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Abstract

Charge quantization, or the absence thereof, is a central theme in quantum circuit the-
ory, with dramatic consequences for the predicted circuit dynamics. Very recently, the
question of whether or not charge should actually be described as quantized has enjoyed
renewed widespread interest, with however seemingly contradictory propositions. Here,
we intend to reconcile these different approaches, by arguing that ultimately, charge
quantization is not an intrinsic system property, but instead depends on the spatial res-
olution of the charge detector. We show that the latter can be directly probed by unique
geometric signatures in the correlations of the supercurrent. We illustrate these find-
ings at the example of Josephson junction arrays in the superinductor regime, where
the transported charge appears to be continuous. Finally, we comment on potential con-
sequences of charge quantization beyond superconducting circuits.
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1 Introduction

Condensed matter physics is rife with quantum phase transitions where the fundamental no-
tion of charge quantization (in units of the elementary charge e) seems challenged, for instance
in anyonic field theories [ 1] with the fractional quantum Hall effect as a famous example [2-4],
but also in Luttinger liquids [5-7]. In the language of quantum circuit theory, the charge-phase
quantization condition, [¢,N] = i, stipulates that if the charge 2eN ! is quantized (continu-
ous) then the phase ¢ is compact (noncompact) [8]. For instance, while a regular Josephson
junction (JJ) transports integer Cooper pairs (p-space is 27-periodic), junctions involving
Majorana- or parafermions, give rise to a 47 or even 87 fractional Josephson effect [9-11].
However, also seemingly innocuous circuit elements such as linear inductors appear to break
charge quantization (with in fact a continuous quasicharge) [12].

The question of whether or not charge should actually appear as quantized in circuit theory
received renewed widespread interest, with two seemingly contradictory propositions, which
have radical consequences on the predictions of the circuit dynamics. Inductively shunting a JJ
was predicted [12] to suppress any residual sensitivity on the offset charge noise [13], an idea
which is at the heart of the fluxonium qubit [14,15]. There remained a conundrum: charge
quantization seemed broken even in the limit of large inductance, when the transport is dom-
inated by the JJ [12]. Recently, a resolution was proposed by advocating continuous charge
and noncompact phase irrespective of the presence or absence of a linear inductance [16].
At the same time, there emerged an opposite school of thought in several different contexts,
where charge quantization is preserved. A recent theoretical work reevaluated the charge-
noise sensitivity of fluxonium qubits [17]. Moreover, the existence of dissipative quantum
phase transitions in JJs [ 18-22] was put into question [23] when assuming a capacitive cou-
pling to the electromagnetic environment (preserving charge quantization), instead of the
standard inductive coupling [24]. Finally, charge quantization is important for novel trans-
port topological phase transitions, where the topological invariants are defined on a compact
p-manifold [25-36].

To summarize, the existing literature appears ambiguous. We here aim to build a bridge
between the theories of quantized [17,23] versus continuous charge [12,16,37] by developing
and illustrating the following two statements (see also Fig. 1):

(i) Charge quantization depends fundamentally on the spatial resolution with which charge
is detected or interacted with; it is therefore a property of the measurement basis.

(ii) Current-current correlations provide unique signatures of the detector resolution, in the
form of a geometric response which resembles a Zak-Berry phase defined in ¢-space.

IThe prefactor 2e expresses that usually, the charge in quantum circuits is counted in units of Cooper pairs.
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Figure 1: Ilustration of the main points. (a) Two SQUID detectors measure the
currents to the left (I}) and the right (Iz) in a JJ array with a total phase bias ¢,
through incoming wave packets (red and blue). The signal of interest is the sum of
the current auto and cross-correlations, EY = Za Say (here, y = R). (b) The signal
Sy depends on the detector properties (c): the lateral position xg and distance to the
circuit dg, determining the detector fuzziness (represented as the grey bell curve).

—(0
It reaches an extremal value S;) when the detector measures the current at a sharp

. . .. . < <0
interface. Here, charge is measured in integer units of 2e. For any S, /Sg/ < 1, the
detector is fuzzy and fails to resolve integer charges.

Statement (i) implies that in order to determine the correct circuit theory, it has to be carefully
analyzed how exactly different parts of the circuit couple to each others charges. We will also
comment on potential caveats, respectively, extensions of (i) for topological superconductors.
Statement (ii) aims at finding stringent, unique experimental evidence to support (i). We
stress that (ii) is in so far highly unexpected, as current-current correlations are low cumu-
lants, which were up to now assumed to be insensitive to charge quantization, respectively to
the detector resolution (see discussions for the full-counting statistics of Luttinger liquids [7]
and sequential electron tunneling [38]). Furthermore, we expect (see outlook) that an appro-
priate generalization of above statements beyond quantum circuit theory could open up new
research directions investigating the importance of charge quantization in other highly rele-
vant domains, such as in Luttinger liquid theory itself, where charge quantization is discarded
in the course of the low-energy approximation [5].

We illustrate the above statements at the example of a JJ array. Apart from their impor-
tance as a superinductor element in the fluxonium [14, 15], such arrays are the ideal the-
oretical testbed. They have a rich existing theoretical literature, which is still actively being
expanded [39-42], with a precise circuit model where charges are quantized, and a low-energy
regime (formally resembling a Luttinger liquid [40, 42]), where charge appears continuous.
Moreover, there has been significant recent experimental progress on JJ arrays, such as mea-
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surements illuminating the role of disorder [43], massively increasing chain
length, ~ 10* [44], and alternative pathways for their fabrication, e.g., through granular
aluminum [45].

In the following, we first formulate statements (i) and (ii) independent of any model
specifics. We then illustrate them at the example of the JJ array. Finally, we comment on
important further-reaching consequences of our work, leading to various ideas for follow-up
work.

2 Quantized charges in circuit theory

2.1 Importance of detector resolution

Consider an electronic quantum system, described by a field theory with the electron field oper-
ator (M (x) 2, satisfying fermionic anti-commutation relations {\1/ (x), o’ (x’ )} =0 (x —x’ )
It can be easily shown that any local charge number operator N,, defined in an interval
a<x<b,

b
N, = J dx ¥ (x) ¥ (x) ¢y

must have integer eigenvalues. For this purpose, we construct a general basis of charge eigen-
states with n € N charges in the interval a < x < b,

b b b
|n,{k1’kz,---,kn}>=f dx1f dxz--‘J dxp, i, (x1) P, (x2) .. Py, (x5)
x UT (x) 0T (x,)... 9" (x,)]0), (2)

where |0) is the absolute vacuum state, ¥ (x)|0) = O for all x. Of course, the functions Vi,
have to fulfill all the necessary conditions (orthogonality, completeness ®), which we however
do not require explicitly for our proof. Applying the above state to N,, one can show that

Ne |n, {kl,kz,...,kn}> = nln, {kl,kz,. . .,kn}> , (3)

by simply using fermionic anti-commutation relations for the field ¥(7(x). Namely, the anni-
hilation operator ¥ stemming from N, can be anti-commuted through the chain of n creation
operators W' in |n) for n times, until it destroys the vacuum state ¥|0) = 0, giving rise to the
prefactor n in Eq. (3).

As stated in the introduction, there is an abundance of effective field theories in condensed
matter physics, where the above seems to no longer apply, due to low-energy approximations
of . We stress however, that for any electronic realization of an exotic phase of matter, there
must be an underlying microscopic theory in terms of bare electrons. Hence, as long as a
certain external system or a detector couples to the local electron charge eN,, it will interact
with or measure it in integer units, irrespective of any phase transitions. In this sense, any
noninteger (e.g., fractional) charge is an effective charge (see also a similar argument put forth
in Ref. [38]).

2For simplicity, but without loss of generality, we ignore spin, and consider only one spatial dimension. The
statement layed out in the main text can however easily be generalized to include spin and higher spatial dimen-
sions.

3Note that here, we focus on constructing a complete many-body basis within the interval from a to b. In order
to construct a complete many-body basis within the entire system, we need to extend the basis to include adding
n’ charges to the regions outside this interval. This can be accomplished by a tensor product |n,n’) = |n) ® |n’),
where |n’) can be constructed in analogy to |n) except with x < a or x > b. Since N, only acts on a < x < b, we
still find N,|n,n’) = n|n,n’).


https://scipost.org
https://scipost.org/SciPostPhys.10.4.093

Scil SciPost Phys. 10, 093 (2021)

Crucially, charge quantization as introduced above requires the assumption of a spatially
sharp measurement. To illustrate this, let us generalize N, to

N [S]= f dxS (x) W' (x) ¥ (x), €y

where S is a support function. The charge in Eq. (1) can be obtained from Eq. (4) by as-
suming sharp boundaries, S (x) = 0 (x —a) 6 (b — x), where 0 is the Heaviside theta function.
However, as soon as we allow for S to assume non-integer values, it follows that N, [S] is no
longer guaranteed to have integer eigenvalues. In our work, such a situation will be reached,
because of a fuzzy detector, which in general fails to resolve charges with absolute spatial
precision (see Fig. 1c).

In the here considered context of conventional superconducting quantum circuits, coherent
transport events come in units of Cooper pairs (with charge 2¢), where the Cooper pair number
N = N, /2 has a canonically conjugate phase ¢, such that [¢,N] =i. Consequently, N having
integer or continuous eigenvalues can be equivalently encoded in representing ¢ on a compact
(27-periodic) or non-compact manifold, respectively [8]. Therefore, the presence or absence
of charge quantization manifests on the level of the circuit Hamiltonian H (¢ ), in that it is either
2m-periodic, H (¢ + 2m) = H (), or not. Importantly, note that on this general level, the pair
of ¢ and N may refer either to the charge and phase in a (finite) region, or to the charge
and phase difference across an interface. In quantum circuit theory, these two definitions
are commonly referred to as node and branch variables, respectively [46]. The reason for
this flexibility is that charge quantization in a given region and quantization of the charge
transport into (or out of) this region via a given interface must obviously go hand in hand;
the 27-periodicity constraint on the Hamiltonian must therefore hold irrespective of the use
of branch or node variables.

The above leads us to our first observation, statement (i), which has been used in Refs.
[17, 23] for particular systems, but which has, to the best of our knowledge, not yet been
formulated in this general manner: since charge quantization is fundamentally a property of
the detector basis, we conjecture that there must always exist a unitary basis transformation,
whereby a Hamiltonian describing the transfer of noninteger charges across an interface, or
equivalently, noninteger charges inside a region, can be adequately “requantized”. Namely, if a
certain theory provides a Hamiltonian H (¢ + 27) # H (), there must exist a transformation
U(p), H(¢) =U(@)H(p)U' (), such that H (p +271) = H(¢). The transformation U(¢)
thus connects different choices for the detector basis. In the following, we refer to these choices
as gauge choices. Statement (i), as formulated above, will be explicitly illustrated for the JJ
array below.

Before proceeding, let us put the above statement into a broader perspective, in particular
when considering topological superconductors. Majorana-based Josephson junctions famously
give rise to a 4m-Josephson effect. Let us consider as an example the circuit proposed by Fu
and Kane [9], which essentially realizes a loop of a Kitaev chain by tunnel-coupling the ends,
enclosing a phase ¢ due to an external magnetic flux. This circuit is described by a Hamiltonian
of the form,

He(@) = 2Ey cos(%)(d&dM—%) , ©)
where E,; is the energy associated to the tunneling of Majorana fermions, and dg) is the
operator linking the even and odd parity ground state of the superconducting chain. As such,
Hpg is 4m-periodic, representing the fact that the coherent transport via Majorana fermions
carries charge e instead of the 2e Cooper pair charge of conventional JJs. Note that due to
deM having two eigenvalues 0,1 (representing the even and odd fermion parity ground
state of the circuit), the Hamiltonian has the eigenspectrum *E;; cos(¢/2). Therefore, due
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to cos[(y +2m)/2] = —cos(/2), it would be possible — at least from a purely mathematical
point of view — to find a transformation U(yp) to render Hgx 27-periodic. From a physical
point of view however, such a transformation would be problematic, as such a U(y) would
give rise to a basis with superpositions of even and odd fermion parity states, thus violating
the fermion-parity superselection rule. After all, the breaking of Cooper pairs with charge 2e
into Majorana-based transport with charge e can be considered physical; since Cooper pairs
are obviously composite particles, they can be physically split.

Importantly however, this splitting cannot go any further. The charge e/2 associated to the
8m-Josephson effect involving parafermions, as discussed in Refs. [10,11], must ultimately be
considered an effective charge, since the electron cannot be physically subdivided into smaller
portions, see our general field theoretic argument above. Hence, while it is possible to find
an 8m-periodic Hamiltonian describing a parafermion-based JJ [10], we should always find
a transformation U() to render the Hamiltonian at least 47-periodic, without running into
issues related to parity superselection.

At any rate, in the following, we will focus on conventional superconductors where trans-
port occurs with regular Cooper pairs, such that 27t-periodicity must be obtainable via a basis
transformation. For conventional superconductors, only transport processes involving Bogoli-
ubov quasiparticles can change the charge within a given region by e instead of 2e. Such
processes are however dissipative in nature [47-50], and therefore require an open system
description of the circuit dynamics. We disregard such process below, which is a good first ap-
proximation provided that they occur on slower time scales than the coherent circuit dynamics
due to H(p).

2.2 Geometric properties of current correlations

Statement (i) inescapably leads to the question of how charge quantization, respectively, how
the detector resolution can be measured in a direct and unique fashion. This is no easy feat.
Differences in the circuit dynamics (as listed in the introduction) may be of various origins,
such that it may be difficult to disentangle charge quantization from other external influences.
Apart from that, it has been discussed in different contexts, that there is a connection be-
tween charge quantization and the full-counting statistics of transport [7,38]. Specifically, for
quantum circuit theory, full-counting statistics can be formulated along the lines of Ref. [51].
Starting from the von Neumann equation for a given circuit Hamiltonian, p = —i[H(¢), p], a
counting field y 4 is included as a shift in  which is positive (negative) for the forward (back-
ward) propagation, — p(y) = —iH(¢ + y)p(x) +ip(¥)H(p — x). The moment generating
function m(y) can then be obtained via the trace over the density matrix p(y) °. Hence, the
moment generating function here inherits its periodicity in y from the periodicity of H in ¢.
However, there are two problems. First, we note that the most easily accessible statistical
quantities are low cumulants, which are obtained through a Taylor expansion of m in y around
x = 0. For instance, the average current and the current noise can be constructed through
first and second order derivatives in y, and thus only probe the local properties of m, and
not the global properties (i.e., the periodicity). Second, there is the even subtler issue that in
leading order, the moment generating function is dominated by the eigenvalues of H only [51],
whereas the properties of the eigenbasis, in particulay, its ¢-dependence, remain invisible (i.e.,
they give rise to small corrections). It is however the latter property that we are after, as it
contains the information about the detector resolution. On a more figurative level: if we only

“The counting field y is for obvious reasons related to ¢. Note though, that the two objects are nonetheless
distinct: one can think of y as the “classical” component of ¢, in the sense that it appears with opposite sign for
the forward and the backward propagation.

Note that this trace is only trivially 1 for y = 0. For finite y, the modified von Neumann equation is not
trace-preserving, which is a standard feature in full-counting statistics.
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consider the average number of charges transported into a certain region, it does not seem
to matter whether or not this charge was measured in discrete packages. With this in mind,
it is highly surprising that we are here able to show that there exist certain low-cumulant
observables, which are sensitive to charge quantization, and can in fact be related to the ¢-
dependence of the eigenbasis of H (thus directly probing the U(y) introduced above). As it
turns out, while the noise (that is, the current-current correlations) into a particular lead is in
leading order not sensitive to charge quantization, the sum of auto- and cross-correlations of
the supercurrent is. In fact, the leading parts of auto- and cross-correlations mutually cancel,
unveiling a purely geometric component.

For this purpose, consider a quantum circuit connected to a left and right contact, with a
given phase difference ¢. Two detectors, measuring a current to the left (I;) and the right
(Ig), thus define a finite size region hosting a total charge 2eN, via the continuity equation,
I, + Iy = 2eN. We stress that while the left and right contacts are well-defined, the same is
not guaranteed for the detectors measuring I g, since the detection may occur with a finite
spatial resolution (see, e.g., the SQUID detectors in Fig. 1). In accordance with (i), such
imperfections can be included as a gauge choice in the Hamiltonian, that is, a gauge where
Ix = ZeapH(R), and a gauge where I; = —2ed,H @) (the superscript in H® indicates the
corresponding gauge). Note that for convenience, we defined I}, in the opposite direction (see
arrows above current operators in Fig. 1a).

Let us now show, how the detector properties can be probed by the current auto- and
cross-correlations between the left and right contacts, I; and I. Integrated over a finite mea-
surement time T, the correlations are individually defined as

S"‘Y(T):%J dtf dt’%({éSIa(t),SIY(t’)}), 6)
0 0

with 61, =1, —(I,), and a,y are indices for the left and right detectors. Assuming that the
system is in the ground state prior to the measurement, we can show for a general quantum
circuit (see Appendix A), that the sum of auto- and cross correlations provides

T

S, (1)= D 84 (1) =— yIm[(0l, A8, |0), ], %)

where A=N (1— |0), (Oly) is a Hermitian operator, and |0), is the ground state of the Hamil-
tonian in the gauge H"). When the index y appears as a prefactor, it returns +1 for y = R,L,
respectively. The above is one of the main results of this work. It tells us that the sum of auto-
and cross-correlations §Y can be directly connected to a quantity which depends exclusively
on the spatial detector resolution, via N and J,, |0),.. This establishes statement (ii).

The result for EY in Eq. (7) can be regarded as a transport version of a geometric phase
(with the additional A), defined in ¢-space instead of the usual k-space. In fact, the construc-
tion of §Y itself was inspired by the measurement of the mean chiral displacement, which has
recently been discussed to measure the Zak-Berry phase in SSH chains [52-54]. Being of ge-
ometric nature, it should not surprise that the right-hand side of Eq. (7) is gauge-dependent.
This is by no means unphysical. In the case of the SSH model, the Zak-Berry phase depends
on the choice of the unit cell [55], a gauge choice which is fixed, once a specific chirality mea-
surement is defined [52-54]. In analogy, here the gauge choice relates to the actual spatial
detector resolution and thus to charge quantization, and can likewise be regarded as a choice
of a “unit cell” in the space of the transported charges.

Furthermore, we note that for a stationary system, the sum of two currents into different
contacts should result in a zero expectation value. In our case this is true for large measure-
ment times T — oo (dc limit). For finite times T, there remains a finite contribution: while
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the system is in its ground state prior to the first measurement (at time t = 0), right after the
measurement, it will be projected to a nonstationary state, which takes a finite time to decay.
Therefore, the finite displacement current, leading to a nonzero EY, is purely induced by the
projective measurement. Of course, current measurements are most commonly conducted in
the pure dc regime, whereas we here propose a more demanding measurement for finite 7.
We emphasize however (see also Appendix A) that Eq. (7) is valid in the long 7 limit, i.e., it
corresponds to the asymptotic solution for measurement times longer than the time scale of
the internal system dynamics given by H(y).

3 The Josephson junction array

3.1 Array model and detector fuzziness

Let us illustrate the above findings at the example of a JJ array. The M + 1 junctions in se-
ries form M superconducting islands (see Fig. 1a). Such a circuit is described in terms of
lumped elements, with a single charge and phase operator for each island m, N,, and ¢,,
(m=1,...,M), satisfying [ ¢,,, Ny ] = 18 ,,y- The Hamiltonian is given as (see also [42] and
references therein),

(20)2 &L, M M+1
H(p)= 5 Z Z N, (C—l)mm,Nm,—ZEJcos(apm—cpm_l). €)
m=1m'=1 m=1

The capacitance matrix [Cl,,,y = (2C + Cg)5m,m, — COpmm+1 — €Oy py—1 gives rise to the
charging energies for the coupling of the islands to a common gate, E, = (2¢)?/ C,, and the

nearest neighbour interaction, E. = (2¢)?/cC.

The ends are connected to two large superconducting contacts, m = 0, M + 1, such that
both ¢, and ¢, are classically well-defined. We apply a total phase difference ¢ across the
array (e.g., by closing the contacts to a loop threaded by an external field) which provides
a constraint on the phases. Importantly, there remains a choice as to how this constraint is
satisfied. These different choices correspond to gauge choices, which are related through a
unitary U (), and can be used to represent the detector properties, as outlined in (i).

We here consider a general detector, coupling to the current I,,, = 2ed,, H (at junction m)

with a certain coupling prefactor 0, I,, = Z]n\f;rll NmIn (Where we impose ng:ll nm = 1 for

normalization). Note that in general, we would have to compute explicitly two sets of n,,,, one
for the left detector, I}, and one for the right detector Iy. Below, we will however consider
a setup where only one of the two detector properties is relevant. At any rate, the detector
is in general fuzzy, as it fails to measure a current at a sharply defined device position. The
coupling prefactors can be imbedded into the potential energy

M+1
detector gauge
- _ZEJ cos (P = Pm—1+NMm¥), )
m=1

where here, ¢y = @41 = 0. The validity of Eq. (9) can be easily verified, by differentiating
the above potential energy with respect to ¢, thus yielding I,,. Crucially, this Hamiltonian is
only 27-periodic in ¢, when the measurement is spatially sharp (n,,, = 1 for one m,, and 0
elsewhere).
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The coefficients 7,, have to be computed based on the detector details and the device
geometry. For concreteness, inspired by Ref. [56] we here consider a SQUID detector °. In
Appendix B, we outline a possible single-shot read-out of the currents (via short incoming
wave packets, see Fig. 1a) in analogy to standard qubit read-out schemes [57].

As for the JJ array geometry, since we are only interested in a general demonstration of
the principle, we use for simplicity a true 1D geometry for the array instead of more com-
plex realistic geometries [43,44]. The computation of the 7, is then accomplished in two
steps. First, it requires the Biot-Savart law to compute the magnetic flux piercing the SQUID,
dg ~ dg f dxI(x)/ [(x — x5)2 + d52]3/2 where xg is the position of the SQUID with respect to
the 1D array, and dg is the distance (see Fig. 1c¢ where the grey area illustrates the Biot-Savart
law).

Second, we note that the local current I (x) is not as such represented in terms of the is-
land degrees of freedom, ¢,, and N,,. Based on the lumped element model of the Hamiltonian
given in Eq. (8), only the currents at the individual JJs (I,,) can be constructed, whereas the
Biot-Savart law requires knowledge also of the currents at positions in between two junctions.
This issue can be resolved by starting from a more refined model, taking into account the
internal degrees of freedom of the islands, and performing a low-frequency approximation,
assuming that the detectors cannot resolve correlations on time scales comparable to the in-
ternal dynamics (see Appendix C). Based on this, we find that if the position x is in between
junctions m and m + 1, positioned at x,,, and x,,,; (see Fig. 1c), the local current is given as
I(x)~ (1—06,)I,+ 6plne with 6, = (x —xp,) / (Xe1 — Xm).- When the position of x is
at a contact instead of an island, x > xj;,; (or x < x;) the current is simply I (x) ~ Ip;4
(~ I,), since the contacts are large. Plugging the relationship between I (x) and I,, into the
Biot-Savart law, we find &g ~ >, 1,,I,, and thus access the coefficients 7, (done numerically
for the plot in Fig. 1b).

Note that there is a subtlety regarding the detector fuzziness. In principle, for dg small
with respect to the island length scale Ax (the distance between two junctions), the detector
should be considered sharp on all relevant length scales (since Ax is the smallest length scale
of the device). However, within the above low-frequency approximation, we see that this does
not guarantee a sharp measurement of the currents at the junction. Namely, when the detector
is placed at dg € Ax and in between two junctions m and m + 1, we find n,, ~ 1 — 9, and
Nm+1 ~ 0, and all other n’s equal to zero. We thus encounter two distinct notions of detector
fuzziness. Either the detector is further away from the system than the relevant length scale
dg > Ax, such that it cannot resolve individual islands. Or the detector is close, dg < Ax, but
situated in between two junctions, x,,, < xg < X,,41, such that it fails to resolve the currents
of neighbouring junctions I,, and I,,,,,. Both effects are measurable, as we detail below.

3.2 Signatures of charge quantization in the superinductor regime

To proceed, we consider the system in the regime E- < E;. Here, the phases ¢,, ~ (p,(,{ ) +6¢m
are well localized around the local minima of the potential (Josephson) energy, Lpg,{ ), which
are separated by energy barriers. For the general gauge in Eq. (9), we find (see Appendix D.1)

m
g):( m an)(p+ ik 2nf mod 27 . (10)

M+1 M+1

m’=1

®The experimental setup in [56] is much more involved than our considerations here, primarily in order to
minimize detector backaction. Here, for illustration purposes, we neglect such details. Note furthermore, that we
expect that we may in fact not need the same amount of backaction protection as in [56]: as detailed in (ii), the
detector-induced projection of the quantum state is actually a wanted side-effect.
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Up to the gauge choice, expressed through the prefactors 1,,,, this result coincides with Ref. [15].
The integers f represent the distinct local minima positions. Neglecting plasmon excitations ”

3
we can associate a localized ground state wavefunction to each f, which depends in general

on ¢ through the position cpf,{ ) around which it is centered, [f) - Approximating H in this

regime, one receives the low-frequency Hamiltonian (see Appendix D.2)

1 E
Hyoy (@) ~ EMil

D +2mf )y (Flo +Es O (If + 1)y (Fly +1£), (F +11,). QD)
f f

Equation (11) is the standard Hamiltonian for a phase slip junction (see, e.g., [58] and ref-
erences therein), including the energy scale related to quantum phase slips, Eg, describing a
hopping between different minima f. The actual magnitude of Es is irrelevant for our consid-
erations. For estimates in various regimes we refer to the literature [41,42,59].

Importantly, in Eq. (11) we put emphasis on a feature which is often disregarded: the
aforementioned ¢-dependence of the basis |f). Without it, a discussion about whether the
charge transported across the array is quantized or not, is actually meaningless. Note in par-
ticular, when Eg = 0, the array acts as a perfect superinductor, which seems to break charge
quantization (along the lines of Refs. [12,16]). However, thanks to the ¢-dependence, it is
possible to render H,,, 27m-periodic even in this regime. The progression of ¢ by 27 comes
with an increase f — f + 1 for the energies (¢ +27f)?. If we choose a gauge represent-
ing a spatially sharp current measurement of one particular junction current mg (9, = 1
and N, = 0), the basis |f) is likewise guaranteed to fulfill [f), 5, = |f +1),, such that
Hyow (¢ +21) = Hyyy (¢). For any fuzzy measurement, H is no longer 2n-periodic. In par-
ticular, there is the opposite extreme to a sharp measurement, where the detector couples to
all junction currents equally, ,, ~ 1/(M + 1). Here, |f) does no longer depend on ¢ at all,
d,|f) = 0. We refer to this as a “maximally fuzzy” detector, which fails to spatially resolve
charges along the entire array.

With this realization, we can thus understand the continuous "quasicharge" first coined
in Ref. [12] for linear inductors under a different light. Namely, for Eg = 0, the eigenspec-
trum forms parabolas ~ (¢ + 27f)? in -space, shifted by 27 intervals. The crossings of
individual parabolas are protected, and can only be gapped for finite E;. We thus under-
stand that the continuous quasicharge corresponds to the lack of periodicity of the individual
eigenvalues (parabolas), whereas charge quantization is independently defined through the
eigenbasis. Thus, the JJ array in the superinductor limit gives rise to a quantum version of a
feature which was recently discussed for sequential electron tunneling [38]: namely that there
is a distinction between "effective" charges, defined by means of topological transitions in the
eigenspectrum & which may well be noninteger, whereas the actual charge quantization is pre-
served independent of the topology of the eigenspectrum, provided that the charge detection
is spatially sharp.

Finally, we show that the information of the ¢-dependence of |f) is accessible through a
current-current correlation measurement, according to (ii). Let us position the left current
detector sufficiently deep inside the left contact, such that it couples only to I,,,_;. Thus we
will see only the properties of the right detector, which can be accessed by Sg. For M > 1, we

find (see Appendix E)
M+1

— —(0
Se(T)~ Sy > 2, (12)
m=1
where Eg)) = —(2e)? <an1 >0 /7 and the local charge fluctuations are <N31>0 =+ E;/Ec. Thus,

7This is justified because we consider the system close to the ground state.
®Note that when Ej is exponentially suppressed [41,59], the absence of a gapping of the eigenspectrum can
indeed be rightfully considered as topologically protected.

10
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Sk (7) depends only on a single system constant (via (Ni )0) and otherwise solely on the spatial

. . <(0) .
resolution of the right current detector. Dueto 0 <7, < land >, 7, =1, S; ) is the extremal

value of S.
Interpreting 7),, as the probability to measure the current at junction m, the sum Zni
can be related to the Rényi entropy H, [60], via )., n? = e "2, characterizing the detector

fuzzyness. In Fig. 1b, we show Sy as a function of the detector position. In particular, we
see that when the resolution is maximal, i.e., the detector can resolve the current locally of

a single junction my (1, = 1 and Npy, = 0) Hy — 0, such that Sy assumes the extremal

value E;O). Any finite fuzziness of the detector will result in a finite entropy, and thus will

reduce Sy /§;0 ). This is generally the case for dg > Ax, where Sy /§;0 ) decreases as the SQUID
approaches the array, and couples to an increasing number of junction currents (black curve
in Fig. 1b). Let us also note the special case for the maximally fuzzy detector, where J,|f) =0
leads to Sy = 0. Note however, that the sensitivity is also quite significant for a spatially sharp
detector, dg < Ax, due to the above discussed lumped element effect. Placing the detector in
the middle of two junctions, m, and m, + 1, we find that n, = 7, +1 = 1/2 and all other
N = 0. Thus, Sy returns only half the extremal value due to the detector being unable to
distinguish between two neighbouring junctions, (red curve in Fig. 1b). Overall, we see that
the sum of auto- and cross-correlations provides in a very transparent and characteristic way
information about the detector properties.

4 Conclusion and outlook

We have outlined an intimate relationship between charge quantization and the detector prop-
erties via a gauge choice. Furthermore, we have shown that current-current correlations un-
ravel a unique geometric signature which distinguishes between quantized and non-quantized
charge measurements. We expect that the above presented results will help in the formulation
of quantum circuit theories which appropriately account for charge quantization.

Let us comment on further-reaching repercussions of this work. As indicated in Ref. [23],
enforcing charge quantization may render a critical reexamination of circuit theories describ-
ing quantum phase slip junctions [37, 58] necessary. The above discussion may provide a first
stepping stone to that end. Namely, we expect that the y-dependence in |f) leads to an in-
sightful caveat in the well-known exact duality between the Josephson effect and quantum
phase slips [58], [both described by the Hamiltonian in Eq. (11), when performing the maps
Eg <> Ej, E;/(M +1) <> E¢, and ¢ <> N,, where N, is the offset charge in the JJ]. As elabo-
rated in our work, when measuring charge sharply, the phase-slip Hamiltonian itself should be
2m-periodic in ¢. On the other hand, in a single JJ, at least when likewise measuring integer
charges, the junction Hamiltonian is actually not periodic in N, (the eigenenergies are, but
not the eigenbasis). Therefore, we expect that the duality should not only include the system
parameters, but will have to be extended to a duality of the quantities being measured. The
details of this idea shall be developed in subsequent works.

Finally, while it is known that the approximated charge operator in Luttinger liquids does
not carry integer charges [5-7], there does to the best of our knowledge not exist a feasi-
ble “requantization” procedure beyond ad hoc methods [7]. Importantly, we believe that the
formal analogy between Luttinger liquids and the low-energy description of JJ arrays [40,42]
could be exploited to extend the above derived principles from quantum circuit theory to corre-
lated 1D physics. In particular, the highly unexpected fact that low-cumulants of the transport
statistics are directly sensitive to charge quantization could be instrumental. Namely it would
give an easy theoretical access to predictions of new, "requantized" versions of Luttinger lig-

11
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uid theory, which could likewise be experimentally falsified by means of standard transport
measurements.
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A Derivation of current correlation sum

Starting from the definition of the current correlations, Eq. (6) in the main text, we here show
how to arrive at Eq. (7). When taking the sum over the contacts a, and having the ground state
as the initial state, we may first of all neglect the current expectation values in the definition
51, =1,—(I,), because ). (I,) = 0 in the stationary state, such that,

ZSaY(T)Z%JO dtL dt’Re<ZIa(t)IY(t’)> , (13)
a a 0

where we in addition used the fact that the expectation value of the anticommutator ({A, B})
can be written as the real part, 2Re (AB). We then express fOT dt ., 1, (t) =2eN (t)—2eN (0),
based on the continuity equation in the main text. As a next step, we use the gauge of the
Hamiltonian H" (), where I y =Y2e0,H () (as in the main text, when y appears as a factor in-
stead of an index, it takes on the values y = %1 for y = R,L). Accordingly, we cast all operators
and the initial state into the basis belonging to this gauge, H") (¢)|n (©))y = €a(@)In(ep)),
(where from now on we neglect the explicit ¢-argument for simplicity) to find

2e © e _
ZSW(T):Y?JO dtRe | D elo=e==0 (0| N|n), (nl, I, [0),
a n#0

2e (° ilen—
| dme > et (0] N |n), (nl, 1,10}, | , 14
n#0

where the sum over n is taken without the ground state, because the n = 0 contributions of
the first and second lines cancel. Using

I, = 262 (a(pen In), (nl, +€,0, In), (nl, +e,n), 3, (nIY) (15)

n

12
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we see that due to the n # 0 sum in Eq. (14), the J,€, part in the current operator does not
contribute, since it is diagonal. We are left with

(2¢)? (© (e —e V(7—
Zsay (T) = YT dtRe Z (60 _en)el(eo €n)(7=1) (OlyN |n>y (nly a(p |0>y

0 n#0
(2e)? © e
T . dtRe Z(eo—en)e i(eo—en)t (0], N |n), (nl, 2, 10), | . (16)
n#0

Carrying out the time integral, we eventually arrive at

2e)? :
D 84y (1) = —2y%lm > [1—elCome= (o], N |n), (nl, 3,10}, | - (17)
a n#0

We discard the fast oscillatory contribution ~ e!(€0=¢2)7 which is justified for measurement
times T > Ae™!, where Ae is a measure for the level spacing |e, — €,/|. Finally, we use the
completeness of the basis, Zn;&O In), (nl, =1—10), (0l,, to arrive at Eq. (7).

B Single-shot projective current measurement

Here, we outline a possible single-shot projective measurement of the current in the JJ array,
inspired by standard single-shot readout techniques deployed in superconducting circuits [57].
Overall, the JJ array plus a single SQUID detector, measuring current I, can be described
by a composite system H — H + Hgoyip (I). The SQUID including its contact lines may be
modelled as a transmission line, (we stick to a discrete version of the transmission line),

1 1 1 ¢j+1—<ﬁj)2
H I)=— > N?>+= ( ,
oo @)= 55 573 i (7

(18)

with [(p j,Nj/] =16;;. Importantly, the inductance of the transmission line is L; = L, for all j,
except at the SQUID position j = j,, where

Lj_ol (I,) = 8¢*E; soum [cos ( qngt) — Asin(%) Ia} , (19

with the SQUID Josephson energy E; soump, Pext = 2T Pex:/Po, Where @, is an external, tun-
able flux piercing the SQUID, and the second term is due to the magnetic flux created by the
current I, measured by the SQUID. The factor A is a coupling constant with the units of inverse
current. The current coupled to the SQUID is computed along the lines given in the main text.

Suppose a signal in form of a local wave packet is created from one side, and is incoming
towards the SQUID (see the wave packets in red and blue in Fig. 1a for an illustration). For
simplicity, we imagine that the signal has large amplitudes (such that it can be considered
classical) and it should have a short spatial support. Once the signal hits the SQUID, given
proportions of the signal will be transmitted and reflected, respectively. The transmitted and
reflected portions depend on the value for the current I,, such that the transmitted and re-
flected amplitudes of the outgoing wave packets (after the scattering at the SQUID) will be
entangled with the eigenbasis of I, thus realizing a projective measurement.

For a successful projective read-out, we provide two figures of merit which we deem cen-
tral. The first one concerns the influence of the detector when it is idle (that is, in the absence

13
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of a wave packet). Here, equilibrium fluctuations of the SQUID degrees of freedom, ¢;, will
couple to the system via the interaction term ~ Acp?OI a (With Ap; = ;1 —;), as it appears
in Egs. (18) and (19). Such fluctuations will lead to stochastic transitions in the JJ array sys-
tem, between the eigenstates |n) and |m) of H, with the corresponding eigenenergies €, and
€n- These rates can be computed by standard Fermi’s Golden rule

(P 2
Fm—m = I:A'EJ,SQUID sin (?Xt |<m| Ia |n)|ZSA<p2 (en - em)) (20)

with the SQUID noise spectrum Sp 2 (w) = f dtel®t <Acpj20 (0) Acp}go (t)>eq, taken with respect
to the equilibrium state of the transmission lines. The overlap terms scale as |(m| I, [n)| ~ 2¢E;.
As long as these rates are slower than the internal JJ array dynamics I' < Ae (A€ ~ |€,, — €,]
is the characteristic energy scale describing the dynamics of H), the description of the JJ array
by means of the closed system dynamics H remains valid, even in the presence of the idle
SQUID.

Second, in order for the detection process to yield a clean projection onto an eigenstate of
I,, the wave packet should be sufficiently short in length, [,,.., such that the resulting pulse is
short-lived with respect to the closed system dynamics of H. This is satisfied for v, /[ ,yaye > Ae€.
The constant v, ~ Al/+/LyC is the velocity with which the wave packets propagate (where
Al is the length scale of the discrete transmission line model, and ~ 1/4/LCj is the plasmon
frequency of the transmission line).

C Lumped-element current operators

As pointed out in the main text, we are confronted with the problem that the SQUID physically
measures a local current I (x) within the JJ array; however, those local degrees of freedom are
not represented in the lumped element approach describing the array. In particular, for the
lumped elements circuit, there appear only the currents at the Josephson junctions, I,,. We
show here, how to perform a low-frequency approximation of I (x) in a more refined model,
in order to relate it to the operators I,,,.

EJm; Im EJ'm+17 Im+1
X Xl
0 Om 0
Iml Im2 ImS—l
Ly Ly Ly
0 Pm1 ©m2 Pm3 PmS 0

Figure 2: Refining lumped element approach. The island degree of freedom ¢,, is
split into S subparts ¢,,; with s = 1...S, which are separated by inductances L,
forming a transmission line. The lumped-element limit is valid when the internal
dynamics are very fast, Ly — 0.

We do this at the example of a single superconducting island, m. In order to simplify the
problem, we set the neighbouring phases to zero, ¢,,_; ~ 0 and ¢,,,; ~ 0, see Fig. 2. This
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simplification is justified with the foresight, that eventually, for M > 1, the phase difference
across each individual JJ is small (allowing us to extend the argument from M = 1 to large
M). In order to clearly distinguish the junction currents I, and I, ;, we will in this appendix
assume different JJ energies, E;,,, and E;,, .1 for both junctions. Furthermore, we set the phase
difference across the contacts to zero. Assuming a true 1D system (see main text), we then add
the internal island degrees of freedom, by treating it like a transmission line, that is, taking the
island charge and phase, N,,, and ,,,, and partitioning it into S sub islands, such that there are
the new degrees of freedom N,,; and ¢ s, [P ms> Ninsr ] = 104, with s = 1...S, as depicted in
Fig. 2. These sub islands are connected through S—1 inductances L. For the sake of simplicity,
we here stick to a discrete representation of the internal degrees of freedom. The current at
inductance s (for the currentss = 1,...,S—1)is [, = TST @ With (Ts)s, = (55“,5/ — 55’5,) /(2eLy)
and (@,,)y = ¢ Approximating the JJs at the end E; cos(cpml’ms) A %EJ‘Prznl,ms + const.,
we get the Hamiltonian

S
(2¢)> _ 1y Prns’
Hp = ZZNms[cml]ss,Nms,+522—”:[13,,1]55, o (21)
ss’

s=1 ss’

where the matrices are (as in the main text) denoted with bold font. The matrix for the
potential energy reads

1
[Fm]ss’ = L_O [(2 - 531 - 555) 533’ - 555’—1 - 5ss’+1]

1 1
+ L_5sl 555’ + L 555 555’: (22)

m m+1

having defined the junction inductances as L;l = (2¢)?E,,,. The capacitance matrix for the
internal degrees of freedom is denoted by C,,. We here consider the lumped element limit
Ly — 0, where one finds that the individual phases of the sub islands all approach a single
island value ¢, ~ ¢,,, and consequently, N,,,, ~ N,,,/S (the normalization factor 1/S appears
such that the sum of the sub island charges returns the total island charge >, N, = N,;). In
fact, since we consider the limit L, — 0, we do not need the specific form of C,,, because
the physics is dominated by the structure of F,, (due to its divergend parts). All we require
is that the sum ), , [C,, ] = 2C + C,, such that it is consistent with the capacitances of the
lumped-element model in the main text.

As a matter of fact, when approaching the limit L, — 0, all but the lowest mode (i.e.,
the zero mode) disappear. Hence, we have to compute this leading mode, which is computed
by getting the eigenvector with the lowest eigenvalue of the matrix F,,, F,, Vo = foV,. For

Ly m+1 > Lo, we find the eigenvalue f, ~ (Li + LLH) /S and the corresponding eigenvector
(including corrections first order in Lo/ Ly, 1)

=y Lo elo 1 (Lo Lo _afS_ 2]
(VO)SN«/§+6[‘/§Lm+2\/§(Lm+Lm+1)H1 3(5 1)
TR PN
+6[«/§Lm+1 2\/§(Lm+Lm+1)H1 3(8) . (23)

The current at position s, can then be cast into a low-frequency description, by projecting it
into the lowest mode only, such that we find

N low-frequency -,
_ 7T Ts =T 2
Is - IS Pm ~ IS VOV() Pm > (24)

which, for S > 1, results in

(25)

S S
( S ) 1 25:1 Pms ( S ) 1 2521 Pms
Is A -+

1——
S/ 2eL,, S
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which can be expressed in terms of the currents I, ;,,; across junction m,m+1 in the lumped-
element limit

1 1
I,=— and I,y 1 = ———@m» 26
m ZeLm Pm m+1 2€Lm+1 Pm (26)
(note that the minus sign in I,, comes from ¢,,_; — ¢,, & —p,,) by realizing that for Ly — O,

S
Zﬁﬂ ~ ¢, Going to the continuum limit, we receive

1(x)~(1— X Xm )Im+ X" xm g 27)

Xm+1 — Xm Xm+1 — Xm
if the measurement position x is in between the left and right junctions, m, m+1, placed at x,,
and x,,,1. This result can be generalized to an array of many junctions, M > 1, by realizing
that the Cooper pair transport inside the transmission line, via L, is local. Hence, a similar
calculation including more than one island will result in the same linear relationship for each
island m. This demonstrates the statement in the main text.

As an addendum, let us note that one can use the above result also to discuss the case when
the current measurement occurs at a position x inside the large contacts, that is, x > x;;,; or
x < x;. Note that the JJ array in the main text is closed by a large loop, connecting junctions
m =1 and m = M + 1, with a size much larger than Ax. Hence, we may likewise close the
manifold x to a loop, and discuss the area between junctions x,,,; and x; in the same fashion
as above. For concreteness, let us argue for the case x > x;,,;. Here, as long as x is close to
Xpr+1 compared to the total large loop length, we find I (x) ~ I;;,1.

D Local minima and low-frequency Hamiltonian

D.1 Local minima

The values cp,(,{ ) are the ones that minimize the potential energy in Eq. (9) in the main text.

For illustration, the potential energy landscape is also depicted in Fig. 3. At the local minima,
the derivatives J,, of the potential energy have to vanish, hence we find the conditions

sin(9U), = ) + N p) —sin (0 — 0L, + 0,00 =0, (28)
form=1,..., M. For small arguments inside the sine functions, we may simplify
00 =208 + 0D N — (N1 — 1) @ (29)

For the boundary conditions ¢y = ¢;;.1 = 0, the solution of Eq. (29) is

m
(= 1 _ , 30
m (M+1 man)cp, (30)

/=1

as can be seen when plugging Eq. (30) into Eq. (29). The first linear term ~ m/(M + 1)

ensures that np](\ﬁl = Yu+1 = 0, as the boundary condition demands, since, as per definition
M+1

in the main text, >, " 1, = 1. While Eq. (30) solves for the approximated condition in
Eq. (29), we also have to satisfy the exact conditions in Eq. (28). For this purpose, we need to
take into account that there are many solutions, including ¢;;,1 = 27 f, (which is equivalent
to @41 = 0, due to the periodicity of the potential energy). These extra solutions are taken

into account by
m
=2 _ o+ -2 31
m (M-i—l m/z::lﬂm)ﬁp M+1 nf. (31
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Finally, we have to take into account that the potential energy in Eq. (9) is 27t-periodic in each
Pm, such that the result from Eq. (31) has to be taken up to modulo 27, resulting in Eq. (10)
in the main text. The minima are also shown in Fig. 3a, as red dots.

E/E,

r 3

~M+3}

—M+2}
o 1 By o,
T T oM+l

~o -
~< -
~ -

a > 0
(&) —6m —47 —27 0 2 47 6 v
E/E,

r'

—M+3
—M +2
Eg
—MyN-1
T |f+1)
b) N N r " |f> N . > J
( “6n —4n 27 0 o 4r 67 4

Figure 3: Sketch of the potential energy landscape, i.e., the Josephson energy
as defined in Eq. (9), as a function of 6y, where ¢, = cpg) + g0 for
m =1,...,M, and g 41 = 0. The deviation 6y is chosen such that for 6¢ be-
ing multiple integers of 27, we pass through other minima, that is, for instance
cpg) + 3570 +2m) = (pf,{ﬂ) + 3570 ¢. In the plot here, we chose for simplic-
ity ¢ = 0, and M = 105. In (a) the local minima are denoted as red dots. The
energies at the local minima are given by a parabola with respect to 6¢ (dashed
black line), with the focal length [2E;/(M + 1)]~. In (b) the local wave functions
|f), centered around the local minima are depicted. Quantum phase slips, occurring

with energy scale Eg, are tunneling events between different local wave functions.

D.2 Low-frequency Hamiltonian

Based on the local minima computed in the section above, one may derive the low-frequency
Hamiltonian given in Eq. (11) in the main text, describing the ground state of the JJ array. For
this purpose, one expands the full Hamiltonian H given in Eq. (8) locally around the minima,
in leading orders of the small deviations 6 ¢, from the minimal values, ¢, = cp,(,{ )+ 5 Pm-
Such a procedure is a good approximation for E; > E., when the minima are separated by
high energy barriers. This approximation will be explicitly performed below, in Appendix E,
up to quadratic order in 6 ¢,,.

Here, at this stage, the details of this approximation is irrelevant. All that matters is that

there is a local Hamiltonian H; which asymptotically describes the full H close to the local

minimum cp,(,{ ), for which however the local potential energy minimum becomes a global one

(in essence, a standard tight-binding approach). Thus, within the energy troughs around
the minima, we find wave functions (eigenfunctions of H f) which describe local ground and
excited states. For the purpose of this work, we are only concerned with the local ground
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states, which we denote as |f) (as in the main text) localized around the minima go(f ) as also
schematically depicted in Fig. 3b. Neglecting the excited states (the plasmon excitations, see
also Appendix E below), we may use the basis spanned by the localized wave functions |f) to
find a low-frequency approximation of the Hamiltonian. The only additional information we
need is the energies at the local minima, which depend quadratically on the minima positions,
as depicted in the dashed line in Fig. 3a. Consequently, we find,

Higy Z(w+2ﬂf)2 If)y (1, + const. (32)

2M+1

As pointed out in the main text, the basis |f) depends on ¢ due to the p-dependence of
the minima positions (p(f )(go). In addition, while the different minima are separated by high
barriers (in the limit E; > E_), there may still be a quantum tunneling between neighbouring
minima, |f) < |f £ 1), the so-called quantum phase slips, as indicated in the main text.
Associating energy Eg to these tunneling processes, we arrive at Eq. (11) in the main text.

E Relationship between §Y and detector resolution

E.1 Charge correlations

The computation of §Y requires the calculation of the charge correlations (N,,N,,), for the

ground state, see Sec. E.2 below. We here compute (N,,N,,/), based on a harmonic approxi-
(f )

mation of the JJ array Hamiltonian in Eq. (8), valid for E; > E.. That s, for ¢,, = +op,
for a given f, we expand H up to quadratic order in 6 p,,,
(2¢)? 1. &L X
H ~ N,(cY) N.+-E 5§¢,. (F), .6, +const., (33)
f mZ;m/Z )mm m 2 Jn;m/zz:l Pm mm’ © Pm

where the matrix (F),,,y = 26, m — Omm+1 — Omm—1 has the exact same shape as the ca-
pacitance matrix for C,=0. In fact, we find that C = CF + C,1, which means that both
C and F commute and thus have the same eigenvectors. The eigenvectors Fv, = f;v; are
standing waves (plasmon excitations) v, = 4/ 2/ (M + 1)sin(km), and have the eigenvalues
fi =2—2cos (k) where k =nl/ (M +1),1l=1,2,3,..., is discrete due to the finite size of the
system. By means of these eigenvalues and vectors, we may express the charge operator in
terms of the k-modes as

Now = D TN =
k k

where N, can be expressed in terms of the boson operators [bk, b,i,] = Oxis»

N = ﬁ[(chk )fk] (br—1]). (35)

Focussing on the system being in the ground state by |0) = O for all k, the charge correlations
for the individual islands can be expressed as

(NpuNp)o = —— Zsm(km) sin (km’ )\J ( )fk (36)

18
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For C, < C, we find

E;, 2 . l . l l
(NN ) o & ﬁM+1 Zl:s1n(nM+1m)sm(nM+1m’)[1—cos(nM+1):| , 37

which, after evaluation of the sum over [, results in

1 1
(NmNm’>0 ~ <Nri>0 |:5mm’ - Egmm’+1 - §5mm’—1i| 5 (38)

with <Nrfl>0 = +/E;/E;. We observe that the charge correlations extend only over nearest
neighbours m=m’+1, dueto C ¢ < C. For larger Cg, the correlations would fall off only over
longer distances.

E.2 S, for JJ array

Here, we derive Eq. (12) based on Egs. (7) and (38). As detailed in the main text, we assume
that the left detector is located sufficiently deep inside the left contact, such that I} ~ —I,,—;,
whereas the right current may be measured in general as Iy = Zm Nmlyn- Consequently, the
charge N enclosed by the two interfaces, satisfying I; + Iy = 2eN, can be written as

N=>" (1 — i nm,)Nm. (39)

m’'=1

Next, we need to compute the @-derivative for the ground state. Focussing on E; > E., we
may consider the ground state of the Hamiltonian given in Eq. (11). In the case of Eg = 0
(absence of quantum phase slips), the ground state is simply |0), = |f )(p for the value of f with
the lowest energy E; (¢ + 27f)*/ (M + 1). For finite Eg, it will be a superposition of different
f,10), = > 7 By (¢)1f),- Therefore, the derivative will in general provide two contributions

8,10}, = D> 8,8 (91 )y + > Br (9D 8, 1f), - (40)
f f

The subsequent calculation is now simplified considerably, due to the overlap between wave
functions with different f being exponentially suppressed, and due to (f|N |f) ~ 0 as well as
(f16,1f) ~ 0 (in the harmonic approximation, valid for E; > E;). As a consequence, both
(0] 8, 10) ~ 0 and (0| N |0) ~ 0, such that we can simplify Eq. (7) to

(2¢)?

T

S, (1)~ 2i=——7 (0, N3, 0),. (41)

Furthermore, for the same reason, the contributions due to J, 3y cancel, resulting in

(2¢)?
= Y

S, (1)~ 2 > 1B @] (f1, N3, 1), - (42)
f

Note now, that (f l, N, |f )(p is the same for all f, such that, due to normalization of the wave

function, )’ £ |/3’ f (c,o)l2 =1, we eventually find

(2¢)?

T

E}/ (t)~2i Y (flyNacp |f><p > (43)
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computed for an arbitrary f. We proceed as follows,

a(plf) Z(M+1—Zﬂm/)a |f> Z(Mnj_l_/z::lnm’)NmU): (44)

m’=1

where for the second identity we used the representation of Ny, in ¢,-space, i.e., N,, = —id, .
The above two result can be plugged into Eq. (43). As a result, we obtain for y =R

5. _ (2e) Z Z (1_ Z nmu) (M"il _ Z::lnm,,) (NN ) (45)

m=1m’'=1

Here, we may insert Eq (38). After some algebra, we find

§R=—@(N§)O i(nm—MlJrl) (M+1_Z”m) +(M+1—m) . (46)

m=1

Next, we use Zm, 1 My = 1 to simplify the above expression into the form

§R=—(2§)2 (N2)q [g(nm—Mil)z—(m—Mil)]. (47)

Now, we furthermore use M > 1 to arrive at

M+1

S~ —(26) (Z Mo — m) (48)

Eventually we consider only cases where the right current Iy is sufficiently different from —I,
(such that the charge N enclosed by the two detectors is finite). In this case, we may assume
17 < 1, such that we arrive at Eq. (12) in the main text.

References

[1] A. Stern, Anyons and the quantum Hall effect—A pedagogical review, Ann. Phys. 323, 204
(2008), do0i:10.1016/j.a0p.2007.10.008.

[2] R. B. Laughlin, Anomalous quantum Hall effect: ~An incompressible quantum
fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983),
doi:10.1103/PhysRevLett.50.1395.

[3] G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B
360, 362 (1991), doi:10.1016/0550-3213(91)90407-0.

[4] C.L.Kane and M. P A. Fisher, Nonequilibrium noise and fractional charge in the quantum
Hall effect, Phys. Rev. Lett. 72, 724 (1994), doi:10.1103/PhysRevLett.72.724.

[5] E D. M. Haldane, ’Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties
of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas,
J. Phys. C: Solid State Phys. 14, 2585 (1981), doi:10.1088/0022-3719/14/19/010.

[6] K.-V. Pham, M. Gabay and P, Lederer, Fractional excitations in the Luttinger liquid, Phys.
Rev. B 61, 16397 (2000), doi:10.1103/PhysRevB.61.16397.

20


https://scipost.org
https://scipost.org/SciPostPhys.10.4.093
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevLett.72.724
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1103/PhysRevB.61.16397

Scil SciPost Phys. 10, 093 (2021)

[7] D. B. Gutman, Y. Gefen and A. D. Mirlin, Full counting statistics of a Luttinger liquid
conductor, Phys. Rev. Lett. 105, 256802 (2010), doi:10.1103/PhysRevLett.105.256802.

[8] K. K. Likharev and A. B. Zorin, Theory of the Bloch-wave oscillations in small Josephson
junctions, J. Low Temp. Phys. 59, 347 (1985), doi:10.1007/BF00683782.

[9] L. Fu and C. L. Kane, Josephson current and noise at a superconductor/quantum-
spin-Hall-insulator /superconductor junction, Phys. Rev. B 79, 161408 (2009),
doi:10.1103/PhysRevB.79.161408.

[10] E Zhang and C. L. Kane, Time-reversal-invariant Z, fractional josephson effect, Phys. Rev.
Lett. 113, 036401 (2014), doi:10.1103/PhysRevLett.113.036401.

[11] C. P Orth, R. P Tiwari, T Meng and T. L. Schmidt, Non-Abelian parafermions in
time-reversal-invariant interacting helical systems, Phys. Rev. B 91, 081406 (2015),
doi:10.1103/PhysRevB.91.081406.

[12] J. Koch, V. Manucharyan, M. H. Devoret and L. I. Glazman, Charging effects in
the inductively shunted Josephson junction, Phys. Rev. Lett. 103, 217004 (2009),
doi:10.1103/PhysRevLett.103.217004.

[13] J. Koch et al., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev.
A 76, 042319 (2007), doi:10.1103/PhysRevA.76.042319.

[14] V. E. Manucharyan, J. Koch, L. I. Glazman and M. H. Devoret, Fluxonium: Single Cooper-
pair circuit free of charge offsets, Science 326, 113 (2009), doi:10.1126/science.1175552.

[15] G. Catelani, R. J. Schoelkopf, M. H. Devoret and L. I. Glazman, Relaxation and frequency
shifts induced by quasiparticles in superconducting qubits, Phys. Rev. B 84, 064517 (2011),
doi:10.1103/PhysRevB.84.064517.

[16] D. Thanh Le, J. H. Cole and T. M. Stace, Building a bigger Hilbert space for super-
conducting devices, one Bloch state at a time, Phys. Rev. Research 2, 013245 (2020),
doi:10.1103/PhysRevResearch.2.013245.

[17] A. Mizel and Y. Yanay, Right-sizing fluxonium against charge noise, Phys. Rev. B 102,
014512 (2020), do0i:10.1103/PhysRevB.102.014512.

[18] A. Schmid, Diffusion and localization in a dissipative quantum system, Phys. Rev. Lett. 51,
1506 (1983), doi:10.1103/PhysRevLett.51.1506.

[19] S. A. Bulgadaev, Phase diagram of a dissipative quantum system, JETP Lett. 39, 315
(1984).

[20] E Guinea, V. Hakim and A. Muramatsu, Diffusion and localization of a particle in a pe-
riodic potential coupled to a dissipative environment, Phys. Rev. Lett. 54, 263 (1985),
doi:10.1103/PhysRevlLett.54.263.

[21] G. Schon and A. D. Zaikin, Quantum coherent effects, phase transitions, and the dissipative
dynamics of ultra small tunnel junctions, Phys. Rep. 198, 237 (1990), doi:10.1016/0370-
1573(90)90156-V.

[22] G.-L.Ingold and H. Grabert, Effect of zero point phase fluctuations on Josephson tunneling,
Phys. Rev. Lett. 83, 3721 (1999), doi:10.1103/PhysRevLett.83.3721.

[23] A. Murani et al., Absence of a dissipative quantum phase transition in Josephson junctions,
Phys. Rev. X 10, 021003 (2020), doi:10.1103/PhysRevX.10.021003.

21


https://scipost.org
https://scipost.org/SciPostPhys.10.4.093
https://doi.org/10.1103/PhysRevLett.105.256802
https://doi.org/10.1007/BF00683782
https://doi.org/10.1103/PhysRevB.79.161408
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevB.91.081406
https://doi.org/10.1103/PhysRevLett.103.217004
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevB.84.064517
https://doi.org/10.1103/PhysRevResearch.2.013245
https://doi.org/10.1103/PhysRevB.102.014512
https://doi.org/10.1103/PhysRevLett.51.1506
https://doi.org/10.1103/PhysRevLett.54.263
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1103/PhysRevLett.83.3721
https://doi.org/10.1103/PhysRevX.10.021003

Scil SciPost Phys. 10, 093 (2021)

[24] G.-L. Ingold and Yu. V. Nazarov, Charge tunneling rates in Ultrasmall junctions, in NATO
ASI Series, Springer US, Boston, MA, ISBN 9781475721683 (1992), doi:10.1007/978-
1-4757-2166-9 2.

[25] R.-P Riwar, M. Houzet, J. S. Meyer and Y. V. Nazarov, Multi-terminal Josephson junctions
as topological matter, Nat. Commun. 7, 11167 (2016), doi:10.1038/ncomms11167.

[26] T. Yokoyama and Y. V. Nazarov, Singularities in the Andreev spectrum of a multiterminal
Josephson junction, Phys. Rev. B 92, 155437 (2015), doi:10.1103/PhysRevB.92.155437.

[27] E. Strambini, S. D’Ambrosio, E Vischi, E S. Bergeret, Yu. V. Nazarov and E Giazotto, The
w-squipt as a tool to phase-engineer josephson topological materials, Nat. Nanotech. 11,
1055 (2016), doi:10.1038/nnano.2016.157.

[28] F Vischi, M. Carrega, E. Strambini, S. D’Ambrosio, E S. Bergeret, Yu. V. Nazarov and E
Giazotto, Coherent transport properties of a three-terminal hybrid superconducting inter-
ferometer, Phys. Rev. B 95, 054504 (2017), doi:10.1103/PhysRevB.95.054504.

[29] E. Eriksson, R.-P Riwar, M. Houzet, J. S. Meyer and Y. V. Nazarov, Topological transconduc-
tance quantization in a four-terminal Josephson junction, Phys. Rev. B 95, 075417 (2017),
doi:10.1103/PhysRevB.95.075417.

[30] T. Yokoyama, J. Reutlinger, W. Belzig and Y. V. Nazarov, Order, disorder, and tunable gaps
in the spectrum of Andreev bound states in a multiterminal superconducting device, Phys.
Rev. B 95, 045411 (2017), doi:10.1103/PhysRevB.95.045411.

[31] W. Belzig, Quantum geometry of topological josephson matter, In NANO-2019: Limits of
Nanoscience and Nanotechnologies, 107 (2019).

[32] E. V. Repin and Y. V. Nazarov, Weyl points in the multi-terminal Hybrid Superconductor-
Semiconductor Nanowire devices, (2020), arXiv:2010.11494.

[33] V. Fatemi, A. R. Akhmerov and L. Bretheau, Weyl Josephson circuits, Phys. Rev. Research
3, 013288 (2021), doi:10.1103/PhysRevResearch.3.013288.

[34] L. Peyruchat, J. Griesmar, J.-D. Pillet and C. O. Girit, Transconductance quantization in
a topological Josephson tunnel junction circuit, Phys. Rev. Research 3, 013289 (2021),
doi:10.1103/PhysRevResearch.3.013289.

[35] R. L. Klees, J. C. Cuevas, W. Belzig and G. Rastelli, Ground-state quantum ge-
ometry in superconductor—quantum dot chains, Phys. Rev. B 103, 014516 (2021),
doi:10.1103/PhysRevB.103.014516.

[36] H. Weisbrich, R. L. Klees, G. Rastelli and W. Belzig, Second Chern number and non-Abelian
Berry phase in topological superconducting systems, PRX Quantum 2, 010310 (2021),
doi:10.1103/PRXQuantum.2.010310.

[37] J. Ulrich and E Hassler, Dual approach to circuit quantization using loop charges, Phys.
Rev. B 94, 094505 (2016), doi:10.1103/PhysRevB.94.094505.

[38] R.-P Riwar, Fractional charges in conventional sequential electron tunneling, Phys. Rev. B
100, 245416 (2019), doi:10.1103/PhysRevB.100.245416.

[39] R. M. Bradley and S. Doniach, Quantum fluctuations in chains of Josephson junctions,
Phys. Rev. B 30, 1138 (1984), doi:10.1103/PhysRevB.30.1138.

22


https://scipost.org
https://scipost.org/SciPostPhys.10.4.093
https://doi.org/10.1007/978-1-4757-2166-9_2
https://doi.org/10.1007/978-1-4757-2166-9_2
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1038/nnano.2016.157
https://doi.org/10.1103/PhysRevB.95.054504
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevB.95.045411
https://arxiv.org/abs/2010.11494
https://doi.org/10.1103/PhysRevResearch.3.013288
https://doi.org/10.1103/PhysRevResearch.3.013289
https://doi.org/10.1103/PhysRevB.103.014516
https://doi.org/10.1103/PRXQuantum.2.010310
https://doi.org/10.1103/PhysRevB.94.094505
https://doi.org/10.1103/PhysRevB.100.245416
https://doi.org/10.1103/PhysRevB.30.1138

Scil SciPost Phys. 10, 093 (2021)

[40] L.I. Glazman and A. I. Larkin, New quantum phase in a one-dimensional Josephson array,
Phys. Rev. Lett. 79, 3736 (1997), doi:10.1103/PhysRevLett.79.3736.

[41] V. Gurarie and A. M. Tsvelik, A superconductor-insulator transition in a one-
dimensional array of Josephson junctions, J. Low Temp. Phys. 135, 245 (2004),
d0i:10.1023/B:JOLT.0000024551.89513.18.

[42] M. Houzet and L. I. Glazman, Microwave spectroscopy of a weakly pinned
charge density wave in a superinductor, Phys. Rev. Lett. 122, 237701 (2019),
doi:10.1103/PhysRevLett.122.237701.

[43] K. Cedergren, R. Ackroyd, S. Kafanov, N. Vogt, A. Shnirman and T. Duty, Insulating Joseph-
son junction chains as pinned Luttinger liquids, Phys. Rev. Lett. 119, 167701 (2017),
doi:10.1103/PhysRevLett.119.167701.

[44] R. Kuzmin, R. Mencia, N. Grabon, N. Mehta, Y.-H. Lin and V. E. Manucharyan, Quantum
electrodynamics of a superconductor—insulator phase transition, Nat. Phys. 15, 930 (2019),
doi:10.1038/s41567-019-0553-1.

[45] L. Griinhaupt et al., Granular aluminium as a superconducting material for high-impedance
quantum circuits, Nat. Mater. 18, 816 (2019), doi:10.1038/s41563-019-0350-3.

[46] G. Burkard, R. H. Koch and D. P DiVincenzo, Multilevel quantum descrip-
tion of decoherence in superconducting qubits, Phys. Rev. B 69, 064503 (2004),
doi:10.1103/PhysRevB.69.064503.

[47] R. Lutchyn, L. Glazman and A. Larkin, Quasiparticle decay rate of Josephson charge qubit
oscillations, Phys. Rev. B 72, 014517 (2005), doi:10.1103/PhysRevB.72.014517.

[48] M. D. Shaw, R. M. Lutchyn, P Delsing and P M. Echternach, Kinetics of nonequilibrium
quasiparticle tunneling in superconducting charge qubits, Phys. Rev. B 78, 024503 (2008),
doi:10.1103/PhysRevB.78.024503.

[49] G. Catelani, R. J. Schoelkopf, M. H. Devoret and L. I. Glazman, Relaxation and frequency
shifts induced by quasiparticles in superconducting qubits, Phys. Rev. B 84, 064517 (2011),
doi:10.1103/PhysRevB.84.064517.

[50] J. Leppdkangas and M. Marthaler, Fragility of flux qubits against quasiparticle tunneling,
Phys. Rev. B 85, 144503 (2012), doi:10.1103/PhysRevB.85.144503.

[51] A. Romito and Yu. V. Nazarov, Full counting statistics of Cooper pair shuttling, Phys. Rev.
B 70, 212509 (2004), doi:10.1103/PhysRevB.70.212509.

[52] E Cardano et al., Detection of Zak phases and topological invariants in a chiral quantum
walk of twisted photons, Nat. Commun. 8, 15516 (2017), doi:10.1038/ncomms15516.

[53] M. Maffei, A. Dauphin, E Cardano, M. Lewenstein and P Massignan, Topological char-
acterization of chiral models through their long time dynamics, New J. Phys. 20, 013023
(2018), do0i:10.1088/1367-2630/aa9d4c.

[54] D.Xie, W. Gou, T. Xiao, B. Gadway and B. Yan, Topological characterizations of an extended
Su-Schrieffer—Heeger model, npj Quantum Inf. 5, 55 (2019), do0i:10.1038/s41534-019-
0159-6.

[55] J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62, 2747 (1989),
doi:10.1103/PhysRevlLett.62.2747.

23


https://scipost.org
https://scipost.org/SciPostPhys.10.4.093
https://doi.org/10.1103/PhysRevLett.79.3736
https://doi.org/10.1023/B:JOLT.0000024551.89513.f8
https://doi.org/10.1103/PhysRevLett.122.237701
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1038/s41567-019-0553-1
https://doi.org/10.1038/s41563-019-0350-3
https://doi.org/10.1103/PhysRevB.69.064503
https://doi.org/10.1103/PhysRevB.72.014517
https://doi.org/10.1103/PhysRevB.78.024503
https://doi.org/10.1103/PhysRevB.84.064517
https://doi.org/10.1103/PhysRevB.85.144503
https://doi.org/10.1103/PhysRevB.70.212509
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1088/1367-2630/aa9d4c
https://doi.org/10.1038/s41534-019-0159-6
https://doi.org/10.1038/s41534-019-0159-6
https://doi.org/10.1103/PhysRevLett.62.2747

Scil SciPost Phys. 10, 093 (2021)

[56] A. Steinbach, P Joyez, A. Cottet, D. Esteve, M. H. Devoret, M. E. Huber and J. M. Martinis,
Direct measurement of the Josephson supercurrent in an ultrasmall Josephson junction,
Phys. Rev. Lett. 87, 137003 (2001), doi:10.1103/PhysRevLett.87.137003.

[57] P Krantz, M. Kjaergaard, E Yan, T. P Orlando, S. Gustavsson and W. D. Oliver, A
quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev. 6, 021318 (2019),
doi:10.1063/1.5089550.

[58] J.E.Mooij and Yu. V. Nazarov, Superconducting nanowires as quantum phase-slip junctions,
Nat. Phys. 2, 169 (2006), doi:10.1038/nphys234.

[59] K. A. Matveey, A. L. Larkin and L. I. Glazman, Persistent current in superconducting nanor-
ings, Phys. Rev. Lett. 89, 096802 (2002), doi:10.1103/PhysRevLett.89.096802.

[60] A.Rényi, On measures of entropy and information, In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the
Theory of Statistics, University of California Press, Berkeley, Calif., 547 (1961).

24


https://scipost.org
https://scipost.org/SciPostPhys.10.4.093
https://doi.org/10.1103/PhysRevLett.87.137003
https://doi.org/10.1063/1.5089550
https://doi.org/10.1038/nphys234
https://doi.org/10.1103/PhysRevLett.89.096802

	Introduction
	Quantized charges in circuit theory
	Importance of detector resolution
	Geometric properties of current correlations

	The Josephson junction array
	Array model and detector fuzziness
	Signatures of charge quantization in the superinductor regime

	Conclusion and outlook
	Derivation of current correlation sum 
	Single-shot projective current measurement
	Lumped-element current operators
	Local minima and low-frequency Hamiltonian
	Local minima
	Low-frequency Hamiltonian

	Relationship between S and detector resolution
	Charge correlations
	S for JJ array

	References

