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Abstract

Event generation with neural networks has seen significant progress recently. The big
open question is still how such new methods will accelerate LHC simulations to the level
required by upcoming LHC runs. We target a known bottleneck of standard simulations
and show how their unweighting procedure can be improved by generative networks.
This can, potentially, lead to a very significant gain in simulation speed.
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1 Introduction

First-principle simulations have defined data analysis at the LHC since its beginning. The
success of the LHC in establishing the Standard Model as the fundamental theory of particle
interactions is largely owed to such precision simulations and the qualitative progress in our
understanding of QCD. Because the HL-LHC will produce a data set more than 25 times the
current Run 2 data set, the current theory challenge is to provide significantly faster simula-
tions, while at the same time increasing the precision to the per-cent level and better. This
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goal is defined by QCD precision predictions as well as by the expected size of experimental
uncertainties, which seriously limit the use of leading-order simulations even for complex sig-
natures at future LHC runs. While it is hard to accelerate standard tools to the required level,
there is justified hope that modern machine learning will allow us to reach this goal.

A range of modern neural network applications to LHC simulations have been proposed
over the last two years [1]. The conceptually most ambitious network architecture are genera-
tive networks, like generative adversarial networks (GAN) [2–4], variational autoencoders [5,
6], or normalizing flows [7–9] including invertible neural networks (INNs) [10–12]. Following
the established Monte Carlo structures leads us to consider phase space integration [13, 14],
phase space sampling [15–18], and amplitude networks [19,20]. A technical step beyond the
standard approach are fully network-based event generation [21–26], including event subtrac-
tion [27], detector simulation [28–37], or parton showering [38–42]. Generative networks can
also help to extract new physics signals [43] or experimental anomalies [44,45]. Conceptually
more far-reaching, conditional generative networks can invert the forward simulation chain
to unfold detector effects [46, 47] and extract the hard scattering at parton level [48]. Many
of these applications are currently finding their way into the LHC theory toolbox.

Going back to the LHC motivation, the key question is where we can gain significant speed
in precision theory simulations. As mentioned above, we can use flow networks to improve the
phase space sampling [15,17]. In addition, we can employ generative networks because they
learn more information than a statistically limited training data set [4]. This is why neural
networks are successfully used to encode parton densities [49]. Finally, there exist promising
hints for network extrapolation in jet kinematics [23].

In this paper we follow a different path and target a well-known bottleneck LHC event
simulation, the transformation of weighted into unweighted events [50, 51]. Usually, the in-
formation about a differential scattering rate is first encoded in a combination of event weights
and the event distribution over phase space. To compare with data we ideally work with unit-
weight events, where all information is encoded in the event distribution. For complex pro-
cesses, the standard unweighting procedures suffer from low efficiency, which means they lose
statistical power. We will show how a generative network, specifically a GAN, can unweight
events without these losses and thereby speed up event generation significantly [52]. We will
start with a 1-dimensional and a 2-dimensional toy model in Sec. 2, to illustrate our uwGAN
idea in the context of standard approaches. In Sec. 3 we will then use a simple LHC application
to show how our GAN-unweighting method can be applied to LHC simulations.

2 Unweighting GAN

Before we show how networks can be useful for LHC simulations, we briefly introduce event
unweighting as it is usually done, how a generative network can be used for this purpose, and
when such a network can beat standard approaches. First, we will use a 1-dimensional camel
distribution to illustrate the loss function which is needed to capture the event weights. Sec-
ond, we use a 2-dimensional Gaussian ring as a simple example where our method circumvents
known challenges of standard tools.

in short GANweighting or GUNweighting.
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2.1 Unweighting

For illustration purpose, we consider an integrated cross section of the form

σ =

∫

d x
dσ
d x
≡
∫

d x w(x) , (1)

where dσ/d x is the differential cross section over the m-dimensional phase space x . To com-
pute this integral numerically we draw N phase space points or events {x} and evaluate

σ ≈
­

dσ
d x

·

≡ 〈w(x)〉 . (2)

The event weight w(x) describes the probability for a single event x . Sampling N phase space
points {x} and evaluating their weights {w} defines N weighted events {x , w}. The information
on the scattering process is encoded in a combination of event weights and phase space density.
This can be useful for theory computations, but actual events come with unit weights, so all
information is encoded in their phase space density alone.

We can easily transform N weighted events {x , w} into M unweighted events {x} using a
hit-or-miss algorithm, where in practice M � N . It re-scales the weight w into a probability
to keep or reject the event x ,

wrel =
w

wmax
, (3)

and then uses a random number R ∈ [0, 1] such that the event is kept if wrel > R. The obvious
shortcoming of this method is that we lose a lot of events. For a given event sample the
unweighting efficiency is [15]

εuw =
〈w〉

wmax
. (4)

If the differential cross section varies strongly, 〈w〉 � wmax, this efficiency is small and the LHC
simulation becomes CPU-intensive.

A standard method to improve the sampling and integration are phase space mappings, or
coordinate transformations x → y(x),

σ =

∫

d x w(x) =

∫

d y

�

�

�

�

∂ x
∂ y

�

�

�

�

w(y)≡
∫

d y w̃(y) . (5)

Ideally, the new integrand w̃(y) is nearly constant and the structures in w(x) are fully absorbed
by the Jacobian. In that case

ε̃uw =
〈w̃〉

w̃max
≈
〈C〉
C
= 1 . (6)

This method of choosing an adequate coordinate transformation is called importance sam-
pling. The most frequently used algorithm is Vegas [53,54], which assumes that g(x) factor-
izes into phase space directions, as we will discuss later.

In contrast to vetoing most of the weighted events we propose to use all of them to train
a generative model to produce unweighted events. We follow a standard GAN setup with
spectral normalization [55] as regularization method

LD =



− log D(x)
�

x∼PT
+



− log(1− D(x))
�

x∼PG
,

LG =



− log D(x)
�

x∼PG
.

(7)
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For weighted training events, the information in the true distribution PT factorizes into the dis-
tribution of sampled events QT and their weights w(x). To capture this combined information
we replace the expectation values by weighted means for batches of weighted events,

L(uw)
D =

〈−w(x) log D(x)〉x∼QT

〈w(x)〉x∼QT

+



− log(1− D(x))
�

x∼PG
,

L(uw)
G =




− log D(x)
�

x∼PG
.

(8)

Because the generator produces unweighted events with wG(x) = 1 their weighted mean re-
duces to the standard expectation value. This way, our unweighting GAN (uwGAN) unweights
events, and the standard GAN is just a special case with all information encoded in the event
distribution.

2.2 One-dimensional camel back

We illustrate the unweighting GAN with a 1-dimensional camel back

Pcamel(x) = 0.3 N (x;µ= 0,σ = 0.5) + 0.7 N (x;µ= 2,σ = 0.5), (9)

where N (x;µ,σ) is a Gaussian. To see how the GAN reacts to different ways of spreading the
information between weights and distributions, we define three events samples,
· unweighted events distributed according to the camel back, Xu = (xcamel, wuniform);
· uniformly distributed events Xw = (xuniform, wcamel); and
· a split Xhybrid = (xq1

, wq2
) with Pcamel(x)∝ q1(x)q2(x) and q1(x) =N (x;µ= 0,σ = 1).

For the camel back example our training data will consist of 1 million weighted events. We
use 32 units within 2 layers in the generator and 32 units within 3 layers in the discriminator.
In the hidden layers, we employ the standard ReLU activation function, max(0, x), for both
networks. To compensate an imbalance in the training we update the discriminator ten times
as often as the generator. As a first test, we show in Fig. 1 how our GAN reproduces the
full 1-dimensional target distribution from unweighted events, uniformly distributed events,
and weighted events equally well. The limitation are always the poorly populated tails in the
training data.

To benchmark our unweighting GAN, we first sample the true distribution with a large
number of events and bin them finely, in our 1-dimensional case 1010 events in 2000 bins
equally distributed over the full range x = −2 ... 4. This statistics goes far beyond the training
sample and is only needed to define a truth benchmark. We then generate an equally large
sample of 1010 GAN events and compare the two high-statistics samples, weighted truth events
and unweighted GANned events, in the top panels of Fig. 2. From the bin-wise ratio we see
that the GAN reproduces the true distribution at the few per-cent level, again limited by the
tails.

Given the true distribution, we can compute event-wise factors which would be needed to
shift the GANned unit weights to reproduce the true distribution exactly. We refer to them as
truth-correction weights for each (unweighted) GAN event. Because we rely on the binned
truth information we assign the same truth correction to all GAN events in a given, narrow
bin. Formally, we assume that the generator distribution PG approximates the true distribution
PT , so the bin-wise ratio

wG(x) =
PT (x)
PG(x)

(10)

for each unweighted event, given its phase space position x , should tend to one. The actual
values for the truth-correction weights are shown in the bottom panels of Fig. 2. For the full

4

https://scipost.org
https://scipost.org/SciPostPhys.10.4.089


SciPost Phys. 10, 089 (2021)

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

combined

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

Figure 1: Event vs weight distribution of the training data (top) and GANned vs truth
kinematic distributions (bottom) for unweighted events (left), uniform distribution
(center), and our hybrid case (right). The lower panels in the bottom show the bin-
wise truth-to-GAN ratio.

x-range we see that they are strongly peaked around unity, but with sizeable tails. The fact
that the distribution is not symmetric and includes significant statistical fluctuations suggests
that our network could be further improved. Nevertheless, the vast majority of events have
a truth-correction below 3%. In the right panel we see the same distribution after removing
the tails. Literally all GAN events now come with a truth-correction below 3%. Comparing
the upper and lower panels of Fig. 2 we also see that these truth-correction weights are not
statistically distributed corrections, fluctuating rapidly as a function of x . Instead, they reflect
systematic limitations to the precision with which the GAN learns PT (x) and encodes it into
the phase space distribution.

As discussed above, Vegas encodes PT (x) jointly into the phase space distribution and
event weights [53, 54]. This means we can compare the GAN and Vegas encodings in the
phase space distribution by comparing the truth-correction weights in the sense that for Vegas
they will define the perfectly trained output. After a series of 150 adaption steps, Vegas
reaches the weight distribution shown in Fig. 2, corresponding to an unweighting efficiency
of 0.75. Note that after 50 adaption steps, this Vegas unweighting efficiency was 0.95. The
reason is that Vegas is optimized for integration by using tight grids in the bulk and wide
grids in the tails. The longer Vegas adapts its grid, the more events are removed from the
tails. This improves the numerical integration at the cost of the unweighting efficiency. Indeed,
in Fig. 2 we see that the high-weight tails of the Vegas truth-correction are comparable to the
GAN case. Again the tails in the event weights correspond directly to the tails of the density
distribution over x . When it comes to unweighting the Vegas events, these tails become a
major problem, because they drive the denominator in Eq.(4).

2.3 Two-dimensional Gaussian ring

Knowing a weakness of Vegas we now choose a 2-dimensional circle in the x-y plane with a
Gaussian radial distribution as our second example,

Pcircle(x , y) = N exp
�

−
1

2σ2

�
Æ

(x − x0)2 + (y − y0)2 − r0

�2
�

, (11)
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Figure 2: Upper: training and GANned distribution for the 1-dimensional camel back.
In the right panels we remove the tails of the distribution. Lower: truth-correction
weights for the GANned events, compared with the Vegas weight distribution.

with x0 = y0 = 0.5, r0 = 0.25, and σ = 0.05. The normalization is then given by N ≈ 5.079.
We use the same GAN architecture as before, but with 256 units in 8 layers in, both, generator
and discriminator.

In Fig. 3 we show the true distribution as well as the asymmetry of the truth and GANned
distributions. As for the 1-dimensional camel back, large relative deviations are limited to the
tail of the distribution, in this case including the center of the circle. In the lower-left panel of
Fig. 3 we see how these regions contribute little to the integral over the density.

It is clear that the Vegas algorithm cannot reproduce the circular shape, because it breaks
the factorization with the dimensionality. Instead, Vegas constructs a square with a low un-
weighting efficiency. Again, we compare the GAN and Vegas truth-correction weights in the
lower-right panel of Fig. 3. As expected, the uwGAN now does significantly better, albeit with
truth corrections up to ±25% in the tails. Just like for the 1-dimensional example, the tails in
the truth-correction correspond directly to the tails in the density, so they reflect the statistical
limitations of the training sample. For a realistic application the key question becomes how
this kind of truth correction compares to the standard approaches and if it is sufficient given
the general statistical limitations in poorly populated phase space regions.

As a side remark, it is of course possible to compute the truth corrections without binning
for the 1-dimensional and 2-dimensional toy models. However, for a realistic LHC problem
that will in general not be the case, so we stick to the binned definition throughout this paper.
We have explicitly tested that our binned distributions agree with the exact truth-correction
distributions for the two toy models.

6

https://scipost.org
https://scipost.org/SciPostPhys.10.4.089


SciPost Phys. 10, 089 (2021)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.5

1.0

1.5

2.0

×10−3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

N
or

m
al

iz
ed

×10−2

slice at y = 0.5 Truth

uwGAN

0.0 0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

u
w

G
A

N
T

ru
th

0.0 0.5 1.0 1.5 2.0 2.5 3.0

truth-correction weights

10−4

10−3

10−2

10−1

100

101

N
or

m
al

iz
ed

VEGAS

uwGAN

uwGAN (r ± 2σ)

Figure 3: Results for the 2-dimensional Gaussian ring showing the truth data (upper
left), the asymmetry between truth and uwGAN (upper right), a 1-dimensional slice
at y = 0.5 (lower left), and the comparison of the truth-correction for uwGANned
events with Vegas events (lower right). The dotted curve includes the bulk region
r ∈ [r0 − 2σ, r0 + 2σ] only.

3 Unweighting Drell–Yan

So far, we have considered two toy examples to motivate our uwGAN. Next, we need to apply
it to a simple LHC process, where we can study the phase space patterns in some detail. We
consider the Drell–Yan process

pp→ µ+µ− . (12)

We generate 500k weighted events at a CM energy of 14 TeV. The 4-dimensional fiducial phase
space is defined by the minimal acceptance cut

mµµ > 50 GeV (13)

to avoid the photon pole in the numerical event generation. The technical requirement on
the weighted training events is that they should cover a wide range of weights, so we can test
if the uwGAN can deal with this practical challenge. This means we cannot use a standard
Monte Carlo, where sophisticated phase space mappings encode pT and mµµ very well.

We implement our own custom event generator in Python, extracting the matrix elements
from Sherpa [56], the parton densities from LHAPDF [57], and employing the Rambo-on-diet
sampling [58, 59]. The integration over the parton momentum fractions is symmetrized in
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Figure 4: Left: Weight distribution for 500k weighted training events. Right: Truth-
correction weights for 30M uwGAN events on the unit hyper-cube (solid) and the
phase space parametrization of Eq.(17) (dashed) for 2k (blue) and 14k (red) bins in
4-dimensions.

terms of τ= x1 x2 as the first phase-space variable,

σ =

1
∫

τmin

dτ
τ

1
∫

τ

d x1

x1

∑

a,b

x1 fa(x1) x2 fb(x2) σ̂ab(x1 x2s) , (14)

with Eq.(13) translating into τmin ≈ 0.00128. Mapping the phase space onto a unit hyper-cube
defines two random numbers r1,2 through

τ= τr1
min x1 = τ

r2 x2 = τ
1−r2 , (15)

such that

σ = 2 logτmin

1
∫

0

dr1 r1

1
∫

0

dr2

∑

a,b

x1 fa(x1) x2 fb(x2) σ̂ab(x1 x2s) . (16)

With an additional random number r3 = (cosθ + 1)/2 we can parametrize the 4-dimensional
phase space as

pT = 2Ebeam τ
r1/2
min

Æ

r3(1− r3)

pz1
= Ebeam

�

τ
r1r2
min r3 +τ

r1(1−r2)
min (r3 − 1)

�

pz2
= Ebeam

�

τ
r1r2
min (1− r3)−τ

r1(1−r2)
min r3

�

φ = 2πr4 . (17)

In Fig. 4 we show the weight distribution for our event generator, where the shown 500k
event weights are computed as the product of scattering amplitude, parton density, and phas-
espace factor. While the distribution is very smooth, indicating that the phase space is sampled
precisely, the range of weights poses a problem for an efficient event unweighting. Even if we
are willing to ignore more than 0.1% of the generated events, we still need to deal with event
weights from 10−30 to 10−4. Effects contributing to this vast range are the Z-peak, the strongly
dropping pT -distributions, and our deliberately poor phase space mapping. The classic un-
weighting efficiency defined by Eq.(4) is 0.22%, which is considered high for state-of-the-art
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tools applied to complex LHC processes. In the following panels of Fig. 5 we show a set of kine-
matic distributions, first for the 500k weighted training events including the deviation from a
high-precision truth sample. Indeed, this training data-set describes Eµ all the way to 6 TeV
and mµµ beyond 250 GeV with deviations below 5%. The perfectly flat φµ distribution turns
out to be the challenge in our specific phase space parametrization, with bin-wise deviations
of up to 20% from the true distribution.

In addition to the unweighted training data, we also show the kinematic distributions for
unweighted events from a standard algorithm. We use the hit-and-miss method described in
Sec. 2.1 without any further improvements, which limits the number of unweighted events to
1000. Correspondingly, the standard unweighted events only cover Eµ to 1 TeV and mµµ to
110 GeV. For φµ the deviations also exceed those of the training data significantly. This poor
behavior is simply an effect of the low unweighting efficiency and a serious challenge for LHC
precision simulations.

Alternatively, we can employ our uwGAN to unweight the Drell-Yan training data. To take
into account symmetries, we only generate the degrees of freedom of the process. By construc-
tion, this guarantees momentum conservation and on-shell conditions. Before passing to the
discriminator both the generated batches {xG} and the truth batches {xT } are parameterized
as

x = {pT , pz1
, pz2

,φ, w}, (18)

where w is the associated event weight. In order to reproduce the sharp resonance appearing
in the mµµ distribution which originates from the Z boson propagator, we employ an addi-
tional maximum mean discrepancy (MMD) loss [24, 60]. This loss ensures that the network
learns a pre-defined low-dimensional function over the high-dimensional phase space. For the
unweighting GAN we generalize it in analogy to Eq.(8),

LwMMD =








w(x)w(x ′) k(x , x ′)
�

x ,x ′∼QT



w(x)w(x ′)
�

x ,x ′∼QT

+



k(y, y ′)
�

y,y ′∼PG
− 2




w(x) k(x , y)
�

x∼QT ,y∼PG



w(x)
�

x∼QT





1
2

,

(19)

Table 1: Details for our uwGAN setup for the Drell-Yan process.

Parameter Value

Layers 6
Kernel initializer He uniform
G units per layer 414
D units per layer 187
G activation function ReLU
D activation function leaky ReLU
D updates per G 2
λwMMD 2.37
Learning rate 0.0074
Decay 0.42
Batch size 1265

Epochs 500
Iterations per epoch 200
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Figure 5: Exemplary kinematic distributions for the Drell-Yan process. For the kine-
matic distributions we show the 500k weighted training events, 1k unweighted
events using the standard unweighting algorithm discussed in Sec. 2.1, and 30M
uwGAN events.

where we already use that wG(y) = 1. Note that we use MMD instead of MMD2 as this
increases the sensitivity of the loss close to zero. This loss is then added to the generator
objective

LG → LG +λwMMD LwMMD . (20)

The network parameters are given in Tab. 1. The parameters in the upper panel have been
determined by a random hyperparameter search and have shown the best results.

In the right panel of Fig. 4 we again show the truth-correction weights for our uwGAN
events, evaluated on the binned phase space either in terms of the unit hyper-cube (r j = 1 ... 0)
or the appropriately cut phase space of Eq.(17). The number of bins ignores empty bins and
shows the limitations of our bin-wise extraction of the truth correction. While some of the truth
corrections are not negligible, we also know that they appear in the tails of the generated phase
space distribution and can easily be traced. Even if we consider the finite and bin-wise-defined
truth correction with a grain of numerical salt, we find the performance of our relatively slim
network quite convincing, given that we start from weighted events with more than 25 orders
of magnitude in weights. Most importantly, the tails of the truth correction are a result of the
uwGAN unweighting, not a limiting factor like for the standard unweighting procedure.

The appropriate measure of success for our uwGAN are the predicted kinematic distribu-
tions. In Fig. 5 we compare the weighted training data, a corresponding unweighted event
sample using the standard algorithm, and the uwGAN results. In the lower panels we show
the relative differences to the truth, defined as a high-statistics version of the training sample.
While the training data agrees with the truth very well, we see its statistical limitations in the
tail of the Eµ-distribution. In addition, the φµ distribution for the weighted training data is
noisier than one would expect for a smooth phase space.
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In accordance with the established performance of GANs, the uwGANned events reproduce
the truth information well. As always, the GAN learns the phase space information only to the
point where it lacks training statistics and the GAN undershoots the true distribution [24]. This
limitation can be quantitatively improved by using different network architectures [48]. In our
case it affects the phase space coverage for Eµ ¦ 4.5 TeV and mµµ ¦ 250 GeV. These values
are not quite on par with the training data, but much better than for standard unweighting.
For the same two distributions we clearly see the loss of information from standard hit-and-
miss unweighting, and how the uwGAN avoid these large losses. Along the same line, the φµ
distribution shows how the uwGAN even slightly smoothes out the noisy training data. We
can translate the reduced loss of information into a corresponding size of a hypothetical hit-
and-miss training sample, for instance in terms of rate and required event numbers, and find
up to a factor 100 for our simple example.

4 Outlook

First-principle precision simulations are a defining aspect of LHC physics and one of the main
challenges in preparing for the upcoming LHC runs. Given the expected experimental un-
certainties, we need to improve both, the precision and the speed of the theory-driven event
generation, significantly to avoid theory becoming the limiting factor for the majority of LHC
analyses. One promising avenue is modern machine learning concepts applied to LHC event
generation.

In this study we proposed a significant improvement to one of the numerical bottlenecks
in LHC event generation, the unweighting procedure. Such an unweighting step is part of
every event generator, and for complex final state it rapidly becomes a limiting factor. We
showed how to train a generative network on weighted events, with a loss function designed
to generate events of unit weights, or unweighted events.

For a 1-dimensional and a 2-dimensional toy model we have shown that our uwGAN can
indeed be used for event unweighting and that in the limit of perfect training it reproduces the
true phase space distributions just like standard methods like Vegas. While we cannot beat
the Vegas performance for a 1-dimensional test case, our uwGAN easily circumvents Vegas
limitations from the assumed dimensional factorization.

As an LHC benchmark we use µ+µ− production and a poor in-house event generator with
a low unweighting efficiency over phase space. The uwGAN performs significantly better than
the standard unweighting procedure, both, in kinematic tails and for noisy training data. Based
on the success of our GAN architecture for top pair production [24]we expect our unweighting
GAN to also work for higher final-state multiplicities. While it is not clear how much the speed
gain from using an NN-unweighting in standard event generators will be, this application of
generative networks could be easily implemented in the established LHC event generation
chain. A challenge for any phase-space-related network are processes with a variable, llarge
number of final-state particles, like V+jets production [15,17]. While we were finalizing this
study, similarly promising ideas were presented in Ref. [61], showing how generative networks
benefit from training on weighted events.
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