @ D

kron(uc[3, 0], ucl[3, 1]) @ D

oss function

tf.linalg.norm(D - U) **x 2

s equivalent to casting to a real dtype
tf.math.real (L)

=

FHP #0000 U00
I

=

The final step is to minimize the loss function L = ||D(y; j)—U||% calculated during the previous

step. We calculate the gradient of L, using automatic differentiation, with respect to the set
42

{lqj}tjzl'

grad = tape.gradient (L, u)

and pass the gradient to the optimizer:
opt.apply_gradients(zip([grad]l, [ul))

The Adam optimizer performs one optimization step keeping the orthogonality constraints. We
repeat the forward pass, gradient calculation and optimization steps several times, wrapping
them into a for loop until convergence and end up with a proper decomposition of the gate
U. The optimization result is given in Fig. 6. One can see that at the end of the optimization
process, the error is completely negligible. This section in the form of a tutorial is available in
the QGOpt online [45].
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| D(uij) = Ullr

10—10 i

0 100 200 300 400 500
iter
Figure 6: Frobenius distance between a gate and its decomposition. One can see
that the distance rapidly decreases with the number of iteration towards nearly zero
within machine precision.

5.2 Quantum tomography

Another typical problem that can be addressed by Riemannian optimization is the quantum
tomography of states [46,47] and channels [48,49]. Here, we consider an example of quan-
tum tomography of channels because it involves a more complicated structure than quantum
tomography of states.

Let H = Q' C? be the Hilbert space of a system consisting of n qubits. Let us assume
that one has a set of input states {p; f’: 1> where N is a total number of states, and each p;
is a density matrix on 7. One passes initial states through an unknowr}v quantum channel

®,,.. and observes a set of measurement outcomes {M’E‘itra ®---®M ,E?fra} , where M, "™ is

i=1
an element of a tetrahedral POVM [50]:

1
M]Eetra — Z (]l + SZO'), ke€(0,1,2,3), (13)

2v2 1
o = (GX)OyJ O-Z)ﬁso = (01 O) 1)781 = (T’O,_g) 5

__Q\E_z __Q_\E_z
27\ T3 33 BT T3 T 3T )

One can estimate an unknown channel by maximizing the logarithmic likelihood of measure-
ment outcomes:

N
argmax Z log Tr (M]E?tra ® - ® M]Eﬁtra<1>(pi)) . (14)
®is CPTP; i i

For simplicity, we assume that the many-body tetrahedral POVM M is already predefined and
has the shape (227,2",2"), where the first index enumerates the POVM element. We also as-
sume that we have a data set that consists of a set of initial density matrices of shape (N, 2",2")
and a set of POVM elements of the same shape that came true after measurements. In our
experiments, the unknown channel has Kraus rank 2 and is generated randomly, the initial
density matrices are pure and also generated randomly.

Let us proceed with the practical implementation. First, we define an example of the
quotient manifold equivalent to the manifold of Choi matrices:

m = qgo.manifolds.ChoiMatrix ()

12
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Elements of this manifold are connected with Choi matrices via the relation (6). We randomly
initialize a point from the quotient manifold,

1 # random initial parametrization

> A = m.random ((2**(2*n), 2**(2*n)),

3 dtype=tf.complex128)

4+ # variable should be real

s # to make an optimizer work correctly

6 A = ggo.manifolds.complex_to_real (A)
# variable
A = tf.Variable (A)

Then we initialize the Riemannian Adam optimizer:

lr = 0.07
opt = qgo.optimizers.RAdam(m, 1lr)

and calculate the logarithmic likelihood function:

with tf.GradientTape () as tape:
# Ac is a complex representation of A

1

2

3 # shape=(2**2n, 2%%*2n)

4 Ac = ggo.manifolds.real_to_complex (A)

5

6 # reshape parametrization

7 # (2%*2n, 2*x*2n) --> (2%*n, 2%*n, 2%*x2n)

8 Ac = tf.reshape(Ac, (2%*n, 2%*n, 2%*x(2*n)))
9

10 # Choi tensor (reshaped Choi matrix)

1 choi = tf.tensordot (Ac,

12 tf.math.conj (Ac),

13 (021, 211

14

15 # turning Choi tensor to the

16 # corresponding quantum channel

17 phi = tf.transpose(choi, (1, 3, 0, 2))

18 phi = tf.reshape(phi, (2**(2*n), 2**x(2*n)))
19

20 # reshape initial density

21 # matrices to vectors

22 rho_resh = tf.reshape(rho_in, (N, 2**(2%*n)))
23

24 # passing density matrices

25 # through a quantum channel

26 rho_out = tf.tensordot (phi,

27 rho_resh,

28 1, [111)

29 rho_out = tf.transpose(rho_out)

30 rho_out = tf.reshape(rho_out,

31 (N, 2xxn, 2%*n))

32

33 # probabilities of measurement outcomes

34 # (povms is a set of POVM elements

35 # came true of shape (N, 2%%n, 2%xn))

36 p = tf.linalg.trace(povms @ rho_out)

37

38 # negative log likelihood (to be minimized)
39 L = -tf.reduce_mean(tf.math.log(p))

The complexity of the code above can be reduced by choosing the optimal order of tensor con-
traction; however, it becomes more complicated in this case, and is not suitable for the tutorial.
Finally, we calculate the logarithmic likelihood gradient with respect to the parametrization of
the Choi matrix:
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1072
0 100 200 300 400

iter

Figure 7: Dependence between Jamiotkowski process distance and number of itera-
tion. Number of measurement outcomes N = 600000 for all experiments.

grad = tape.gradient(L, A)

and apply the optimizer to make an optimization step that does not violate the CPTP con-
straints:

opt.apply_gradients(zip([gradl, [Al))

We repeat the calculation of the logarithmic likelihood function, gradient calculation and op-
timization steps several times, wrapping them into a for loop, until convergence is reached. To
evaluate the quality of an unknown quantum channel estimation, we calculate the Jamiotkowski
process distance [51]:

1
J(Piryes Pest) = E I Cerue — Cestllirs (15)
where ®.(®e) is the true (estimated) quantum channel, C,.(Ces) is the corresponding
Choi matrix, || - ||, is the trace norm and 0 < J(® e, Pest) < 1. One can see in Fig. 7 that the

Jamiotkowski process distance converges to some small value with the number of iterations
and we end up with a reasonable estimation of an unknown quantum channel. This section is
available in the QGOpt online documentation in the form of a tutorial [45].

6 Optimization over an arbitrary Cartesian product of manifolds

In general, it is possible to perform optimization over the Cartesian product of different man-
ifolds. The QGOpt library allows finding

argmin f (A), (16)
AeM
where M is an arbitrary Cartesian product of manifolds, implemented in the QGOpt library,
f is a function that can be evaluated within the TensorFlow framework.
As an example, let us consider an optimization over the manifold

M= ©ny,ny x ©ny,n, x €ny,n, x Cn,r x Cn,r: 17

where x denotes the Cartesian product. In other words, one has one manifold of full-rank
density matrices of size n; x n;, two manifolds of full-rank density matrices of size n, x n, and
two manifolds of Choi matrices of size n? x n? and rank r. Let us define the building blocks of
M,
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m_choi = ggo.manifolds.ChoiMatrix ()
m_dens = qgo.manifolds.DensityMatrix ()

The next step is to define variables representing points on manifolds. First, we define a variable
representing a point in g, .

# random initialization

A_rho_1 = m_dens.random((nl, nl1),
dtype=tf.complex128)

# variable should be real

# to make an optimizer work correctly

A_rho_1 = qgo.manifolds.complex_to_real(A_rho_1)

# variable

A_rho_1 = tf.Variable(A_rho_1)

Then we define a variable representing a point from ,,, ,, X On, n,

# random initialization

A_rho_2 = m_dens.random((2, n2, n2),
dtype=tf.complex128)

# variable should be real

# to make an optimizer work correctly

A_rho_2 = ggo.manifolds.complex_to_real (A_rho_2)

# variable

A_rho_2 = tf.Variable(A_rho_2)

where we take advantage of the fact that both matrices are of the same size, and we can
represent them as one tensor. Let us group these two variables into one list

A_rho = [A_rho_1, A_rho_2]

which is passed to the Riemannian optimizer on the manifold of density matrices. One also
needs to define a variable representing a point from C,, ..

# random initialization

A_choi = m_choi.random((n**x2, r))

# variable should be real

# to make an optimizer work correctly

A_choi = qgo.manifolds.complex_to_real (A_choi)
# variable

A_choi = tf.Variable(A_choi)

Now one needs to define optimizers

# learning rate

1r = 0.01

# optimizer over density matrices

opt_dens = qgo.optimizers.RAdam(m_dens, 1lr)
# optimizer over choi matrices

opt_choi = qgo.optimizers.RAdam(m_choi, 1lr)

and perform an optimization step

with tf.GradientTape () as tape:
L = f(A_rho_1, A_rho_2, A_choi)

# gradient over all variables

grad_total = tape.gradient(L, A_rho + [A_choil)

# gradient over variables representing

# density matrices

grad_rho = grad_total [:2]

# gradient over the variable representing

# Choi matrix

grad_choi = grad_total[-1]

# optimization step

opt_dens.apply_gradients (zip(grad_rho, A_rho))

opt_choi.apply_gradients(zip([grad_choil,
[A_choil))
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where we assume that the function f is predefined. In order to iterate optimization steps until
convergence, one can wrap the code above into a loop. This general scheme can be used for
optimization over an arbitrary set of different manifolds.

7 Discussion and concluding remarks

The range of application of the QGOpt library to different problems of quantum technologies
is not limited to quantum gate decomposition and quantum tomography. The six manifolds
implemented in QGOpt give rise to different interesting scenarios of constrained optimization
usage in quantum technologies. For example, the complex Stiefel manifold can be used to
address different control problems [52-54] where one needs to find an optimal set of unitary
gates driving a quantum system to a desirable quantum state. It is also possible to use a com-
plex Stiefel manifold to perform entanglement renormalization [41,42], machine learning by
unitary tensor networks [55] or non-Markovian quantum dynamics identification [24]. In ad-
dition, quotient manifolds for quantum tomography, or for density matrices and Choi matrices
can be used to maintain natural quantum constraints in different tensor network architectures.
Quotient manifold of POVMs can be used for searching for an optimal generalized measure-
ment scheme with maximum information gain. Finally, all these manifolds can be combined
in one optimization task, which allows to address multi-component problems.

Although as of yet the QGOpt library includes only first-order optimization methods, we
plan to extend the list of optimizers by including quasi-Newton methods such as the Rieman-
nian BFGS [56], and the recently developed quantum natural gradient descent [17] general-
ized to the case of embedded and quotient manifolds.

To conclude, we have introduced the QGOpt library aimed at solving constrained optimiza-
tion problems with natural quantum constraints. We have introduced and discussed abstract
concepts such as quotient manifolds under the hood of QGOpt. We have gone through the
QGOpt API and covered its most important features. We also sorted out examples of codes
solving illustrative quantum technology problems.
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A Underlying geometry of manifolds implemented in the QGOpt
library

In this appendix, we consider some mathematical aspects of the implementation of manifolds

in the QGOpt library. First, we discuss how one can identify complex matrices, which are
elements of all manifolds implemented in the QGOpt library, with real matrices. Any complex
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matrix A can be represented as follows

A= Re(A) Im(A)
—Im(A) Re(A) |’

(18)

The following correspondences between operations with complex matrices and operations
with their real representations

A" —» AT AB — AB, A+ B — A+ B, 2Re(Tr(A)) = Tr(A), (19)

allow us to work with certain sets of complex matrices as with Riemannian manifolds of real
matrices [57]. The QGOpt library contains six manifolds: three implemented as embedded
manifolds and three implemented as quotient manifolds.

Table 1 summarizes the geometry lying under the hood of a high-level description of the
embedded manifolds in the QGOpt library.

We also summarize the geometry of the manifolds that are implemented as quotient manifolds.
In our summary, we follow the book by Nicolas Boumal [34], which provides a very instructive
presentation of the optimization on quotient manifolds.

Having an optimization problem on a quotient manifold, one works with two sets M and
M that are connected as

M =M/ ~={[x]|x € M}, (20)

where [x] = {y|ly € M, y ~ x} is the equivalence class of x, M is some Riemannian manifold
and M is its quotient. We call a map 7 a canonical projection if it maps any x from M to its
equivalence class:

m(x) =[x]. 21)

For M to be a manifold, one requires 7 to be smooth and its differential Drt(x) : T, M — Tp M
must have a constant rank r = dim (M) for all x € M. We call V, a vertical space at x € M
if it is the kernel of D7t(x), i.e.

V, =ker(Dn(x)), (22)

then one can decompose the tangent space T, M at a point x as
T M=H,&V,, (23)

where H, is the orthogonal complement of V, also called the horizontal space. The restricted
linear map D7t(x)|y, : Hy — T[,3M is bijective by construction and can be used to represent a
vector from Tf,1M as a vector from H,.. This representation is called horizontal lift and reads

v = (Dr(x)ly, ) [E] = lift, (&), (24)

where ¢ is a vector from Tp,jM and v is its representation from H, .

Having introduced all the objects above, one can try to construct all primitives for opti-
mization algorithms on a quotient manifold through the same primitives on a total manifold
(see table 2).

These primitives are correct if they do not depend on a choice of a particular point from
an equivalence class, i.e. for all [x] € M and &, { € T,,jM if x ~ y the following statements
are true

(lift, (&), lift, () = (lift, (&), lift, (), (25)
n (R, (lift,(£))) = m (R, (lift, (£))), (26)
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Table 2: Optimization primitives of M expressed through optimization primitives of

M.

(&, O = (lift, (&), lift, (), where (,-), is an inner product in
T.Mand & (e TrqM

Inner product

Retraction R(&)=m (}_Qx(liftx(f ))), where R is an retraction on M
_qip—1 . . g
Vector transport T£(8) = hftl_%x(liftx(i)) (PHEx(hftx(s))(hftx (())), where Pg is the or

thogonal projection operator on a subspace S
Function f=fom wheref: M —Randf: M—R

Riemannian gradient | V f([x]) = lift;l (VR]T( x))

ar—1 . el .
hftﬁx(nftx(s)) (P LI NING) (hftx((:))) - hftfzy(h&y(s)) (P Hg, qitey 2» (lifty (C))) ’ 27

where ~ denotes equivalence relation between elements of M. It is also worth noting that in
practice there is no need to go back from M to M after application of each primitive. Instead,
one can work only with objects from M, which makes optimization algorithms on M almost
identical to algorithms on M.

Manifolds g, ,, C, , and POVM,, ,, in the QGOpt library are implemented using the above
idea. The quotient geometry of the real version of the manifold o, , is described in [59] and
also is implemented in the Manopt library [60]. The alternative approach to optimization on
a POVM,, , is also considered in [61] and implemented in Manopt. To the best of the authors’
knowledge, the manifold C, , has not been considered from the Riemannian optimization point
of view.

Let us consider total manifolds that are used to build quotient manifolds implemented in
the QGOpt library. They are

On, ={A€CI"|Tr(AA") = 1}, (28)

-

Cpr= {Ae C7 |Tr,, (AAT) = ]1}, (29)

m
POVM,, , = {{Ai};’;1 D AAI=1, A€ CQ*”}, (30)

i=1

where C?*? is the set of complex full-rank matrices of size p xq. One can note that the manifold
O, is a sphere with the additional condition on the rank of A, manifolds En’r and POVM,,, ,
are complex Stiefel manifolds with the additional condition on the ranks of A and A;. Any
element of the total manifolds above corresponds to either a density matrix, a Choi matrix, or
a POVM. Indeed

o=AA", ifAcp,,, (31)
C=AA", ifAeC,,, (32)
E; =AA!, if A€ POVM,, ,, (33)
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where p is some density matrix, C is some Choi matrix and E; is an element of some POVM.
However, there is an ambiguity:

o =AA" = AQQ'AT, (34)
C =AA" = AQQ'AT, (35)
E; =AAT =AQQIAT, (36)

where Q is unitary and {Q;}!_, is a set of unitary matrices of the appropriate size. In order to
lift the ambiguity we introduce equivalence classes

[A]={AQlQeC™", QQ' =1}, for g, , and C,,, 37)
[{A}:nzl] = {{AlQl}InzllQl ecmn, Q; QT 13}, for POVMm n» (38)

and the corresponding quotient manifolds

En,r/ ~= {[A] |A € En,r} 2 (39)
Cpr/ ~={[A] |A €Cpnr}, (40)
POVM,, ./ ~= {[{A}7, I[{A;}, € POVM,, . }. (41)

To identify quotient manifolds with those that are introduced in the main text, we introduce
the maps

¢.9 :En,r/ ~— Qn,r : [A] HAAT; (42)
¢C :En,r/ ~= Cn,r : [A] '_)AAT, (43)
bpovm : POVM,, n/ ~— POVM,, , : [{A}, ] — {A,AT} . (44)

These three maps are bijections, which follows from Proposition 2.1 in [62] that is proved for
real matrices, but generalization to the complex case is straightforward. They, as well as their
inverses, are also differentiable which implies that these three maps are diffeomorphisms. It
is enough to identify quotient manifolds with those introduced in the main text and turn to
the optimization on quotient manifolds.

Now, to perform optimization on g, ,, C,, and POVM,, , it is sufficient to introduce ap-
propriate primitives for g, ,, En,r and POVM,, , that additionally satisfy Eqs. (25-27), and the
projection on the horizontal space. The total manifolds equipped with the following inner
products, induced by inner products of ambient spaces

(v,w), =Re (Tr(va)) , where w, v € Tp0, ,, (45)
(v,w), =Re (Tr(va)) , where w, v € TAEn,r, (46)
(Vi w I )a = Re (ZTr(v w] )) (47)
where {w;}I2,, {»;}L, € T{Ai};’;IPOVMm,m

satisfy the condition (25) as shown in [34]. The projections on the horizontal space for the
total manifolds are

Py,(v)=Prg (v)—Py,(v), forg,,, (48)
Py, (") =Pz ()= Py, for Cy. (49)
PH(AHE’;l (i) = PT(Ai}y;lmn,m({vi )= PV{AH?‘:I ({vii), (50)
for mn’m,
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Table 3: Complexity of optimization primitives for all manifolds implemented in the
QGOpt library.

Manifold Retraction Vector transport Rlemannlan Inner product Projection
gradient
Cor o(n®r) O(max(n®r?,nr)) 0O(n°r) o(n?r) O(max(n®r?,n°r))
For QR and
SVD retrac- For Euclidean
tions O(np2), 5 2 metric  O(np), 5
Stap for Cayley O(np) O(np”) for canonical O(np~)
retraction metric O(np?)
o(n®)
POVM,, , o(mn®) o(mn®) o(mn®) 0o(mn?) o(mn®)
Cnr o(nr) o(nr?) Oo(nr) Oo(nr) o(nr?)
H, o(n?) o(n?) o(n?) 0(n?) 0(n?)
ST, o(n®) o(n®) o(n®) o(n®) 0o(n?)

where the projections on tangent spaces are known for the total manifolds that are the sphere
and the complex Stiefel manifolds; and the projections on the vertical spaces can be found by
solving the Sylvester equation [63]. One can introduce several different retractions for total
manifolds that, however, may not satisfy the condition Eq. (26). Since manifolds En’r and
POVM,, , are complex Stiefel manifolds we can use SVD-based retraction for them. One can
show that SVD-based retraction satisfies the condition Eq. (9) (see [34]). For the manifold On.r
one can use retraction on a sphere (see Example 4.1.1 in [35]). This retraction also satisfies the
condition Eq. (26). Vector transports (see Table 2) induced by retractions above also satisfies
the condition Eq. (27). The Riemannian gradients for g, ,, En’r and POVM,,, ,, are known and
can be used without modifications for optimization on quotient versions of these manifolds.

We thus have all optimization primitives for total manifolds, quotient manifolds, and equiv-
alence between quotient manifolds and manifolds from the main text, which allows us to per-
form optimization on g, ,, C, , and POVM,, ..

B Complexity of algorithms and comparison with other libraries

In this appendix, we discuss questions of scalability of optimization algorithms presented in
the QGOpt library and compare the QGOpt library with other frameworks. To address the
scalability of optimization algorithms, one needs to estimate the asymptotic complexity of
primitives used in those algorithms. Table 3 shows the complexity of optimization primitives
for all manifolds.

Let us compare the complexity of algorithms from the QGOpt library with some state of
the art algorithms in quantum technologies. For example, let us consider quantum channel
tomography, which can be implemented via optimization on C,, .. Under the assumption that a
particular algorithm uses all the optimization primitives, one step of an optimization algorithm
scales like O(n®r), where n is the dimension of a Hilbert space and r is Kraus rank (see Ta-
ble 3). In general, the Kraus rank r is equal to n?, which means that the maximal complexity is
0(n®); however, if we have prior information that r is small, then one can significantly reduce
the complexity of an algorithm. One can compare the one-step complexity of Riemannian-
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optimization-based algorithms for quantum channel tomography with the one-step complex-
ity of an algorithm suggested in [48] that is based on the orthogonal projection on the set
of CPTP maps. In turn, the orthogonal projection on the set of CPTP maps is implemented
through repeated averaged projections on CP and TP sets of maps. The projection on the CP
set has complexity O(n®) that is larger than the complexity of Riemannian-optimization-based
algorithms.

Let us also compare the QGOpt library with other libraries for Riemannian optimization.
Table 4 shows a list of some related libraries. One can see that QGOpt suits best quantum
technologies problems in terms of the number of quantum manifolds.

Table 4: Comparison of the QGOpt library with other libraries for Riemannian opti-
mization in terms of the supported “quantum” manifolds.

Library Language Specific “quantum” manifolds
Manifolds of density matrices, POVMs, Choi matrices, com-
QGOpt Python plex Stiefel manifold
Manopt Matlab, Python, Julia POVMs, complex Stiefel manifold
Geoopt Python None
mctorch Python None
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