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Abstract

This paper presents STrEAM (SuperTrace Evaluation Automated for Matching), a
Mathematica package that calculates all functional supertraces which arise when match-
ing a generic UV model onto a relativistic Effective Field Theory (EFT) at one loop and to
arbitrary order in the heavy mass expansion. STrEAM implements the covariant deriva-
tive expansion to automate the most tedious step of the streamlined functional matching
prescription presented in Ref. [1]. The code and an example notebook are available at
this link. �
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1 Introduction

Effective Field Theories (EFTs) provide a useful and convenient framework for describing the
dynamics of low-energy degrees of freedom in a model-independent way, see e.g. Refs. [2–
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10] for reviews. When the more fundamental UV theory is known (and calculable), one can
integrate out the heavy physics and derive an EFT description valid at low energies. This
so-called “matching” calculation links the Wilson coefficients in the EFT with the microscopic
parameters of the UV theory.

EFT matching can be efficiently performed with functional methods [11–33]. In Ref. [1],
we provided a STrEAMlined functional prescription for relativistic EFT matching up to one-
loop level. Functional supertraces play an essential role; enumerating and evaluating them
are the key steps in this prescription. Enumeration of the functional supertraces can be per-
formed graphically as discussed in Ref. [1]. Evaluation can be efficiently achieved using the
Covariant Derivative Expansion (CDE) technique [11–13]. This is a straightforward procedure
that becomes tedious when the supertrace is complicated and/or a high operator dimension
is desired. In this paper, we address this problem by introducing a Mathematica package,
STrEAM (SuperTrace Evaluation Automated for Matching), which automates this procedure
� [34].

Many automated tools for EFT calculations, especially in the context of the Standard Model
EFT, have been developed in recent years [35–48], see Ref. [49] for a summary. Among them,
MatchingTools [37] addresses EFT matching at tree level, while MatchMaker [48] (not
yet released) automates Feynman diagram matching up to one-loop level. Codes are also
available for partially computing one-loop EFT Lagrangians in the framework of the Universal
One-Loop Effective Action [29,31,40]. To our knowledge, STrEAM is the first publicly available
package that automates functional supertrace evaluations for general one-loop EFT matching
calculations to arbitrary order in the heavy mass expansion.1

The rest of this paper is organized as follows. In Sec. 2, we explain the scope of STrEAM,
i.e., the specific form of functional supertraces that it evaluates; these include the two types
of supertraces that appear in general one-loop functional matching calculations. In Sec. 3, we
review the CDE technique and explain how to apply it to the form of supertraces targeted by
STrEAM. We summarize the implementation of CDE in STrEAM and provide a simple example
to demonstrate this procedure. Sec. 4 provides a user manual for STrEAM.

2 Scope of STrEAM

In this section, we discuss the motivation and specify the scope of STrEAM. We first review
the types of functional supertraces that could arise from one-loop relativistic EFT matching
calculations. We then describe the precise form of functional supertraces that STrEAM evalu-
ates and explain why it covers all the possible supertraces that can appear when performing
one-loop functional matching.

Consider a UV theory LUV[Φ,φ] with a mass hierarchy among its fields,

mΦ� mφ . (1)

We would like to integrate out the heavy fields Φ to derive an EFT for the light fields LEFT[φ].
As elaborated in Ref. [1], one-loop matching with functional methods receives contributions
from two types of supertraces:

∫

dd x L(1-loop)
EFT [φ] =

i
2

STr log K
�

�

�

hard
−

i
2

∞
∑

n=1

1
n

STr
�

�

K−1X
�n�
�

�

�

hard
. (2)

We call these “log-type” and “power-type” supertraces respectively. Here “|hard” means to ex-
tract the hard region contributions [51,52] in the loop integrals arising from these supertraces.

1As this project was reaching completion, we became aware of the program “SuperTracer,” to be released si-
multaneously [50].
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K and X are matrices acting on the space of the field multiplet

ϕ ≡
�

Φ

φ

�

. (3)

We refer the reader to Ref. [1] for detailed definitions, as well as a discussion on how to derive
K and X from the UV Lagrangian.

Let us first examine the log-type supertraces. In relativistic theories, the matrix K has a
block-diagonal form with entries

Ki =











P2 −m2
i

�

ϕi is spin-0
�

/P −mi

�

ϕi is spin-1
2

�

−ηµν(P2 −m2
i )

�

ϕi is spin-1
�

, (4)

where Pµ ≡ iDµ is the Hermitian covariant derivative. Because of the hard region require-
ment, only heavy field components ϕi ∈ {Φ} yield nonzero log-type supertraces. Up to overall
constants, they are universally given by

i STr log KΦ =

(

i STr log
�

P2 −m2
Φ

� �

Φ is spin-0 or spin-1
�

i STr log
�

/P −mΦ
� �

Φ is spin-1
2

�
. (5)

The power-type supertraces, on the other hand, are not universal, since they require spec-
ifying the interaction matrix X . This matrix can be written as an expansion:

X(φ, Pµ) = U[φ] +
�

PµZµ[φ] + Z̄µ[φ]Pµ
�

+ · · · , (6)

where Pµ is an “open” covariant derivative. The matrix entries Ui j[φ], Zµi j[φ], Z̄µi j[φ], etc.
may also contain covariant derivatives, but they are closed: when viewed as operators acting
on the functional space, where {|x〉} and {|q〉} each forms a basis and x̂ and q̂ are the basic
position and momentum operators, Ui j[φ], Zµi j[φ], Z̄µi j[φ], etc., are built out of x̂ only. In
contrast, an open covariant derivative Pµ is built out of both x̂ and q̂:

Pµ( x̂ , q̂) = q̂µ + ga Ga
µ( x̂) T

a , (7)

with q̂µ = i∂µ in position space. In this paper, we will frequently use the notation Uk( x̂)
(or simply U( x̂)) to denote a general functional operator that is built out of x̂ only. It can
represent any of Ui j[φ], Zµi j[φ], Z̄µi j[φ], etc. in Eq. (6):

Uk ∈
�

Ui j[φ] , Zµi j[φ] , Z̄µi j[φ] , . . .
	

. (8)

With this notation, an arbitrary term in the expansion of the matrix entry X i j can be expressed
in the form

�

Pµ1
· · · Pµn

�

Uk

�

Pν1
· · · Pνm

�

, (9)

and therefore a general term in the power-type supertraces in Eq. (2),

−i STr
�

1
Ki1

X i1 i2
1

Ki2

X i2 i3 · · ·
1

Kin

X in i1

�

, (10)

is evaluated over a product sequence of segments of the form

1
Ki

�

Pµ1
· · · Pµn

�

Uk

�

Pν1
· · · Pνm

�

. (11)
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In what follows, we use ∆i and Λi to denote the bosonic and fermionic versions of K−1
i , re-

spectively:

∆i ≡
1

P2 −m2
i

, Λi ≡
1

/P −mi
. (12)

STrEAM automates the evaluation of functional supertraces of the form

−i STr
�

f
�

Pµ , {Uk}
�

�

�

�

�

hard
, (13)

where f is a product sequence of Pµ, Uk, ∆i and Λi , consisting of an arbitrary number
of “propagator blocks”:

f =
�

· · ·
�

Pµ1
. . . Pµn

� �

∆i or Λi

� �

Pν1
. . . Pνm

�

Uk · · ·
�

. (14)

As indicated by the name, each “propagator block” has a propagator as its central object,
which can be either ∆i or Λi . There can be an arbitrary number of additional open covariant
derivatives Pµ surrounding the propagator. A propagator block terminates with a U factor,
after which the next block starts. From the discussion above, it is clear that this form of f
covers any possible power-type supertraces.2 We further allow the last block in f to have a
trivial U factor, i.e., U = 1. In this way, the log-type supertraces in Eq. (5) can also be covered
upon taking a mass derivative

∂

∂m2
Φ

�

i STr log
�

P2 −m2
Φ

�

�

= −i STr
�

1

P2 −m2
Φ

�

= −i STr
�

∆Φ
��

�

hard , (15a)

∂

∂mΦ

�

i STr log (/P −mΦ)
�

= −i STr
�

1
/P −mΦ

�

= −i STr
�

ΛΦ
��

�

hard . (15b)

Next, we describe the CDE method for evaluating these supertraces.

3 Algorithm

STrEAM implements CDE as its central algorithm to evaluate the supertraces. This technique
was originally developed in Refs. [11–13], and applied to modern EFT matching calculations
in Refs. [14, 15]; a variant was also developed later in Refs. [20, 22, 23]. A comprehensive
review of both versions of the CDE can be found in App. B of Ref. [30], where they were termed
“original CDE” and “simplified CDE” respectively. The algorithm implemented in STrEAM is
the original CDE; see App. B.2.3 of Ref. [30]. In this section, we briefly review it with a focus
on how it is implemented in STrEAM.

3.1 CDE Review

The simplified CDE and original CDE are techniques that one can use to evaluate a functional
supertrace

−i STr
�

f
�

Pµ, {Uk}
�

�

=

∫

dd x
∑

i

ci Oi(x) . (16)

2If the last 1
Kin

X in i1 segment in Eq. (10) has Pµ factors after the Uk factor (see Eq. (11)), one can cyclicly permute

them to the beginning of the expression, namely before 1
Ki1

, and then use STrEAM to evaluate it.
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Here f is an operator in the functional space, built out of the covariant derivative Pµ( x̂ , q̂)
(see Eq. (7)) and a set of functions {Uk( x̂)} (as well as constants that we will suppress). In
this paper, we are eventually interested in the form of f evaluated by STrEAM, i.e., Eq. (14).
However, the method that we review in this subsection applies to a broader class of f , for
which we only require a well-defined power expansion in its arguments Pµ and {Uk} about
Pµ = {Uk} = 0. For example, the log-type supertraces in Eq. (5) give f = log

�

P2 − m2
Φ

�

or
f = log

�

/P−mΦ
�

; they also satisfy this condition. Nevertheless, it is useful to think of the form
in Eq. (14) as a benchmark example of f . The general evaluation yields a set of local operators
Oi integrated over spacetime. In the context of EFT matching, we call Oi “effective operators”
and ci “Wilson coefficients,” although we emphasize that functional supertrace evaluation can
also be used to derive one-particle-irreducible effective actions more generally.

First, we address the “super” part of the functional supertrace. This part gives an overall
sign ± depending on whether the diagonal entry comes from a bosonic or fermionic field ϕi:

−i STr
�

f
�

Pµ, {Uk}
�

�

= ±
§

− i Tr
�

f
�

Pµ, {Uk}
�

�

ª

. (17)

Given the form of f in Eq. (14), one can determine this overall sign from the first propagator
in the product sequence. If it is ∆i (Λi), then the entry comes from a bosonic (fermionic) ϕi ,
and we should take the + (−) sign in Eq. (17). The only exception is that a Faddeev-Popov
ghost gives a propagator ∆i , but it is a fermionic field. In this case, one should take the minus
sign option in Eq. (17).

Next, we deal with the more difficult “functional” part of the functional supertrace. We
start out with its definition, and then make an insertion of unity in the functional space
1=

∫

dd x |x〉 〈x |:

−i Tr
�

f
�

Pµ, {Uk}
�

�

= −i

∫

ddq
(2π)d

¬

q
�

�

� tr
�

f
�

Pµ, {Uk}
�

�

�

�

�q
¶

= −i

∫

dd x

∫

ddq
(2π)d

〈q|x〉
¬

x
�

�

� tr
�

f
�

Pµ, {Uk}
�

�

�

�

�q
¶

= −i

∫

dd x

∫

ddq
(2π)d

eiq·x tr
�

f
�

Pµ, {Uk}
�

�

e−iq·x . (18)

In the last line, we have used

〈q|x〉=
�

〈x |q〉
�∗
= eiq·x . (19)

Given that f
�

Pµ, {Uk}
�

has a well defined power expansion in terms of its arguments Pµ and
{Uk}, we can write

eiq·x f
�

Pµ, {Uk}
�

e−iq·x = f
�

eiq·x Pµ e−iq·x ,
�

eiq·x Uk e−iq·x	� , (20)

because this is true for any term in the power expansion (upon making further insertions):

eiq·x �ABC−1 · · ·
�

e−iq·x =
�

�

eiq·x Ae−iq·x��eiq·x B e−iq·x��eiq·x C e−iq·x�−1 · · ·
�

. (21)

Next, we use

eiq·x Pµ e−iq·x = Pµ + qµ , (22a)

eiq·x Uk e−iq·x = Uk , (22b)
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to find

−i Tr
�

f
�

Pµ, {Uk}
�

�

= −i

∫

dd x

∫

ddq
(2π)d

tr
�

f
�

Pµ − qµ, {Uk}
�

�

. (23)

Here we have also flipped the sign of the integration variable qµ for future convenience.
At this point, one can already make a Taylor expansion of f

�

Pµ−qµ, {Uk}
�

in terms of the
covariant derivative Pµ to obtain the effective operators (truncated according to the desired
operator dimension). When performing such an expansion, each effective operator will be
multiplied by an expression of the loop momentum qµ, which we will call the “q-section” factor.

Carrying out the loop integral −i
∫ ddq
(2π)d over the q-sections gives the Wilson coefficients of

the effective operators. This is the “simplified CDE” method (see App. B.2.2 of Ref. [30] for
more details).

In the simplified CDE, Taylor expanding f
�

Pµ − qµ, {Uk}
�

generates effective operators in
which the covariant derivatives could be either open or closed. In the end, only effective op-
erators with closed covariant derivatives will be nonzero after performing the loop integral

−i
∫ ddq
(2π)d ; these effective operators are gauge singlets. Effective operators containing open

covariant derivatives are not gauge singlets, as these open covariant derivatives eventually act
on the unity function 1 which yields explicit gauge fields. They always drop out upon evaluat-

ing the loop integral −i
∫ ddq
(2π)d with dimensional regularization, because the integrands, i.e.,

their accompanying q-sections, are total derivatives in qµ.
There is in fact a way to systematically avoid effective operators containing open covariant

derivatives at the point of making the expansion, i.e., before performing the loop integral

−i
∫ ddq
(2π)d . This is achieved by making two further insertions in Eq. (23), before and after the

factor f
�

Pµ − qµ, {Uk}
�

:

−i Tr
�

f
�

Pµ, {Uk}
�

�

= −i

∫

dd x

∫

ddq
(2π)d

eP· ∂∂ q tr
�

f
�

Pµ − qµ, {Uk}
�

�

e−P· ∂∂ q . (24)

This is the “original CDE” method (see App. B.2.3 of Ref. [30] for more details). Here the

second insertion is allowed because the qµ derivatives in e−P· ∂∂ q act on the unity function 1 to
yield zero, and hence only the first term in its Taylor expansion contributes:

e−P· ∂∂ q 1= 1 . (25)

The first insertion in Eq. (24) is allowed because all but its first term would yield total deriva-

tives in qµ and hence drop out upon evaluating the loop integral −i
∫ ddq
(2π)d with dimensional

regularization.
Using the same argument as in Eqs. (20) and (21), these insertions can be passed to the

arguments of f
�

Pµ − qµ, {Uk}
�

, changing them into

PCDE
µ ≡ eP· ∂∂ q (Pµ − qµ) e

−P· ∂∂ q = −qµ + GCDE
µν ∂

ν , (26a)

UCDE
k ≡ eP· ∂∂ q Uk e−P· ∂∂ q =

∞
∑

n=0

1
n!

�

Pα1
· · · Pαn

Uk

�

∂ α1 · · ·∂ αn , (26b)

where the quantity GCDE
µν is

GCDE
µν ≡ −i

∞
∑

n=0

n+ 1
(n+ 2)!

�

Pα1
· · · Pαn

Fµν
�

∂ α1 · · ·∂ αn , (27)
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with Fµν ≡ −i
�

Pµ, Pν
�

= ga Ga
µν T a denoting the sum over field strengths. In Eqs. (26b)

and (27), the covariant derivatives Pα1
· · · Pαn

in parentheses are closed; they only act on Uk
and Fµν, respectively. Also, starting from Eq. (26), we reserve the shorthand notation ∂ α for
a momentum derivative (as opposed to the usual position derivative):

∂ α ≡
∂

∂ qα
. (28)

With Eq. (26), the functional trace in Eq. (24) becomes

−i Tr
�

f
�

Pµ, {Uk}
�

�

= −i

∫

dd x

∫

ddq
(2π)d

tr
�

f
�

PCDE
µ ,

�

UCDE
k

	�

�

. (29)

This is the central formula for the original CDE method. From this point, we can expand
f
�

PCDE
µ ,

�

UCDE
k

	�

in powers of UCDE
k and GCDE

µν , and then substitute in the expressions given
in Eqs. (26b) and (27) to obtain the effective operators; each of them is again multiplied
by a q-section factor. A critical feature in this expansion procedure is that all the effective
operators are generated through UCDE

k and GCDE
µν , in which all the covariant derivatives are

already closed. This guarantees that no effective operators with open covariant derivatives
will appear. Note that each closed covariant derivative (such as those in Eqs. (26b) and (27))
has operator dimension one and the field strength Fµν has operator dimension two. So these
expansions can be truncated according to the desired EFT operator dimension. Finally, we can

carry out the loop integral −i
∫ ddq
(2π)d over the q-sections to obtain the Wilson coefficients.

3.2 CDE Within STrEAM

Now let us apply the original CDE algorithm reviewed above to the supertraces targeted by
STrEAM ,

−i STr
�

f
�

Pµ, {Uk}
�

�

�

�

�

hard
, (30)

where f
�

Pµ, {Uk}
�

is a product sequence of Pµ, Uk,∆i andΛi in the form of Eq. (14). Following
the central formula in the original CDE, Eq. (29), we should make the replacements

Pµ → PCDE
µ = −qµ + GCDE

µν ∂
ν , (31a)

Uk → UCDE
k , (31b)

so that

∆i → ∆CDE
i =

1
�

PCDE
µ

�2
−m2

i

=
1

(−qµ + GCDE
µν ∂

ν)2 −m2
i

, (32a)

Λi → ΛCDE
i =

1

/PCDE −mi

=
1

−/q+ γµGCDE
µν ∂

ν −mi
. (32b)

Instead of using Eq. (32b), in STrEAM we adopt an alternative strategy to address fermionic
propagators; we convert them into bosonic propagators:

Λi =
1

/P −mi
=

1

/P2 −m2
i

(/P +mi) =
1

P2 −m2
i −Σ

(/P +mi)

= (∆i +∆i Σ∆i +∆i Σ∆i Σ∆i + · · · ) (/P +mi) . (33)
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Here the “dipole” factor

Σ≡ −
1
2
σµνFµν , with σµν ≡

i
2
[γµ,γν] , (34)

can be viewed as a specific case of Uk, and it has operator dimension two. The expansion in
Eq. (33) can be truncated according to the desired operator dimension.

After converting all the fermionic propagators Λi to the bosonic ones ∆i through Eq. (33),
we replace Pµ, Uk (including Σ), and∆i with their CDE counterparts PCDE

µ , UCDE
k , and∆CDE

i as
given in Eqs. (31) and (32a). We then make use of Eqs. (26b) and (27) to expand the expres-
sion into a sum of effective operators, each accompanied by a q-section. For the supertraces
in STrEAM, the Uk factors originate from the entries Ui j[φ], Zµi j[φ], Z̄µi j[φ], etc. in the matrix
X (see Eq. (6)), or from the dipole factor Σ in Eq. (33); they have at least one power of the
light fields and hence a minimum operator dimension one (but could be higher). Comparing
the desired EFT operator dimension with the sum of those from Uk, we can determine where
to truncate the expansion.

Finally, we perform the loop integral over the q-sections to obtain the Wilson coefficients.
Carrying out all the q-derivatives and making the symmetrization of the type

qµ1qµ2 →
1
d

q2ηµ1µ2 , (35a)

qµ1qµ2qµ3qµ4 →
1

d (d + 2)
q4 (ηµ1µ2ηµ3µ4 +ηµ1µ3ηµ2µ4 +ηµ1µ4ηµ2µ3) , (35b)

one can bring the q-sections to (a sum of) the following form
�

q2
�r

�

q2 −m2
1

�n1
�

q2 −m2
2

�n2 · · ·
�

q2 −m2
k

�nk
. (36)

To obtain the hard region contributions, we need to expand this integrand into a series as-
suming the loop momentum q ∼ mheavy � mlight. Practically, this means identifying the light
masses mlight in Eq. (36), and expanding the light propagators as

1

q2 −m2
light

=
1
q2
+

m2
light

q4
+

m4
light

q6
+ · · · . (37)

We truncate this expansion based on the desired total power of mlight in the Wilson coefficients.
After making this hard region expansion and truncation, the integrand can be again organized
into (a sum of) the form of Eq. (36), but now with only heavy propagators remaining. So in
the end, all the hard region loop integrals are reduced to the general form

1
16π2

LoopI(r)(n1,··· ,nk)

�

m2
1, · · · , m2

k

�

≡ −i

∫

ddq
(2π)d

�

q2
�r

�

q2 −m2
1

�n1 · · ·
�

q2 −m2
k

�nk
, (38)

which we then evaluate with dimensional regularization and the MS scheme. When there is
no heavy mass propagator left in Eq. (38), the integral is scaleless and yields zero. When there
are one or two distinct heavy masses, STrEAM provides the explicit integration results. In cases
where there are three or more non-degenerate heavy masses, STrEAM leaves the loop integral
in the abstract form that appears on the left hand side of Eq. (38).
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3.3 Implementation Summary

In STrEAM, a functional supertrace

−i STr
�

f
�

Pµ, {Uk}
�

�

�

�

�

hard
, (39)

with f
�

Pµ, {Uk}
�

a product sequence of Pµ, Uk, ∆i and Λi in the form of Eq. (14),

f =
�

· · ·
�

Pµ1
. . . Pµn

� �

∆i or Λi

� �

Pν1
. . . Pνm

�

Uk · · ·
�

, (40)

is evaluated with the following steps:

• Address the “super” in STr. Assign an overall sign + (−) as in Eq. (17) if the first
propagator is ∆i (Λi). Keep in mind that a ghost field propagator is an exception to this
rule for which one needs an extra overall minus sign.

• Address fermionic propagators. Apply the relation in Eq. (33) to convert all the
fermionic propagators Λi into bosonic propagators ∆i . Truncate the expansion accord-
ing to the desired operator dimension in the EFT.

• Perform original CDE. Apply the central formula of original CDE, Eq. (29), where Pµ,
Uk (including Σ), and ∆i are replaced with their CDE counterparts PCDE

µ , UCDE
k , and

∆CDE
i given in Eqs. (31) and (32a). Then make use of Eqs. (26b) and (27) to expand

the expression into a sum of effective operators, each multiplied by a q-section factor (a
function of q). Truncate the expansion according to the desired operator dimension in
the EFT.

• Perform loop integrals. For each effective operator, simplify its accompanying q-section
into (a sum of) the form of Eq. (36) by carrying out the q-derivatives and making the
symmetrization of the type in Eq. (35). Expand and truncate the light propagators as in
Eq. (37). Compute the resulting integrals in the form of Eq. (38) to obtain the Wilson
coefficients.

3.4 A Simple Example

In this subsection, we work out a simple example by hand as a pedagogical demonstration of
the evaluation procedure in Sec. 3.3. We evaluate the supertrace

T1 ≡ −i STr
�

1

P2 −m2
1

U [2]1

�

�

�

�

�

hard
= −i STr

�

∆1U [2]1

�

�

�

�

hard
, (41)

assuming that m1 is a heavy mass (otherwise the hard region contribution vanishes). We
evaluate this up to operator dimension six. Following the notation in Ref. [1], we have put a
superscript “[2]” on U1 to indicate that its minimum operator dimension is two.

Address the “super” in STr

In this example, the “super” part gives a positive sign because the first propagator ∆1 is a
bosonic propagator (except when it comes from a ghost):

T1 = −i Tr
�

∆1U [2]1

�

�

�

�

hard
. (42)

Address fermionic propagators

There is no fermionic propagator Λi to address in this example.
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Perform original CDE

Following the central formula of the original CDE, Eq. (29), we make the replacements in
Eqs. (31) and (32a) to obtain

T1 =
�

− i

∫

dd x

∫

ddq
(2π)d

tr
�

∆CDE
1 UCDE

1

�

�

�

�

�

�

hard
. (43)

Now we need to use Eqs. (26b) and (27) to expand this expression into a sum of effective
operators truncated at dimension six.

First we expand the factor ∆CDE
1 . Because we desire a result up to operator dimension six

and UCDE
1 already has operator dimension two, we only need to expand ∆CDE

1 up to operator
dimension four, which is at most two powers of GCDE

µν :

∆CDE
1 =

1
�

−qµ + GCDE
µν ∂

ν
�2
−m2

1

=
1

q2 −m2
1 −

��

qµGCDE
µν + GCDE

µν qµ
�

∂ ν −ηµνGCDE
µα GCDE

νβ
∂ α∂ β

�

= 1
q2−m2

1
+ 1

q2−m2
1

�

qµGCDE
µν + GCDE

µν qµ
�

∂ ν 1
q2−m2

1

+ 1
q2−m2

1

�

qµGCDE
µν + GCDE

µν qµ
�

∂ ν 1
q2−m2

1

�

qρGCDE
ρσ + GCDE

ρσ qρ
�

∂ σ 1
q2−m2

1

− 1
q2−m2

1
ηµνGCDE

µα GCDE
νβ ∂

α∂ β 1
q2−m2

1
. (44)

Now we substitute in the expression of GCDE
µν in Eq. (27) and truncate the result at operator

dimension four:

∆CDE
1 = 1

q2−m2
1
− iFµν

1
q2−m2

1
qµ∂ ν 1

q2−m2
1
− i

3

�

Pα1
Fµν

� 1
q2−m2

1
(2qµ∂ α1 +ηµα1)∂ ν 1

q2−m2
1

+ 1
4 FµνFρσ

�

ηµρ 1
q2−m2

1
∂ ν∂ σ 1

q2−m2
1
− 4 1

q2−m2
1
qµ∂ ν 1

q2−m2
1
qρ∂ σ 1

q2−m2
1

�

− i
4

�

Pα1
Pα2

Fµν
� 1

q2−m2
1
(qµ∂ α2 +ηµα2)∂ ν∂ α1 1

q2−m2
1

. (45)

Next, we expand the factor UCDE
1 using Eq. (26b). Note that UCDE

1 in this example is the
last factor in the expression, so all of its momentum derivatives ∂ αi will be acting on the unity
function 1 to yield zero; only the first term in Eq. (26b) survives, and we can set

UCDE
1 = U1 . (46)

Substituting Eqs. (45) and (46) into Eq. (43), we obtain

T1 = −i

∫

dd x

∫

ddq
(2π)d

tr
§

U1

�

1
q2−m2

1

�

+ FµνU1

�

− i 1
q2−m2

1
qµ∂ ν 1

q2−m2
1

�

+
�

Pα1
Fµν

�

U1

�

− i
3

1
q2−m2

1
(2qµ∂ α1 +ηµα1)∂ ν 1

q2−m2
1

�

+ FµνFρσU1

�

1
4η
µρ 1

q2−m2
1
∂ ν∂ σ 1

q2−m2
1
− 1

q2−m2
1
qµ∂ ν 1

q2−m2
1
qρ∂ σ 1

q2−m2
1

�

+
�

Pα1
Pα2

Fµν
�

U1

�

− i
4

1
q2−m2

1
(qµ∂ α2 +ηµα2)∂ ν∂ α1 1

q2−m2
1

�

ª

�

�

�

�

hard

. (47)
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We see that up to operator dimension six, there are five effective operators:

tr (U1) , tr
�

FµνU1

�

, tr
��

Pα1
Fµν

�

U1

�

, tr
�

FµνFρσU1

�

, tr
��

Pα1
Pα2

Fµν
�

U1

�

, (48)

each multiplied by a q-section factor gathered in the square brackets in Eq. (47).

Perform loop integrals

We carry out the q-derivatives in the q-sections in Eq. (47) and compute the hard region con-
tributions to the loop integrals to obtain the Wilson coefficients. Only two of the five integrals
are nonzero; the end result is

T1 =

∫

dd x 1
16π2 tr

�

m2
1

�

1− log
m2

1
µ2

�

U1 +
1

12m2
1

FµνFµνU1

�

, (49)

reproducing Eq. (C.1) in Ref. [1].
This completes the demonstration of the evaluation procedure detailed in Sec. 3.3. Clearly,

the same procedure applies to any functional supertrace targeted by STrEAM, with f
�

Pµ, {Uk}
�

in the form of Eq. (14). For more complicated expressions of f , the CDE steps shown in
Eqs. (44)-(46) are more involved, and the resulting expression in Eq. (47) would contain
more effective operators and more complicated q-sections. Accordingly, the q-derivatives and

the loop integral −i
∫ ddq
(2π)d are also more tedious to carry out. Nevertheless, these steps are

completely algorithmic. STrEAM automates them and provides results analogous to Eq. (49)
as its output. For example, all the other supertraces listed in App. C in Ref. [1] are also readily
reproduced with STrEAM. In practical EFT matching calculations, one then substitutes in the
explicit expressions for {Uk} and evaluates the remaining trace (“tr” in Eq. (49)) as explained
in Ref. [1]. One can further translate the result into an EFT operator basis via integration by
parts, equations of motion and operator identities if desired.

4 STrEAM Manual

In this section, we provide a user manual for STrEAM. We will go over some basics of using
this package and show a few concrete examples.

Downloading and loading

STrEAM is a Mathematica package publicly available on GitHub � [34]. Once the file
“STrEAM.m” is placed in the user’s directory of choice /path/to/package/, it can be loaded
in Mathematica with the usual command:

In[1]:= <<"/path/to/package/STrEAM.m";

Main functions

STrEAM is a compact package with essentially a single main function SuperTrace that carries
out the procedure summarized in Sec. 3.3. Once the package is loaded, the user can readily
execute this main function:

In[2]:= SuperTrace[dim, flist]

As indicated above, it has two mandatory arguments. dim is an Integer that specifies the
desired operator dimension in the evaluation result. flist is a List that specifies the func-
tional operator f

�

Pµ, {Uk}
�

to be traced over; it consists of Pµ, Uk, ∆i, and Λi, organized in
the form of Eq. (14). This is the main input to the function, and a few remarks are in order:
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• The symbols P, ∆, and Λ are reserved in STrEAM, such that the package can recognize
these key elements in flist. On the other hand, the symbol U is not reserved, and the
user can choose their own symbols for the elements Uk.

• In flist, each Pµ must come with a subscript as its Lorentz index. One can choose their
own symbol for it (but the same Lorentz index should not appear more than twice). The
Lorentz indicesµi are reserved in STrEAM as dummy indices generated in the expansions
as well as in the final outputs. If they were encountered in the input, they would be
automatically replaced with νj with some proper integer j.

• Recall from Eq. (12) that each propagator ∆i or Λi must come with a subscript i, in-
dicating its mass mi. These mass labels are non-negative integers, and will be used for
specifying the list of heavy masses. This is crucial because STrEAM evaluates the hard
region contributions to supertraces. The label “0” is reserved for massless propagators,
i.e., we have stipulated m0 = 0 (cf. Eq. (12)):

∆0 ≡
1
P2

, Λ0 ≡
1
/P

. (50)

• As explained in Sec. 2, in order to accommodate the log-type supertraces via Eq. (15),
we allow the last U factor in f

�

Pµ, {Uk}
�

to be trivial. This is implemented by allowing
the very last Uk factor in flist to be absent.

There are also a few options for SuperTrace:

Option Default Description

Udimlist {1,...,1} Minimum operator dimensions of {Uk}

Heavylist {1} Heavy mass labels

SoftOrd 0 Additional power(s) of mlight/mheavy

NoγinU False No Dirac matrices γµ in {Uk}

display False Print result

As explained in Sec. 3.2, the minimum operator dimensions of the Uk factors, gathered in
Udimlist, are needed to determine when to truncate the CDE. The default setting is that
they are all unity. Heavylist specifies the list of heavy masses through their (positive integer)
labels; this is crucial for identifying the hard region contributions. The default setting is that
only m1 is heavy. SoftOrd is a non-negative integer. When it is set to the default value 0, the
Wilson coefficient of an effective operator with operator dimension dimO will be computed up
to (dim−dimO) powers of mlight/mheavy. If additional powers are desired, one can specify a
positive SoftOrd. NoγinU can be used to simplify the result when there are no Dirac matrices
γµ in the Uk factors. The option display controls whether to print the result.

Let us consider a very simple example — the supertrace discussed in Sec. 3.4:

T1 ≡ −i STr
�

∆1U [2]1

�

�

�

�

hard
. (51)

To evaluate this supertrace up to operator dimension six, one simply runs
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In[2]:= SuperTrace[6, {∆1, U1}, Udimlist→→→{2}]

SuperTrace returns the evaluation result as a list of terms, with each term in the following
form:

�

coeff, oper, dim
	

where coeff and oper are lists themselves that contain the Wilson coefficient (multiplied
by 16π2) and the effective operator respectively; dim records the operator dimension of the
term. For instance, the above example yields an output with two such terms:

Out[2]=

�

§

¦¦

m21
�

1-Log
�m21
µ2

��©©

,
�

{U1}
	

, 2
ª

,
§

¦¦ 1
12m21

©©

,
�

{Fµ1,µ2}, {Fµ1,µ2}, {U1}
	

, 6
ª

�

When the option display→→→True is used, SuperTrace will print the evaluation result in
TableForm, together with the input supertrace. Again for the example in Eq. (51):

In[3]:= SuperTrace[6, {∆1, U1}, Udimlist→→→{2}, display→→→True];

will print

-iSTr[
1

P2-m21
U1]|hard =

∫

d4x
1

16π2
tr{

m21

�

1-Log
�m21
µ2

�

�

(U1) (dim-2)

1
12m21

(Fµ1µ2)(Fµ1µ2)(U1) (dim-6)

}

We recommend using this option for checking the result in a more readable format.
There is also an alternative function SuperTraceFromExpr, which is a slight variant of

SuperTrace that takes an expression fexpr, instead of a List flist, as the input for spec-
ifying the functional operator f

�

Pµ, {Uk}
�

:

In[4]:= SuperTraceFromExpr[dim, fexpr]

It has the same set of options as SuperTrace. The input expression fexpr is obtained by
putting together the elements in flist with NonCommutativeMultiply (**). For instance,
to evaluate the same example in Eq. (51), one can execute

In[4]:= SuperTraceFromExpr[6, ∆1**U1, Udimlist→→→{2}, display→→→True];

The output of SuperTraceFromExpr is the same as that of SuperTrace.

Reserved variables

As mentioned before, in STrEAM the symbols P, ∆, and Λ are reserved for input recognition.
The Lorentz indices µi are reserved for calculation purposes. P and µi are also used in the
outputs. Apart from these, the following symbols are also reserved for special meanings:
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Reserved symbol Meaning

m Particle masses mi

d Spacetime dimension in dimensional regularization

η Spacetime metric ηµν = diag (1,−1,−1,−1)

ε Levi-Civita symbol εµνρσ with ε0123 = −1

F Field strength Fµν ≡ −i
�

Pµ, Pν
�

= ga Ga
µν T a

γ Dirac matrices γµ

σF σµνFµν in the dipole factor (see Eq. (34))

Pslash /P = γµPµ

LoopI Loop integral in Eq. (38) for ≥ 3 heavy masses

Additional examples

Finally, we show a few selected input examples to better illustrate the syntax. We will not
include their outputs or prints here. These results, as well as more demonstration examples,
are collected in a Mathematica notebook “STrEAM_examples.nb” � [34]. For each example
below, one can add the option display→→→True if desired.

• Supertraces converted from log-type via Eq. (15),

−i STr
�

1

P2 −m2
1

�

�

�

�

�

hard
, −i STr

�

1
/P −m1

�

�

�

�

�

hard
, (52)

can be evaluated up to operator dimension six with

In[5]:= SuperTrace[6, {∆1}]

In[6]:= SuperTrace[6, {Λ1}, NoγinU→→→True]

Note that we have turned on the option NoγinU→→→True for the fermionic one.

• A supertrace with both heavy and light propagators (m1 and m2), such as

−i STr
�

1

P2 −m2
1

U [1]1
1

P2 −m2
2

U [1]2
1

P2 −m2
1

U [1]3
1

P2 −m2
2

U [1]4

�

�

�

�

�

hard
, (53)

can be evaluated up to operator dimension six with

In[7]:= SuperTrace[6, {∆1, U1, ∆2, U2, ∆1, U3, ∆2, U4}]

or equivalently with

In[7]:= SuperTraceFromExpr[6, ∆1**U1**∆2**U2**∆1**U3**∆2**U4]
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• A supertrace with explicit open covariant derivatives, such as

−i STr
�

1

P2 −m2
1

U [1]1
1

P2 −m2
2

PµZµ[1]
1
P2

U [2]3
1

P2 −m2
2

U [1]4

�

�

�

�

�

hard
, (54)

can be evaluated up to operator dimension six with

In[8]:= SuperTrace[6, {∆1, U1, ∆2, Pν, Zν, ∆0, U3, ∆2, U4},
Udimlist→→→{1, 1, 2, 1}]

• A supertrace with fermionic propagators, such as

−i STr
�

1

P2 −m2
1

U [1]1
1

P2 −m2
2

U [3/2]2
1
/P

U [3/2]3
1

P2 −m2
2

U [1]4

�

�

�

�

�

hard
, (55)

can be evaluated up to operator dimension six with

In[9]:= SuperTrace[6, {∆1, U1, ∆2, U2, Λ0, U3, ∆2, U4},

Udimlist→→→{1,
3
2
,

3
2
, 1}]
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