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Abstract

We investigate the non-BPS realm of 3d N = 4 superconformal field theory by uniting
the non-perturbative methods of the conformal bootstrap and supersymmetric localiza-
tion, and utilizing special features of 3d N = 4 theories such as mirror symmetry and
a protected sector described by topological quantum mechanics (TQM). Supersymmet-
ric localization allows for the exact determination of the conformal and flavor central
charges, and the latter can be fed into the mini-bootstrap of the TQM to solve for a subset
of the OPE data. We examine the implications of the Z2 mirror action for the SCFT single-
and mixed-branch crossing equations for the moment map operators, and apply numer-
ical bootstrap to obtain universal constraints on OPE data for given flavor symmetry
groups. A key ingredient in applying the bootstrap analysis is the determination of the
mixed-branch superconformal blocks. Among other results, we show that the simplest
known self-mirror theory with SU(2) × SU(2) flavor symmetry saturates our bootstrap
bounds, which allows us to extract the non-BPS data and examine the self-mirror Z2
symmetry thereof.
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1 Introduction

Quantum field theory (QFT) in three spacetime dimensions has proven to be a promising arena
for studying strongly coupled physics. It shares close resemblance to four-dimensional QFT in
providing a rich array of non-perturbative phenomena such as confinement, chiral symmetry
breaking, and mass gaps. 3d QFT is also particularly intriguing in its own right due to the
presence of Chern-Simons couplings, fractional (anyonic) statistics, monopole operators, and
highly nontrivial duality mechanisms such as the bosonization dualities (analogous to 2d), all
of which play important roles in our understanding of the quantum phase transitions of gauge
theories and condensed matter systems. A particularly interesting and subtle case is when the
transition is second order and thus mediated by a conformal field theory (CFT). Knowledge of
the operator spectrum and correlation functions in the CFT is crucial to completing the phase
diagram.

There is a rich family of 3d CFTs constructed as the infrared fixed points of Chern-Simons
matter theories. The existence of such fixed points is supported by substantial evidence in-
cluding a non-renormalization theorem for the Chern-Simons level [1, 2], perturbative anal-
yses of the beta function for the matter couplings [3–5], exact computations of three-point
functions and thermal free energies in the ’t Hooft limit [6–10], the bulk gravity or higher
spin duals under the AdS/CFT correspondence [5,6,11–14], as well as intricate duality webs
and the ’t Hooft anomaly matching thereof [6–8, 15–18]. Their non-perturbative dynamics
are explored to some extent by approaches including AdS/CFT, bosonization dualities, and
Schwinger-Dyson equations.

Progress on the non-perturbative dynamics of CFT has been made by two powerful tools
– the conformal bootstrap and supersymmetric localization. The conformal bootstrap method
has been successful in solving CFT, including the famous 3d Ising CFT that describes criti-
cal phase transitions for water and magnets [19]. The inclusion of supersymmetry and the
method of supersymmetric localization [20, 21] have made analytic computations possible
in superconformal field theory (SCFT). The unison of these two tools have proven powerful
in [22–28].

In this paper, we apply the conformal bootstrap and supersymmetric localization to the
specific context of 3d SCFT with N = 4 supersymmetry. 3d N = 4 SCFT boasts special proper-
ties such as mirror symmetry [29,30] and an exactly solvable subsector of topological quantum
mechanics (TQM) [22, 31–34] that present interesting interplay with bootstrap and localiza-
tion. We elaborate on these special properties after briefly discussing some generalities.

Most known 3d N = 4 SCFTs arise as the low energy descriptions of quiver gauge the-
ories, and more generally of M2 branes probing transverse singular geometries in M-theory
[12, 13, 35–43]. These theories typically have a vacuum moduli space that includes some
combination of a Coulomb branch, a Higgs branch, and possibly mixed branches. In terms of
the CFT operators, they are parametrized by the vevs of half-BPS operators subject to chiral
ring relations. Some of these operators, such as monopoles, are of the disorder type: they
are non-perturbative in nature and their correlation functions are inaccessible by traditional
methods. Fortunately, certain integrated correlators of the current multiplets and stress-tensor
multiplets can be obtained from supersymmetric localization on S3 with mass and squashing
deformations, and in particular encode the flavor and conformal central charges of the CFT.

The flavor symmetry of 3d N = 4 SCFTs takes a product form GC×GH, where the factors GC
and GH are realized by different types of flavor current multiplets, whose bottom components
are charged under the SU(2)C and SU(2)H R-symmetry, respectively (and uncharged under the
other).1 We study the single- and mixed-branch four-point functions of the moment map op-

1In this paper, we will not be concerned with the global properties of groups which do not affect the correlation
functions of local operators.
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erators (scalar primaries in the flavor current multiplets for GC and GH), exploiting constraints
from superconformal symmetry and crossing using the numerical bootstrap methods.2 This is
made possible by first determining the mixed-branch 3d N = 4 superconformal blocks (the
single-branch blocks were determined in [25, 44, 45]). By comparison with certain OPE data
computable by supersymmetric localization, we observe that all known candidate theories are
consistent with the numerical bounds. Furthermore, in some cases, such as GC = GH = SU(2),
the bound (see Figure 3) is saturated by a known theory, namely the SQED with 2 flavors, and
we use the extremal functional method to extract the more general, non-BPS spectrum, that
appears in its moment map OPE.

Mirror symmetry

Mirror symmetry in 3d [29, 30] bears close relation to 4d S-duality and 2d mirror symmetry.
3d mirror symmetry is an infrared duality: two UV gauge theory descriptions flow to the same
conformal fixed point. In particular, the notions of Coulomb and Higgs branches swap between
the two descriptions. The Coulomb branch is highly quantum as it embodies the complicated
gauge theory dynamics that involves monopoles, yet the Higgs branch is protected against
such effects by supersymmetric non-renormalization theorems [29]. The key insight of mirror
symmetry is that the strongly coupled Coulomb branch in one UV description has an alternative
simple description as the protected Higgs branch of another UV description, which leads to
highly-nontrivial predictions on observables in the Coulomb branch of the first description.
Mirror symmetry also has important consequences for non-supersymmetric dualities in 3d. By
turning on deformations that break the supersymmetry, it gives nontrivial evidence for the 3d
bosonization duality mentioned above [46, 47], the zero mass case of which was otherwise
unsettled from just anomaly matching arguments.3

However, despite much progress in understanding mirror symmetry at the level of BPS
data, little is known in the non-BPS realm, which is crucial for analyzing the non-supersymmetric
bosonization duality from deformations. We make progress towards analyzing the non-BPS
aspect of mirror symmetry by applying the bootstrap method to the simplest interacting 3d
N = 4 SCFT, namely the SQED with 2 flavors, given by the IR fixed point of SQED with
two hypermultiplets of unit charge. In this particular case, the UV description is self-mirror
in the sense that the Higgs and Coulomb branches are simply exchanged within a single UV
description under the mirror map, and the theory enjoys an additional Z2 global symmetry
that simultaneously acts on the N = 4 superconformal algebra as an outer-automorphism and
exchanges the two factors of GC × GH. As usual, such symmetries will leave signatures on the
fixed point OPE data which we explore by analyzing a system of mixed correlators involving
both Coulomb and Higgs branch moment map operators. As we will see, this theory saturates
the bootstrap bound, and by extracting the non-BPS OPE data we are able to provide nontrivial
evidence for the (self-)mirror symmetry.

Topological quantum mechanics

Moreover, 3d N = 4 SCFT is also special in that it contains a one-dimensional protected sub-
sector, known as the topological quantum mechanics (TQM). In general, there are two TQMs,
one associated with the Coulomb branch, and the other with the Higgs branch [22, 31–34].

2Due to supersymmetry, the four-point functions of the moment map operators contain all the dynamical infor-
mation of the four-point functions of the operators in the flavor current multiplets.

3In this case, starting from the mirror symmetry between a free hypermultiplet and the N = 4 SQED with
one charged hypermultiplet, the authors of [46] considered supersymmetry-breaking deformations to deduce the
non-supersymmetric bosonization duality between the Dirac fermion and the 3d scalar QED with a level-1 Chern-
Simons term.
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The operator algebra in the TQM is an associative algebra given by a non-commutative defor-
mation of the Higgs or Coulomb branch chiral ring. The OPE data in the TQM can be solved
or constrained using the conformal bootstrap, i.e. imposing the associativity and unitarity of
the operator algebra, which is dubbed the mini-bootstrap because it is a closed subsystem of
the full bootstrap equations. In particular, the single-branch four-point function of (twisted)
moment map operators restricted to a line reduces to a four-point function in the TQM.4 As we
will see in Section 4, when the flavor symmetry group GC or GH is simple, the mini-bootstrap
constrains the OPE data in this four-point function down to a two-dimensional convex quadri-
lateral parametrized by the flavor central charge and another OPE coefficient. The OPE data
in the TQM can also be computed by supersymmetric localization [32–34].

Brief summary of the results

We briefly summarize the main results of this paper.

• We compute the conformal and flavor central charges for several classes of 3d N = 4
SCFTs, by taking derivatives with respect to the mass and squashing parameters of the
deformed S3 free energy. The results are (2.51) and (2.52) for the SQED, (2.53) and
(2.54) for the SQCD, (A.32) and (A.59) for the T[SU(3)], (2.55) for the T3, (A.46) and
(A.65) for the IIk(3) Chern-Simons matter theory. Some of these theories are dubbed as
the minimal 3d N = 4 SCFTs with flavor symmetry G and their the central charges are
summarized in Table 1.

• We compute the superconformal blocks for the four-point function of two Coulomb and
two Higgs branch moment map operators.5 The results for the s-channel superconformal
blocks are in (3.24), (3.25) and (3.4.1), and the t-channel superconformal blocks can
be found in (3.28), (3.29), (3.30) and (3.31).

• We explore the analytic bootstrap constraints in the protected topological quantum me-
chanics sector of the SCFT to solve or constrain the flavor central charge and certain OPE
coefficients. The results are summarized in Table 5 and Figure 2. The minimal nilpotent
theories sit at the kinks, and the maximal nilpotent theories sit at the boundaries of the
allowed regions (see Section 2.3 and 2.4 for definitions of these theories).

• Finally, we employ the numerical bootstrap technology to map out the space of consis-
tent unitary 3d N = 4 SCFTs, for several flavor symmetry groups and assuming or not
assuming the minimal/maximal nilpotent orbit condition on the protected operators.
The key results are in Table 7, Figures 3 and 5, and we find free theories and T[SU(2)]
to sit at the boundary of consistency. We also present a diagnosis on bootstrap data for
the self-mirror property, and explicitly verify it in T[SU(2)].

Organization of the paper

We start by reviewing the notion of conformal and flavor central charges in 3d CFT in Section 2,
and determine their values for an array of 3d N = 4 SCFTs that realize minimal and maximal
nilpotent orbits as their Higgs branch moduli spaces. Such data will later be compared with the
numerical bootstrap bounds. In Section 3, we review the 3d N = 4 superconformal algebra
and its representations, and determine the superconformal blocks when the external opera-
tors are either Higgs or Coulomb branch chiral primaries. In Section 4, we present analytic

4The four-point function only involves one type of moment map operators, Coulomb or Higgs.
5The superconformal blocks for the four-point function of four Coulomb or four Higgs branch moment map

operators were computed in [25,44].
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solutions to the mini-bootstrap problem for the protected sector of 3d N = 4 SCFTs, and ex-
plain the relation to the deformation quantization of the Coulomb or Higgs branch. Equipped
with the exact protected OPE data and the superconformal blocks, we setup and implement
the bootstrap analysis in Section 5 to extract bounds on the non-BPS spectrum. We end by a
summary of the main results and a discussion of future directions in Section 6. In Appendix A,
we present the details of the computations of the conformal and flavor central charges using
supersymmetric localization. In Appendix B, we derive the superconformal Casimir equations
used for deriving the superconformal blocks. In Appendix C, we state our conventions for the
Clebsch-Gordan coefficients and the crossing matrices (6j symbols). Finally, in Appendix D,
we summarize the crossing equations rewritten in matrix form.

2 CFT central charges

For any CFT in d dimensions, the two-point function of the stress tensor Tµν takes the form




Tµν(x)Tσρ(0)
�

=
CT

V 2
bSd−1

Iµν,σρ(x)

x2d
, (2.1)

where V
bSd−1 = 2πd/2/Γ (d/2) is the volume of a (d − 1)-dimensional unit sphere. Similarly, if

the CFT has global symmetry G, the two-point functions of the conserved currents J a
µ are given

by
¬

J a
µ(x)J

b
ν (0)

¶

=
CJ

V 2
bSd−1

δab
Iµν(x)

x2(d−1)
. (2.2)

The tensor structures Iµν,σρ(x) and Iµν(x) in (2.1) and (2.2) are completely fixed by confor-
mal symmetry

Iµν,σρ(x) =
1
2

�

Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x)
�

−
1
d
δµνδσρ,

Iµν(x) = δµν − 2
xµxν

x2
.

(2.3)

The coefficients CT and CJ , with appropriate normalization, capture dynamical informa-
tion about the particular CFT. We refer to them as the conformal and flavor central charges,
respectively. We canonically normalize the stress tensor Tµν by the Ward identity. For symme-
try currents J a

µ associated to a simple Lie group G, we adopt the normalization

J a
µ(x)J

b
ν (0) ⊃

1
V
bSd−1

i f abc
xµ
|x |d

J c
ν(0), (2.4)

with f abc totally antisymmetric, purely imaginary and satisfying

1
2h∨

f aed f bde = δab, (2.5)

where h∨ denotes the dual Coxeter number of G.
For the convenience of the reader, we record the values of CT and CJ for free fields in

d = 3; namely our convention is such that CT =
3
2 for either a real massless scalar or a

Majorana fermion. Thus, a free N = 4 hypermultiplet has conformal central charge

CT (hyper) = 8×
3
2
= 12. (2.6)
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The flavor central charge CJ for the SU(2) flavor symmetry of a free N = 4 hypermultiplet
can be worked out explicitly from the OPE (see the next section), and takes the value

C SU(2)
J (hyper) = 4. (2.7)

Here and in the following, we denote the flavor central charge with respect to the symmetry
group G of a SCFT T by CG

J (T ).
We now outline the derivation of a formula that allows us to explicitly compute the con-

formal and flavor central charges for 3d N = 4 superconformal field theories. Namely, on the
one hand, we relate the conformal central charge, CT , of a given theory to its metric deformed
(squashed) S3 partition function. On the other hand, we derive a precise correspondence be-
tween the flavor central charge CJ of a theory and its mass-deformed S3 partition function.
Such formulae were originally derived in [48,49] for 3d N = 2 SCFTs, and we re-derive them
here in order to precisely connect with our choice of N = 4 convention. By means of super-
symmetric localization [20,21], these formulae allow for the explicit evaluation of the central
charges in a large class of theories with (UV) Lagrangian descriptions. We refer to Appendix A
for the required ingredients for the localization computation as well as some examples.

2.1 CT from squashed S3 partition function

The 3d N = 4 stress tensor multiplet A[0](0;0)
1 consists of conformal primaries [50,51]

[0](0;0)
1 → [1](1;1)

3/2 → [2](2;0)
2 ⊕ [2](0;2)

2 ⊕ [0](0;0)
2 → [3](1;1)

5/2 → [4](0,0)
3

Φ → ΨAȦ
α → jAB

µ ⊕ jȦḂ
µ ⊕ U → SAȦ

µα → Tµν ,
(2.8)

where each entry, [2`](RH;RC)
∆ , labels the representation content of the corresponding conformal

primary under the bosonic subgroup of OSp(4|4); ` and ∆ denote the spacetime spin and
scaling dimension, while RH and RC label the SU(2)H and SU(2)C spins, respectively. We use
µ and α for spacetime vector and spinor indices, and reserve A, B (resp. Ȧ, Ḃ) for SU(2)H
(resp. SU(2)C) doublet indices. The arrows in (2.8) represent (anti)commutators with the
supercharge

QAȦ
α ∈ [1]

(1;1)
1/2 , (2.9)

which generates the entire multiplet starting from the superconformal primary Φ, which is a
dimension ∆= 1 scalar uncharged under the R-symmetries.

By supersymmetry, the two-point functions of the conformal primaries in (2.8) are all de-
termined in terms of the stress tensor Tµν,




Tµν(x)Tσρ(0)
�

=
CT

16π2

Iµν,σρ(x)

|x |6
. (2.10)

In particular, the R-symmetry currents, normalized as in (2.4) for the SU(2)H × SU(2)C sym-
metry, have two-point functions,6

〈 jAB
µ (x) j

C D
ν (0)〉=

CT

96π2

εC(AεB)D Iµν
|x |4

, 〈 jȦḂ
µ (x) j

Ċ Ḋ
ν (0)〉=

CT

96π2

εĊ(ȦεḂ)Ḋ Iµν
|x |4

. (2.11)

As explained in [48], an efficient way to compute the conformal central charge CT for
interacting SCFTs (with at least N = 2 supersymmetry) is to couple the SCFT to a certain

6Note that the SU(2)H currents are given by JAB
µ
≡ J a

µ
(σa)AB and our normalization requires fabc = i

p
2εabc in

equation (2.4). Similarly for the SU(2)C currents.
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family of supersymmetric curved background, where the spacetime manifold is a squashed S3,
i.e.

ω2
1|z1|2 +ω2

2|z2|2 = 1, zi ∈ C, (2.12)

with squashing parameters ωi . Conformal invariance further implies that the partition func-
tion of the SCFT only depends on

b2 ≡
ω1

ω2
. (2.13)

On such backgrounds, the corresponding partition function Zb is protected by supersymmetric
non-renormalization theorems, and thus can be computed reliably given a UV supersymmetric
gauge theory description. Localization techniques then reduce the path integral to a finite
dimensional matrix model over the Coulomb branch moduli of the gauge theory [21,52–57].7

Thus, the central charge CT is conveniently encoded in the dependence of the partition
function Zb on the squashing parameter b. Defining the squashed S3 free energy by

Fb = − log Zb, (2.14)

the precise formula relating CT to Fb is given as follows [48]8

CT =
48
π2

∂ 2Fb

∂ b2

�

�

�

�

b=1
. (2.15)

2.2 CJ from mass deformed S3 partition function

Having the explicit formula for the conformal central charges in hand, let us now turn to
the flavor central charges. The 3d N = 4 Higgs branch flavor-symmetry multiplet B[0](2;0)

1
consists of conformal primaries

[0](2;0)
1 → [1](1;1)

3/2 → [2](0;0)
2 ⊕ [0](0;2)

2

La
AB → ϕa

αAȦ
→ J i

µ ⊕ N a
ȦḂ

,
(2.16)

where a denotes the adjoint index of the flavor symmetry group G. The Coulomb branch flavor
symmetry multipletB[0](0;2)

1 is similar but with the quantum numbers RH and RC interchanged.
For the simplicity of discussion, we assume that G is simple in this section. By supersym-

metry, the two-point functions of the operators in (2.16) are all determined in terms of the
current two-point function

¬

J a
µ(x)J

b
ν (0)

¶

=
CJ

16π2
δab

Iµν(x)

x4
. (2.17)

In particular, it follows from the N = 4 algebra, {QAȦ
α ,QBḂ

β
} = −iεABεȦḂγ

µ

αβ
∂µ that the two-

point functions of La and N a, normalized as

J a
µ = εȦḂQAȦγµQ

BḂ La
AB, N a

ȦḂ
=QA(ȦQBḂ)La

AB, (2.18)

where γi are the Pauli matrices, depend on CJ as follows

〈La
AB(x)L

b
C D(0)〉=

CJ

64π2
δab εC(AεB)D

x2
, 〈N a

ȦḂ
(x)N b

Ċ Ḋ
(0)〉=

CJ

32π2
δab εC(AεB)D

x4
. (2.19)

Similar to the case of CT , we can obtain the flavor central charge CJ for flavor symmetry
G by coupling the SCFT to certain supergravity backgrounds that involve mass deformations
for G, and compute the supersymmetric partition function.

7See also [58] for a nice review on 3d supersymmetric localization, and appendix A for the relevant ingredients
for our purposes.

8The notation here is related to that of [48] by τr r =
CT
24 and jR

µ
= 1p

2
( j12
µ
+ j1̇2̇

µ
), where jR

µ
denotes the U(1)R

current for the N = 2 subalgebra. This is in order for the supercharges in the N = 2 subalgebra to have U(1)R
charge ±1.
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Massive supersymmetric background on S3

The Higgs branch multiplet B[0](2;0)
1 couples to background vector fields with field content

Da
AB, λa

AȦ
, Aa

µ, φa
ȦḂ

. (2.20)

To linearized order, the mass deformation of the SCFT amounts to a linear deformation of the
action by

δS =

∫

d3 x
p

g
�

DaAB La
AB +φ

aȦḂN a
ȦḂ
+ Aa

µJ aµ + fermionic terms
�

. (2.21)

For our purpose, it is convenient to take the spacetime manifold to be S3.
To specify the background, we begin with the round S3 with no mass deformation. The

osp(4|4) symmetry of the SCFT on the round S3 is generated by Killing spinors satisfying
(see [32])

∇µξAȦ = γµξ
′
AȦ

, ∇µξ′AȦ
= −

1
4r2
γµξAȦ, (2.22)

where r is the radius of S3. In the mass-deformed theory, the maximal subalgebra we can
preserve on S3 is

su(2|1)⊕ su(2|1) ⊂ osp(4|4), (2.23)

where the embedding of u(1)× u(1) is specified by two generators, one for each of su(2) and
su(2),

hA
B ∈ su(2), h̄Ȧ

Ḃ ∈ su(2), (2.24)

satisfying
hA

BhB
C = δC

A , h̄Ȧ
Ḃh̄Ḃ

Ċ = δ
Ȧ
Ċ

, (2.25)

and the supercharges generating the subalgebra (2.23) are specified by the restriction

ξ′
AȦ
=

i
2r

hA
BξBḂh̄Ḃ

Ȧ. (2.26)

Without loss of generality, and akin to [32], we choose

h= −σ2, h̄= −σ3, (2.27)

where σi are the Pauli matrices. The fields in the background (abelian) vector multiplet then
take the following values in order to preserve the su(2|1)⊕ su(2|1) supersymmetry:

Aa
µ = λ

a
AȦ
= 0, Da

AB = −
1
r

M aσ2
AB, φa

ȦḂ
= M aσ3

ȦḂ
, (2.28)

where a is chosen to take values a ∈ {1, 2, . . . , n}, such that T a generate the Cartan subalgebra
of G, and M a denote the mass parameters for the flavor symmetry group G of the SCFT.

For this background, we define Z(M a) to be the mass-deformed partition function on S3

and F(M a)≡
− log Z(M a) to be the free energy of the SCFT. Following the argument in [49], while keeping
track of our choice of normalization of the operators, the flavor central charge can be extracted
from the S3 free energy as

F(M a)|M2 =
π2CG

J

16
δabM aM b, (2.29)
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where the superscript G is used to emphasize the fact that the flavor central charge CG
J is with

respect to the flavor symmetry group G.
If G is a subgroup of a larger simple symmetry group G′ of the SCFT, then

CG′
J = IG,→G′C

G
J , (2.30)

where IG,→G′ denotes the Dynkin index of the embedding.9

The formula for CJ from the gauge theory free energy

In practice, the mass-deformed free energy of an N = 4 SCFT is computed by localization
using its UV gauge theory (Lagrangian) description, and the mass parameters M a for the flavor
symmetry are related to the gauge invariant masses of hypermultiplets.10 However, the full
symmetry G can be emergent from the RG flow, and consequently only a subset of mass-
deformations is accessible from the UV description. Therefore, in order to compute CJ for the
full symmetry group G using (2.29), we need to know the precise relation between the UV and
IR mass parameters as well as how the UV symmetry group GUV embeds into the IR symmetry
group G.

We start by recalling the matter sector of a general 3d N = 4 gauge theory, which is
described by n hypermultiplets

qi
A, ψi

αȦ
, (2.32)

with i = 1,2, . . . , 2n transforming in the fundamental representation of USp(2n). The Eu-
clidean action of hypermultiplets coupled to vector multiplets (both dynamical and back-
ground) on S3 is given by

Shyper =

∫

d3 x
p

g
�

εABΩi j Dµqi
ADµq j

B − iεȦḂΩi jψ
i
Ȧ
/Dψ j

Ḃ
+

3
4r2
εABΩi jq

i
Aq j

B

−
1
2
φaȦḂφb

ȦḂ
εABqAT aT bqB − iqADiAB T iqB + iψȦφ

aȦḂ T aψḂ − 2iqAλa
AḂ

T aψḂ
�

,

(2.33)

where T a
i j are generators of usp(2n). Note that the scalars are subject to the reality condition11

(qi
A)
∗ = qA

i = ε
ABΩi jq

j
B. (2.34)

On the supersymmetric background (2.28), the hypermultiplet action becomes

Shyper =

∫

d3 x
p

g
�

εABΩi j∇µqi
A∇

µq j
B − iεȦḂΩi jψ

i
Ȧ
/∇ψ j

Ḃ
+

3
4r2
εABΩi jq

i
Aq j

B

+ εABqi
(A(M

2)i jq
j
B) +

i
r
(σ2)

ABqi
AMi jq

j
B + i(σ3)

ȦḂψi
Ȧ
Mi jψ

j
Ḃ

�

,

(2.35)
where

Mi
j = M a

UV
T ai

j , (2.36)

9The Dynkin index of an embedding G ⊂ G′ between simple Lie groups is defined by

IG,→G′ ≡
∑

i T (ri)
T (r)

, (2.31)

where r denotes a representation of G′ which decomposes into ⊕iri under G′→ G, and T (·) denotes the quadratic
index of the representation. This definition does not depend on the choice of r.

10The IR mass parameters M a associated to Coulomb branch symmetries come from the FI parameters in the UV
gauge theory instead. The generalization is straightfoward.

11qi ≡ qi
1, q̃i ≡ q2

i for i = 1, · · · , n have the same RH
3 charge and represent N = 2 chiral multiplet scalars [31].
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with a restricted to a = 1,2, . . . , n labelling the Cartans of usp(2n), encodes the UV mass
parameters (or vector multiplet scalar vevs).

When a subgroup H ⊂ USp(2n) is gauged, the residual flavor symmetry is given by the
commutant which we will refer to as GUV. In the cases we are interested in here, the hyper-
multiplets transform in a single representaton (RGUV

, RH) of GUV × H ⊂ USp(2n), with indices
(i, ı̂) and dim(RGUV

)dim(RH) = 2n. The mass matrix decomposes as

Mi ı̂
j ̂ = M a

UV
T ai

jK ı̂
̂ +φ

â T̂ âı̂
̂I i

j , (2.37)

where I i
j and K ı̂

̂ are invariant tensors of GUV and H, respectively, satisfying

I i
jI j

k = δ
i
k, K ı̂

̂K ̂
k̂ = δ

ı̂
k̂. (2.38)

We still denote the adjoint index of GUV by a and use â for the adjoint index for the gauge
group H. In the gauge theory, φ â are dynamical while M a

UV
are mass parameters.

We claim that the UV and IR mass parameters for GUV are simply identified as

M a
UV
= M a. (2.39)

This is equivalent to checking the normalization of the conserved current multiplets in the UV
gauge theory description. Comparing (2.33) with (2.21), we identify the currents for GUV

12

J a
µ = 2T ai

j

�

iεABqAi∂µq j
B −

1
2
εȦḂψαȦiγ

αβ
µ ψβ Ḃ

j
�

, (2.40)

and the moment map operator
La

AB = −T ai jq(AiqB) j . (2.41)

In flat space, the two-point functions of free massless hypermultiplet fields in (2.35) are
given by

〈qi
A(x)q

j
B(y)〉=

1
8π
Ωi jεAB

|x − y|
, 〈ψi

Ȧ
(x)ψ j

Ḃ
(y)〉=

i
8π
εȦḂΩ

i j
γµ(xµ − yµ)

|x − y|3
. (2.42)

Performing explicit Wick contractions, it is easy to see that (2.40) indeed satisfies (2.4). We
can also compute the UV flavor central charge (central charge for the free theory) from the
two-point function of (2.40),

〈J a
µ(x)J

b
ν (y)〉=

4δab

16π2
Iµν dim(RH), (2.43)

which gives13

CGUV
J (hypern) = 4dim(RH). (2.44)

To summarize, for UV flavor symmetry GUV ⊂ GUV×H ⊂ USp(2n) carried by gauged hyper-
multiplets, we define MUV as the reduced mass matrix such that the full mass matrix for the
hypermultiplets is

M=MUV ⊗K ⊕ vector multiplet scalar vevs, (2.45)

where K is a normalized invariant tensor for the gauge group H introduced in (2.37). Then the
flavor central charge of the SCFT for GUV is determined by the gauge theory supersymmetric
free energy via

F |M2 =
π2CGUV

J

16
TrM2

UV
. (2.46)

12Here and below we focus on the gauge-invariant currents and suppress all gauge indices ı,  which have been
contracted with the invariant tensor I ı

.
13Note that for n free hypermultiplets, CUSp(2n)

J (hypern) = 4. The extra factor of dim(RH) comes from the embed-
ding index for the subgroup GUV ⊂ GUV ×H ⊂ USp(2n) (see (2.31)).
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Table 1: Conformal and flavor central charges CT and CJ for candidate minimal
SCFTs with Higgs branches given by the minimal nilpotent orbits of G, as computed
by localization.

G Candidate minimal theory

SU SQED

SO SU(2) SQCD

USp Free hypers

E6 T3

G CJ CT

SU(2) 16
3

64
3 +

16
π2

SU(3) 6 54− 192
π2

SU(4) 32
5

256
5 −

48
π2

SU(5) 20
3 100− 3712

9π2

SO(5) 4 54− 64
π2

SO(6) 32
5

272
5 +

48
π2

SO(7) 8 156− 12416
15π2

SO(8) 64
7

736
7 −

200
π2

USp(2n) 4 12n

E6
192
13 160.246

2.3 Minimal theories with flavor symmetry G

Given a simple Lie group G, there is a notion of minimality for 3d N = 4 SCFTs with flavor
symmetry G: Assuming that the symmetry G is generated by the Higgs branch current mul-
tiplets, G naturally acts on the Higgs branch moduli space of the theory. A special class of
such Higgs branch geometries are given by (the closure of) the nilpotent orbits of G, among
which the minimal nilpotent orbit Omin(G) has complex dimension 2(h∨(G) − 1) and is the
one-instanton moduli space of G on R4. A “minimal” theory is one whose Higgs branch mod-
uli space is (the closure of) the minimal nilpotent orbit, and whose conformal central charge
CT is the smallest.

The minimal nilpotent orbit Omin(G) has a simple description as a holomorphic-symplectic
variety embedded in the Lie algebra g of G,

Omin(G) = {g |I2 = 0}, (2.47)

where I2 denotes the Joseph ideal in the polynomial algebra of g defined by

(adj⊗ adj)S = 2adj⊕ I2. (2.48)

For this reason, we refer to the condition in (2.47) as the Joseph relations. We expect such
conditions to impose strong constraints. Indeed as we will see in Section 4, the Higgs branch
protected operator algebra (1d TQM) [22,31–34] can be solved completely and uniquely (ex-
cept in the case of G = A1) by certain generalized higher-spin algebra for G.

Below we present a list of candidate minimal theories for each simple Lie group G, and
provide their conformal and flavor central charges computed using the formulae presented in
the previous sections. The results are also summarized in Table 1. We leave the details of the
computations to Appendices A.3 and A.4.
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n Free hypermultiplets

Consider n free hypermultiplets with the following Z2 symmetry gauged:14

Z2 : qi
A→−qi

A. (2.49)

This is precisely the ADHM gauge theory for the 1-instanton moduli space of USp(2n) on R4.
The conformal and flavor central charges are then given by (see (A.9) and (A.48))

CT (hypern) = 12n,

CUSp(2n)
J (hypern) = 4.

(2.50)

N = 4 SQED with n≥ 2 unit-charge hypermultiplets

The 3d N = 4 SQED coupled to n unit-charge hypermultiplets flows in the IR to an interacting
SCFT for n ≥ 2. This is precisely the ADHM gauge theory for the one-instanton moduli space
of SU(n) on R4. The theory has a mirror-dual description as an affine An−1 type quiver theory,
which is a cyclic quiver consisting of n U(1) gauge-nodes15 and n bifundamental hypermul-
tiplets. From the SQED description, we can extract the conformal and flavor central charges,
given by

CT (SQEDn) =
12
�

2n2ψ(1)
� n

2 + 1
�

+
�

π2n+ 4
�

n+ 4
�

π2(n+ 1)
, (2.51)

where ψ(1)(z)≡ d
dz
Γ ′(z)
Γ (z) is the z-derivative of the digamma function, and

C SU(n)
J (SQEDn) =

8n
n+ 1

. (2.52)

There is an interesting family of U(1)k×U(1)−k Chern-Simons matter theories with SU(n)
flavor symmetry: the IIk(n+ 1) theories of [59]. We compute the values of CT and CJ for the
IIk(3) series in Appendix A.3 and A.4. The minimal k = 2 theories have enhanced SU(n+ 1)
symmetry and are dual to the SQED with n+ 1 unit-charge hypermultiplets.

N = 4 SQCD with SU(2) gauge group and n≥ 5 fundamental half-hypermultiplets

The 3d N = 4 SQCD with SU(2) gauge group coupled to n fundamental half-hypermultiplets
flows in the IR to an interacting SCFT for n ≥ 5. This is precisely the ADHM gauge theory for
the one-instanton moduli space of SO(n) on R4.

When n is even, the theory has a known mirror-dual description in terms of a 3d N = 4
affine Dn/2 shaped quiver. From the SQCD description, we can extract the conformal and flavor
central charges, given by

CT (SQCDn) =

12
�

n
�

π2(n− 4)(n− 2) + 12n− 20
�

(n− 4) + 2(n− 2)(3n− 2)(n− 4)2ψ(1)
� n−2

2

�

+ 48
�

π2(n− 4)(n− 2)(n− 1)
,

(2.53)
and

C SO(n)
J (SQCDn) =

16(n− 4)
n− 1

. (2.54)

14One can gauge the Z2 symmetry by coupling to a nontrivial 3d Z2 gauge theory, but this will not make a
difference on the local operator spectrum. In fact, even if we do not gauge Z2, although the full (free) theory does
not satisfy the minimal nilpotent orbit condition, the OPE of Z2 singlets is still identical to the gauged versions,
and suffice for mere comparisons with bootstrap.

15The diagonal U(1) vector multiplet decouples.
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E6,7,8 theories

The 4d N = 2 En Minahan-Nemeschansky theories [60, 61] have Higgs branches realized by
the one-instanton moduli spaces of En. Their S1 reduction naturally gives rise to 3d N = 4 En
theories that inherit the 4d Higgs branch. Unlike their 4d parents, these 3d theories do have
(mirror) Lagrangian descriptions given by quivers of affine E6,7,8 types, which we can use to
compute the conformal and flavor central charges.

In the case of E6 (also known as T3 theory), we carry out the computation in Appendix A.3,
and obtain

CT (T3) = 160.246,

C E6
J (T3) = 4.

(2.55)

In later sections, we give an independent derivation of CJ by solving the 1d TQM associated
to the Higgs branch.

G2, F4 theories

These are the most mysterious 3d N = 4 SCFTs in this class whose existence are purely conjec-
tural. There are no known string/M-theory constructions for them. However, if they exist, then
we can determine CJ unambiguously by solving the 1d TQM associated to the Higgs branch of
a would-be G2 or F4 minimal theory (see Section 4 and Table 5).

2.4 T[G] theories and maximal nilpotent orbit

Let us now discuss a special class of theories, dubbed T[G]. They were originally introduced
in [43] as the S-dual [62] (under the S-tranformation of the full S-duality group SL(2,Z))
of particular (Dirichlet for the 4d N = 2 vector multiplets and Neumann for the adjoint hy-
permultipelts) boundary conditions of the 4d N = 4 supersymmetric Yang-Mills theory with
gauge group G.16 More precisely, the 4d S-dual configuration consists of the 3d T[G] theory
coupled to the 4d bulk gauge fields.

The T[G] theories are 3d N = 4 SCFTs in the infrared, and carry (IR) G∨ × G (G∨ is the
GNO or Langlands dual of G [64]) flavor symmetry, with G∨ and G realized on the Coulomb
branch and Higgs branch, respectively. The G∨ and G act faithfully only through their adjoint
forms, and thus the distinction (for observables that only involve local operators) between
them is only relevant when they have different Lie algebras. The Higgs branch is given by the
maximal nilpotent orbit Ng of G with complex dimension

d ≡ dimCHiggs= dim(g)− rank(g). (2.56)

The Coulomb branch is given by the maximal nilpotent orbit Ng∨ of G∨ with the same complex
dimension.17 Under 3d N = 4 mirror symmetry [29,30], T[G] is mapped to T[G∨] and vice
versa, with Coulomb and Higgs branches interchanged.

These facts can be observed by realizing that the theory T[G] is given by the S-dual to
Dirichlet boundary conditions in N = 4 super-Yang-Mills theory with gauge group G (see [43]
for more details). Consider the N = 4 super-Yang-Mills theory with gauge group G coupled
to T[G]. The coupling lifts the Higgs branch and we are left with the Coulomb branch. Then,
upon performing an S-transformation, we obtain N = 4 super-Yang-Mills with gauge group G∨

and Dirichlet boundary conditions, whose moduli space is given by the nilpotent cone Ng∨ of
G∨ (found by solving Nahm’s equation) [65]. We conclude that this is the Coulomb branch of

16Recall that for G = G2 and G = F4, even though the Langlands dual pairs have identical Lie algebras, the S-
duality group is not a subgroup of SL(2,Z) [63]. In particular, the S-transformation involves a nontrivial involution
on the vacuum moduli space.

17The full vacuum moduli space also contains mixed branches.
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T[G]. Similarly, one can couple the 4d theory to Dirichlet boundary conditions on the left and
on the right of the 3d T[G] theory domain wall. This ungauges (freezes) both gauge groups G
and G∨. Then, being a symmetric setup under exchange of left and right, one concludes that
T[G] is mirror dual to T[G∨].

In the case of the T[SU(N)] theory, there is a convenient description in terms of a D3-
D5-NS5 brane system in type IIB string theory [43, 66]. As the example of T[SU(2)] theory
plays a major role in the following, let us elaborate some more on the brane constructions
of T[SU(N)] theories (we refer to the original paper for a more exhaustive discussion [43]).
We start with a set of D3 branes, spanned by x0, . . . x3 inside 10d Minkowski space (with
coordinates x0, . . . x9), whose worldvolume theory leads to the N = 4 super-Yang-Mills theory
in the bulk. To describe half-BPS boundary conditions, we may add D5 branes, spanned by
x0, x1, x2, and x4, x5, x6, as well as NS5 branes, spanned by x0, x1, x2, and x7, x8, x9, on
which the D3 branes may end (along x3), see Table 2. In Figure 1, we illustrate this for the
examples of the T[SU(5)]-theory.

The brane construction makes the mirror self-duality manifest: Famously, S-duality – or
rather the S-transformation inside the full S-duality group – acts by exchanging NS5- and D5
branes. Thus, starting with the brane setup in Figure 1, applying S-duality, and then repeatedly
performing Hanany-Witten moves [66] (now moving four NS5 branes to the left of all the
D5’s and one to the right), it is straightforward to see, that the resulting brane configuration
precisely reduces to the one we started with.

Table 2: The D3-D5-NS5 brane system in type IIB string theory, describing boundary
conditions of 4d N = 4 super-Yang-Mills theory (for unitary groups).

0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D5 × × × × × ×

NS5 × × × × × ×

x789

x3

x456

NS5 NS5 NS5 NS5 NS5NS5

D5

D3D3D3

Figure 1: The D3-D5-NS5 brane system in type IIB string theory, describing the 3d
N = 4 T[SU(5)] theory. Here, the D5 branes can be moved beyond the right-most
NS5 brane by standard Hanany-Witten moves. The SCFT is reached by taking the
limit in which the separations along x3 are taken to zero, i.e. we are moving onto
the origin of the moduli space.

By separating the NS5 branes in the x3 direction (which corresponds to tunning the FI
parameters in the field theory), this brane construction naturally provides a UV Lagrangian
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description for the T[SU(N)] theories, given by the quiver

U(1) U(2) U(N − 2) U(N − 1) SU(N) (2.57)

where (as usual) the circular nodes are gauge-groups connected by bifundamental hypermulti-
plets, while the squares denote flavor symmetry factors. In the IR, the SU(N) flavor symmetry
of the Higgs branch is manifest, while the SU(N) flavor symmetry of the Coulomb branch
comes from IR enhancement due to monopole operator.18

Similarly, by including various types of O3 planes in the brane setup [67], one may write
down the UV quiver gauge theory for T[SO(2N)],

SO(2) Sp(2) SO(4) SO(2N − 2) Sp(2N − 2) SO(2N)

(2.58)
and for T[Sp(2N)] theories [43],

SO(2) Sp(2) SO(4) SO(2N − 2) Sp(2N − 2) SO(2N) Sp(2N)

(2.59)
We remark that for the remaining cases, there are no – or only “bad” in the sense of [43] –
quiver descriptions. However, below we conjecture the general S3 partition function even for
those cases.

The Higgs branch chiral ring is generated by the moment map operators, which are dimension-
1 scalars in the adjoint representation, denoted collectively by the matrix-valued operator N .
They are subject to the chiral ring relations

εi(N) = 0, (2.60)

where εi label the fundamental Casimirs of g. For G = SU(n), this is just the statement that
Tr N i = 0 for i = 2, 3, . . . , n. In general, this means that the singlet representation is absent
from symmetric tensor products of the moment map operators. Compared to the minimal
nilpotent orbit theories, these theories sit at the opposite end of 3d theories carrying G flavor
symmetry: by tuning Higgs branch vevs, one can flow from T[G] to any of the 3d N = 4
theories with nilpotent sub-orbits as Higgs branches.

Let g be the Lie algebra of a simple Lie group G. The S3 partition function for T[G] theories
was

Z T[G](M;M̃) =

∑

w∈W (G)(−1)l(w)e2πi(w(M)·M̃)

i
d
2
∏

α∈∆+ 2 sinh(π(α ·M))
∏

α∈∆+ 2sinh(π(α ·M̃))
. (2.61)

Here, d is the Higgs branch dimension (2.56), M,M̃ are Cartan elements of the Lie algebra
g representing the mass and FI parameters for the G × G∨ flavor symmetry, ∆+ denotes the

18Note that for the T[SU(2)] theory (i.e. the SQED with 2 flavors), there is an alternative description as a Chern-
Simons theory [59]. There, the U(1)× U(1) ⊂ SU(2)× SU(2) flavor symmetry is manifest, and furthermore the
Higgs and Coulomb branches are put on equal footing.
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set of positive roots, W (G) is the Weyl group of G, and l(w) denotes the length of the Weyl
element w. The product ( · ) is the standard Killing form on h or h∗.

This conjectured form of the S3 partition function of the T[G] theory is motivated as a
generalization of the case of G = An−1, which was proven by induction in [68, 69]. Further-
more, it passes a variety of non-trivial checks: first, it is manifestly mirror symmetric, i.e. we
end up with the conjectured answer for T[G∨] upon exchanging the mass and FI parameters,
corresponding to a mirror symmetry transformation; second, it behaves appropriately under
the addition of line defects (Wilson and vortex lines).

Let us briefly elaborate on this and sketch the logic: It is possible to decorate the T[G]
theories with a set of line defects. For instance, given a UV Lagrangian description, we can
compute the partition function with the addition of (flavor) Wilson lines (along the large circle
in S3) in a representation R of G [70]. This will not enter the supersymmetric localization
computation of the S3 partition function apart from a multiplicative factor, given by the addi-
tion of a Schur character in the mass-parameters of the representation R of G [21], i.e. the
Wilson loop vev is given by

〈WR〉T[G] = trR exp (2πiM) . (2.62)

On the other hand, we can consider adding (flavor) vortex lines VR to T[G∨], which are
labeled by a representation R of (G∨)∨ = G. As opposed to Wilson lines, vortex lines are
disorder operators characterized by a vortex-like singularity for the fields in a theory near a
curve in spacetime.19 It is known that vortex lines are mirror dual to Wilson lines [72–74]. In
particular, this means that their VEVs ought to agree upon adding them to mirror dual theories.
The vortex lines act on the integrand of the S3 partition function by a sum over shifts of the
mass/FI parameters, i.e. up to an overall factor,

VR ◦ Z(m)∝
∑

ρ∈R
Z(m+ i(m,ρ)), (2.63)

where the sum is over the weights ρ of the representation R, and we have collectively denoted
by m the masses (or equivalently FI-parameters).20 Thus, we can first evaluate the integral,
obtaining Z in (2.61), and then act with the vortex line operators by shifts [72, 74, 77]. By
doing so and using the fact that weights are invariant under the action of the Weyl group, one
can show that indeed

〈VR〉T[G∨] = 〈WR〉T[G], (2.64)

adding further evidence for the conjecture in (2.61).
Now, let us proceed to compute the conformal central charge CJ for T[G] theories of a

single flavor factor G using (2.46). We first remark that we only need the denominator of
(2.61), since terms from the numerator necessarily mix G and G∨. Let us expand the partition
function in small M (and finite M̃) and only keep track of the sinh(πα ·M) factor in the
denominator. We find

Z T[G](M;M̃)|M2

Z T[G](M;M̃)|0
= −

π2

6

∑

α∈∆+
(α ·M)2 , (2.65)

where A|Mp means the p-th term in the small M expansion of A. Next, we use the following
completeness relation,

(λ ·µ) =
1
h∨

∑

α∈∆+
(λ ·α)(α ·µ) , (2.66)

19Such operators are somewhat analogously defined to 4d Gukov-Witten type surface defects [71]. Alternatively,
they can be defined by coupling the 3d theory to a 1d (supersymmetric) quantum mechanics, see e.g. [72].

20In fact, they can be viewed as dimensional reductions of Macdonald q-difference operators [75–77], which can
be defined for general root systems.
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where λ and µ are arbitrary weights, to arrive at a compact formula for CJ of T[G]with respect
to the symmetry group G:

CG
J (T[G]) =

8
3

h∨(G) . (2.67)

The CT of T[G] for classical simple Lie group G can be computed using the formula (2.15)
and the quiver descriptions (2.57), (2.58), and (2.59). In Appendix A.3, we explicitly evalu-
ated the CT of T[SU(3)]. The result is

C SU(3)
T (T[SU(3)]) = 75.5329. (2.68)

2.5 N = 8 theories

There are three classes of N = 8 theories: the U(N)k×U(N)−k ABJM theories for k = 1,2, the
U(N+1)2×U(N)−2 ABJ theories, and the SU(2)k×SU(2)−k BLG theories [12,13,35–40]. View-
ing these as N = 4 theories, the SO(8) R-symmetry decomposes into the SU(2)C× SU(2)H R-
symmetry and the SU(2)fC×SU(2)fH flavor symmetry. Among these theories, the U(1)k×U(1)−k
ABJM theories for k = 1, 2 and the U(2)2×U(1)−2 ABJ theory have minimal nilpotent Coulomb
and Higgs branches. The central charges of them were computed in [22], and we summarize
the results in Table 3.

Table 3: The conformal and flavor central charges of theN = 8 theories with minimal
nilpotent Coulomb and Higgs branches when viewed as N = 4 theories.

theories CT C SU(2)
J

U(1)1 × U(1)−1 ABJM 24 4

U(1)2 × U(1)−2 ABJM 24 4

U(2)2 × U(1)−2 ABJ 32 16
3

The central charges of another infinite class of N = 8 theories were computed in [22].
They are the U(2)k × U(2)−k ABJM theories for k = 1, 2, and the SU(2)k × SU(2)−k BLG
theories for all positive integer k. The formulae are

cT = 32
�

2−
I4

I2

�

, In =

∫ ∞

−∞
d y y

tanhn(πy)
sinh(πk y)

,

CT =
3
2

cT , C SU(2)
J =

1
4

cT .

(2.69)

3 Superconformal blocks

3.1 Superconformal algebra, representations, and Casimir operator

The three-dimensional N = 4 superconformal algebra is OSp(4|4), which contains the bosonic
conformal algebra SO(3,2)with generators Pµ, Kµ, D, and the R-symmetry group SU(2)C×SU(2)H
with generators RC

I and RH
I . The fermionic generators of OSp(4|4) are the Poincaré Q-supercharges

QαAȦ and superconformal S-supercharges SαAȦ. The (anti)commutators in the superconformal
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algebra that involve fermionic generators are

{QαAȦ,QβBḂ}= εABεȦḂ(σ
µ)αβ Pµ, {SαAȦ, SβBḂ}= −εABεȦḂ(σµ)αβKµ,

[Kµ,QαAȦ] = εABεȦḂ(σµ)αβSβBḂ, [Pµ, SαAȦ] = εABεȦḂ(σµ)
αβQβBḂ,

[Mµν,QαAȦ] = (mµν)
β
αQβAȦ, [Mµν, SαAȦ] = −(mµν)αβSβAȦ,

[RC
I ,QαAȦ] =

1
2
(σI)

B
AQαBȦ, [RC

I , SαAȦ] = −
1
2
(σI)

A
BSαBȦ,

[RH
İ
,QαAȦ] =

1
2
(σ İ)

Ḃ
ȦQαAḂ, [RH

İ
, SαAȦ] = −

1
2
(σ İ)

Ȧ
ḂSαAḂ,

{SαAȦ,QβBḂ}= iδαβδ
A
Bδ

Ȧ
Ḃ

D+δA
Bδ

Ȧ
Ḃ
(mµν)

α
βMµν −δαβδ

Ȧ
Ḃ
(σI)

A
BRC

I −δ
α
βδ

A
B(σ İ)

Ȧ
ḂRH

İ
,

(3.1)

where (σµ)αβ , (σI)AB, (σ İ)
Ȧ

Ḃ are Pauli matrices. The indices are raised and lowered by εαβ ,

εAB, εȦḂ and εαβ , εAB, εȦḂ in the convention that upper left indices contract with lower right
indices; for example,

(σµ)
αβ = εβγ(σµ)

α
γ, (σµ)αβ = (σµ)

γ
βεγα. (3.2)

The spacetime rotation matrices mµν are defined by

(mµν)
α
β = −

i
4

�

(σµ)
αγ(σν)γβ − (σν)αγ(σµ)γβ

�

=
1
2
εµνρ(σ

ρ)αβ . (3.3)

The SU(2)C and SU(2)H are exchanged under a Z2 outer automorphism (see Section 3.2).
The unitary representations (superconformal multiplets) can be constructed by succes-

sively acting with QαAȦ, M23− iM31, RC
1− iRC

2, and RH
1 − iRH

2 on the highest weight states, which

are states annihilated by Kµ, SαAȦ, M23 + iM31, RC
1 + iRC

2, and RH
1 + iRH

2 . The superconfor-
mal multiplets of OSp(4|4) are classified into long multiplets as well as A- and B-type short
multiplets [50,51,78]. They are labeled by

X [2`](2 jC;2 jH)
∆

(3.4)

and satisfy the unitarity conditions

L : ∆> `+ jC + jH + 1,

A : ∆= `+ jC + jH + 1,

B : ∆= jC + jH, `= 0,

(3.5)

where X = L, A, B, and∆, ` ∈ Z2 , jC ∈
Z
2 , jH ∈

Z
2 are the dimension, spin and R-charges of the

highest weight state of X [2`](2 jC;2 jH)
∆ . The superconformal multiplets that will be important in

this paper are summarized in Table 4.
The quadratic Casimir operator C of OSp(4|4) is constructed out of bilinears of the gener-

ators,

C = Cb +
1
2
[SαAȦ,QαAȦ]− RC

I RC
I − RH

İ
RH

İ
,

Cb =
1
2

MµνMµν − D2 −
1
2
{Pµ, Kµ},

(3.6)

and commutes with all the generators in the superconformal algebra. The Casimir operator
acting on a highest weight operator O∆,`, jC, jH gives

[C ,O∆,`, jC, jH] = ρ(∆,`, jC, jH)O∆,`, jC, jH , (3.7)

where the eigenvalue ρ(∆,`, jC, jH) is given by

ρ(∆,`, jC, jH) = ρb(∆,`, jC, jH) + 4∆− jC( jC + 1)− jH( jH + 1),

ρb(∆,`, jC, jH) =∆(∆− 3) + `(`+ 1).
(3.8)
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Table 4: Short N = 4 multiplets that contain conserved currents.

Name Alias Superconformal primary Other important primaries

B[0](0;0)
0 Identity multiplet Identity operator

B[0](2;0)
1 Flavor current multiplet Moment map operator Flavor current

B[0](0;2)
1

A[0](0;0)
1

Stress tensor multiplet Dimension-1 R-singlet scalar
R-symmetry current

Stress tensor

A[2`](0;0)
`+1 Higher spin multiplet spin-` R-singlet current Higher spin current

3.2 Z2 outer automorphism

The 3d N = 4 superconformal algebra has a Z2 outer automorphism that exchanges SU(2)C
with SU(2)H. This outer automorphism has a close relation to mirror symmetry of 3d N = 4
theories. Mirror symmetry is a duality between two UV QFTs in the sense that they flow to
the same IR CFT. The Coulomb and the Higgs branch R-symmetries in the UV are embedded
in the opposite way into the IR R-symmetries. The outer automorphism is the action of mirror
symmetry that exchanges which SU(2) R-symmetry we call Coulomb, and the other Higgs.
Note that the Z2 outer automorphism is generally not a global symmetry of the theory.

The supercharges QαAȦ are in the (2,1) ⊕ (1,2) = 4 representation of
SU(2)C × SU(2)H = SO(4)R. We will use the index M for the 4 of SO(4)R, and write the
supercharge as QαM. The stress tensor Tµν is a conformal primary but a superconformal de-

scendant of the bottom component scalar O1,0,0,0 of the multiplet A[0](0;0)
1 . More explicitly,

they are related by

Tµν =N εM1M2M3M4(σµ)
α1α2(σν)

β1β2 Qα1M1
Qα2M2

Qβ1M3
Qβ2M4

O1,0,0,0 , (3.9)

where N is a normalization constant. The Z2 outer automorphism exchanges SU(2)C with
SU(2)H, and hence is a reflection in O(4) = SO(4)R oZ2. In particular, the Z2 outer automor-
phism flips the sign of εM1M2M3M4 . This implies that in a self-mirror theory where this Z2 is a
true global symmetry, the superconformal primary O1,0,0,0 of the stress tensor multiplet is Z2
odd, while the stress tensor itself Tµν is of course Z2 even.21

3.3 Single-branch superconformal blocks

The moment map operators in B[0](2;0)
1 form a spin-1 representation of SU(2)C, and can be

written as a rank-2 symmetric traceless tensor in spinor indices, OAB
C (x). It contracts with

auxiliary SU(2)C spinors Y A as OC(x , Y ) = OAB
C (x)YAYB. The four-point function of OC(x , Y )

is a homogeneous function of degree (−4, 8),




OC(x1, Y1)OC(x2, Y2)OC(x3, Y3)OC(x4, Y4)
�

=
(Y1 · Y2)2(Y3 · Y4)2

x2
12 x2

34

GC(u, v; w), (3.10)

where the cross ratios u, v and w are defined as

u=
|x12|2|x34|2

|x13|2|x24|2
, v =

|x14|2|x23|2

|x13|2|x24|2
, w=

(Y1 · Y2)(Y3 · Y4)
(Y1 · Y4)(Y2 · Y3)

. (3.11)

21One can verify this in N = 8 theories where the Z2 self-mirror symmetry is embedded in the SO(8)R symmetry.
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The function G(u, v; w) can be expanded in terms of the single-branch superconformal blocks
as

GC(u, v, w) =
∑

X=L,A,B

∑

∆,`, jC

λ2

X [2`](2 jC;0)
∆

AX [2`](2 jC;0)
∆

(u, v, w). (3.12)

Similarly, the moment map operators in B[0](0;2)
1 are denoted by OH(x , eY ), where eY Ȧ is an

auxiliary SU(2)H spinor. The four-point function of OH(x , eY ) admits a similar single-branch
superconformal block expansion as

〈OH(x1, eY1)OH(x2, eY2)OH(x3, eY3)OH(x4, eY4)〉=
(eY1 · eY2)2(eY3 · eY4)2

x2
12 x2

34

GH(u, v; ew),

GH(u, v, ew) =
∑

X=L,A,B

∑

∆,`, jH

λ2

X [2`](0;2 jH;)
∆

AX [2`](0;2 jH)
∆

(u, v, ew).
(3.13)

By the Z2 outer automorphism, the single-branch superconformal blocks AX [2`](2 j;0)
∆

and

AX [2`](0;2 j)
∆

are the same functions, i.e.

AX [2`](2 j;0)
∆

(u, v, w) =AX [2`](0;2 j)
∆

(u, v, w)≡AX [2`]2 j
∆
(u, v, w), (3.14)

and they were originally computed in [25,44].

3.4 Mixed-branch superconformal blocks

Now, consider the four-point function of two OC and two OH operators,

〈OC(x1, Y1)OC(x2, Y2)OH(x , eY3)OH(x , eY4)〉

=

�

(Y1 · Y2)(eY3 · eY4)
|x12||x34|

�2

Gs(u, v) =

�

(Y2 · Y3)(eY1 · eY4)
|x23||x14|

�2

Gt(v, u),
(3.15)

which can be expanded in terms of either the s-channel mixed-branch superconformal blocks
or the t-channel mixed-branch superconformal blocks

Gs(u, v) =
∑

X=L,A,B

∑

∆,`, jC, jH

λ
C,C,X [2`](2 jC;2 jH)

∆

λH,H,X [2`](0;0)
∆

As
X [2`](0;0)

∆

(u, v),

Gt(u, v) =
∑

X=L,A,B

∑

∆,`, jC, jH

λ2

C,H,X [2`](2 jC;2 jH)
∆

At

X [2`](2 jC;2 jH)
∆

(u, v).
(3.16)

The s- and t-channel mixed-branch superconformal blocks can be computed by solving the
super-Casimir equations. We first strip off the auxiliary variables Y and eY in (3.15), and find

〈OC
++(x1)OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)〉=
1

|x12|2|x34|2
Gs(u, v) =

1
|x23|2|x14|2

Gt(v, u). (3.17)

The commutators of the Casimir operator (3.6) with OC
++O

C
−− and OH

+̇+̇O
C
−− give differential

operators acting on the functions Gs(u, v) and Gt(u, v),

〈[C ,OC
++(x1)OC

−−(x2)]OH
+̇+̇(x3)OH

−̇−̇(x4)〉=
1

|x12|2|x34|2
CsGs(u, v),

〈[C ,OH
+̇+̇(x1)OC

−−(x2)]OC
++(x3)OH

−̇−̇(x4)〉=
1

|x12|2|x34|2
C t Gt(u, v).

(3.18)
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Expanding the above equations in terms of the mixed-branch superconformal blocks gives the
Casimir equations

CsAs

X [2`](2 jC;2 jH)
∆

(u, v) = ρ(∆,`, jC, jH)As

X [2`](2 jC;2 jH)
∆

(u, v),

C tAt

X [2`](2 jC;2 jH)
∆

(u, v) = ρ(∆,`, jC, jH)As

X [2`](2 jC;2 jH)
∆

(u, v).
(3.19)

The differential operators Cs and C t are computed in Appendix B. We solve the above Casimir
equations by expanding the mixed-branch superconformal blocks in terms of the N = 2 su-
perconformal blocks, i.e.

As

X [2`](2 jC;2 jH)
∆

= f s
0,0G

N=2
∆,` + f s

1
2 ,− 1

2
GN=2
∆+ 1

2 ,`− 1
2
+ f s

1
2 , 1

2
GN=2
∆+ 1

2 ,`+ 1
2

+ f s
1,−1G

N=2
∆+1,`−1 + f s

1,0G
N=2
∆+1,` + f s

1,1G
N=2
∆+1,`+1

+ f s
3
2 ,− 1

2
GN=2
∆+ 3

2 ,`− 1
2
+ f s

3
2 , 1

2
GN=2
∆+ 3

2 ,`+ 1
2
+ f s

2,0G
N=2
∆+2,`,

At

X [2`](2 jC;2 jH)
∆

= f t
0,0G

N=2
∆,` + f t

1
2 ,− 1

2
GN=2
∆+ 1

2 ,`− 1
2
+ f t

1
2 , 1

2
GN=2
∆+ 1

2 ,`+ 1
2

+ f t
1,−1G

N=2
∆+1,`−1 + f t

1,0G
N=2
∆+1,` + f t

1,1G
N=2
∆+1,`+1

+ f t
3
2 ,− 1

2
GN=2
∆+ 3

2 ,`− 1
2
+ f t

3
2 , 1

2
GN=2
∆+ 3

2 ,`+ 1
2
+ f t

2,0G
N=2
∆+2,`,

(3.20)

where the N = 2 superconformal blocks GN=2
∆,` were computed in [79]. Their expansion in

terms of the bosonic conformal blocks is given by

GN=2
∆,` = G∆,` + f N=2

1,1 G∆+1,`+1 + f N=2
1,−1 G∆+1,`−1 + f N=2

2,0 G∆+2,`, (3.21)

with the following coefficients22

f N=2
1,1 =

(`+ 1)(∆+ `)2

2(2`+ 1)(∆+ `)(∆+ `+ 1)
,

f N=2
1,−1 =

`(∆− `− 1)2

2(2`+ 1)(∆− `− 1)(∆− `)
,

f N=2
2,0 =

∆2(∆+ `)2(∆− `− 1)2

4(2∆+ 1)(2∆− 1)(∆+ `)(∆+ `+ 1)(∆− `− 1)(∆− `)
.

(3.22)

The bosonic conformal blocks are normalized as

G∆,`(u, v)→
(ε)ε
(`+ ε)ε

u
∆−`

2 (1− v)` (3.23)

in the limit u → 0 then v → 1, where (x)n = Γ (x + n)/Γ (x) is the Pochhammer symbol and
ε= (d − 2)/2= 1/2.

3.4.1 s-channel

It is straightforward to solve the s-channel Casimir equation. The long multiplet block is given
by

As
L[2`](0;0)

∆

= GN=2
∆,` + f s

1,−1G
N=2
∆+1,`−1 + f s

1,1G
N=2
∆+1,`+1 + f s

2,0G
N=2
∆+2,`, (3.24)

22Note that due to the difference in the normalization of the bosonic block, (3.23) versus (65) of [79], the
coefficients (3.22) are different from the coefficients given by (67) of [79].
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where the coefficients are

f s
1,1 = −

(`+ 1)(∆+ `)
2(2`+ 1)(∆+ `+ 1)

, f s
1,−1 = −

`(−∆+ `+ 1)
2(2`+ 1)(`−∆)

,

f s
2,0 =

(∆+ 1)2(−∆+ `+ 1)(∆+ `)
4(2∆+ 1)(2∆+ 3)(`−∆)(∆+ `+ 1)

.
(3.25)

The short multiplet blocks are

As
A[2`](0;0)

`+1

= GN=2
`+1,` −

1
4
GN=2
`+2,`+1,

As
B[0](0;0)

0

= 1.
(3.26)

3.4.2 t-channel

The t-channel Casimir equation admits the following classes of solutions,

At

X [2`](2 jC;2 jH)
∆

= GN=2
∆,` with jC( jC + 1) + jH( jH + 1) = 2∆,

At

X [2`](2 jC;2 jH)
∆

= GN=2
∆+ 1

2 ,`+ 1
2

with jC( jC + 1) + jH( jH + 1) =∆− `−
1
2

,

At

X [2`](2 jC;2 jH)
∆

= GN=2
∆+ 1

2 ,`− 1
2

with jC( jC + 1) + jH( jH + 1) =∆+ `+
1
2

,

At

X [2`](2 jC;2 jH)
∆

= GN=2
∆+1,` with jC( jC + 1) + jH( jH + 1) = 0,

At

X [2`](2 jC;2 jH)
∆

= GN=2
∆+1,`−1 with jC( jC + 1) + jH( jH + 1) = 2`.

(3.27)

There are several constraints on the possible superconformal blocks. First, the dimension,
spin and R-charges are constrained by the unitarity bounds (3.5). Second, by the Lorentz
and R-symmetry selection rules, the operators that appear in the OH

+̇+̇ ×OC
−− OPE must have

jC = − jH = 1, and ` ∈ Z. Hence, they must all be superconformal multiplets X [2`](2 jC;2 jH)
∆ with

`, jC and jH being all integers or all half integers. Third, the superconformal primaries that ap-
pear in the OH

+̇+̇×O
C
−− OPE must be in the ( jC, jH) = (1, 1) representation of SU(2)C×SU(2)H;

hence, the first line of (3.27) can only take value ∆= 2 and `= 0.
The superconformal block belonging to the first line of (3.27) is

At
B[0](2;2)

2

= GN=2
2,0 . (3.28)

The superconformal blocks belonging to the second line of (3.27) are

At
A[2`](1;1)

`+2

= GN=2
`+ 5

2 ,`+ 1
2

with ` ∈ Z≥0 +
1
2

,

At
L[2`](3;1)

`+4

=At
L[2`](1;3)

`+4

= GN=2
`+ 11

2 ,`+ 1
2

with ` ∈ Z≥0 +
1
2

,

At
L[2`](3;3)

`+8

= GN=2
`+ 17

2 ,`+ 1
2

with ` ∈ Z≥0 +
1
2

.

(3.29)

The superconformal blocks belonging to the third line of (3.27) are

At
A[1](3;1)

7
2

=At
A[1](1;3)

7
2

= GN=2
4,0 ,

At
A[3](3;3)

11
2

= GN=2
6,1 ,

At
L[1](3;3)

13
2

= GN=2
7,0 .

(3.30)
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Finally, the superconformal blocks belonging to the fourth line of (3.27) are

At
A[2`](0;0)

`+1

= GN=2
`+2,`,

At
A[2](2;0)

3

=At
A[2](0;2)

3

= GN=2
4,0 ,

At
A[4](2;2)

5

= GN=2
6,1 ,

At
A[6](4;0)

6

=At
A[6](0;4)

6

= GN=2
7,2 ,

At
A[8](4;2)

8

=At
A[8](2;4)

8

= GN=2
9,3 ,

At
A[12](4;4)

11

= GN=2
12,5 ,

At
L[2`](0;0)

∆

= GN=2
∆+1,` with ∆> `+ 1, ` ∈ Z≥0,

At
L[2](2;0)

∆

=At
L[2](0;2)

∆

= GN=2
∆+1,0 with ∆> 3,

At
L[4](2;2)

∆

= GN=2
∆+1,1 with ∆> 5,

At
L[6](4;0)

∆

=At
L[6](0;4)

∆

= GN=2
∆+1,2 with ∆> 6,

At
L[8](4;2)

∆

=At
L[8](2;4)

∆

= GN=2
∆+1,3 with ∆> 8,

At
L[12](4;4)

∆

= GN=2
∆+1,5 with ∆> 11.

(3.31)

4 The protected sector

In [22, 31, 32], the authors showed that every three-dimensional N = 4 SCFT admits a pro-
tected sector as a topological quantum mechanics (TQM), which lives on a straight line in
the three dimensional Euclidean space R3. The operators in the TQM are either the Coulomb
or Higgs branch chiral ring operators with suitable twisting, where the translation along the
straight line is accompanied with certain SU(2)C or SU(2)H rotations. The correlation func-
tions of these operators depend only on the ordering of the operators on the straight line but
not their positions. This implies that the OPE along the straight line forms an associative al-
gebra, which is called the protected associative algebra. Crossing symmetry of the four-point
function amounts to associativity of the protected associative algebra.

The multiplication of the Coulomb or Higgs branch chiral ring operators in the protected
associative algebra is a non-commutative deformation of the commutative chiral ring multi-
plication. It was observed in [31] that the leading order deformation is determined by the
Poisson bracket of the chiral ring; hence, the protected associative algebra is a deformation
quantization of the chiral ring.

When the Coulomb or Higgs branch of a given theory coincides with the minimal nilpotent
orbit of a complex simple Lie algebra g (except g = sl2), the protected associative algebra is
unique [31]. We will study these theories by two equivalent approaches in Sections 4.1 and 4.2.
In Section 4.1, we consider the crossing equations of the four-point function of the moment
map operators in the TQM, and derive analytical bounds on the flavor central charges and
other OPE coefficients. We dub this approach the “mini-bootstrap”. We find that the minimal
nilpotent theories sit at the kinks of the allowed regions, where the values of the charges nicely
agree with the ones computed in Section 2 and Appendix A by localization. In Section 4.2, we
study the deformation quantization of the chiral ring of the minimal nilpotent theories. Using
associativity, we fix the coefficients in the protected associative algebra up to quadratic order.
We also compute the four-point function of the moment map operators using the protected
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associative algebra, and find agreement with the four-point function computed using mini-
bootstrap.

4.1 Mini-bootstrap

Consider a three dimensional N = 4 SCFT with a simple flavor group G, which is generated
by the flavor currents in the flavor current multiplets. Without loss of generality, we assume
these flavor current multiplets are of type B[0](2;0)

1 (as opposed to B[0](0;2)
1 ). The moment

map operators OC
a (x , Y ) are in the adjoint representation of the flavor group G, and have the

four-point function




OC
a (x1, Y1)OC

b(x2, Y2)OC
c (x3, Y3)OC

d (x4, Y4)
�

=
(Y1 · Y2)2(Y3 · Y4)2

x2
12 x2

34

Gabcd(u, v; w). (4.1)

The four-point function simplifies when all the four-points are along a straight line and with
a suitable twisting by the R-symmetry rotation. More precisely, we consider

OC
a (s)≡OC

a (x = (0, 0, s), Y = (1, s/2r)), (4.2)

so that the four-point function becomes



OC
a (s1)OC

b(s2)OC
c (s3)OC

d (s4)
�

= Gabcd(uw, vw; w). (4.3)

In the above, r is a dimensionful parameter to make the combination s
2r dimensionless; we

define

Yi · Yj =
1
2r
(si − s j), w=

s12s34

s14s23
, u= uw ≡

w2

(1+w)2
, v = vw ≡

1
(1+w)2

. (4.4)

The function Gabcd(uw, vw; w) has a very simple superconformal block expansion. In general,
the fusion of two flavor current multiplets B[0](2;0)

1 gives

B[0](2;0)
1 ×B[0](2;0)

1 = B[0](0;0)
0 +B[0](2;0)

1 +B[0](4;0)
2 +

∞
∑

`=0

A[2`](0;0)
`+1

+
∞
∑

`=0

A[2`](2;0)
`+2 +L[2`](0;0)

∆ .

(4.5)

However, in the particular configuration (4.3), the long multiplet blocks and the A-type short
multiplet blocks vanish identically, and the B-type short multiplet blocks only depend on the
ordering of the si . More explicitly, we have

Gabcd (uw, vw; w)

= Pabcd
1 AB[0](0;0)

0
(uw, vw; w) + Pabcd

adj λ
2
B[0](2;0)

1 ,adj
AB[0](2;0)

1
(uw, vw; w)

+
�

Pabcd
1 λ2

B[0](4;0)
2 ,1

+ Pabcd
2adj λ

2
B[0](4;0)

2 ,2adj

+
∑

i

Pabcd
R(S,i)

λ2
B[0](4;0)

2 ,R(S,i)

�

AB[0](4;0)
2
(uw, vw; w)

= δabδcd − 2Pabcd
adj λ

2
B[0](2;0)

1 ,adj
sgn(s12s34s13s24)

+ 6
�

Pabcd
1 λ2

B[0](4;0)
2 ,1

+ Pabcd
2adj λ

2
B[0](4;0)

2 ,2adj
+
∑

i

Pabcd
R(S,i)

λ2
B[0](4;0)

2 ,R(S,i)

�

,

(4.6)
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where the Pabcd
adj , Pabcd

2adj and Pabcd
R(S,i)

are projection matrices defined in Appendix C, and we have

assumed that in the OC
a ×OC

b OPE, the identity multiplet must be in the trivial representation
of the flavor group, and the flavor current multiplets must be in the adjoint representation.

Defining

GRi
(u, v; w) =

1
dim(Ri)

Pdcba
Ri

Gabcd(u, v; w), (4.7)

the crossing equation of the four-point function (4.1) can be written as

Fi
jGR j

(u, v; w) =
u

vw2
GRi
(v, u; w−1), (4.8)

where Fi
j is the crossing matrix defined in Appendix C. After the specialization (4.2), the

bootstrap equation reduces to
Fi

jGR j
= GRi

, (4.9)

where the GRi
can be computed by use of (4.6) and (4.7),

G1 = dim(G) + 6λ2
B[0](4;0)

2 ,1
, Gadj = −2λ2

B[0](2;0)
1 ,adj

, G2adj = 6λ2
B[0](4;0)

2 ,2adj
,

GR(S,i)
= 6λ2

B[0](4;0)
2 ,R(S,i)

, GR(A,i)
= 0.

(4.10)

For simple Lie groups, we find that the coefficients λ2
B[0](4;0)

2 ,1
and λ2

B[0](4;0)
2 ,R(S,i)

are determined

by the coefficients λ2
B[0](2;0)

1 ,adj
and λ2

B[0](4;0)
2 ,2adj

via the crossing equation (4.9). Unitarity gives

the positivity conditions
λ2
B[0](4;0)

2 ,1
, λ2

B[0](4;0)
2 ,R(S,i)

≥ 0 , (4.11)

which give bounds on λ2
B[0](2;0)

1 ,adj
and λ2

B[0](4;0)
2 ,2adj

. The bounds for flavor groups G = SU(2),

SU(3), G2, and E6 are given in Figure 2, where the shaded region is ruled out.
The maximal nilpotent orbit condition is

λ2
B[0](4;0)

2 ,1
= 0, (4.12)

which combines with the positivity conditions (4.11) gives a line segment in the λ2
B[0](2;0)

1 ,adj
-

λ2
B[0](4;0)

2 ,2adj
plane. As discussed in Section 2, the T[G] theories are examples of theories on

this line segment.
The minimal nilpotent orbit condition is

λ2
B[0](4;0)

2 ,1
= λ2

B[0](4;0)
2 ,R(S,i)

= 0. (4.13)

For G = SU(2), the equation (4.9) and the conditions (4.13) give a linear relation

λ2
B[0](4;0)

2 ,2adj
=

1
5

�

1+λ2
B[0](2;0)

1 ,adj

�

. (4.14)

As discussed in Section 2, the examples of theories on this line are the Z2 gauge field coupled
to a free hypermultiplet, the SQED with N f = 2, and the U(2)2×U(1)−2 ABJ theory. For other
simple Lie groups, the equation (4.9) and the conditions (4.13) uniquely determine λ2

B[0](2;0)
1 ,adj

and λ2
B[0](4;0)

2 ,2adj
. The results are given in Table 5. The OPE coefficient λ2

B[0](2;0)
1 ,adj

is related

to the flavor central charge CJ by a general formula

λ2
B[0](2;0)

1 ,adj
=

8h∨

CJ
. (4.15)
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Table 5: Values of the flavor central charge CJ and the OPE coefficient λ2
B[0](4;0)

2 ,2adj

fixed by the minimal nilpotent orbit condition and solved by mini-bootstrap.

G An−1, n≥ 3 Bn Cn Dn E6 E7 E8 F4 G2

CJ
8n

n+1
8(2n−3)

n 4 32(n−2)
2n−1

192
13

384
19

960
31 12 64

9

λ2
B[0](4;0)

2 ,2adj

2(n+1)(n+2)
3n(n+3)

n(2n−1)
2(n+1)(2n−3) 1 2n2−3n+1

4n2−6n−4
13
27

95
216

217
540

14
27

2
3

4.2 Deformation quantization

Let va be a vector in the adjoint representation of a simple Lie algebra g. The coordinate ring
A of the minimal nilpotent orbit of g is

A= C[va]/{vava = 0, vavb(ΓR(S,i)
)

I(S,i)

ab = 0}, (4.16)

where R(S,i) are the representations appeared in the symmetric tensor product (adj ⊗ adj)S
that are not 2adj, and (ΓR(S,i)

)
I(S,i)

ab are the associated Clebsch-Gordan coefficients. The Poisson
bracket on the minimal nilpotent orbit is

{va, vb}P.B = f abc vc . (4.17)

We consider the deformation quantization algebra of the chiral ring A. The algebra is a
commutative ring A[r−1] equipped with an associative star product

? : A[r−1]⊗A[r−1]→A[r−1]. (4.18)

The star product satisfies the conditions

[ f (v), g(v)]? =
1
2r
{ f (v), g(v)}P.B,

f (v) ? g(v) = f (v)g(v) +
1
4r
{ f (v), g(v)}P.B +O(r−2).

(4.19)

The star product of two va takes the general form as

va ? vb = (Γ2adj)
ab
α vα +

1
4r

f abc vc +
1

4r2
λ2δ

ab,

va ? vα = (Γ3adj)
aα
A vA+

1
2r
(Γ2adj)

bc
α f abd vd vc +

1
4r2

eλ2(Γ2adj)
ab
α vb,

(4.20)

where λ2 and eλ2 are coefficients to be determined, vα and vA are defined by

vα ≡ (Γ2adj)
α
abvavb,

vA ≡ (Γ3adj)
A
aαvavα,

(4.21)

and (Γ3adj)Aaα for A= 1, · · ·dim(3adj) are the Clebsch-Gordan coefficients of the decomposition
adj⊗ 2adj ⊃ 3adj with the normalization

(Γ3adj)
A
aα(Γ3adj)

B
aα = δ

AB. (4.22)

Contracting the first equation of (4.20) with (Γ2adj)αab, we find

vα = (Γ2adj)
α
abva ? vb. (4.23)
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U(2)2xU(1)-2 ABJ and

SQED with Nf=2

free hyper/Z2

3 6 9
λB[0]1

(2;0)
2

0.3

0.6

0.9

λB[0]2
(4;0),2adj

2
SU(2)

SQED with Nf=3

T[SU(3)]

3 6 9
λB[0]1

(2;0)
2

0.3

0.6

0.9

λB[0]2
(4;0),2adj

2
SU(3)

T[G2]

3 6 9
λB[0]1

(2;0)
2

0.3

0.6

0.9

λB[0]2
(4;0),2adj

2
G2

T3

T[E6]

3 6 9
λB[0]1

(2;0)
2

0.3

0.6

0.9

λB[0]2
(4;0),2adj

2
E6

Figure 2: Analytic bounds from the mini-bootstrap equations (4.10) and the posi-
tivity conditions (4.11). The shaded regions are ruled out. The solid red lines are
the maximal nilpotent condition (4.12). The dashed lines show the values of the
OPE coefficient λ2

B[0](2;0)
1 ,adj

determined via (4.15) by the central charges computed

in Section 2 for various theories.

Let us try to fix λ2 and eλ2 by imposing associativity. Consider

va ? (vb ? vc) = (va ? vb) ? vc

= (Γ2adj)
ab
β

�

(Γ3adj)
cβ
A vA−

1
2r
(Γ2adj)

de
β f cd f v f ve +

1
4r2

eλ2(Γ2adj)
cd
β vd

�

+
1
4r

f abd(Γ2adj)
dc
β vβ +

1
16r2

f abd f dceve +
1

4r2
λ2δabvc ,

(4.24)

where we have used the commutators

[va, vα]? =
1
2r
{va, vα}=

1
2r
(Γ2adj)

α
bc{v

a, vbvc}

=
1
r
(Γ2adj)

α
bc f abd vd vc =

1
r
(Γ2adj)

α
bc f abd(Γ2adj)

dc
β vβ .

(4.25)

Contracting (4.24) with the Clebsch-Gordan coefficients (C.4), the O(r−2) order of the equa-

28

https://scipost.org
https://scipost.org/SciPostPhys.10.4.097


SciPost Phys. 10, 097 (2021)

tion gives

eλ2(Γ1)bc(Γ2adj)
ab
β (Γ2adj)

ce
β +

1
4
(Γ1)bc f abd f dce +λ2(Γ1)ae = λ2dim(G)(Γ1)ae,

eλ2(Γ2adj)
α
bc(Γ2adj)

ab
β (Γ2adj)

ce
β +

1
4
(Γ2adj)

α
bc f abd f dce +λ2(Γ2adj)

α
ae = eλ2(Γ2adj)

ae
α ,

eλ2(ΓR(S,i)
)

I(S,i)

bc (Γ2adj)
ab
β (Γ2adj)

ce
β +

1
4
(ΓR(S,i)

)
I(S,i)

bc f abd f dce +λ2(ΓR(S,i)
)

I(S,i)
ae = 0,

eλ2(Γadj)
f
bc(Γ2adj)

ab
β (Γ2adj)

ce
β +

1
4
(Γadj)

f
bc f abd f dce +λ2(Γadj)

f
ae =

1
4
(Γadj)

f
bc f bcd f ade,

eλ2(ΓR(A,i)
)

I(A,i)

bc (Γ2adj)
ab
β (Γ2adj)

ce
β +

1
4
(ΓR(A,i)

)
I(A,i)

bc f abd f dce +λ2(ΓR(A,i)
)

I(A,i)
ae = 0,

(4.26)

which can be rewritten in terms of the crossing matrices defined in (C.6) as

eλ2F1
2adj +

h∨

2
F1

adj +λ2 = λ2dim(G),

eλ2F2adj
2adj +

h∨

2
F2adj

adj +λ2 = eλ2,

eλ2FR(S,i)
2adj +

h∨

2
FR(S,i)

adj +λ2 = 0,

eλ2Fadj
2adj +

h∨

2
Fadj

adj +λ2 =
h∨

2
,

eλ2FR(A,i)
2adj +

h∨

2
FR(A,i)

adj +λ2 = 0.

(4.27)

For SU(2), these equations reduce to

3− 6λ2 + 5eλ2 = 0. (4.28)

For the other simply Lie groups, λ2 and eλ2 are uniquely determined. The results are summa-
rized in Table 6.

Table 6: The leading coefficients in the deformation quantization algebra of the chiral
ring of the minimal nilpotent theories.

G An−1, n≥ 3 Bn Cn Dn E6 E7 E8 F4 G2

λ2 − n
4(n+1) −2n−3

4n −1
8 − n−2

2n−1 − 6
13 −12

19 −30
31 −3

8 −2
9

eλ2 − n+2
n+3 −3(2n−1)

4(n+1) −3
4 −3n−3

2n+1 −4
3 −5

3 −7
3 −7

6 −8
9

For each homogeneous polynomial p(v), there is an associated chiral ring operator O f (v).
The correlation functions of these operators in the topological quantum mechanics can be
computed by taking the constant term of the start product as



Op1(v)(s1) · · ·Opn(v)(sn)
�

= (2r)
1
2 (d1+···+dn)C.T.(p1(v) ? · · · ? pn(v)) with s1 ≥ · · · ≥ sn,

(4.29)
where di is the degree of the polynomial pi(v), and C.T.(· · · ) denotes the constant term of
(· · · ). The moment map operators are given by

Oa =O
eva , eva =

1
p

λ2

va. (4.30)
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Using the star products (4.20), we compute the four-point function of the moment map oper-
ator Oa,



Oa(s1)Ob(s2)Oc(s3)Od(s4)
�

= (2r)4C.T.(eva ? evb ? evc ? evd)

= δabδcd +
h∨

2λ2
Pabcd

adj +
(2r)4

dim(2adj)
C.T.(vα ? vα)Pabcd

2adj .
(4.31)

Comparing (4.31) with (4.6) and using (4.15), we find the relation

CJ = −32λ2, (4.32)

which perfectly agrees with Table 5 and Table 6.

5 Superconformal bootstrap

5.1 Coulomb-Higgs mixed correlators and Z2 outer automorphism

This subsection sets up the bootstrap equations for the four-point function of flavor current
multiplets. We begin by considering the mixed correlator system that involves one flavor cur-
rent in each of SU(2)C and SU(2)H, with some focus on the effect of theZ2 outer automorphism
that exchanges SU(2)C and SU(2)H on the bootstrap, and then set up the bootstrap system for
the most general flavor symmetry group.

5.1.1 U(1)× U(1) flavor symmetry

Let us consider the four-point functions involving U(1) flavor current multiplets B[0](2;0)
1 and

B[0](0;2)
1 (0, 2, or 4 of each):

〈OC(x1, Y1)OC(x2, Y2)OH(x , eY3)OH(x , eY4)〉

=

�

(Y1 · Y2)(eY3 · eY4)
|x12||x34|

�2

Gs(u, v) =

�

(Y2 · Y3)(eY1 · eY4)
|x23||x14|

�2

Gt(v, u),

〈OC(x1, Y1)OC(x2, Y2)OC(x , Y3)OC(x , Y4)〉=
�

(Y1 · Y2)(Y3 · Y4)
|x12||x34|

�2

GC(u, v, w),

〈OH(x1, eY1)OH(x2, eY2)OH(x , eY3)OH(x , eY4)〉=
�

(eY1 · eY2)(eY3 · eY4)
|x12||x34|

�2

GH(u, v, ew).

(5.1)

The four-point functions can be expanded in terms of the various superconformal blocks as

Gs(u, v) =
∑

X=L,A,B

∑

∆,`

λC,C,X [2`](0;0)
∆
λH,H,X [2`](0;0)

∆
As

X [2`](0;0)
∆

(u, v),

Gt(u, v) =
∑

∆,`, jC, jH

λ2

C,H,L[2`](2 jC;2 jH)
∆

At
∆,`, jC, jH

(u, v),

GC(u, v, w) =
∑

X=L,A,B

∑

∆,`, jC

λ2

C,C,X [2`](2 jC;0)
∆

AX [2`](2 jC;0)
∆

(u, v, w),

GH(u, v, ew) =
∑

X=L,A,B

∑

∆,`, jH

λ2

H,H,X [2`](0;2 jH)
∆

AX [2`](0;2 jH)
∆

(u, v, ew),

(5.2)

where by the Z2 outer automorphism,

AX [2`](0;2 j)
∆

(u, v, w) =AX [2`](2 j;0)
∆

(u, v, w). (5.3)
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Putting the above together gives the crossing equations

v
∑

X=L,A,B

∑

∆,`

λC,C,X [2`](0;0)
∆
λH,H,X [2`](0;0)

∆
As

X [2`](0;0)
∆

(u, v)

= u
∑

∆,`, jC, jH

λ2

C,H,L[2`](2 jC;2 jH)
∆

At
∆,`, jC, jH

(v, u),

∑

X=L,A,B

∑

∆,`, jC

λ2

C,C,X [2`](2 jC;0)
∆

FX [2`](2 jC;0)
∆

(u, v, w) = 0,

∑

X=L,A,B

∑

∆,`, jH

λ2

H,H,X [2`](0;2 jH)
∆

FX [2`](0;2 jH)
∆

(u, v, ew) = 0,

(5.4)

where the functions FX [2`](2 jC;0)
∆

(u, v, w) and FX [2`](0;2 jH)
∆

(u, v, ew) are

FX [2`](2 j;0)
∆

(u, v, w) = FX [2`](0;2 j)
∆

(u, v, w)

≡ vwAX [2`](0;2 j)
∆

(u, v, w)−
u
w
AX [2`](0;2 j)

∆

(v, u, w−1).
(5.5)

These equations comprise a mixed system by the fact that λC,C,X [2`](0;0)
∆

and λH,H,X [2`](0;0)
∆

are

common coefficients. A more explicit form of (5.4) is given in (D.1).

5.1.2 Mirror symmetry and the Z2 outer automorphism

We are particularly interested in theories where the Z2 outer automorphism that exchanges the
SU(2)C with SU(2)H is a true global symmetry of the theory. For j ≡ jC = jH, let us denote a Z2

even/odd intermediate multiplet as X [2`]( j, j)∆,± , respectively. When the Z2 outer automorphism
is a global symmetry, the OPE coefficients are related as

λC,C,X [2`]( j, j)∆,±
= ±λH,H,X [2`]( j, j)∆,±

,

λ
C,C,X [2`](2 jC,2 jH)

∆

= λ
H,H,X [2`](2 jH,2 jC)

∆

, for jH 6= jC.
(5.6)

Assuming the Z2 symmetry, the crossing equation (5.4) becomes

v
∑

X

∑

∆,`

�

λ2
C,C,X [2`](0;0)

∆,+

−λ2
C,C,X [2`](0;0)

∆,−

�

As
X [2`](0;0)

∆

(u, v)

= u
∑

∆,`, jC, jH

λ2

C,H,L[2`](2 jC;2 jH)
∆

At
∆,`, jC, jH

(v, u),

∑

X

∑

∆,`

∑

jC 6=0

λ2

C,C,X [2`](2 jC;0)
∆

FX [2`]2 jC
∆

(u, v, w)

+
∑

X

∑

∆,`

�

λ2
C,C,X [2`](0;0)

∆,+

+λ2
C,C,X [2`](0;0)

∆,−

�

FX [2`]2 jC
∆

(u, v, w) = 0 .

(5.7)

A more explicit form of (5.7) is given in (D.2).
Every solution to (5.7) can clearly be lifted to a solution to the more general crossing

equation (5.4) (not assuming Z2 symmetry), so the bootstrap constraints imposed by the Z2
symmetric (5.7) are no weaker than those imposed by the general (5.4). On the other hand,
every solution λ to the more general crossing equation (5.4) induces a Z2 symmetric solution
λ̃ to (5.7), by

λ̃C,C,X [2`](0;0)
∆,±
=

1
2

�

λC,C,X [2`](0;0)
∆
±λH,H,X [2`](0;0)

∆

�

,

λ̃2
C,C,X [2`](2 j;0)

∆

=
1
2

�

λ2
C,C,X [2`](2 j;0)

∆

+λ2
H,H,X [2`](0;2 j)

∆

�

, for j 6= 0 ,

λ̃C,H,L = λC,H,L .

(5.8)
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The lesson here is that we can always construct a Z2 symmetric correlator that solves the
crossing equations (5.7) from a non-symmetric one. Therefore, the crossing equations (5.7)
can be used to constrain the quantities on the right hand sides of (5.8) even for theories without
the Z2 symmetry.23

But then, how do we test whether a theory we want to bootstrap truly has this additional
Z2 global symmetry?

The answer is as follows. If the Z2 outer automorphism is a true symmetry, then in an
interacting theory without further global symmetry (in addition to the Z2), we do not expect
the Z2 even spectrum to coincide with the Z2 odd spectrum. In other words, we expect a
collection of the Z2 even states to not have a Z2 odd “partner” with the same ∆,`, r, and vice
versa. By contrast, the induced solution (5.8) to the crossing equations (5.7) from a generic
solution to the crossing equations (5.4) has no relation between λCC and λHH, so the Z2 even
and odd contributions appear together for most if not all ∆,`, r.

In conclusion, the hallmark of a genuinely Z2 symmetric four-point function is that a col-
lection of the Z2 even states do not have Z2 odd “partners” with the same ∆,`, r, or vice versa.

As will be described in the next subsection, the spectrum of multiplets contributing to the
four-point function can be fully determined by the bootstrap if we extremize an OPE coefficient.
Testing the extremal spectrum against the above criterion allows us to verify whether the
Z2 outer automorphism is a genuine symmetry of the extremal theory. In the field theory
context, the Z2 outer automorphism becomes a genuine symmetry when the theory has a UV
construction that is self-mirror.

5.1.3 GC × GH flavor symmetry

Let us consider the four-point functions analogous to (5.1), but for GC flavor current multiplets
B[0](2;0)

1 and GH flavor current multiplets B[0](0;2)
1 . The crossing equations are

1
u

∑

X

∑

∆,`

λC,C,X [2`](0;0)
∆ ,1λH,H,X [2`](0;0)

∆ ,1A
s
X [2`](0;0)

∆

(u, v)

=
1
v

∑

∆,`, jC, jH

λ2

C,H,L[2`]( jC; jH)
∆

At
∆,`, jC, jH

(v, u),

∑

X

∑

∆,`, jC

∑

r′∈adjC⊗adjC

λ2

C,C,X [2`](2 jC;0)
∆ ,r′C

FX [2`](2 jC;0)
∆ ,rC

r′C(u, v, w) = 0,

∑

X

∑

∆,`, jH

∑

r′H∈adjH⊗adjH

λ2

H,H,X [2`](0;2 jH)
∆ ,r′H

FX [2`](0;2 jH)
∆ ,rH

r′H(u, v, w) = 0,

(5.10)

where rC, rH denote representations of GC, GH, and we have defined

FX [2`](2 j;0)
∆ ,r

r′(u, v, w) = FX [2`](0;2 j)
∆ ,r

r′(u, v, w)

≡ Fr
r′ w

u
AX [2`](0;2 j)

∆

(u, v, w)−δr′
r

1
vw

AX [2`](0;2 j)
∆

(v, u, 1
w),

(5.11)

with Fr
r′ the crossing matrix (6j symbol) defined in appendix C. A more explicit form of (5.10)

is given in (D.3).

23However, for theories without the Z2 symmetry, the crossing equation (5.7) cannot constrain the linear com-
bination of the OPE coefficients

λ2

C,C,X [2`](2 j;0)
∆

−λ2

H,H,X [2`](0;2 j)
∆

, for j 6= 0. (5.9)
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When GC = GH, and when the Z2 outer automorphism that exchanges GC and GH is a
global symmetry, the crossing equations (5.10) reduce to

v
∑

X

∑

∆,`

�

λ2
C,C,X [2`](0;0)

∆,+ ,1
−λ2

C,C,X [2`](0;0)
∆,− ,1

�

As
X [2`](0;0)

∆

(u, v)

= u
∑

∆,`, jC, jH

λ2

C,H,L[2`](2 jC;2 jH)
∆

At
∆,`, jC, jH

(v, u),

∑

X

∑

∆,`

∑

jC 6=0

∑

r′C∈adjC⊗adjC

λ2

C,C,X [2`](2 jC;0)
∆ ,r′C

FX [2`]2 jC
∆ ,rC

r′C(u, v, w)

+
∑

X

∑

∆,`

∑

r′C∈adjC⊗adjC

�

λ2
C,C,X [2`](0;0)

∆,+ ,r′C
+λ2

C,C,X [2`](0;0)
∆,− ,r′C

�

FX [2`]2 jC
∆ ,rC

r′C(u, v, w) = 0 .

(5.12)

A more explicit form of (5.12) is given in (D.4).
Nonetheless, these crossing equations can also constrain theories without the Z2 symmetry,

as the discussion in Section 5.1.2 for the U(1) × U(1) case also applies to the general case:
any solution to the Z2 symmetric (5.12) can be lifted to a solution to the general (5.10).
Conversely, a solution to (5.10) induces a solution to (5.12), via (5.8). Thus, (5.12) constrains
the combinations of OPE coefficients appearing on the right hand sides of (5.8).

5.2 The linear functional method

The linear functional method is a powerful tool for constraining and solving unitary conformal
field theories. We give a schematic explanation of the method here, and refer the reader to
earlier papers by some of the authors for more details.

We act a vector valued linear functional α on the bootstrap equations (5.12), and the result
can be written schematically as

0=
∑

X ,r

λ2
X ,rα[K

r
X ]. (5.13)

Here, K involves A or F , X denotes the multiplet, and r denotes the flavor representation. A
linear functional that satisfies

α[K1
B[0](0;0)

0

] = −1, α[Kr
X ]≥ 0 for all X , r (5.14)

implies a bound on the OPE coefficients

λ2
X ,r ≤

1
α[Kr

X ]
. (5.15)

If we maximize α[KX ,J] while satisfying (5.14), we obtain the optimal upper bound on λ2
X ,J .

An extremal functional is one that maximizes α[Kr
X ], which we denote by αX ,r. If there

exists a four-point function that saturates the bound (5.15), then the OPE coefficients satisfy

0=
∑

(X ′,r′)6=(X ,r)

λ2
X ′,r′αX ,J[Kr′

X ′]. (5.16)

In light of (5.14), this means that the spectrum can be read off from the zeros of αX ,r[Kr′
X ′].

24

In practice, we perform the bootstrap in the following basis of linear functionals. Define z
and z̄ by

u= zz̄, v = (1− z)(1− z̄), (5.17)

24While it is often assumed that the extremal correlator is unique, there are situations where we explicitly know
this to be false. Nonetheless, we will assume that the spectrum is unique when the extremal theory is believed to
be interacting.
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so that crossing u↔ v is equivalent to (z, z̄)↔ (1− z, 1− z̄), and consider the space of linear
functionals at derivative order Λ:

α=
Λ
∑

m,n=0

αm,n∂
m

z ∂
n

z̄ |z=z̄= 1
2
, αm,n ∈ R. (5.18)

The optimal bound is obtained by extrapolation to infinite Λ.25 The semidefinite programming
computations are performed using the SDPB solver [80,81].

5.3 Numerical bounds

We are interested in the conformal central charge CT , the flavor central charge CC
J of the

Coulomb branch flavor group GC, and the flavor central charge CH
J of the Higgs branch flavor

group GH. They are related to the OPE coefficients by26

λ2
C,C,A[0](0;0)

1,− ,1
= λ2

H,H,A[0](0;0)
1,− ,1

=
24
CT

,

λ2
C,C,B[0](2;0)

1 ,adjC
=

8h∨GC

CGC
J

, λ2
H,H,B[0](0;2)

1 ,adjH
=

8h∨GH

CGH
J

.
(5.19)

For numerical efficiency, we focus on the bootstrap equations with Z2 symmetry (5.7) and
(5.12). One drawback is that we can only give bounds on the “average" flavor central charge
Cavg

J , given by

1

Cavg
J

=
1
2

�

1

CGC
J

+
1

CGH
J

�

. (5.20)

5.3.1 Single branch

Let us first investigate the bootstrap bounds obtained from the crossing equation of flavor cur-
rent multiplets with symmetry group G in a single branch. Indeed, there are many interesting
theories that only have Higgs branch flavor currents (charged under SU(2)H), but no Coulomb
branch ones (charged under SU(2)C). The left side of Table 7 lists the universal lower bounds
on CJ and CT for various choices of G. The G = An bounds on CJ is saturated by (Z2-gauged)
n free hypers, as described in Section 2.3. The authors are unaware of candidate theories or
correlators that saturate the other bounds.

A special class of theories satisfy the minimal nilpotent orbit condition, under which the
flavor central charge CJ is completely fixed by the minibootstrap program of Section 4.1. The
right side of Table 7 provides a list of the minimal (smallest CT ) known such theories for
various choices of G, and compares them with the corresponding bootstrap bounds on CT
with the minimal nilpotent orbit condition imposed. We observe the following.

• Free theories with n hypermultiplets saturate the minimal nilpotent CT bounds with
flavor symmetry Cn.

• Interacting minimal theories are consistent with but do not saturate the nilpotent CT
bounds. In fact, they have values of CT that lie very close to the bound, especially the T3
theory in the case of G = E6. Although these theories have no Coulomb branch moment

25We estimate the error of such an extrapolation by the the variation of results using different ansatze. We mark
the error of the last significant digit in parentheses following standard convention, in Table 7, (5.21) and (5.22).

26As explained in Section 3.2, the N = 4 superconformal primary of the stress tensor block is odd under the Z2

outer automorphism, though the stress tensor itself is even as is required by conformal Ward identities.
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map operators (N = 4 primaries of flavor current multiplets charged under SU(2)C),
they do have nontrivial Coulomb branches parameterized by the chiral operators of other
B-type multiplets, such as B[0](4;0)

3 . Therefore, in order to bootstrap these theories, it
may be necessary to consider the mixed correlator bootstrap with these higher B-type
multiplets included as external operators.

• It would be interesting to see if the SQED and SQCD theories saturate the bootstrap
bounds with U(1)× GH flavor symmetry. We leave this for future work.

Table 7: Single correlator bootstrap lower bounds on the conformal and flavor central
charges, both assuming and not assuming the minimal nilpotent orbit condition. Also
listed are theories that saturate or are close to saturating the bounds on (CT )min-nil.

G (CJ )min (CT )min (CJ )min-nil (CT )min-nil
min Reference theory CT

U(1) 6.02(3) 6.02(3)
C1
∼= A1 4.02(5) 9.0(1) ≥ 3.99(3) 11.9(2) Free hyper 12

C2
∼= B2 4.09(3) 17.8(1) 4 23.93(4) Free hyper 24

C3 4.04(4) 28.3(3) 4 35.7(2) Free hyper 36

A2 4.47(5) 14.93(6) 6 29.68(5) SQED with 3 hypers 34.5

A3 4.58(2) 20.1(2) 32
5 = 6.4 44.2(3) SQED with 4 hypers 46.3

B3 6.19(5) 29.7(5) 8 57.9(1) SU(2) SQCD with 72.1

7 fund half-hypers

E6 13.66(4) 102.0(9) 192
13 = 14.77 155.6(3) T3 160.2

E7 19.32(2) 167.6(6) 384
19 = 20.21 239.1(4)

E8 30.30(5) 304(5) 960
31 = 30.97 406.0(6)

F4 10.68(5) 70.1(9) 12 113.9(2)
G2 4.89(2) 19.3(1) 64

9 = 7.11 43.95(9)

5.3.2 GC = GH = U(1)

For the mixed branch bootstrap, the simplest flavor symmetry to consider is GC = GH = U(1).
In this case, we cannot access CJ (in the absence of a preferred normalization of the abelian
current), but can only bound CT . The result after extrapolating to infinite derivative order is

(CT )min = 12.0(2). (5.21)

This value comes close to that of a single free hypermultiplet. However, a single free hyper-
multiplet has only GH = SU(2) and no Coulomb branch, GC = empty, so it is not a candidate
for a Z2 symmetric four-point function; we cannot even apply the construction of adding Z2
images described in Section 5.1.2.

5.3.3 GC = GH = SU(2)

For GC = GH = SU(2) flavor symmetry, the allowed region in the CT − CJ plane is shown in
Figure 3, with and without imposing the minimal nilpotent orbit condition. For the former,
the self-mirror T[SU(2)] theory appears to sit at a (soft) corner. Certain BLG, ABJ, and ABJM
theories with this flavor symmetry are also included in the figure.
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Figure 3: Allowed region in the CT −CJ plane for GC = GH = SU(2) flavor symmetry,
at derivative order Λ= 32. The stronger (red) bounds are with the minimal nilpotent
orbit condition imposed, while the weaker (blue) bounds are without.

In Figure 4, we read off the extremal spectrum (in the OPE of moment map operators) from
the extremal functional at derivative orderΛ= 32. TheZ2 even and odd sectors appear to have
different spectra, providing evidence that the extremal four-point function has a genuine Z2
symmetry, per the discussion of Section 5.1.2. Moreover, it appears that the lightest multiplet
is Z2 odd, the second lightest is a Z2 doublet.27

5.3.4 GC = GH = SU(3)

For GC = GH = SU(3) flavor symmetry, the allowed regions in the CT − CJ plane are shown
in Figure 5, with and without imposing the maximal nilpotent orbit condition. The minimal
candidate SCFT with GC = GH = SU(3) flavor symmetry is the T[SU(3)] theory, whose CT and
CJ values are inside the allowed region, but do not appear to sit at the boundary. In Figure 6,
we extrapolate our lower bounds on CT with CJ = 8 fixed to infinite derivative order, and find

(CT )min = 51.7(4), (5.22)

which is far from the value CT = 75.5 of T[SU(3)].
If we instead impose the minimal nilpotent orbit condition, then we learn from the mini-

bootstrap of Section 4.1 that the flavor central charge is fixed to be CJ = 6. Fixing this value
of CJ , we find that the universal lower bound on the conformal central charge at derivative
order Λ= 28 is28

(CT )
min-nil
min = 36.9. (5.23)

27Since our data is insufficient for reliable precision study, we do not provide numerical values for the scaling
dimensions of multiplets appearing in the OPE of moment map operators. Moreover, the lightest Z2 odd multiplet
may not actually exist, if the corresponding zero of the extremal functional converges towards the unitarity bound
as Λ→∞. If existent, then it would be interesting to study the deformation by this Z2-odd relevant operator.

28Since we do not have a reference theory/value in mind, we choose to present the rigorous bound at the highest
derivative order that we have achieved in the bootstrap analysis, instead of the extrapolated result. Thus there is
no extrapolation error here, and we keep three significant digits because the next digit changes between Λ = 24
and Λ= 28, and would likely change further for Λ> 28 giving stronger bounds.
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Figure 4: Extremal functional α[K1
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] for GC = GH = SU(2) flavor symmetry

with CJ =
16
3 fixed and CT minimized at derivative order Λ = 32. Shown here are

the sectors that are singlet under the flavor symmetry, and even or odd under the Z2
outer automorphism. The zeros correspond to the scaling dimensions appearing in
the OPE of B[0](2;0)

0 and B[0](0;2)
0 in the T[SU(2)] theory. The mismatch between

the Z2 even and odd sectors indicates that the Z2 is a true global symmetry in the
extremal theory.
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Figure 5: Allowed region in the CT −CJ plane for GC = GH = SU(3) flavor symmetry,
at derivative orderΛ= 28. The stronger (red) bounds are with the maximal nilpotent
orbit condition imposed, while the weaker (blue) bounds are without.

6 Conclusion

In this work we utilized the non-perturbative methods of the conformal bootstrap and super-
symmetric localization, together with special properties of 3d N = 4 such as mirror symmetry
and a protected subsector described by topological quantum mechanics (TQM), to obtain uni-
versal constraints on 3d N = 4 superconformal field theories. A key ingredient in the bootstrap
analysis was the determination of the mixed-branch superconformal blocks. The main results
are summarized as follows:

• We studied the single branch bootstrap with flavor symmetry G = U(1), G = ABC of
low ranks, and G = EFG. Free theories with n hypermultiplets appeared to saturate the
universal lower bounds on CT with G = Cn and the minimal nilpotent orbit condition
imposed. Other theories that came relatively close to saturating the bounds were the
SQED with n + 1 hypers to G = An and the T3 theory to G = E6. We highlight these
values below:
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Figure 6: Lower bounds on CT with CJ = 8 fixed to be the value for the T[SU(3)]
theory, for derivative order 12≤ Λ≤ 28, and extrapolated to infinite Λ. Also shown
is the actual value of CT = 75.5 for T[SU(3)].

G (CT )min-nil
min Reference theory CT

C1
∼= A1 11.9(2) Free hyper 12

C2
∼= B2 23.93(4) Free hyper 24

C3 35.7(2) Free hyper 36

A2 29.68(5) SQED with 3 hypers 34.5

A3 44.2(3) SQED with 4 hypers 46.3

E6 155.6(3) T3 160.2

• For the mixed branch bootstrap with flavor symmetry GC = GH = SU(2), we found that
the T[SU(2)] theory sits at a corner in the allowed region in the CT − CJ plane. The
spectrum is read off from the extremal functional, and the mismatch between the even
and odd sectors indicated that the Z2 outer automorphism is a true global symmetry in
T[SU(2)] (it cannot be reproduced by certain spurious Z2 symmetric solutions to the
crossing equations).

• For the mixed branch bootstrap with flavor symmetry GC = GH = SU(3), we found that
the T[SU(3)] theory sits in the interior of the allowed region in the CT − CJ plane.

The framework developed here can readily be applied to a wider range of flavor symmetries
and assumptions, including self-mirror theories beyond SU(2) and SU(3) flavor factors, and
non-self-mirrors situations with GC 6= GH or GC = GH but different flavor central charges.
In particular, many of the known theories that came close to (but not quite) saturating our
single-branch bootstrap bounds have at least U(1) flavor symmetry in the other branch, whose
incorporation into bootstrap may bring the theories (closer) to actual saturation.

Another promising direction is to explore bounds on certain protected OPE coefficients
beyond the TQM sectors.29 For example, the OPE coefficient for the B[0](2;2)

2 operator that
appears in the OPE of one Higgs branch and one Coulomb branch moment map operator is
not captured by the Higgs branch or Coulomb branch TQM sector, but is part of the chiral ring
data of the theory viewed as an N = 2 SCFT. In particular, when the SCFT has a UV gauge
theory description, this OPE coefficient may accessed from taking multiple derivatives of the
(appropriately deformed) S3 partition function with respect to mass and FI parameters at the
same time. This provides additional input to refine our exploration of mirror symmetry.

29We thank Silviu Pufu for an interesting comment on this point.
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Futhermore, the application of the analytic bootstrap [82–85] or the OPE inversion formula
[86–88] can shed light on interesting limits of 3d N = 4 superconformal field theory, that may
be relevant for AdS/CFT.

One can also consider the four-point functions of chiral operators beyond moment map
operators, to study theories without continuous flavor symmetry. For non-self-mirror theories
such as the 3d Minahan-Nemeschansky theories, the incorporation of the Coulomb branch
protected algebra (which no longer involve moment map operators) will be important to im-
prove the bootstrap bounds. Another obvious avenue for future exploration is the bootstrap
analysis of the four-point function of the stress-tensor multiplet. In particular, the most min-
imal known theories [89] have no chiral operators, and are inaccessible by the study of such
four-point functions. Some superconformal blocks that are necessary in the bootstrap of these
more general four-point functions have been computed in [45,90].
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A Localization computation of the central charges

In this appendix, we provide detailed formulae for computing the conformal and flavor central
charges, CT and CJ , of 3dN = 4 superconformal field theories, derived from the matrix models
obtained by supersymmetric localization [21,52–57]. Using these formulae, we obtain explicit
analytic expressions for these central charges in certain classes of theories.

A.1 Double-sine functions and derivatives

We first start by introducing the main players, the double sine functions, and their various
properties. The double sine functions were introduced in [91, 92], and are closely related to
Barnes’ double-gamma functions [93] (see also [94]). They are most straightforwardly defined
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using their infinite product form,

S2(z|ω1,ω2) =
∞
∏

n1,n2=0

z + n1ω1 + n2ω2

−z + (n1 + 1)ω1 + (n2 + 1)ω2
. (A.1)

However, for our purposes in the following, the integral expression is more useful: for 0< Reω j
and 0< Re z < Re |ω1 +ω2|,

S2(z|ω1,ω2) = exp

�

πi
2

B2,2(z|ω1,ω2) +

∫

C

d`
`

ez`

(eω1` − 1)(eω2` − 1)

�

. (A.2)

The integration contour C is along the real axis except near the (essential) singularity at the
origin where it runs along an infinitesimal half-circle in the upper half plane, and the multiple
Bernoulli function B2,2(z|ωi) is given by

B2,2(z|ω1,ω2) =
z2

ω1ω2
−
ω1 +ω2

ω1ω2
z +

ω2
1 +ω

2
2 + 3ω1ω2

6ω1ω2
. (A.3)

Some useful identities are

S2(cz|cω1, cω2) = S2(z|ωi),

S2(x |ω1,ω2) = S2(ω1 +ω2 − x |ω1,ω2)
−1,

S2(x |ω1,ω2)S2(−x |ω1,ω2) = −4 sin
πx
ω1

sin
πx
ω2

.

(A.4)

In the (round) limit ωi → 1, we have

S2(±i x + 1/2|1, 1)≡ S2(i x + 1/2|1,1)S2(−i x + 1/2|1,1) = 2coshπx . (A.5)

Throughout this paper, S2(±z) is understood as the product S2(z)S2(−z).
As we are interested in computing the conformal central charges from the squashed S3

partition function, we shall define

S2(z|b)≡ S2(z|b, b−1), and Q ≡ b+ b−1. (A.6)

Furthermore, we are required to take derivatives of the double sine functions with respect to
the squashing parameter b. This is most conveniently done using the explicit integral expres-
sion (A.2), and one can explicitly compute

∂b|b=1 S2(z|b) = 0, ∂b|b=1 S2(z +Q/4|b) = 0. (A.7)

The non-trivial contributions will come from ∂ 2
b acting on S2(z|b), namely,

∂ 2
b

�

�

b=1 S2(z|b)
S2(z|1)

=
π (2π(z − 2)(z − 1)z + (3z − 2) sin 2πz)

6sin2πz
,

∂ 2
b

�

�

b=1 S2(z +Q/4|b)
S2(z +Q/4|1)

=
π2
�

8z3 − 12z2 − 2z + 3
�

−π(6z + 1) sin 2πz

24 cos2πz
.

(A.8)

For instance, we can now immediately conclude

2
∂ 2

b

�

�

b=1 S2(Q/4|b)
S2(Q/4|1)

=
π2

4
, (A.9)
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leading to CT = 12 for the free hypermultiple using the formula (2.15). The generalization to
n free hypermultiplets follows immediately, CT = 12n.

Finally, we remark that the matrix model integrals possess a z → −z symmetry, so the
following combinations are useful:

∂ 2
b

�

�

b=1 S2(z|b)
S2(z|1)

+
∂ 2

b

�

�

b=1 S2(−z|b)
S2(−z|1)

=
πz(−2πz + sin 2πz)

sin2πz
∂ 2

b

�

�

b=1 S2(z +Q/4|b)
S2(z +Q/4|1)

+
∂ 2

b

�

�

b=1 S2(−z +Q/4|b)
S2(−z +Q/4|1)

=
π(π− 4πz2 − 2z sin 2πz)

4cos2πz
.

(A.10)

A.2 Squashed S3 partition function

Before we proceed with the evaluation of the conformal and flavor central charges, let us
briefly recall the explicit localization results for N = 4 (Lagrangian) theories on the squashed
S3 background (2.28) [21,52–57] (see also [58]). The contribution to the matrix model arising
from N = 4 vector multiplets associated to a gauge group H is given by

Zvector
b =

1
|W |

∫

t

dσ
∏

α∈∆+∪∆−
S2(iα(σ)|b)≡

1
|W |

∫

t

dσ
∏

α∈∆+
4sinh (πbα(σ)) sinh

�

πb−1α(σ)
�

,

(A.11)
where we integrate over the Cartan subalgebra t ⊂ h = Lie H, ∆± is the set of all posi-
tive/negative roots of H, W is the Weyl group of H, and in the second equality we used the
third identity in (A.4).

Additionally, the contribution from N = 4 hypermultiplets in a representation (RGUV
, RH)

of the maximal subgroup GUV ×H ⊂ USp(2n) to the localized path integral is given by

Zhyper
b =

∏

ρ∈RGUV

∏

ρ̂∈RH

1
S2(±iρ(m)± iρ̂(σ) +Q/4|b)

, (A.12)

where the products are over the weights. Here GUV is the flavor symmetry realized by the
gauged hypermultiplets and the dependence on m encodes CJ (GUV).

As will be used in the following, we remark that in the round limit b→ 1, the hypermulti-
plet contribution reduces to

Zhyper
b=1 =

∏

ρ∈RGUV

∏

ρ̂∈RH

1
2coshπ(ρ(m)± ρ̂(σ))

, (A.13)

where we used the identity in (A.5).
Finally, we may add Fayet-Iliopoulos parameters to our theory which serve as mass pa-

rameters for topological U(1) symmetries. Namely, for a theory of gauge group G, we may
introduce

Z F I
b = e−2πi

∑

a ηaσa , (A.14)

where the sum is taken to run over each (UV) abelian factor in h.
To get the full partition function of a Lagrangian N = 4 theory with masses for flavor sym-

metries, we put the above expressions together and integrate over the gauge group according
to (A.11).

A.3 Computation of CT

We now proceed to provide some details on the explicit evaluation of the conformal central
charge CT for various N = 4 SCFTs by using its relation to derivatives with respect to the
squashing parameter of the squashed S3 partition function as expressed in the formula (2.15).
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SQED with k unit charge hypermultiplets

The squashed S3 partition function of the N = 4 SQED theory, with quiver

U(1) k (A.15)

is given by

ZSQEDk
b =

∫

R
dσ

1

[S2(±iσ+Q/4|b)]k
. (A.16)

Thus, using the central charge formula (2.15) as well as the relation (A.8), we get

CT (SQEDk) = −
48
π2

1

ZSQEDk
b

∂ 2ZSQEDk
b

∂ b2

�

�

�

�

�

b=1

=
48
π2

k

ZSQEDk
b=1

∫

R

dσ
(2coshπσ)k

π(π+ 4πσ2 + 2σ sinh2πσ)
4cosh2πσ

.

(A.17)

Now, we briefly recall the result for ZSQEDk
b=1 [68], which can be computed for example by

summing over poles in the upper half-plane,

ZSQEDk
b=1 (mα) =

∫

R
dσ

e2πiησ
∏

α 2 coshπ(σ−mα)
=

1
in−1(eπη − (−1)ne−πη)

n
∑

α=1

e2πimαη
∏

β 6=α 2 sinhπ(mαβ)
,

(A.18)
where we turned on mass parameters mα for when we compute CJ and an FI parameter η
which acts as a regulator. Then, together with following integration identities,

∫

R

2πσ sinhπσdσ
(2 coshπσ)k+1

=

∫

R

dσ
k(2coshπσ)k

,

∫

R

dσ
(2 coshπσ)k

=
Γ
� k

2

�

p
π2kΓ

� k+1
2

� ,

∫

R

(2πσ)2dσ
(2coshπσ)k+2

=
4

π(k+ 2)

Γ (2+ k
2)

2Γ (1, k+2
2 )

Γ (3+ k)
,

(A.19)

we find

CT (SQEDk) =
12
�

2k2ψ(1)
� k

2 + 1
�

+
�

π2k+ 4
�

k+ 4
�

π2(k+ 1)
, (A.20)

where ψ(1)(z)≡ d
dz
Γ ′(z)
Γ (z) is the z-derivative of the digamma function.

SU(2) SYM with k fundamental half-hypermultiplets

We now compute the conformal central charge for the 3d N = 4 SU(2) theory with k > 4
fundamental half-hypermultiplets, i.e.

SU(2) k (A.21)
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This theory has an SO(k) global symmetry. Given the general rules outlined in the previous
subsection, the localized squashed sphere partition function of that theory reads

ZSQCDk
b =

∫

R

dσ
2

4 sinh2(2πσ)

[S2(±iσ+Q/4|b)]k
. (A.22)

Using the central charge fomula (2.15), and recalling the general insertion rule in (A.10) for
computing derivatives, we end up with the following expression

CT (SQCDk) =
48
π2

1

ZSQCDk
b=1

∫

R

dσ
2

4sinh2(2πσ)
(2coshπσ)k

�

k
π(π+ 4πσ2 + 2σ sinh2πσ)

4cosh2πσ

+
πσ(2πσ− sinh 2πσ)

sinh2πσ

�

.

(A.23)

Evaluating the round sphere partition function yields

ZSQCDk
b=1 =

22−kΓ
� k

2 − 2
�

p
πΓ
� k−1

2

� , (A.24)

and repeatedly applying the integral identities in equation (A.19), we end up with

CT (SQCDk) =
12

π2(k− 4)(k− 2)(k− 1)

�

n
�

π2(k− 4)(k− 2) + 12k− 20
�

(k− 4)

+ 2(k− 2)(3k− 2)(k− 4)2ψ(1)
�

k− 2
2

�

+ 48

�

.

(A.25)

T[SU(3)] from gauging T[SU(2)]

As discussed in Section 2.4, the T[SU(3)] theory can be described by the quiver [41,43,65]

U(1) U(2) 3 (A.26)

Thus, it is obtained from gauging the SU(2)× U(1) flavor symmetry of the T[SU(2)] theory
(i.e. SQEDk=2) and three additional hypermultiplets in the doublet representation of U(2).
The localized squashed S3 partition function is then given by

Z T[SU(3)]
b =

∫

R

du1du2

2!

∏

j<`

S2(±iu j`|b)
Z T[SU(2)]

b (u12/2)
∏2

j=1 S2(±iu j +Q/4|b)3
, (A.27)

where

Z T[SU(2)]
b (u) =

∫

R
dσ

1
S2(±iσ+ iu+Q/4|b)S2(±iσ− iu+Q/4|b)

, (A.28)

and where we used the shorthand u12 = u1 − u2. Then, using the CT formula (2.15) and the
identities in (A.10), we get the following expression for the central charge

CT (T[SU(3)]) =
48
π2

1

Z T[SU(3)]
b=1

∫

R

du1du2

2!
4 sinh2(πu12)
∏

j(2coshπu j)3
Z T[SU(2)]

b=1 (u12/2)

×
�

3
∑

j

π(π+ 4πu2
j + 2u j sinh 2πu j)

4cosh2πu j
−
πu12(−2πu12 + sinh2πu12)

sinh2πu12

−
1

Z T[SU(2)]
b=1

∂ 2Z T[SU(2)]
b=1

∂ b2

�

�

�

�

�

b=1

�

,

(A.29)
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where we can by the same methods evaluate

−
∂ 2Z T[SU(2)]

b (u)

∂ b2

�

�

�

�

�

b=1

=
π

6
(1+ 6u2) sinh 4πu− 4πu(1+ 4u2)

sinh3 2πu
, (A.30)

and we further have the solutions for the round sphere (see e.g. [68,69])

Z T[SU(2)]
b=1 (u) =

u
sinh2πu

, Z T[SU(3)]
b=1 =

1
16π3

. (A.31)

Putting the pieces together, we can numerically evaluate the the pieces in (A.29) to get30

CT (T[SU(3)]) = 75.5329. (A.32)

T3 from gauging three T[SU(3)] theories

The (mirror of the) 3d T3 theory can be obtained by gauging three T[SU(3)] theories [95]
(see also [96]), i.e.31

U(1) U(2) SU(3) U(2) U(1)

U(2)

U(1)

(A.33)

Thus, the localized squashed S3 partition function of the T3 (mirror) theory is given by

Z T3
b =

∫

R

∏3
j=1 dv j

3!
δ
�∑

j

v j

�∏

k<`

4 sinh2(πvk`)
�

Z T[SU(3)]
b (~v)

�3
, (A.34)

with notation as above and where Z T[SU(3)]
b (v j) is the (Higgs branch) mass deformed squashed

S3 T[SU(3)] partition function, i.e.

Z T[SU(3)]
b (~v) =

∫

R

du1du2

2!

∏

`<k

S2(±iu`k|b)
Z T[SU(2)]

b (u12/2)
∏3
`,k=1 S2(±i(u` + vk) +

Q
4 |b)

. (A.35)

In the round limit, this is evaluates to [68,69]

Z T[SU(3)]
b=1 (~v) =

v12v13v23

16sinh (πv12) sinh (πv13) sinh (πv23)
. (A.36)

Again, using our trusty CT formula (2.15) and the identities in (A.10), we find

CT (T3) = −
48
π2

1

Z T3
b=1

∫

R

∏3
j=1 dv j

3!
δ
�∑

j

v j

�∏

k<`

4sinh2(πvk`)
�

Z T[SU(3)]
b=1 (~v)

�3

×

 

∑

k<`

πvk`(sinh(2πvk`)− 2πvk`)

sinh2πvk`
+

3

Z T[SU(3)]
b=1 (~v)

∂ 2Z T[SU(3)]
b (~v)

∂ b2

�

�

�

�

�

b=1

!

,

(A.37)

30All the numerical integrals throughout this paper are evaluated using Mathematica with 6 significant digits.
31There are alternative constructions; for example the proposals in [97,98] suggest N = 1 Lagrangian descrip-

tions.
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where (similar to before) we can write

−
∂ 2Z T[SU(3)]

b (~v)

∂ b2

�

�

�

�

�

b=1

=

∫

R

du1du2

2!

4 sinh2(πu12)Z
T[SU(2)]
b=1 (u12/2)

∏

k,` 2 coshπ(uk + v`)

×
�

∑

k,`

π(π+ 4π(uk + v`)2 + 2(uk + v`) sinh 2π(uk + v`))

4cosh2π(uk + v`)

−
πu12(sinh 2πu12 − 2πu12)

sinh2πu12
+
π
��

3u2
12/2+ 1

�

sinh(2πu12)− 2πu12

�

u2
12 + 1

��

3u12 sinh2πu12

�

.

(A.38)

We can now numerically evaluate the required integrals. However, we can do better; namely,
we can explicitly evaluate the second and third term in (A.38). To do so, let us first define the
following quantity

F(η) =

∫

R
d y1d y2

e2πiηy12

2 sinhπy12
∏2

i=1

∏n
α=1 2coshπ(yi −mα)

, (A.39)

which is convergent for generic η 6= 0 and (mildly) divergent at η = 0 (F ′(η) is well-defined
everywhere). Thus, we may use the Fourier transform of the distribution

1
sinhπx

= i

∫

d y e−2πi xa2 tanhπa, (A.40)

and write

F(η) =
i
2

∫

d y1d y2da
e2πi(η−a)y122 tanhπa

∏2
i=1

∏n
α=1 2coshπ(yi −mα)

. (A.41)

This can be thought of as an analytic continuation (analogous to Principal Value regularization)
of (A.39) which is now well-defined for arbitrary η. We remark that the integrand contains
two factors of the SQEDn integral in equation (A.18), and thus (after a change of variables)
we may explicitly evaluate those contributions to find

F(η) =
i

8 sinh2πη

∑

α,β

mαβ sinh(2πη)− sin(2πmαβη)

sinhπmαβ
∏

i 6=α 2 sinhπmαi
∏

j 6=β 2 sinhπmβ j
. (A.42)

With the quantity F(η) in hand, the integral of the second and third terms in equation
(A.38) can be expressed in terms of the function (A.39) as follows

π

3

�

F(−i)− F(i) + 2iF ′(0)
�

+
1

8π

�

F ′′(−i)− F ′′(i)
�

+
i

3π
F ′′′(0). (A.43)

Then, the explicit numerical evaluation of (A.37) gives

CT (T3) = 160.246. (A.44)

Type IIk(n+ 1) Chern-Simons matter theories

So far we focused on 3d SCFTs which have UV descriptions that involve no Chern-Simons cou-
plings. Now, we consider the U(1)k ×U(1)−k Chern-Simons matter theories of type IIk(n+ 1)
[59], which in N = 4 language are described by one vector multiplet and n unit-charge hy-
permultiplets, one twisted vector multiplet and one unit-charge twisted hypermultiplet, with
a BF coupling (between the vector and twisted vector multiplets) of even level k.
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For illustration, we focus on the IIk(3) theories, i.e. we fix n= 2. The squashed S3 partition
function is

Z IIk(3)
b (m) =

∫

R
dσdτ

e−kiπστ

S2(±iσ+Q/4|b)2S2(±iτ+Q/4|b)

=

∫

R
dσ

1
S2(±iσ+Q/4|b)2S2(±ikσ/2+Q/4|b)

,

(A.45)

where in the second equality above we have used the Fourier transformation identity for the
double-sine functions in [99]. Using the central charge formula (2.15) and the relation (A.8),
we find

CT (IIk(3)) = −
48
π2

1

ZCS
b

∂ 2ZCS
b

∂ b2

�

�

�

�

�

b=1

=
48
π2

1

ZCS
b=1

∫

R

dσ

(2coshπσ)2(2 cosh πkσ
2 )

�

2π(π+ 4πσ2 + 2σ sinh 2πσ)
4cosh2πσ

+

+
π(π+ k2πσ2 + kσ sinhπkσ)

4 cosh2 πkσ
2

�

= 34.5463, 34.7619, 35.0577, 35.2887, . . .

(A.46)

for k = 2,4, 6,8, . . . .

A.4 Computation of CJ

Now, let us turn to the evaluation of the flavor central charges CJ for a variety of examples.
We shall use the formula (2.46), which relates mass deformations of the round S3 partition
function to the flavor central charge.

Free hypermultiplets

Let us start by considering k free hypermultiplets, for which we turn on the following mass ma-
trix M= Diag (m1, m2, . . . , mk,−mk, . . . ,−m2,−m1) ∈ USp(2k). Then, it follows immediately
from (A.13), that

F(M) =
k
∑

i=1

log2 cosh(πmi), (A.47)

and therefore, using (2.46), we conclude

CUSp(2k)
J (hyperk) = 4. (A.48)

In case we are interested in their SU(k) ⊂ USp(2k) flavor symmetry, then the minimal achiev-
able CJ for free hypermultiplets is

C SU(k)
J (hyperk) =

¨

CUSp(4)
J (hyper2) = 4, k = 2,

ISU(k),→USp(2k)C
USp(2k)
J (hyperk) = 8, k > 2,

(A.49)

where as before we denote by I the embedding index.

Z2 gauged k hypermultiplets

The USp(2k) 1-instanton moduli space is C2k/Z2, and can be realized by k Z2 gauged hyper-
multiplets. However, since discrete gauging does not affect local correlators of Z2 invariant
operators, we get

CUSp(2k)
J (hyperk/Z2) = 4, (A.50)

i.e., the free field value.
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SQED with k unit charge hypermultiplets

Let us now turn to the next example: the 3d N = 4 SQED with k unit charge hypermultiplets.
The mass-deformed S3 partition function is already computed in (A.18), where now the mass
matrix is given by M = Diag (m1, . . . , mk,−mk, . . . ,−m1) ∈ USp(2k) subject to

∑k
i=1 mi = 0

(note that k ≥ 2 to satisfy this constraint). The formula (2.46) then gives

C SU(k)
J (SQEDk) =

8k
k+ 1

. (A.51)

Notice that in the large k limit, this formula reproduces (A.48). Moreover, for given flavor
symmetry SU(k), the interacting theory obtained in the infrared of the SQED has smaller CJ
than the one realizable by free theories. This means that the bootstrap gives us access to
interacting theories despite the fact that we cannot exclude higher spin conserved currents
from the onset.

SU(2) SYM with k fundamental hypermultiplets

Now, let us consider 3d N = 4 SU(2) gauge theories with k fundamental hypermultiplets; their
Higgs branches have SO(2k) flavor symmetry and are described by the 1-instanton moduli
space of SO(2k). The mass deformed S3 partition function is then given by

ZSQCD2k
b=1 (m) =

∫

R
dσ

sinh2(2πσ)
∏k

i=1 4coshπ(±σ+mi)
, (A.52)

where MSO(2k) = Diag (m1, . . . , mk,−mk, . . . ,−m1). The formula (2.46) then gives

C SO(2k)
J (SQCD2k) =

32(k− 2)
2k− 1

. (A.53)

Notice that here we take k ≥ 3, otherwise the quiver is not good (ugly or bad in the sense
of [43]) and the naive S3 partition function diverges.

SU(2) SYM with k fundamental hypermultiplets and an additional half-hypermultiplet

If we include an additional half-hypermultiplet in the doublet representation to the gauge
theory described in the previous example, we obtain a Higgs branch with SO(2k + 1) flavor
symmetry, described by the 1-instanton moduli space of SO(2k+ 1).

Then, the SO(2k+ 1) mass deformed S3 partition function for this theory reads

ZSQCD2k+1
b=1 =

∫

R
dσ

sinh2(2πσ)

2cosh(πσ)
∏k

i=1 4 coshπ(±σ+mi)
, (A.54)

where MSO(2k+1) = Diag (m1, . . . , mk, 0,−mk, . . . ,−m1). Thus, the formula (2.46) gives

C SO(2k+1)
J (SQCD2k+1) =

16(2k− 3)
2k

. (A.55)

Notice that here we take k ≥ 2, since otherwise the naive S3 partition function diverges. Thus,
together we find that for 3d N = 4 SU(2) SYM with n half-hypermultiplets in the doublet
representation, the flavor central charge is given by32

C SO(n)
J (SQCDn) =

16(n− 4)
n− 1

. (A.56)

32It is also easy to see that the central charge CJ of the SU(k) ⊂ SO(2k) subgroup is bigger than the ones in
(2.52).
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Affine quiver gauge theories

Finally, let us turn to the T3 theory; The mass-deformed partition function was computed
in [68,69], and for convenience we shall recall it here,

Z T3
b=1

�

~m(1), ~m(2), ~m(3)
�

=
1

3!
∏3
α=1

∏

`< j 2sinhπm(α)
` j

×
∑

ρ(α)∈S3

(−1)
∑

αρ
(α)
�∑

α

m(α)
ρ(α)(1)

�

coth
�∑

α

m(α)
ρ(α)(1)

�

coth
�∑

α

m(α)
ρ(α)(3)

�

,
(A.57)

where S3 is the symmetric group and the mass parameters are turned on for SU(3)3 ⊂ E6.
Then, we immediately find

F
�

�

M2 =
12
13
π2

3
∑

i,α=1

�

m(α)i

�2
. (A.58)

Then, using the formula (2.46), we conclude that the SU(3) central charge is

C SU(3)
J (T[SU(3)]) =

192
13

. (A.59)

The E6 representation, 27, decomposes into SU(3) representations as follows

27→ (3,1,3)⊕ (3,3,1)⊕ (1,3,3). (A.60)

Furthermore, we have the following quadratic indices of the representation (see e.g. [100])

TE6
(27) = 3, TSU(3)(3) =

1
2

, TSU(3)(1) = 0. (A.61)

Then, the embedding index is given by

ISU(3),→E6
=

6TSU(3)(3) + 9TSU(3)(1)

TE6
(27)

= 1, (A.62)

and we conclude that

C E6
J (T3) = C SU(3)

J (T[SU(3)]) =
192
13

. (A.63)

Type IIk(n+ 1) Chern-Simons matter theories

The U(1)k × U(1)−k Chern-Simons matter theory of type IIk(n + 1) [59] with even k has a
Higgs branch of quaternionic dimension n from the hypermultiplets, and a Coulomb branch
given by C2/Zk/2+n from the twisted hypermultiplets. The Higgs and Coulomb branch flavor
symmetries are SU(n)× U(1) and U(1), respectively. For k = 2, the Higgs branch symmetry
is enhanced to SU(n+ 1) and the theory is known to flow to the same IR SCFT as the SQED
with n+ 1 flavors.

Here, we consider the type IIk(3) Chern-Simons matter theories with GH = SU(2)× U(1)
and focus on the SU(2) factor. The SU(2)-mass deformed S3 partition function is

Z IIk(3)
b=1 (m) =

∫

R
dσdτ

e−kiπστ

8coshπ(±σ+m) cosh(πτ)

=

∫

R
dσ

1
8coshπ(±σ+m) cosh(πkσ/2)

,

(A.64)

giving rise to

C SU(2)
J (IIk(3)) =

8
∫

d x sech4(πx) sech(πkx/2)
∫

d x sech2(πx) sech(πkx/2)
= 6, 6.65633, 7.06667, 7.3258, . . . (A.65)

for k = 2,4, 6,8 . . . .
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B Derivation of the superconformal Casimir equations

In this appendix we detail the derivation of the superconformal Casimir equations for the s-
and t-channels of the mixed Coulomb and Higgs branch four-point functions.

B.1 s-channel

We first consider the four-point function

〈OC(x1, Y1)OC(x2, Y2)OH(x , eY3)OH(x , eY4)〉=
�

(Y1 · Y2)(eY3 · eY4)
|x12||x34|

�2

Gmixed(u, v), (B.1)

where the operators OC(x , Y ) and OH(x , eY ) are defined as

OC(x , Y ) = Y A1 · · ·Y AkOC
A1···Ak

(x), OH(x , eY ) = eY Ȧ1 · · · eY ȦkOH
Ȧ1···Ȧk

(x), (B.2)

whereOC
A1···Ak

(x) andOH
Ȧ1···Ȧk

(x) are Coulomb branch and Higgs branch operators, respectively.
For k = 2, we have

〈OC
++(x1)OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)〉=
1

|x12|2|x34|2
Gmixed(u, v), (B.3)

with the following cross ratios

u=
|x12|2|x34|2

|x13|2|x24|2
, v =

|x14|2|x23|2

|x13|2|x24|2
. (B.4)

Now, the Casimir operator acts on the four-point function as a differential operator, i.e.

〈[C ,OC
++(x1)OC

−−(x2)]OH
+̇+̇(x3)OH

−̇−̇(x4)〉=
1

|x12|2|x34|2
CsGmixed(u, v), (B.5)

and we may solve for the superconformal blocks via the (eigenvalue) equation

CsAs
∆,`, jC, jH

(u, v) = λCAs
∆,`, jC, jH

(u, v) . (B.6)

We can generically write the differential operator Cs as

Cs = Cs
b + Cs

SQ + Cs
R, (B.7)

where by the results by Dolan and Osborn [101], we can read off the piece from the bosonic
subalgebra,

Cs
b = 2z2(1− z)∂ 2 + 2z̄2(1− z̄)∂̄ 2 − 2(z2∂ + z̄2∂̄ ) + 2

zz̄
z − z̄

[(1− z)∂ − (1− z̄)∂̄ ]. (B.8)

Furthermore, for our purposes, the intermediate operators should be R-symmetry singlets, and
thus we have

Cs
R = 0. (B.9)

Thus, it remains to compute CSQ. The BPS conditions for the moment map operators are

[SαAȦ,OC
AB(0)] = [SαAȦ,OH

ȦḂ
(0)] = 0,

[Qα+Ȧ,OC
++(x)] = [Qα−Ȧ,OC

−−(x)] = 0,

[QαA+̇,OH
+̇+̇(x)] = [QαA−̇,OH

−̇−̇(x)] = 0,

(B.10)
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and the superconformal S-supercharge acts on a superconformal primary at position x as fol-
lows

[SαAȦ,O(x)] = −i xµε
ABεȦḂσαβµ [QβBḂ,O(x)], (B.11)

where we have used the commutators in (3.1) as well as

O(x) = ei x ·PO(0)e−i x ·P . (B.12)

To compute the differential operator CSQ, we consider

1
2
[SαAȦ,QαAȦ]OC

++(x1)OC
−−(x2)|0〉

=
¦

−i x12,µε
ȦḂσαβµ [Qβ−Ḃ,OC

++(x1)][Qα+Ȧ,OC
−−(x2)] + 8OC

++(x1)OC
−−(x2)

©

|0〉.
(B.13)

Now, given the following Ward identities

0= 〈{Qα++̇, [Qβ−−̇,OC
++(x1)]OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)}〉,

0= 〈{Qβ−+̇,OC
++(x1)[Qα+−̇,OC

−−(x2)]OH
+̇+̇(x3)OH

−̇−̇(x4)}〉,
(B.14)

we find
〈[Qβ−−̇,OC

++(x1)][Qα++̇,OC
−−(x2)]OH

+̇+̇(x3)OH
−̇−̇(x4)〉

+ 〈[Qβ−−̇,OC
++(x1)]OC

−−(x2)OH
+̇+̇(x3)[Qα++̇,OH

−̇−̇(x4)]〉

= −i(σµ)αβ∂x1,µ
〈OC
++(x1)OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)〉,
(B.15)

as well as
〈[Qβ−+̇,OC

++(x1)][Qα+−̇,OC
−−(x2)]OH

+̇+̇(x3)OH
−̇−̇(x4)〉

− 〈OC
++(x1)[Qα+−̇,OC

−−(x2)]OH
+̇+̇(x3)[Qβ−+̇,OH

−̇−̇(x4)]〉

= −i(σµ)αβ∂x2,µ
〈OC
++(x1)OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)〉.
(B.16)

Therefore, taking the x4→∞ limit we obtain

− i x12,µσ
αβ
µ 〈[Qβ−−̇,OC

++(x1)][Qα++̇,OC
−−(x2)]OH

+̇+̇(x3)OH
−̇−̇(x4)〉

∼ 2x12,µ∂x1,µ
〈OC
++(x1)OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)〉,
(B.17)

and
i x12,µσ

αβ
µ 〈[Qβ−+̇,OC

++(x1)][Qα+−̇,OC
−−(x2)]OH

+̇+̇(x3)OH
−̇−̇(x4)〉

∼ 2x21,µ∂x2,µ
〈OC
++(x1)OC

−−(x2)OH
+̇+̇(x3)OH

−̇−̇(x4)〉.
(B.18)

On the one hand, for the case in equation (B.17), we consider the parametrization

xµ1 =
�

1+
1
2

�

z
1− z

+
z̄

1− z̄

�

,
1
2

�

z
1− z

−
z̄

1− z̄

�

, 0
�

,

xµ2 = (1, 0,0) , xµ3 =
xµ4
|x4|2

= (0,0, 0) ,
(B.19)

and thus, we have
u= zz̄, v = (1− z)(1− z̄),

xµ12
∂

∂ xµ12

= z(1− z)
∂

∂ z
+ z̄(1− z̄)

∂

∂ z̄
.

(B.20)

On the other hand, for the case in (B.18), we consider the parametrization

xµ1 = (1, 0,0) , xµ2 =
�

1−
1
2
(z + z̄),

1
2
(z − z̄), 0

�

, xµ3 =
xµ4
|x4|2

= (0,0, 0) , (B.21)
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and thus, we have
u= zz̄, v = (1− z)(1− z̄),

xµ21
∂

∂ xµ2
= z

∂

∂ z
+ z̄

∂

∂ z̄
.

(B.22)

Putting all the pieces together, we end up with the following expression for Cs
SQ,

Cs
SQ = 2

�

z(1− z)
∂

∂ z
+ z̄(1− z̄)

∂

∂ z̄

�

+ 2
�

z
∂

∂ z
+ z̄

∂

∂ z̄

�

. (B.23)

B.2 t-channel

We now proceed by computing the t-channel Casimir operator, i.e. we are deriving C t in

〈[C ,OH
+̇+̇(x1)OC

−−(x2)]OC
++(x3)OH

−̇−̇(x4)〉=
1

|x12|2|x34|2
C t
hu

v
Gmixed(v, u)

i

. (B.24)

Again, we can write the differential operator C t as follows

C t = C t
b + C t

SQ + C t
R, (B.25)

and as before, given [101], we may read off

C t
b = 2z2(1− z)∂ 2 + 2z̄2(1− z̄)∂̄ 2 − 2(z2∂ + z̄2∂̄ ) + 2

zz̄
z − z̄

[(1− z)∂ − (1− z̄)∂̄ ]. (B.26)

However, now the intermediate operator are in the representation (2 jC, 2 jH) = (2,2) of the
SU(2)C × SU(2)H R-symmetry, and so we have

C t
R = −2− 2= −4. (B.27)

Finally, we compute the remnant piece, C t
SQ. To do so, we consider

1
2
[SαAȦ,QαAȦ]OH

+̇+̇(x1)OC
−−(x2)|0〉

=
¦

−i x12,µσ
αβ
µ [Qβ−−̇,OH

+̇+̇(x1)][Qα++̇,OC
−−(x2)] + 8OH

+̇+̇(x1)OC
−−(x2)

©

|0〉.
(B.28)

Now, the Ward identity

0= 〈{Qα++̇, [Qβ−−̇,OH
+̇+̇(x1)]OC

−−(x2)OC
++(x3)OH

−̇−̇(x4)}〉, (B.29)

gives
〈[Qβ−−̇,OH

+̇+̇(x1)][Qα++̇,OC
−−(x2)]OC

++(x3)OH
−̇−̇(x4)〉

+ 〈[Qβ−−̇,OH
+̇+̇(x1)]OC

−−(x2)OC
++(x3)[Qα++̇,OH

−̇−̇(x4)]〉

= −i(σµ)αβ∂x1,µ
〈OH
+̇+̇(x1)OC

−−(x2)OC
++(x3)OH

−̇−̇(x4)〉.
(B.30)

Therefore, in the x4→∞ limit we obtain

− i x12,µσ
αβ
µ 〈[Qβ−−̇,OH

+̇+̇(x1)][Qα++̇,OC
−−(x2)]OC

++(x3)OH
−̇−̇(x4)〉

∼ 2x12,µ∂x1,µ
〈OH
+̇+̇(x1)OC

−−(x2)OC
++(x3)OH

−̇−̇(x4)〉.
(B.31)

Putting everything together, we end up with

C t
SQ = 2

�

z(1− z)
∂

∂ z
+ z̄(1− z̄)

∂

∂ z̄

�

+ 4. (B.32)

51

https://scipost.org
https://scipost.org/SciPostPhys.10.4.097


SciPost Phys. 10, 097 (2021)

C Crossing matrices (6j symbols)

Consider a simple Lie group G, the tensor product of two adjoint representations decomposes
as

(adj⊗ adj)S = 1⊕ 2adj⊕
⊕

i

R(S,i),

(adj⊗ adj)A = adj⊕
⊕

i

R(A,i),
(C.1)

where 2adj denotes the representation whose Dynkin label is twice the Dynkin label of the
adjoint representation, and R(S,i) (R(A,i)) are representations that appear in the symmetric
(antisymmetric) tensor product and which are not 1, adj and 2adj.

Let us denote the Clebsch-Gordan coefficients by

(Γ1)ab =
1

p

|G|
δab, (Γadj)

c
ab =

1
p

2h∨
fabc , (Γ2adj)

α
ab, (ΓR(S,i)

)
I(S,i)

ab , (ΓR(A,i)
)

I(A,i)

ab , (C.2)

where a = 1, · · · , dim(G), I(S,i) = 1, · · · , dim(R(S,i)), I(A,i) = 1, · · · , dim(R(A,i)), and f abc is the
structure constant of G, which is normalized by

f aed f bde = 2h∨δab. (C.3)

The other Clebsch-Gordan coefficients are normalized by

(Γ2adj)
α
ab(Γ2adj)

β

ab = δ
αβ , (ΓR(S,i)

)
I(S,i)

ab (ΓR(S,i)
)

J(S,i)

ab = δI(S,i)J(S,i) ,

(ΓR(A,i)
)

I(A,i)

ab (ΓR(A,i)
)

J(A,i)

ab = δI(A,i)J(A,i) .
(C.4)

The projection matrices are defined as

Pabcd
R = (ΓR)

ab
IR
(ΓR)

cd
JR
δIRJR , (C.5)

and the crossing matrix (6j symbol) is defined as follows

Fi
j =

1
dim(R j)

Pdabc
Ri

Pabcd
R j

. (C.6)

D Crossing equations in matrix form

In this appendix, we rewrite the crossing equations (5.4), (5.7), (5.10), and (5.12) in forms
that are more explicit and readily usable for semidefinite programming.

The crossing equations for theories with U(1)×U(1) flavor symmetry (5.4) can be rewritten
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as

0=









2vAs
B[0](0;0)

0

(u, v)

FB[0](0;0)
0
(u, v, w)

FB[0](0;0)
0
(u, v, ew)









−
∑

∆,`

λ2
C,H,(L,∆,`)







2uAt
∆,`,0,0(v, u)

0

0







+
∑

∆,`

∑

i

�

λi
C,C,L[2`](0;0)

∆

λi
H,H,L[2`](0;0)

∆

�





























0 vAs
L[2`](0;0)

∆

(u, v)

vAs
L[2`](0;0)

∆

(u, v) 0





�

FL[2`](0;0)
∆
(u, v, w) 0

0 0

�

�

0 0

0 FL[2`](0;0)
∆
(u, v, ew)

�





























λi
C,C,L[2`](0;0)

∆

λi
H,H,L[2`](0;0)

∆





+
∑

`






λ2

C,C,A[2`](2;0)
`+2







0

FA[2`](2;0)
`+2
(u, v, w)

0






+λ2

H,H,A[2`](0;2)
`+2







0

0

FA[2`](0;2)
`+2
(u, v, ew)













+λ2
C,C,B[0](4;0)

2







0

FB[0](4;0)
2
(u, v, w)

0






+λ2

H,H,B[0](0;4)
2







0

0

FB[0](0;4)
2
(u, v, ew)






.

(D.1)
Here, the sum over A[2`](0;0)

`+1 is omitted because these blocks are smooth ∆→ 1 limits of the

L[2`](0;0)
∆ blocks. In the second line, we explicitly included a sum over degenerate multiplets

labeled by i with the same ∆,`. By contrast, in the other lines, we simply defined λ2 to be the
sum of degenerate contributions.

For the (U(1)×U(1))oZ2 flavor symmetry, the crossing equations (5.7) can be rewritten
as

0=





2vAs
B[0](0;0)

0

(u, v)

FB[0](0;0)
0
(u, v, w)



−
∑

∆,`

λ2
C,H,(L,∆,`)

�

2uAt
∆,`,0,0(v, u)

0

�

+
∑

∆,`

λ2
C,C,L[2`](0;0)

∆ ,+





2vAs
L[2`](0;0)

∆

(u, v)

FL[2`](0;0)
∆
(u, v, w)



+
∑

∆,`

λ2
C,C,L[2`](0;0)

∆ ,−





−2vAs
L[2`](0;0)

∆

(u, v)

FL[2`](0;0)
∆
(u, v, w)





+
∑

`

λ2
C,C,A[2`](2;0)

`+2

 

0

FA[2`](2;0)
`+2
(u, v, w)

!

+λ2
C,C,B[0](4;0)

2

�

0

FB[0](4;0)
2
(u, v, w)

�

.

(D.2)

For the most general GC×GH flavor symmetry, the crossing equations (5.10) can be rewrit-
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ten as

0=









2vAs
B[0](0;0)

0

(u, v)

FB[0](0;0)
0 ,∗

1(u, v, w)

FB[0](0;0)
0 ,∗

1(u, v, ew)









+λ2
C,C,A[0](0;0)

1 ,1









−2vAs
A[0](0;0)

1

(u, v)

FA[0](0;0)
1 ,∗

1(u, v, w)

FA[0](0;0)
1 ,∗

1(u, v, ew)









+
∑

∆,`

�

λC,C,L[2`](0;0)
∆ ,1 λH,H,L[2`](0;0)

∆ ,1

�





























0 vAs
L[2`](0;0)

∆

(u, v)

vAs
L[2`](0;0)

∆

(u, v) 0





�

FL[2`](0;0)
∆ ,∗

1(u, v, w) 0

0 0

�

�

0 0

0 FL[2`](0;0)
∆ ,∗

1(u, v, ew)

�

























 

λC,C,L[2`](0;0)
∆ ,1

λH,H,L[2`](0;0)
∆ ,1

!

+λ2
C,C,B[0](2;0)

1 ,adjC







0

FB[0](2;0)
1 ,∗

adjC(u, v, w)

0∗






+λ2

H,H,B[0](0;2)
1 ,adjH







0

0∗
FB[0](0;2)

1 ,∗
adjH(u, v, ew)







+







∑

rC

λ2
C,C,B[0](4;0)

2 ,rC







0

FB[0](4;0)
2 ,∗

rC(u, v, w)

0∗






+
∑
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(D.3)
where * represents a column vector over representations in adjC ⊗ adjH for the respective GC
or GH. When GC (resp. GH) is empty, one simply omits the crossing equations involving the
first and second (resp. third) entries.

Consider GC = GH, for the (GC × GH)oZ2 flavor symmetry, the crossing equations (5.12)
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can be rewritten as
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(D.4)
where * represents a column vector over representations in adj⊗ adj.
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