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Abstract

We consider the non-equilibrium dynamics of a weakly interacting Bose gas tightly
confined to a highly elongated double well potential. We use a self-consistent time-
dependent Hartree–Fock approximation in combination with a projection of the full
three-dimensional theory to several coupled one-dimensional channels. This allows us
to model the time-dependent splitting and phase imprinting of a gas initially confined
to a single quasi one-dimensional potential well and obtain a microscopic description of
the ensuing damped Josephson oscillations.
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1 Introduction

Over the last decade and a half quasi-one-dimensional Bose gases have provided a key plat-
form for experimental studies of non-equilibrium evolution in isolated one-dimensional many-
particle quantum systems, see e.g. [1–16]. This has been an important driver of intense theo-
retical activities aimed at understanding non-equilibrium dynamics in paradigmatic models in
D = 1, see [17–22] for recent reviews on the subject. A very nice aspect of the cold atom exper-
iments is that they provide quantum simulators for low dimensional quantum field theories.
For example trapped single-component Bose gases are well described [23] by the Lieb-Liniger
model [24] of a non-relativistic complex scalar field. At low energy densities effective field
theory descriptions [25,26] can apply surprisingly well even out of equilibrium [27–30]. This
has led to novel applications of Luttinger liquid theory and its variants such as the study of full
distribution functions of quantum observables [31–40]. By modifying the experimental setups
it is in principle possible to engineer particular perturbations to Luttinger liquid theory. An
important example is given by a system of two tunnel-coupled repulsive Bose gases [41–44],
which gives rise to a low-energy description in terms of a Luttinger liquid and a sine-Gordon
quantum field theory [45]. The sine-Gordon model is a paradigmatic relativistic quantum field
theory that has attracted a huge amount of attention over the last four decades. It has the at-
tractive feature that it is exactly solvable [46–48] and has a number of known applications in
the solid state context, see e.g. [26,49–53]. Motivated by the experimental realization via two
tunnel-coupled Bose gases the non-equilibrium dynamics of the sine-Gordon model has been
explored by a number of groups and methods [54–66].

Given that the sine-Gordon description only applies in an appropriate scaling limit a crucial
question is how close the experiments are to this regime. In equilibrium correlation functions
obtained from time-of-flight measurements of the boson density were found to be in good
agreement with classical field simulations of the sine-Gordon model [11]. In non-equilibrium
situations like the ones studied in Refs. [10, 14, 15] the situation is much less clear. In these
experiments two elongated Bose gases are prepared in a quantum state characterized by a
phase difference between the two gases. A tunnel coupling between the gases is then applied,
which induces Josephson-like oscillations of density and phase. These oscillations quickly
damp out and the distribution function of the phase is seen to narrow. Various studies based
on the sine-Gordon model have so far failed to account for these observations [62, 65, 66].
In particular, taking into account Gaussian fluctuations on top of the solution of the classical
field equations in a self-consistent way produces only very weakly damped Josephson-like
oscillations [62,66]. Given this state of affairs it is natural to question whether the experiments
are in the right regime for a sine-Gordon based description to apply. In the experiments one
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deals with three dimensional bosons in a time-dependent confining potential. An obvious
question is how good the low-energy projection to two one-dimensional Bose gases is in the
experimentally relevant parameter regime. Another important issue is that the initial state that
is prepared after splitting the gas and imprinting a phase difference is in fact not known, as the
splitting process has so far only been modelled in a qualitative phenomenological way [67,68],
or via methods that rely on a two-mode approximation [69], a classical field approximation
[70] or a restriction to the transverse direction only [69]. In order to start addressing these
questions we return to the drawing board and consider a gas of weakly interacting bosons
subject to a tight harmonic potential in the z-direction, a time-dependent double well potential
V⊥(y, t) in the y-direction and a shallow harmonic potential in the x-direction. This leads to
the Hamiltonian

H3D(t) =

∫

d3 ~r Ψ̂†( ~r )
�

−
∇2

2m
+

mω2
x

2
x2 + V⊥(y, t) +

mω2
z

2
z2

�

Ψ̂( ~r )

+
1
2

∫

d3 ~r d3 ~r ′ Ψ̂†( ~r ′)Ψ̂†( ~r )Û( ~r − ~r ′)Ψ̂( ~r )Ψ̂( ~r ′) , (1)

where ~r = (x , y, z) is the 3D coordinate and Û( ~r ) is the effective interaction potential

Û ( ~r ) = 4πas

m
δ3 ( ~r ) . (2)

We will always consider elongated gases with ωx � ωz and refer to the x-direction as the
longitudinal, and the remaining coordinates ~r ≡ (y, z) as the transverse directions. In order
to make contact with the experiments of Ref. [14] we use

V⊥(y, t) =
m
2

�

c1

c2

�2
�

y2 − c2
2

�

I2(t)− I2
c

��2

I(t) + Ic
+ F(t)y , (3)

with the values c1 = 2π · 2.52 kHz, c2 = 2.17µm and Ic = 0.4. For I(t) = Ic, V⊥ is a quartic
potential with a flat bottom and for I > Ic, it develops a double well structure. The term F(t)y
is used to imprint a phase difference between the gases in the two wells (a precise description
of what we mean by this is given below). The explicit form of the functions I(t) and F(t) is
given in Sec. 5.1, cf. Eqs. (54) and (55).

The idea is to use (1) to describe the splitting of the gas, the phase imprinting and finally the
subsequent non-equilibrium dynamics, but to take advantage of the fact that (i) interactions
are weak; (ii) the confinement is tight in the y- and z-directions. The combination of these two
allows us to project the full three-dimensional theory to a small number of one-dimensional
channels

Hproj(t) =
a−1
∑

a=0

∫

d x ψ̂†
a(x , t)

�

−
1

2m
∂ 2

∂ x2
+

mω2

2
x2 + εa(t)

�

ψ̂a(x , t)

+

∫

d x
a−1
∑

a,b,c,d=0

Γabcd(t) ψ̂
†
a(x , t)ψ̂†

b(x , t)ψ̂c(x , t)ψ̂d(x , t) . (4)

The resulting Hamiltonian is time-dependent but retardation effects are negligible. Some com-
ments on the projection procedure are provided in Appendix A. We stress that as a result of
working with the instantaneous basis of single-particle eigenstates of −∂ 2

y /2m+ V⊥(y, t) our

effective one-dimensional field operators ψ̂†
a(x , t) have an explicit time dependence. After

working out how to obtain Hproj(t) from (2) we proceed as follows:
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1. We treat the interactions in a time-dependent self-consistent Hartree–Fock approxima-
tion (SCHFA). As we are dealing with an effective one-dimensional system we do not
allow for the formation of long-range order. The resulting approximation is quite differ-
ent from Gross-Pitaevskii theory (see e.g. [71–73]). The main attraction of the SCHFA
is that it can be implemented straightforwardly, while its main limitation is that it treats
interaction effects in a rather crude way. However, it is nonetheless expected to provide
a good description as long as the interaction strength is sufficiently weak and the energy
density in the system is not too low. We first identify a corresponding parameter regime
and then model the Josephson oscillations experiments in this regime.

2. We start with a confining potential that forms a single elongated well and initialize our
system in a thermal low-temperature state.

3. We evolve the state under a time-dependent transverse potential V⊥(y, t) that models the
splitting and phase imprinting protocols used in the experiments. This provides us with a
characterization of the “initial state” used in the Josephson-like oscillation experiments.

4. Finally we consider the non-equilibrium evolution of the split, phase-imprinted state.
We observe damped Josephson-like oscillations.

This paper is organized as follows. In Sec. 2, we describe the low-energy projection used
to arrive at the Hamiltonian (4), and the rationale for considering one-dimensional field op-
erators carrying explicit time-dependence. In Sec. 3, we introduce the observables relevant
to experiment, and connect them to the Green’s functions of one-dimensional field operators
that are computed in this paper. Sec. 4 introduces the self-consistent time-dependent Hartree–
Fock approximation, and the resulting nonlinear partial differential equations that govern the
time-evolution of the experimentally relevant Green’s functions. Sec. 5 describes how the ini-
tial state of the system is modelled by preparing a gas in a thermal state of a single well and
splitting it by a deformation of the trapping potential. The time-dependent definition of the
one-dimensional field operators is shown to be an important tool in enabling this model for
the preparation sequence. In Sec. 6, numerical results are presented for the time-evolution
of experimentally relevant observables after the preparation stage. Density-phase oscillations
are observed to be strongly damped over timescales that are comparable to those seen in the
experiment.

2 Time-dependent projection to one-dimensional channels

We start from the 3D Hamiltonian (1) with δ-interactions (2),

H3D =

∫

d3 ~r Ψ̂†( ~r )
�

D̂x + D̂y(t) + D̂z +
2πas

m
Ψ̂†( ~r )Ψ̂( ~r )

�

Ψ̂( ~r ), (5)

where we have defined D̂u = −∂ 2
u /2m+mω2

uu2/2 for u= x , z, and

D̂y(t) = −
1

2m
∂ 2

∂ y2
+ V⊥(y, t) . (6)

The 3D Bose field Ψ̂( ~r ) satisfies the usual bosonic commutation relations. We use a double
well potential of the form (3) for V⊥(y, t) throughout this paper, where the phase imprinting is
implemented by the imbalance potential F(t)y . To arrive at an effective 1D model, we expand
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the 3D field operator in an instantaneous basis of single-particle eigenstates of the quadratic
part of the Hamiltonian

Ψ̂( ~r ) =
∞
∑

a,b,c=0

χa(x)Φb(y, t)Ξc(z)b̂a,b,c(t) =
∞
∑

b,c=0

Φb(y, t)Ξc(z)
ˆ̃ψb,c(x , t) (7)

Here the single-particle eigenstates fulfil

D̂xχa(x) =ωx

�

a+
1
2

�

χa(x) ,

D̂y(t)Φb(y, t) = εb(t)Φb(y, t) ,

D̂zΞc(z) =ωz

�

c +
1
2

�

Ξc(z) , (8)

and we have defined canonical 1D Bose field operators by

ˆ̃ψb,c(x , t) =
∞
∑

a=0

χa(x)b̂a,b,c(t) , [ ˆ̃ψb,c(x , t), ˆ̃ψ†
b′,c′(x

′, t)] = δb,b′δc,c′δ(x − x ′). (9)

At this stage we are dealing with an infinite number of Bose fields. We now exploit the fact
that the single-particle eigenvalues ωz(c + 1/2) and εb(t) constitute very large energy scales
for c ≥ 1 and b ≥ ā, and that interactions are weak. This allows us to truncate the expansion
of the 3D Bose fields (7) to a small, finite number of channels. The rationale for working
with explicitly time-dependent single-particle states rather than working in a fixed basis is
that a subset chosen to span the low-energy subspace of the free part of the Hamiltonian (5)
at t = 0 will in general only span the low-energy subspace at later times if we include a large
number of channels. This would make the truncation much less efficient. Let us now give the
details of the truncation procedure outlined above. If ωz � ωx , we expect the dynamics to
be frozen into the lowest single-particle eigenstates in the z-direction. We can then project
to the corresponding low-energy subspace by truncating the expansion (7) to the c = 0 term.
In the y-direction, the double well V⊥(y, t) gives rise to more states in the low-energy sector
than just the ground state. We therefore need to retain multiple single-particle eigenstates
Φb(y, t). These wave functions are explicitly time-dependent eigenstates of the double well
operator D̂y(t) from Eq. (6), with eigenvalues εa(t). If these eigenvalues show a gap above
energy εa−1(t) that is large compared to all other energy scales in the problem for all times,
the expansion (7) can be truncated at a = a. The resulting projection of the 3D field operator
to the low-energy sector then reads

Ψ̂( ~r )≈ Ξ0(z)
a−1
∑

a=0

Φa(y, t)ψ̂a(x , t) , (10)

where we have defined

ψ̂a(x , t)≡ ˆ̃ψa,0(x , t) , (11)

which satisfies [ψ̂a(x , t), ψ̂†
b(x
′, t)] = δabδ(x − x ′) for all times. When starting from the 3D

Hamiltonian (5), inserting the projected operator (10) and integrating in the y, z-directions
leads to a model for a species of bosons,

H(a)1D (t) =
a−1
∑

a=0

∫

d x ψ̂†
a(x , t)

�

−
1

2m
∂ 2

∂ x2
+

mω2

2
x2 + εa(t)

�

ψ̂a(x , t)

+

∫

d x
a−1
∑

a,b,c,d=0

Γabcd(t) ψ̂
†
a(x , t)ψ̂†

b(x , t)ψ̂c(x , t)ψ̂d(x , t) , (12)
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with coupling constants that are given by overlap tensors

Γabcd(t) = as

√

√2πωz

m

∫

d y Φ∗a(y, t)Φ∗b(y, t)Φc(y, t)Φd(y, t) . (13)

Corrections to (12) will be negligible as long as the following conditions hold:

• Interactions are small. This holds by construction.

• The initial occupation numbers Tr[ρ(0) b†
a,b,c(0)ba,b,c(0)], where ρ(0) is the density

matrix at time t = 0, are very small for c > 0 and b ≥ ā. We ensure that this is the case
by working with an initial thermal density matrix at a sufficiently low energy density
compared to εā(t). Experimentally this condition could be fulfilled by making V⊥(y, t)
sufficiently tight.

• The transverse potential is changed slowly enough so that Tr[ρ(t) b†
a,b,c(t)ba,b,c(t)] re-

main very small for c > 0 and b ≥ ā. This provides a (rather obvious) restriction on the
experimental protocol.

In equilibrium it is straightforward to evaluate the corrections to (12) and we outline the
necessary steps in Appendix A. Perturbatively integrating out the high-energy channels above
some cutoff generates all two, four and six boson interactions between the low-energy channels
allowed by particle conservation. The interactions are very slightly retarded and non-local in
space (the corresponding scales are set by the cut-off energy) but are negligible compared to
the terms retained in (12). An analogous analysis can be in principle be carried out in the
time-dependent situation of interest here, but as we don’t require the corrections we do not
follow this line of enquiry further.

2.1 Connection to previous literature

For time-independent double-well potentials with a very high tunnel-barrier, the lowest two
single-particle eigenstates Φ0,1(y) are approximately given by symmetric and anti-symmetric
combinations of wave packets gL,R(y) that are localized in the left and right wells

Φ0,1(y) = (gR(y)± gL(y))/
p

2 . (14)

We can then define left- and right-localized one-dimensional Bose operators ψ̂L,R ≈ (ψ̂0±ψ̂1)×
1/
p

2. Inserting these definitions into Eq. (4) with a = 2 leads to the model

H1D→ HLL

�

ψ̂L

�

+HLL

�

ψ̂R

�

−
ε1 − ε0

2

∫ L

0

d x
�

ψ̂†
L(x)ψ̂R(x) + h.c.

�

, (15)

of two Lieb-Liniger Hamiltonians

HLL

�

ψ̂
�

=

∫

d x ψ̂†(x)

�

−
1

2m
∂ 2

∂ x2
+

mω2

2
x2

�

ψ̂(x) + g

∫

d x ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) , (16)

connected by a tunnel-coupling term. The coupling constant of the Lieb-Liniger model is given
by

g=

∫

d x g∗L(x)g
∗
L(x)gL(x)gL(x) =

∫

d x g∗R(x)g
∗
R(x)gR(x)gR(x) . (17)

All other overlap tensors involving four combinations of gL,R(x) vanish if the two wells are
separated by a high tunnel barrier, so that the only coupling between the left and right gases
is given by the tunneling term proportional to (ε1− ε0)/2. Eq. (15) is the Hamiltonian that is
studied in most of the literature, following Ref. [45]. In this paper, we will instead focus on
the more general Hamiltonian (12).
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2.2 Three channel model

So far we have kept the number ā of one-dimensional channels in our theory arbitrary. In
practice it turns out to be sufficient to work with ā = 3 in order to accommodate the experi-
mental situation realized in the Vienna group. The trapping geometries in these experiments
are chosen so as to strongly suppress the occupation of the second excited level (a = 2). By in-
cluding this suppressed level in our simulations and staying close to the experimental energy
scales and trapping frequencies we can therefore ensure that we are in a regime where the
occupation of the (time-dependent) third single-particle excited level can be safely neglected.
The energy scales relevant to this reasoning are displayed in Fig. 1. This figure shows that
at t = 0, the single-particle energy of the third level, which is neglected in our simulations,
differs from the single-particle ground state energy by ε3(0) − ε0(0) ≈ 2.5 kBT . This means
that it is reasonable to neglect the occupations of the third and higher levels at t = 0. For later
times, there are two requirements to be able to keep neglecting these levels. Firstly, we rely on
the interactions being weak, and secondly, we need the change in V⊥(y, t) to be slow enough.

0 2 4 6 8 10 12
t (ms)

0

1

2

3

4

5
(ε1(t)− ε0(t))/kBT

(ε2(t)− ε0(t))/kBT

(ε3(t)− ε0(t))/kBT

(ε4(t)− ε0(t))/kBT

Figure 1: Time-dependent energies ε j(t) of the lowest eigenstates of the transverse
single-particle Hamiltonian (6), using the double well potential defined in and below
Eq. (3). The energies are displayed via their difference with ε0(t), in units of kB T ,
with T = 60 nK.

3 Measurements and Green’s functions

3.1 Measured operator in time of flight

The Bose gases in the double well can be probed through matter-wave interferometry [31,74,
75]. After a tunable time t0 spent in the double well, the Bose gases are released by turning off
the trapping potential. This causes them to expand and overlap in three-dimensional space,
and eventually their combined density is measured by absorption imagining after a “time of
flight” t1. The theoretical description of this measurement process in the framework of a
low-energy theory description is described in detail in Ref. [38] in the simpler case when
two transverse single-particle states, given by Gaussian wave packets in the left and right
wells respectively, are kept in the projection to an effectively one-dimensional model. We will
briefly recapitulate this construction, before expanding it to the case of more than two levels
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that are not perfectly localized in the wells. The absorption imagining can be thought of as a
von-Neumann measurement of the boson density at time t0 + t1

ρ̂tof(r) = Ψ̂
†(r)Ψ̂(r) . (18)

The density operator is diagonal in the position eigenbasis {|r1, . . . , rN 〉} which implies that
the measurement outcomes are particle positions

∑N
j=1δ(r−r j) and the associated probability

distribution is

P(r1, . . . , rN ; t0 + t1) = 〈r1, . . . , rN |%(t0 + t1)|r1, . . . , rN 〉 , (19)

where %(t0 + t1) is the density matrix of the system at time t0 + t1. The moments of this
probability distribution are

Mn(r1, . . . , rn) = Tr
�

%(t0 + t1) Ô†(r1, . . . , rn)Ô(r1, . . . , rn)
�

,

Ô(r1, . . . , rn) = Ψ̂(r1) . . . Ψ̂(rn) . (20)

The density matrix at time t is given by

%(t) = U(t, 0)%(0)U†(t, 0) , U(t, t0) = T exp
�

− i

∫ t

t0

d t ′H3D(t
′)
�

. (21)

In the Heisenberg picture we have

Mn(r1, . . . , rN ) = Tr
�

%(0)
�

Ô(H)(r1, . . . , rn, t0 + t1)
�†
Ô(H)(r1, . . . , rn, t0 + t1)

�

, (22)

where the Heisenberg-picture field operators are given by

Ψ̂(H)(r, t) = U†(t, 0)Ψ̂(H)(r, 0)U(t, 0) . (23)

The approach of Ref. [75] is to relate the quantum state of the system after time-of-flight to
the state at the time of trap release by assuming that interactions are negligible during the
time of flight. This is a reasonable assumption since the gas, which is no longer constrained
and expands in 3D, very quickly becomes highly dilute. The free, transverse expansion is then
effectuated by the evolution operator

U(t1 + t0, t0)≈ e−i t1

�

P̂2
x+P̂2

y+P̂2
z

�

/2m . (24)

This allows us to relate the Heisenberg picture field operators at times t0 + t1 and t0

Ψ̂(H)(r, t0 + t1) =

∫

d3r′ G0(r− r′, t1) Ψ̂
(H)(r′, t0) , (25)

where G0(r, t) is the propagator of the non-interacting boson Hamiltonian describing the free
expansion. Now we exploit the fact that the initial density matrix ρ(0) involves only the low-
energy sector, i.e. states in which only very few transverse modes are occupied. This allows us
to project the field operators Ψ̂(H)(r, t0) and concomitantly the operators Ô(H)(r1, . . . , rn, t0+t1)
in the expression (22) for the moments Mn to the low-energy description

Ψ̂(H)(r, t0)≈ Ξ0(z)
∑

a∈S

ga(y, t)ψ̂(H)a (x , t) , (26)

where S is some set of indices labeling single-particle states ga(y, t) in the transverse direction.
The equations of motion of the Heisenberg picture operators ψ̂(H)a (x , t) are derived below in
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section 4. In [38], this set S = {L, R} refers to single-particle states with no explicit time-
dependence that are localized in the left and right wells, respectively. In the following we will
focus on the average over many absorption images

M1(r) = Tr
�

%(0) ρ̂(H)tof (r, t0 + t1)
�

. (27)

Carrying out the convolutions we obtain

ρ̂
(H)
tof (r, t0 + t1)≈ |Ξ0(z, t1)|2

∑

i, j∈S

Ai j(y, t0, t1)

∫

d x ′d x̃ G∗0(x − x ′, t1)G0(x − x̃ , t1)

×
�

ψ̂
(H)
i (x

′, t0)
�†
ψ̂
(H)
j ( x̃ , t0) . (28)

Here we have defined

Ai j(y, t0, t1) = g∗i (y, t0, t1)g j(y, t0, t1), i, j ∈ S ,

g j(y, t0, t1)≡
∫

d y ′
√

√ m
2πi t1

exp
�

i
m

2t1
(y − y ′)2

�

g j(y
′, t0) , (29)

and an analogous expression is obtained for Ξ0(z). The higher moments Mn>1 can be related
to expectation values in the low-energy description in the same way.

In many works [44,75] it is assumed that the longitudinal expansion has little effect (even
though it can be straightforwardly taken into account in a low-energy field theory framework
in some cases [38]). This assumption is based on the state at the time of trap release: since
the gas is spatially very constrained in the transverse directions, its momentum distribution in
these directions is much broader than in the longitudinal direction. As a result, the time scale
for expansion in the longitudinal direction far exceeds that for the transverse directions. If the
time of flight t1 is short, this suggests the approximation of neglecting longitudinal expansion
altogether, replacing the free evolution operator (24) by

U(t1 + t0; t0)≈ e−i t1

�

P̂2
y+P̂2

z

�

/2m . (30)

This results in a simplified expression for the operator ρ̂(H)tof

ρ̂
(H)
tof (r, t1, t0)≈ |Ξ0(z, t1)|2

∑

i, j∈S

Ai j(y, t0, t1)
�

ψ̂
(H)
i (x , t0)

�†
ψ̂
(H)
j (x , t0) . (31)

We will use this approximate expression in much of the remainder of this work.

3.2 Green’s functions of interest

In what follows, we will derive equations of motion for the Green’s functions of the 1D Bose
fields, defined as

Ci j(x , x ′, t)≡ 〈ψ̂†
i (x , t)ψ̂ j(x

′, t)〉 . (32)

Solving these numerically gives us access to the expectation value of ρ̂(H)tof (r, t0 + t1) as well
as averages of Fourier-transformed quantities like (41). In order to connect to the experimen-
tal works [10, 14, 15] we have to account for the fact that the data extracted from absorp-
tion imaging has been analyzed in terms of the number/phase representation for an effective
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two-channel model. Denoting the corresponding Bose field operators by ψ̂L,R we can define
averages of the relative density and phase via

ϕ(x , t) = Arg 〈ψ̂†
L(x , t)ψ̂R(x , t)〉 ,

n(x , t) = 〈ψ̂†
L(x , t)ψ̂L(x , t)〉 − 〈ψ̂†

R(x , t)ψ̂R(x , t)〉 . (33)

In order to connect to these quantities we need to express ψ̂L,R in terms of operators in our
three-channel model. As interactions are weak this transformation can be taken to be linear.
To be specific let us work with an effective three-channel model, i.e. ā = 3. We then carry out
a change of basis such that

ψ̂α(x , t) =
2
∑

j=0

c(α)j (t)ψ̂ j(x , t), α= L, R, e. (34)

We have introduced a third, “excited” boson species ψ̂e to be able to span the full space of 3
transverse levels. The set of labels used in Eq. (26) thus becomes S = {L, R, e}, so that Eq. (26)
is equivalent to Eq. (10) under the identifications

Φ j(y, t) =
∑

α=L,R,e

c(α)j (t)gα(y, t), j = 0,1, 2. (35)

The transformation matrices c(α)j (t) are chosen with orthonormal rows and columns, so that
they translate between the basis of single-particle eigenstates Φ0,1,2(y, t) of the transverse op-
erator D̂y(t) and another basis that contains left- and right-localized wave functions gL,R(y, t)
as well es a third wave function, ge(y, t).

In [38], the wave functions gL,R(y, t) were simply given by (anti)symmetric combinations
of Φ0 and Φ1. However, the presence of the third wave function ge(y, t) now creates ambiguity,
meaning that the c(α)j (t) can be defined in multiple ways. We will give two options here.
Choice 1: Following Ref. [38], we simply choose





c(L)0 c(R)0 c(e)0

c(L)1 c(R)1 c(e)1

c(L)2 c(R)2 c(e)2



 (t) =
1
p

2





1 1 0
1 −1 0
0 0

p
2



 ∀ t . (36)

Choice 2: Since the double well is centered around y = 0, we find the vector c(L)j (t) by

minimizing
∫∞

0 d y |gL(y, t)|2 subject to the constraint
∑

j |c
(L)
j (t)|

2 = 1. This fixes gL(y, t)
as the single-particle wave function in the space spanned by Φ0,1,2(y, t) with the smallest
possible probability for the particle to be found at y > 0, i.e. in the right well. Mutatis
mutandis for c(R)j (t). The third vector c(e)j (t) is then defined as the orthogonal complement

of the vectors c(L)j (t) and c(R)j (t). The experimentally relevant parameters for the double well
potential are given below Eq. (3), with 0.5 ≤ I ≤ 0.6 for the oscillation stage. For most of
these values choices 1 and 2 lead to very similar values of c( j)j (t) and for I ≥ 0.55, the values
are practically indistinguishable. We will therefore present results for the much simpler Choice
1, and comment on the changes that occur for Choice 2 wherever they are relevant.

Using Choice 1 and Eq. (33), the average relative density and phase (33) are given by

ϕ(x , t)≡ Arg CLR(x , x , t)

= Arg
1
2

�

C00(x , x , t)− C01(x , x , t) + C∗01(x , x , t)− C11(x , x , t)
�

, (37)

n(x , t)≡ 〈n̂(x , t)〉= CLL(x , x , t)− CRR(x , x , t) = 2Re C01(x , x) . (38)
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Another quantity of experimental interest is the mean interference contrast, which we define as

C(x , t) =
2 |CLR(x , x , t)|

|CLL(x , x , t) + CRR(x , x , t)|
. (39)

3.3 Experimental data analysis and its relation to Green’s functions

As discussed above the average over many absorption images gives access to

〈ρ̂(H)tof (r, t1 + t0)〉 ≈ |Ξ0(z, t1)|2
∑

i, j∈{L,R,e}

Ai j(y, t0, t1)



�

ψ̂
(H)
i (x , t0)

�†
ψ̂
(H)
j (x , t0)

�

(40)

in the three-channel model. We refer to Eq. (28) for the case when longitudinal expansion is
taken into account. We will now show that the phase ϕ(x , t0) of interest in Eq. (37) can be
extracted from M1(r) by taking a suitable partial Fourier transform

Fq

�

〈ρ̂(H)tof (r, t1 + t0)〉
�

=

∫

d y e−iq y〈ρ̂(H)tof (r, t1 + t0)〉 . (41)

In the simpler case of gases whose transverse single-particle states are given by Gaussian wave
packets in the left and right wells respectively the choice q = md/t1, where d is the distance
between the wells’ minima, gives access to the relative phase, see e.g. Ref. [38].

It is important to check how this situation is affected by the presence of the third channel
and by the fact that the localized single-particle states are not given by perfect Gaussian wave
packets. Studying the amplitudes Ai j numerically for a given double well potential, we can
establish which terms in (40) contribute at the wave vector q = md/t1 for a realistic potential
in the three channel model. As shown in Fig. 2, ALR has a marked peak in Fourier space around
q = md/t1. The diagonal terms ∼ Aii only contribute around q ≈ 0. The terms ∼ ALe and
∼ ARe do contribute at higher wave vectors, but their Fourier transforms both become very
small around |q| = md/t1 for all values of the double well (3) we consider. Moreover, the
occupation of the “excited” transverse wave function ge(y, t) is much smaller than that of the
wave functions gL,R(y, t). For these reasons, the Fourier transform (41) at q = md/t1 is well
approximated by

Fq

�

〈ρ̂(H)tof (r, t1 + t0)〉
�

�

�

�

�

q=md/t1

∝ CLR(x , x , t0) , (42)

whose argument then provides the relative phase of interest

ϕ(x , t0) = ArgF (y)q

�¬

ρ̂
(H)
tof (r, t1, t0)

¶�

�

�

�

�

q=md/t1

≈ Arg CLR(x , x , t0) . (43)

The above holds for expectation values with respect to states belonging to the low-energy
subspace. If on the other hand one works with a trapping potential where ALe and ARe do not
have small Fourier components at q = md/t1 and if the occupation of ge(y, t) is not small, the
identification (42) might fail. Another likely scenario is that the value of |q|= md/t1 cannot be
established to sufficient precision. In such cases, Eq. (40) shows how different boson bilinears
contribute to the measured density after time-of-flight, using numerical evaluations of the
amplitudes Ai j(y, t0, t1).

Our way of extracting the relative phase from the average over many absorption images
should be contrasted to the way in which the experiments [10, 14, 15] have been analyzed.
In these works a value for a relative phase φ(x , t0) is extracted for each (typical) absorption
image by fitting the observed density profile to an expression of the form

ρtof(r, t1 + t0)≈ | f (y, z, t1)|
2 �1+ cos

�

φ(x , t0) + ydm/t1

��

, (44)
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Figure 2: Fourier transformed products of single-particle wave functions after time-
of-flight g L,R(y, t1) occurring in Eq. (31), for the parameters given below Eq. 3 with
I = 0.5. The cross term g∗L(y, t1)gR(y, t1) (green) shows a peak around q = md/t1,
whereas g∗L(y, t1)g e(y, t1) (cyan) becomes small there. The same can be said about
the other cross terms involving g e. This allows to extract ϕa(x) using Eq. (43).

where f (y, z, t1) is a Gaussian envelope. The data is then analyzed in terms of the average
φ(x , t0) over many shots. An interesting open question is to establish the precise relation
between φ(x , t0) and ϕ(x , t0) extracted from the average over many images.

4 Hartree–Fock time evolution

Having established how Green’s functions are related to averages over experimental measure-
ments, we now consider their time evolution. We do so in the Heisenberg picture, indicated
with a superscript (H), and consider the equations of motion for the 1D field operators,

i
d
d t
ψ̂(H)a (x , t) =

�

ψ̂(H)a (x , t), H(a,H)
1D (t)

�

+ iU†(t)
∂

∂ t
ψ̂a(x , t)U(t) . (45)

Here U(t) is the time-evolution operator

U(t) = T exp
�

− i

∫ t

0

d t ′H(ā)1D (t
′)
�

, (46)

and the additional, explicit time-derivative is nonzero due to the time-dependent definition
of ψ̂a(x , t), via the corresponding eigenstates Φa(y, t) of the transverse potential V⊥(y, t). In
order to work out the last term on the right hand side of (45) we revert to the expansion of
the Bose field into channels without projection (7)

0=
∂ Ψ̂( ~r )
∂ t

=
∂

∂ t

∑

b,c

Φb(y, t)Ξc(z)
ˆ̃ψb,c(x , t). (47)

The orthonormality of the single-particle wave functions then implies that

∂

∂ t
ˆ̃ψbc(x , t) =

∞
∑

d=0

B∗cd(t)
ˆ̃ψcd(x , t), Bab(t) = −

∫

d y Φa(y, t)Φ̇∗b(y, t) . (48)
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Using our assumption that the transverse potential is varying sufficiently slowly in time we
can project these equations to our model with ā transverse channels

U†(t)
∂

∂ t
ψ̂a(x , t)U(t)≈

ā−1
∑

b=0

B∗ab(t)ψ̂
(H)
b (x , t). (49)

Physically, this term in the equation of motion (45) keeps track of transitions a→ b to different
levels due to time-dependence in V⊥(y, t). In what follows, we will drop the superscript (H)
and fix a = 3.

We now make the Hartree–Fock approximation for the interaction term,

ψ̂†
a(x , t)ψ̂†

b(x , t)ψ̂c(x , t)ψ̂d(x , t)→

Cac(x , x , t)ψ̂†
b(x , t)ψ̂d(x , t) + Cbd(x , x , t)ψ̂†

a(x , t)ψ̂c(x , t) (50)

+Cad(x , x , t)ψ̂†
b(x , t)ψ̂c(x , t) + Cbc(x , x , t)ψ̂†

a(x , t)ψ̂d(x , t) .

Using the symmetry of Γabcd(t) the truncated Heisenberg equation (45) then yields the self-
consistent equations

d
d t

Cab(x , x ′, t) = i
�

D̂x − D̂x ′ + εa(t)− εb(t)
�

Cab(x , x ′, t)

+ 4iG∗ac(x , t)Ccb(x , x ′, t)− 4iGbc(x
′, t)Cac(x , x ′, t) , (51)

describing the time evolution of the Green’s functions of interest, namely Cab(x , x ′, t) with
a, b = 0, . . . , a − 1. The HF approximation is equivalent to neglecting all higher connected
n-point functions other than these Green’s functions. The self-consistency of the HF scheme is
implemented by the effective potentials

Gbc(x , t) =
2
∑

a,d=0

Γabcd(t) Cad(x , x , t) +
i
4

B∗bc(t) , (52)

with B(t) given by Eq. (48).
The system of Eqs. (51) can be solved numerically. In our implementation, we use a mixed

implicit-explicit method for the propagation in time, employing a Crank–Nicholson scheme for
the terms linear in Green’s functions and a first order forward Euler method for the nonlinear
terms. We work on a 2D square spatial grid of linear size 250µm, using 1000×1000 grid points
and approximating spatial derivatives by fourth order finite differences. We have checked
convergence with respect to the grid spacing as well as the time step, which is 0.015ms in the
figures presented below. At each time step during the preparation sequence, the matrix B(t)
given by Eq. (49) is computed for the lowest a eigenfunctions corresponding to the potential
V⊥(y, t).

4.1 Quality of the SCHF approximation in equilibrium

An important question is how well we expect the HF approximation to work. It is well known
[79] that at sufficiently low temperatures, 1D Bose gases form a quasi-condensate which is not
well captured in the HF approximation. Specifically, the 1D boson density develops a central
density peak which is underestimated by HF calculations. To make this precise we consider
the simpler case of the Lieb–Liniger model in a harmonic trap V‖(x), where we can compare
finite-temperature HF computations to results using Yang–Yang thermodynamics combined
with the Local Density Approximation (YY+LDA). The LDA method is expected to provide
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highly accurate results in the appropriate parameter regime and its application to the Lieb–
Liniger model has been described in detail in [78]. It has been successfully tested in experi-
mental settings [80] and we will use it to compute the quantities

∆1 =

∫

d x
�

〈ψ†(x)ψ(x)〉YY+LDA − 〈ψ
†(x)ψ(x)〉HF

�

/NHF , (53)

∆2 =

∫

d x
�q

〈(ψ†(x))2 (ψ(x))2〉YY+LDA −
q

〈(ψ†(x))2 (ψ(x))2〉HF

�

/NHF ,

with NHF =
∫

d x 〈ψ†(x)ψ(x)〉HF. The expectation values 〈·〉HF are computed by the methods
of Sec. 5.2 and using Wick’s theorem. The expectation values 〈·〉YY+LDA, on the other hand, are
computed by numerically solving the thermodynamic Bethe Ansatz equations at finite temper-
ature [81], using a chemical potential that is slowly varying in space µ(x) = µ0 − V‖(x). For
∆2, the Hellman-Feynman theorem must be used in addition [78]. The criterion for LDA to
be applicable [78] can be checked a posteriori, and is found to be satisfied everywhere away
from the boundaries of the gas for our parameters.

A comparison between HF and YY+LDA for density profiles ρ0 = 〈ψ†(x)ψ(x)〉 of a single
gas is presented in Fig. 3. We see that while the HF approximation works quite well overall,
it does underestimate the central peak. This failure occurs above a certain particle number,
and the number where this cross-over occurs decreases with temperature. We will therefore

(a)
−200 −100 0 100 200

x(µm)

0.0

0.2

0.4

0.6

0.8

ρ
0
(x

)
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LDA

(b)
−200 −100 0 100 200

x(µm)

0.0

2.5

5.0
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12.5
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ρ
0
(x

)
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Figure 3: Comparison between density profiles of a single gas in a harmonic longi-
tudinal potential with ωx = 2π · 12.5 Hz, computed in Yang–Yang thermodynamics
with LDA (red), versus HF (blue), at T = 60 nK. For a low particle number (panel
(a), N = 99), the correspondence is good, whereas for N = 986 (b), the central
density peak is underestimated in HF.

work at a relatively high temperature of T = 60nK in what follows. To make sure our particle
number does not exceed the cross-over where HF fails, we have plotted ∆1,2 for a range of
particle numbers and longitudinal trapping frequencies in Fig. 4. This allows to monitor the
quality of HF in the initial state for the parameters of our simulation. In particular, in the
regime where ∆1 is small the value of ∆2 provides an indication of the strength of connected
4-point correlations, which vanish in HF. For T = 60 nK and N ® 200, Fig. 4(b) shows it to be
small. We note that our self-consistent Hartree–Fock results can in principle be improved upon
for weak interactions and small particle numbers using only the self-consistently determined
Green’s function 〈ψ†(x)ψ(x)〉HF, combined with perturbation theory. Rather than simply us-
ing Wick’s theorem to compute the expectation values 〈·〉HF occurring in Eq. (53) in terms of
〈ψ†(x)ψ(x)〉HF, one could include perturbative corrections to these results, working in powers
of the interaction strength and performing contractions using the self-consistently determined
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Green’s function 〈ψ†(x)ψ(x)〉HF. We have checked the first order term and observed that it
brings the result closer to the YY+LDA result for small particle numbers (N ® 300), whereas
the correction starts to diverge for larger particle numbers.

25 50 100 200 400 800
N

-0.2

0.0

0.2 ∆1

∆2

Figure 4: Errors∆1,2 between HF and YY+LDA from Eq. (53) for T = 60 K. The colors
correspond to ω‖ = 2π · 7.5Hz (green), ω‖ = 2π · 10Hz (cyan), ω‖ = 2π · 12.5Hz
(blue) and ω‖ = 2π · 15 Hz (red).

5 Initial state and gas splitting

5.1 Preparation sequence

We now have an equation of motion at hand for the relevant Green’s functions that enter
observables. Starting from an appropriate initial state, we can thus simulate the effect of the
gas splitting, phase imprinting and free evolution performed in the experiments [10, 14, 15].
We implement these manipulations through the functions I(t) and F(t) which are present in
the definition (3) of V⊥(y, t). We distinguish a number of stages:

1. A single gas is prepared in a thermal state. The transverse confining potential is a single
well with a flat bottom, given by (3) with I = Ic and F = 0.

2. We raise the double well barrier over some time tr by increasing I linearly from Ic to
Imax. At t = tr we are left with a split gas and a high tunnel barrier.

3. We raise one of the wells over a time timp by increasing F(t) linearly from 0 to Fmax > 0.
Physically, this imprints a phase difference between the wells.

4. We remove the imbalance between the wells by tuning F(t) back down to zero in time
timp.

5. Finally we lower the tunnel barrier somewhat to enable tunneling on the relevant time
scales, by decreasing I from Imax to If in a time tlow.

In order to achieve these steps, we choose the functions I(t) and F(t) from Eq. (3) as

I(t) =



















Ic + (Imax − Ic)
t
tr

, if t < tr ,

Imax , if tr ≤ t < tr + 2timp ,

Imax + (If − Imax)
t−tr−2timp

tlow
, if tr + 2timp ≤ t < tr + 2timp + tlow ,

If , else ,

(54)
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and

F(t) =



















0 , if t < tr ,
t−tr
timp

, if tr ≤ t < tr + timp ,

1− t−tr−timp

timp
, if tr + timp ≤ t < tr + 2timp ,

0 , if tr + 2timp ≤ t ,

(55)

with tr = 5ms, timp = tlow = 2ms, Ic = 0.4, Imax = 0.58 and If = 0.5.

5.2 Numerical determination of the initial state

At stage 1, the system is initialized in a thermal state of the Hamiltonian (12), subject to the
HF approximation (50). This state is determined as follows. We expand the field operators as

ψ̂a(x) =
∑

a,αχα(x)Φa(y)b̂aα , (56)

where χα are real eigenfunctions of the harmonic oscillator potential in the x-direction, and
we keep nm + 1 such modes. The Hamiltonian (12) subject to (50) can then be written as

H(a)1D (0) =
a−1
∑

a,b=0

nm
∑

α,β=0

haα,bβ b̂†
aα b̂bβ , (57)

with the tensors

haα,bβ = δa,bδα,β [ωx (α+ 1/2) + εa(0)] + 4
a−1
∑

c,d=0

nm
∑

γ,δ=0

Γabcd(0)Γαβγδ
¬

b̂†
cγ b̂dδ

¶

,

Γαβγδ =

∫

d x χα(x)χβ(x)χγ(x)χδ(x) . (58)

Reshaping haα,bβ and diagonalizing the resulting matrix numerically yields a canonical trans-
formation

b̂aα =
∑

bβ Paα,bβ ĉbβ . (59)

The new creation and annihilation operators diagonalize the Hamiltonian H(a)1D (0) =
∑

aα Eaα
ĉ†

aα ĉaα. Assuming the ĉ’s to have thermal occupation numbers with respect to this Hamiltonian
then gives

¬

b̂†
cγ b̂dδ

¶

=
∑

aα

P†
cγ,aαPaα,dδ

e(Eaα−µ)/kBT − 1
, (60)

which combined with (58) forms a self-consistent system of equations. We proceed by iter-
ation: starting from an initial guess




b̂†
cγ b̂dδ

�

0, which we take to be thermal with respect to
the non-interacting Hamiltonian, we diagonalize haα,bβ and compute (60) with the resulting
P and E. Reinserting into (58) leads to the next iteration, and we repeat until convergence is
reached.

A major hurdle in the above procedure is presented by the overlap tensor Γαβγδ. As we
use nm = 1000 modes, this tensor is too large to store numerically. However, using known
identities for Hermite polynomials [77], we can write (58) as

Γαβγδ =
p

mωx

2nm
∑

p=0

Ap
αβ

Ap
γδ

, (61)

Ap
αβ
=

min(α,β)
∑

m=0

Bpm
αβ

, (62)
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where the tensors Bpm
αβ

are 0 if α+β −2m− p is odd and/or negative, and otherwise given by

Bpm
αβ
=

m!
p

α!β!

2m

p
2α+β

�

α

m

��

β

m

�

(α+ β − 2m)! (−1/2)
1
2 (α+β−2m−p)

p

p! ((α+ β − 2m− p)/2)!
. (63)

The considerably smaller tensors Ap
αβ

can now be separately contracted with other terms in
(58), leading to a great memory gain. Even so, evaluating and storing the tensors (63) is still
a very slow process for nm = 1000. We therefore make a simplifying assumption: we set

Ap
αβ
→ 0 if |α− β |> Λ (64)

for some Λ, which we choose to be 40 in our numerics. To see how this is justified, we note
that the Hamiltonian (57)-(58) implies the relation

[ωx (α+ 1/2) + εa(0)− Eaα]Paα,aα =

= 4
∑

b,c,d

∑

β ,γ,δ

Γabcd(0)Γαβγδ
∑

cγ

P†
cγ,cγPcγ,dδ

e(Eaα−µ)/kBT − 1
Pbβ ,aα

(65)

on the canonical transformations P for all a, a,α,α. The assumption (64) is therefore valid if
the Paα,bβ become very small whenever |α−β |¦ Λ. This is reasonable since the weak interac-
tions are not expected to couple harmonic oscillator modes that have widely different numbers
of nodes. We check a posteriory that this assumption is consistent and well within the range
set by Λ. We have also checked the assumption explicitly for the case of nm = 400. Finally,
we have verified that the Green’s functions resulting from the above procedure remain time-
independent when they are propagated in time under (51) with a time-independent potential
V⊥(y, 0).

The above procedure yields a set of Green’s functions Ci j(x , y) which characterize the
state of the system at t = 0. In the central region of the trap, with |x | < 3µm, we find
exponential decay of the Green’s functions Cii(x ,−x) for the parameters presented in Sec. 6.1.
The associated correlation length is roughly 0.5µm.

6 Josephson oscillations

We are now in a position to model the full experimental sequence. To do so, we first fix the
values for various constants and parameters.

6.1 Experimental parameters

The transverse potential V⊥(y, t) is described by Eq. (3) and its time evolution follows Sec. 5.1
with tr = 4 ms, timp = 2 ms and tlow = 2ms. This means that after a time tr+2timp+tlow = 11ms,
the confining potential becomes time-independent, and the 1D field operators lose their ex-
plicit time-dependence as a result. We consider a temperature of 60nK and take the transverse
confining potential in the z-direction to be harmonic with ωz = 2π ·1.7 kHz. The s-wave scat-
tering length and atomic mass for the experimental system of 87Rb atoms [15] are as ≈ 5.2nm
and m≈ 1.4 · 10−25kg, respectively. This fixes all parameters in the problem.

6.2 Assessment of time-dependent truncation errors in a toy model

In our full model, the initial thermal state contains three different transverse levels which
mutually interact. An example of the resulting initial density profiles is given in Fig. 5(a), with
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Figure 5: (a) Initial density profiles of levels 0,1, 2 at T = 60 nK, ωx = 2π · 12.5Hz
and N = 259. (b) Time evolution of Green’s functions Cii = 〈ψ̂

†
i ψ̂i〉 for the quantum

mechanical problem of noninteracting bosons in a double well. This corresponds to
the PDE (51) in the absence of x-dependence and with Γi jkl = 0. We compare the
problem with truncation index a = 3 (as in the full model, solid curves) to results
for a = 15 (dotted curves). The latter is chosen by looking for convergence in a.
The initial conditions match the peak densities from panel (a) at t = 0 and a vertical
log-scale is chosen to highlight changes in C22.

occupation of the higher levels being suppressed as expected thanks to their larger energy
cost. For t > 0, the occupations can change in a way that is both due to interactions and to
the non-adiabaticity of the deformation of V⊥(y, t). The latter is modelled by the additional
term (49) in the equations of motion (45), which are truncated at a = a = 3. To assess the
error made in this truncation, we briefly consider the quantum mechanical problem of bosons
in a double well V⊥(y, t). We discard the x-direction and set interactions to zero, so that the
problem is given by Eq. (51) in the absence of x-dependence and with Γi jkl = 0. This problem
can be integrated numerically for any value of the truncation index a. Results for a = 3 (as we
use in the full model) and a = 15 are compared in Fig. 5(b). The lines remain close, showing
that the truncation error has a very small effect on transitions induced by the time-dependence
of V⊥(y, t).

6.3 Characterization of the quantum state after the preparation sequence

In our Hartree–Fock approximation, the state of the system at time t is fully determined by
the Green’s functions Ci j(x , y, t), with i, j = 0, . . . , a − 1. Having these at hand thus allows
us to give a full, quantitative description of the state of the system after the splitting and
phase imprinting procedure, at the level of Hartree–Fock. This is a major improvement beyond
existing, more phenomenological [67,68] or approximate [69,70]methods. As an illustration
of the ability of our method to provide the full Green’s functions, we plot C00(x , y, t) and
|C01(x , y, t)| at time t = tr + 2timp + tlow = 11ms, that is, after the preparation sequence (see
Fig. 6). One sees that the Green’s functions are strongly peaked around the main diagonal.
To further illustrate their behavior, it is therefore instructive to plot the diagonal (Fig. 7) and
anti-diagonal (Fig. 8) of the Green’s functions of interest.

An equivalent way to express the same Green’s functions is through the occupation num-
bers

M (ab)
α,β ≡

¬

b̂†
aα b̂bβ

¶

, (66)

where b̂†
aα creates a particle in instantaneous eigenstate ξα(x)Φa(y, t), as defined via Eq. (56).

As the occupation numbers are strongly suppressed away from the diagonal, we display this
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Figure 6: Sample pictures for the Green’s functions at time
t = tr + 2timp + tlow = 11 ms, that is, after the preparation sequence. The pa-
rameters are as described in Section 6.1, with ωx = 2π · 12.5Hz, T = 60nK and
N = 259 particles.
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Figure 7: The spatial diagonal of Green’s functions Ci j(x , y) of interest, with the
same parameters as in Fig. 6.

(a)
−6 −4 −2 0 2 4 6

x (µm)

1

2

3

4
C00(x,−x)

C11(x,−x)

C22(x,−x)

(b)
−6 −4 −2 0 2 4 6

x (µm)

0.1

0.2

0.3

0.4

0.5

0.6
|C01(x,−x)|
|C02(x,−x)|
|C12(x,−x)|

Figure 8: The spatial anti-diagonal of Green’s functions Ci j(x , y) of interest, with the
same parameters as in Fig. 6.
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diagonal (Fig. 10) and the anti-diagonal pertaining to α+ β = 20 (Fig. 9) for all occupation
numbers of interest.
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Figure 9: Anti-diagonal cut of occupation numbers M (ab)
α,β , defined in Eq. (66). The

cut corresponds to α= 10+ γ and β = 10− γ. The chosen parameters are the same
as in Fig. 6.
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Figure 10: The diagonal elements (α = β) of occupation numbers M (ab)
α,β , defined in

Eq. (66). The chosen parameters are the same as in Fig. 6.

In a nutshell, the preparation sequence described above provides us with an initial state
characterized by very short-ranged correlations. In the centre of the trap the correlation length
is roughly 0.5µm, in line with the correlation length at t = 0.

6.4 Damping of density-phase oscillations

By monitoring the observables from Sec. 3, we can follow the relative density and phase be-
tween the gases. As soon as the barrier is lowered (step 5. in Sec. 5), oscillations in the relative
density and phase can be observed, cf. Fig. 11(a), with an offset of a quarter period between
the two. Importantly, the amplitude shows an initial period of damping, for all particle num-
bers we have considered. The mean interference contrast C(x , t), on the other hand, shows
only very limited time-dependence. We have fitted the density-phase oscillations at the center
of the trap between t = 11ms and t = 35ms to

ϕ(t) = e−t/τ sin (ωt +ϕ0) , (67)

and extracted the damping time τ and frequency ω. We stress that this is by no means a full
description of the phase oscillations but merely a phenomenological formula to quantify the
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time scale τ of the damping observed in the early oscillation stage of the HF simulation. The
dependence of this damping time τ on N is displayed in Fig. 11(b), whereas the dependence
of the frequency ω on N is displayed in Fig. 12. There is a range of values of N for which the

(a)
20 40 60

t(ms)

-0.2

0.0

0.2

0.4

0.6

0.8

ϕ(xc, t) (rad.)

ϕ̃(xc, t) (rad.)

n(xc, t) (arb.un.)

C(xc, t)

(b)
100 200 500 1000 2000

N

10

30

100

300

τ
(m

s)

ω‖ = 2π · 7.5 Hz

ω‖ = 2π · 10 Hz

ω‖ = 2π · 12.5 Hz

ω‖ = 2π · 15 Hz

25 50 100 200 400 800
-0.2

0.0

0.2 ∆1

∆2

Figure 11: (a) oscillations of relative density n and phase ϕ in the center of the trap
(x = xc) for T = 60 K, N = 259 and ωx = 2π ·12.5 Hz. ϕ̃ denotes the relative phase
computed using Choice 2 from Sec. 3. The mean interference contrast C(x , t) from
Eq. (39) is also plotted, and is almost constant in time. (b) Big colored dots: damping
times extracted from a fit with Eq. (67). Black dots: damping times reported in [10].
Inset: reproduction of Fig. (4), showing errors ∆1,2 between HF and YY+LDA from
Eq. (53) for T = 60K.
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Figure 12: Frequencies ω of density-phase oscillations at the center of the trap as a
function of the number of particles in the gas, N . The frequencies are extracted from
a fit with Eq. (67). The temperature of the initial state is 60nK.

damping time as a function of N is in qualitative agreement with the power-law dependence
reported in [10, 14]. For N ∼ 300, the behavior suddenly changes. This transition coincides
with the breakdown of HF in the initial state: around this particle number, the errors ∆1,2
between HF and YY+LDA from Eq. (53) start to increase to significant values. This is displayed
in the inset to Fig. 11(b). We thus conjecture that the deviation of τ(N) from a power law for
N ¦ 300 is due to a breakdown of HF in that regime.

A number of additional observations can be made.

• After showing a damped oscillatory behaviour up to times of t ≈ 40ms the Josephson
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oscillations begin to increase again. This effect is not observed in the experiments, which
as we have stressed throughout have been performed in a different parameter regime
not accessible by HF. We note however, that the experiments focused on time scales of
below 40−60ms, so that it cannot be ruled out that at later times a reemergence of the
oscillations occurs in the experimentally relevant parameter regime as well. It would be
interesting to repeat the experiments for lower particle numbers in order to study this
reemergence in detail.

• The frequency of density-phase oscillations is highest at the center xc of the trap in the
x-direction. Away from this point, the frequency is smaller, as displayed in Fig. 13(a).
This figure also shows that the damping during the first few periods is somewhat weaker
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Figure 13: Additional plots for the same parameters as Fig. 11(a). (a) relative phase
at the trap center (x = xc) and at positions x1 = xc +25µm, x2 = xc +37.5µm. (b)
squared longitudinal size (68) of left and right gases (red and green) as well as their
average (black).

at points away from the trap center, where the gas density is smaller.

• The gas as a whole shows a breathing motion. This can be shown by studying the squared
longitudinal size of the left and right gas profiles,




(x − xc)
2�

t,i ≡
∫

d x Cii(x , x , t) (x − xc)
2 /

∫

d x Cii(x , x , t), i = L, R . (68)

Fig. 13(b) shows that the squared longitudinal sizes of the left and right gases oscillate
out of phase with one another. On top of this, there is an overall breathing motion of the
gas with a frequency that depends monotonously on ωx . This breathing gets damped
over a timescale that is large compared to the breathing period of the separate left and
right gases.

• The time scale of the breathing motion of the gas is seen to coincide with the time at
which the Josephson oscillations reemerge after the initial oscillatory decay.

It is instructive to investigate the effect on the damping that various aspects of our set-up
might have. First, there are two possible definitions of left- and right-localized bosons ψ̂L,R,
as described in Sec. 3. As mentioned there, we stick to Choice 1 (cf. (36)) by default. Do our
results, and the observed damping in particular, change if we switch to Choice 2? Fig. 11(a)
shows results for Choice 2 in red. The curve is shown to lie very close to the blue curve, which
was computed with Choice 1. This behavior occurred for all performed simulations, showing
that the choice between Choices 1 and 2 does not significantly affect our results.
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Second, we can investigate the effect of the second excited level, by turning off the cor-
responding couplings (13), setting Γ2 jkl = 0 for all permutations of indices. This completely
shields the lowest two levels 0 and 1, and hence the relative density and phase (37), from
any effects which level 2 might have. The resulting curves for ϕ fall on top of the curves for
nonzero interaction with the second excited level, as exemplified by Fig. 14(a). We conclude
that the effect of the additional boson species on the damping is negligible.

Third, we can study the effect of the longitudinal potential on the damping. This effect
turns out to be very significant. In Fig.11(b), we see that the τ(N)-curves are shifted upwards
as the strength of the potential is decreased. A weaker potential thus leads to a decrease
in the damping effect. This suggests that in a box potential, the damping effect might be
completely absent (within the SCHF approximation). We have therefore performed the same
simulations in a box potential, by imposing hard wall boundary conditions at x = xc ± L/2
on the PDE (51). Fig. 14(b) shows a representative result, with parameters that are chosen to
closely match those of Fig. 11(a). In particular, the bulk density is chosen to match the peak
density from the initial condition of Fig. 11(a). The result is striking: in the box, no damping
is visible at all. In fact, a very slight increase in the amplitude of the density-phase oscillations
is observed.
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Figure 14: (a) the same curve as the phase ϕ from Fig. 11(a), presented alongside
the same quantity, but computed with Γ2 jkl = 0 for all permutations of indices. (b)
oscillations of relative density n and phase ϕ for the same parameters as Fig. 11(a)
but in a hard-wall box potential of size L = 80µm. The bulk density is chosen to
match the peak density from the initial condition of Fig. 11(a)

7 Beyond self-consistent Hartree–Fock

The main attraction of the self-consistent Hartree–Fock approximation is its simplicity. How-
ever, it is not expected to provide a quantitatively accurate account of the non-equilibrium
dynamics and it would be interesting to improve on it. A good way forward would be to im-
plement the second Born approximation [82] following Refs. [83, 84]. The two significant
complications compared to these works are the absence of translational invariance and the ex-
plicit time-dependence of the Hamiltonian during the splitting and phase imprinting sequence.
As a first step we consider the non-equilibrium evolution after the phase imprinting, which is
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described by a time-independent Hamiltonian (12)

H1D =
a−1
∑

a=0

∫

d x ψ̂†
a(x)

�

−
1

2m
∂ 2

∂ x2
+

mω2

2
x2 + εa

�

ψ̂a(x)

+

∫

d x
a−1
∑

a,b,c,d=0

Γabcd ψ̂
†
a(x)ψ̂

†
b(x)ψ̂c(x)ψ̂d(x) . (69)

We now expand in harmonic oscillator modes notation

ψa(x) =
∑

j

χ j(x)ba, j , (70)

and substitute this back into the expression for the Hamiltonian. Introducing a multi-index

k ≡ (a, j) , ba, j = b(k) , (71)

we can rewrite the Hamiltonian in a very compact form

H1D =
∑

k

ε(k)b†(k)b(k) +
∑

k1,k1,k3,k4

V (k1, k2, k3, k4) b†(k1)b
†(k2)b(k3)b(k4). (72)

Here we have defined

ε(k) = εa + ε j , V (k1, k2, k3, k4) = Γabcd Γ̄i jkl , (73)

where Γabcd and Γ̄i jkl are given by (13) and (58) respectively and k1 = (a, i), k2 = (b, j),
k3 = (c, k) and k4 = (d, l). The second Born approximation for the single-particle Green’s
function

G(k, p, t) = 〈Ψ(t)|c†(k) c(p)|Ψ(t)〉 , (74)

can then be derived by generalizing the steps given in [84,85] to the case at hand. This results
in the following set of equations of motion

∂ G(k, p, t)
∂ t

= i
�

ε(k)− ε(p)
�

G(k, p, t)

+ 2i
∑

q1,...,q4

Y (k, p;q1, . . . ,q4)e
i tE(q1,...,q4)G(q1,q3, 0)G(q2,q4, 0)

−
∫ t

0

ds
∑

q1,...,q4

K(k, p;q1, . . . ,q4|t − s) G(q1,q2, s)G(q3,q4, s)

−
∫ t

0

ds
∑

q1,...,q6

L(k, p;q1, . . . ,q6|t − s) G(q1,q2, s)G(q3,q4, s)G(q5,q6, s) , (75)

where E(k1, . . . , k4) = ε(k1) + ε(k2)− ε(k3)− ε(k4) and the integral kernels are given by

Y (k, p; k1, k2, k3, k4) = Γ (k1, k2, k3, k)δk4,p + Γ (k1, k2, k, k4)δk3,p

− Γ (p, k2, k3, k4)δk1,k − Γ (k1, p, k3, k4)δk2,k , (76)

L(k, p;q1, . . . ,q6|t) = 8
∑

p

X (k, p;q1,q3,q6, p; p,q5,q2,q4|t)

+ 16
∑

p

X (k, p;q1,q3,q2, p; p,q5,q4,q6|t) ,

K(k, p;q1,q2,q3,q4|t) = 8
∑

k1,k2

X (k, p; k1, k2,q2,q4;q1,q3, k1, k2|t) ,

X (k, p;q1,q2,q3,q4; k1, k2, k3, k4) = Γ (q1,q2,q3,q4)e
iE(q1,q2,q3,q4)Y (k, p; k1, k2, k3, k4)

− {q j ↔ k j}. (77)
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The set of integro-differential equations (75) is clearly much more difficult to solve numerically
than the self-consistent Hartree–Fock equations. The time integration is crucial at short times,
while for sufficiently late times (75) ought to be reducible to a matrix quantum Boltzmann
equation [84]. Integrating (75) is beyond the scope of this paper, but some general comments
are in order. It is clear that in order to be able to integrate (75) numerically only a limited
number of different k modes can be retained. Hence one should focus on the case where
the longitudinal confinement is fairly tight. In this (experimentally readily accessible) case
interaction effects beyond the SCHF approximation can be analyzed through (75).

8 Conclusions

In this work we have developed a microscopic theory for the non-equilibrium evolution of
bosons confined by a time-dependent quasi-one-dimensional trapping potential. Using that the
transverse confinement is tight we have projected the full three-dimensional theory to a finite
number of coupled, one-dimensional channels. By employing a time-dependent projection the
number of channels that need to be retained in experimentally relevant parameter regimes is
very small: three channels suffice. We then analyzed the resulting theory by means of a self-
consistent time-dependent Hartree–Fock approximation and showed how the resulting Green’s
functions are related to averages of experimentally measured quantities. The Hartree–Fock
approximation is expected to apply only for sufficiently weak interactions and sufficiently high
energy densities. We have tried to identify a corresponding parameter regime by comparing the
SCHF approximation to results obtained by combining the exact solution of the Lieb-Liniger
model with a local density approximation in the trapping potential. On the basis of these
considerations we restricted our initial states to temperatures of at least 60 nK and to particle
numbers below ∼ 200. In this parameter regime we expect the HF method to work well at
least at short times, when the neglected higher connected n-point functions have not had time
to grow substantially.

Our method has a number of attractive features. First, it allows to include the effects of
various longitudinal potentials. Second, it can account for higher excited levels of the trans-
verse confining potential which are normally neglected. Finally, it allows us to model the gas
splitting and phase imprinting in a fully microscopic way. To our knowledge, such a model has
not been presented before, and one of our main results is a characterization of the quantum
state of the system after gas splitting and phase imprinting in terms of single-particle Green’s
functions of the one-dimensional channels. The second main result of our work is the descrip-
tion of the density-phase oscillations that ensue after the splitting and phase imprinting. In
particular we find that these are damped over a few oscillation periods. These damped oscilla-
tions agree with recent measurements [10,14,15] in multiple ways. First, the damping time is
inversely related to the number of particles, following a curve compatible with [10]. Second,
the oscillation frequency decreases away from the center of the trap, as observed in [15]. We
have shown that the coupling to the second excited level has very little effect on the damp-
ing. On the other hand, the longitudinal trapping potential is seen to play a very important
role: the weaker the longitudinal trapping frequency, the weaker the damping. In a hard wall
box, no damping is observed at all within our Hartree–Fock approximation. This suggests that
damping effects are suppressed in this geometry for weak interactions. It therefore would be
very interesting to repeat the experiments [10, 14, 15] in a hard-wall box potential. Such po-
tentials are indeed under development [12,16] and our model can serve as a direct theoretical
prediction for such setups.

The main limitation of our method is the way interactions are treated. In order to ac-
cess the parameter regime of the experiments [10, 14, 15], in which the particle number was
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significantly higher than in our simulations, it is necessary to go beyond the SCHF approxi-
mation used here. A major improvement can be provided by the second Born approximation
discussed in section 7, but this is much harder to implement numerically. Ideally one would
want to employ a controlled approximation scheme like [86,87] for our fully time-dependent
problem.

Our work has several implications for attempts to describe Josephson oscillations in tunnel-
coupled one-dimensional Bose gases based on the sine-Gordon model. Firstly, our work sug-
gests that the experimental protocol for splitting and phase imprinting does not lead to a strong
population of higher transverse levels as long as the effective temperature of the initial ther-
mal state is sufficiently low. This implies that a description in terms of a low-energy effective
field theory based on a sine-Gordon model with appropriate perturbations should apply. There
are several kinds of perturbations that should be considered. A key finding of our work is the
strong effect the longitudinal confining potential has on the damping of Josephson oscillations
in the parameter regime studied here. This suggests that the low-energy field theory calcu-
lations based on the sine-Gordon model [62, 64–66] should be extended to account for the
longitudinal confinement. This is certainly possible in the framework of the self-consistent
time-dependent harmonic approximation used in [62,66]. Apart from the confining potential
there are other perturbations to the sine-Gordon model that should be analysed. In particular
one should consider the effects of the nonlinearities that arise from the curvature terms in the
kinetic energy of the split Bose gas. These are formally irrelevant in equilibrium but could well
play an important role in non-equilibrium dynamics.

Secondly, our characterization of the “initial state” after splitting and phase imprinting pro-
vides very useful information on what initial states to consider in the sine-Gordon framework.
In the first instance one should consider Gaussian states with very short correlation lengths
that reproduce the single-particle Green’s functions reported here. Our microscopic modelling
of the splitting process enables us to provide the same kind of information also in previously
studied cases without phase-imprinting.
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A Low energy projection in equilibrium

For simplicity we consider a two-dimensional system with time-independent Hamiltonian

H =

∫

d x d y

�

Ψ†(x , y)

�

−
∇2

2m
+

mω2

2
x2 + V⊥(y)

�

Ψ(x , y) + c
�

Ψ†(x , y)
�2�
Ψ(x , y)

�2
�

. (78)

The quadratic part can be diagonalized by going to a basis of single-particle eigenstates

Ψ(x , y) =
∞
∑

j,k=0

χ j(x)Φk(y) b j,k . (79)
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Here χ j(x) are harmonic oscillator wave functions and Φk(y) are orthonormal eigenstates of
the Hamiltonian H y

H y = −
1

2m
d2

d y2
+ V⊥(y) , H yΦk(y) = εkΦk(y) . (80)

In terms of the new canonical Bose fields

Ψk(x) =

∫

d y Φ∗k(y)Ψ(x , y) , [Ψ j(x),Ψk(x
′)] = δ j,kδ(x − x ′) (81)

the Hamiltonian becomes

H =

∫

d x
∞
∑

k=0

Ψ†
k(x) hk Ψk(x) +

∫

d x
∞
∑

k1,k2,k3,k4=0

Vk1,k2,k3,k4
Ψ†

k1
(x)Ψ†

k2
(x)Ψk3

(x)Ψk4
(x) . (82)

Here we have defined

hk =

�

−
1

2m
∂ 2

∂ x2
+

mω2

2
x2 + εk

�

,

Vk1,k2,k3,k4
= c

∫

d yΦ∗k1
(y)Φ∗k2

(y)Φk3
(y)Φk4

(y) . (83)

The imaginary time path integral representation of the partition function is

Z(β) =

∫ ∞
∏

k=0

Dψ∗k(τ, x) Dψk(τ, x) e−S[ψ∗n,ψn] , (84)

where

S[ψ∗n,ψn] =

∫ β

0

dτ

∫

d x
§ ∞
∑

k=0

ψ∗k(τ, x)
�

∂

∂ τ
+ hk

�

ψk(τ, x) (85)

+
∞
∑

k1,k2,k3,k4=0

Vk1,k2,k3,k4
ψ†

k1
(τ, x)ψ†

k2
(τ, x)ψk3

(τ, x)ψk4
(τ, x)

ª

.

The situation we are interested in is where the eigenvalues εk of the transverse confining
potential constitute a large energy scale and the transverse level spacings |εk − ε j| between
highly excited transverse states are large too. We can then “integrate out” the transverse
degrees of freedom above some cutoff Λ. Let us denote the first eigenvalue above Λ by εā,
and rewrite the action as

S[ψ∗n,ψn] = S< + S> + Sint , (86)

where S< is the part of the action that only involve the fields Ψk, Ψ†
k with 0 ≤ k < ā, S> the

quadratic part of the action that involves only fields with k ≥ ā, and Sint are the remaining
quartic terms that mix channels below and above the cutoff and describe interactions between
channels above the cutoff. Defining

〈O〉> =
∫ ∞
∏

k=ā

Dψ∗k(τ, x) Dψk(τ, x) O e−S> , (87)

we can eliminate the degrees of freedom above the cutoff using that we are dealing with weak
interactions. Up to second order in Sint we have the following expression for the low-energy
part of the action

Seff = S< + 〈Sint〉> −
1
2

�

〈S2
int〉> − 〈Sint〉2>

�

. (88)
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The first order term generates hopping between the low-energy channels

〈Sint〉> =
∫ β

0

dτ

∫

d x
ā−1
∑

k1,k2=0

Wk1,k2
ψ†

k1
(τ, x)ψk2

(τ, x) , (89)

where

Wk1,k2
=
∞
∑

n=ā

4Vn,k1,n,k2

∞
∑

j=0

|χ j(x)|2

eβ
�

εk+ω( j+1/2)
�

− 1
. (90)

We see that this is small compared to the interaction strength c because the Bose occupation
factors are by construction negligible. The second order term in Sint contains all possible
quadratic, quartic and sextic interactions involving ψk(x ,τ) and ψ∗k(x ,τ) compatible with
particle number conservation, e.g.

ā−1
∑

k1,k2,k3,k4=0

∫

dτ

∫

dτ′
∫

d x

∫

d x ′ Uk1,k2,k3,k4
(τ−τ′, x , x ′)

× ψ∗k1
(τ, x)ψk2

(τ, x)ψ∗k3
(τ′, x ′)ψk4

(τ′, x ′) , (91)

where

Uk1,k2,k3,k4
(τ−τ′, x , x ′) = −8

∞
∑

n2,n2=ā

Vn1,k1,n2,k2
Vn2,k3,n1,k4

× Gn1
(τ′ −τ, x ′, x)Gn2

(τ−τ′, x , x ′) ,

Gk(τ > 0, x , x ′) =
∑

j

χ j(x)χ
∗
j (x
′)

e−τ
�

εk+ω( j+1/2)
�

1− e−β
�

εk+ω( j+1/2)
� = Gk(τ− β , x , x ′). (92)

As εk > Λ the Matsubara Green’s function of the high energy channels is very short-ranged
in both imaginary time and space, so that retardation effects can be neglected and working
with a purely local interaction between the low-energy channels remains justified. Hence
the quartic terms generate only a very small renormalization of the interaction terms already
present between the low-energy channels.
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