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Abstract

We study the (dual) folded spin-1/2 XXZ model in the thermodynamic limit. We focus, in
particular, on a class of “local” macrostates that includes Gibbs ensembles. We develop
a thermodynamic Bethe Ansatz description and work out generalised hydrodynamics at
the leading order. Remarkably, in the ballistic scaling limit the junction of two local
macrostates results in a discontinuity in the profile of essentially any local observable.
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1 Introduction

This is the second part of our investigation into the large-anisotropy limit of the Heisenberg
spin-1/2 XXZ model. In the first part [1] we defined the “folded picture” as an asymptotic
formulation of quantum mechanics of many-body systems that are described by Hamiltonians
with a large coupling constant. In this picture the fast oscillatory part of the dynamics is at-
tached to the operators, whereas the state evolves slowly in time through an effective “folded
Hamiltonian”. As an example we considered the folded XXZ model, which reveals a struc-
ture otherwise hidden in the standard Bethe Ansatz solution [2] of the anisotropic Heisenberg
magnet. Our solution of the folded XXZ model is peculiar as it diagonalises the folded Hamil-
tonian, but not the total spin Sz in the direction of the anisotropy. This is unveiled by a duality
transformation that maps the folded Hamiltonian into a block-diagonal local operator and Sz

into a block off-diagonal pseudolocal one.
The present manuscript is a detailed account of the thermodynamic properties of the dual

folded XXZ model, both in and out of equilibrium. Up to boundary terms, the Hamiltonian

that we consider reads as J
∑

ℓ(σ
x
ℓ−1σ

x
ℓ+1+σ

y
ℓ−1σ

y
ℓ+1)

1−σz
ℓ

2 , where σα
ℓ

are the Pauli matrices.
It describes a special point of the two-component Bariev model [3], which is solvable with a
nested Bethe Ansatz technique. In order to exploit the symmetries of that special point, we will
however use the results of the non-nested Bethe Ansatz method of Ref. [1]. We first develop
a thermodynamic Bethe Ansatz that describes the infinite chain in thermal states as well as in
generalised Gibbs ensembles [4] constructed with the local conservation laws and a special
pseudolocal charge. The predictions of the thermodynamic Bethe Ansatz are checked against
numerical data from DMRG algorithms.

The macrostates represented by generalised Gibbs ensembles are the key ingredients of the
generalised hydrodynamic theory. Introduced in Refs [5,6], and recently experimentally cor-
roborated in cold-atom setups [7], this mesoscopic description of the dynamics in integrable
systems allows one to treat the evolution of inhomogeneous states on large space-time scales,
and also in presence of inhomogeneous space- and time-dependent interactions [8, 9]. Gen-
eralised hydrodynamics is based on the assumption that the so-called root densities, which
characterise the local properties of stationary states, can be promoted into functions of space
and time. The validity of such an assumption is hard to establish rigorously [10, 11], and it
is typically justified by comparing the predictions with state-of-the-art numerical simulations.
Provided that the assumption holds, the state can be coarse-grained into fluid cells locally
equivalent to macrostates, which can be accessed through the thermodynamic Bethe Ansatz.
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Within this framework, we investigate the transport phenomena that emerge after two
grand canonical ensembles are joined together and left to evolve in time under the folded
Hamiltonian. Remarkably, due to the rich particle content of the folded XXZ model, a local
macrostate is not completely determined by a root density, and an additional independent
(pseudolocal) thermodynamic variable is necessary for describing the junction of two local
macrostates. We show that this special feature results in discontinuous ballistic-scale profiles
of all local charges, independently of how the initial grand canonical ensembles are prepared.

In the rest of the introduction we recapitulate the results of Ref. [1] necessary to understand
the present work.

1.1 The asymptotic folded picture

When a Hamiltonian has a large coupling constant, it is possible to derive asymptotic expan-
sions of the time evolution operator in the strong coupling limit and at fixed time. Starting
from Ref. [12], explicit results have been obtained for Hamiltonians H(κ) of the form

H(κ) = HF +
q
∑

m=1

(Fm + F†
m) + κ

−1HI , (1)

where q is a finite integer and

[HI ,HF ] = 0 , [HI ,Fm] = mJFm . (2)

In Ref. [1] we have recast the strong coupling expansion κ → 0 of such models into a
formulation termed “folded picture”, in which operators and state time evolve according to

OF (t) := eiκBzt (κ)eiκ−1HI tOe−iκ−1HI t e−iκBzt (κ) , |Ψ(t)〉F := e−iHF (κ)t eiκB1(κ) |Ψ(0)〉 , (3)

where zt = eiκ−1J t . Asymptotic expansions of HF (κ) and Bz(κ) in the limit of small κ are
reported in Ref. [1]. As long as J t ≪ κ−1, the folded picture can be used at the leading order,
where the state time evolves with HF (0) ≡ HF . This was used for example in Ref. [13] to
explain the very slow restoration of one-site shift invariance in XY and XXZ models. Note that,
contrary to the standard interaction picture, in the folded picture it is the state rather than
the operator that evolves with a time-independent Hamiltonian; furthermore, both state and
operators undergo an additional unitary transformation generated by B1(κ).

Following this perspective, the present paper investigates time evolution under H(κ) in
the asymptotic limit 1≪ J t ≪ κ−1 ≪ L →∞. In fact, we will assume the relation between
H(κ) and HF as understood, and interpret HF as the Hamiltonian of a new model, which
we refer to as “folded” model. We are using this nomenclature because, in the limit κ → 0,
the spectrum of H(κ) turns out to be equal to the spectrum of HF , modulo a typical energy,
inversely proportional to κ.

1.2 The folded XXZ model and its dual

The XXZ spin-1/2 chain is described by the Hamiltonian

H= J
∑

ℓ

σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1 +∆σ

z
ℓσ

z
ℓ+1 . (4)

We are interested in the limit of large anisotropy ∆. In the folded picture we identify κ with
(4∆)−1, and the operator HF is given by1

HF = J
∑

ℓ

1+σz
ℓ−1σ

z
ℓ+2

2
(σx
ℓσ

x
ℓ+1 +σ

y
ℓ
σ

y
ℓ+1) . (5)

1HF can be obtained, e.g., by factoring e−iκ−1HI t out of the full XXZ time evolution, keeping only the leading
order in κ of the remaining part eiκ−1HI t e−iH(κ)t .
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In the following we provide a brief overview of the diagonalisation of HF that we worked out
in the first part of our work [1].

The preliminary step is a duality transformation mapping HF into a local operator with a
density that has a range of three sites. The transformation reads

σx
ℓ 7→

¨

−σ y
1

∏L−1
j=2 σ

z
jσ

y
L , ℓ= 1 ,

σx
ℓ−1σ

x
ℓ

, ℓ > 1 ,

σ
y
ℓ
7→











σx
1 , ℓ= 1,

σx
ℓ−1σ

y
ℓ

∏L−1
j=ℓ+1σ

z
j σ

y
L , 1< ℓ < L,

−σx
L−1σ

z
L , ℓ= L,

σz
ℓ 7→

L−1
∏

j=ℓ

σz
jσ

y
L , (6)

where L is the chain’s length. Under the transformation (6), the folded Hamiltonian with
periodic boundary conditions (σαL+n = σ

α
n , for α ∈ {x , y, z}) is mapped into the following

operator

H̃F =
1+Πz

2
H̃0

F
1+Πz

2
+

1−Πz

2
σx

LH̃1
Fσ

x
L
1−Πz

2
, (7)

where Πz =
∏L
ℓ=1σ

z
ℓ
, and

H̃ηF = J
L
∑

ℓ=1
σ

x ,y
L+n=(−1)ησx ,y

n

(σx
ℓ−1σ

x
ℓ+1 +σ

y
ℓ−1σ

y
ℓ+1)

1−σz
ℓ

2
. (8)

The eigenstates of H̃ηF with Πz = 1 are mapped into eigenstates of H̃F either trivially, or by the
unitary transformation σx

L , depending on whether η = 0 or η = 1. It is therefore convenient
to focus on H̃ηF . As already mentioned, the latter Hamiltonian describes a strong repulsion
limit of the two-component Bariev model [3]. In our previous work [1] we circumvented the
more general solution (based on nested Bethe Ansatz) by exploiting the additional symmetries
emerging in such a strong repulsive regime. This allowed us to solve the Bethe equations
in terms of closed-form relations between momenta and quantum numbers, which will be
summarised in the next section.

1.3 Coordinate Bethe Ansatz

A basis of eigenstates of H̃ηF can be constructed within a coordinate Bethe Ansatz starting from
the reference state

|vac〉= |↓↓ . . . ↓〉 . (9)

For the sake of simplicity we assume that L is even; the reader can find some information
about the odd case in Ref. [1]. We label the positions of the N spins up in an eigenstate
by 2ℓ′j − b j ( j = 1,2, . . . , N), where ℓ′j ∈ {1,2, . . . , L/2} indicates the macrosite, i.e., a pair of
neighbouring spin sites, and b j ∈ {0, 1} the parity of the spin’s position. Within this convention
the set BN = {(b1, . . . , bN )}c of cyclic permutations of the sequence (b1, . . . , bN ) is preserved
by the Hamiltonian. In the following we will refer to the information encoded in BN as that
pertaining to the “configuration space”. The eigenstates are characterised by N momenta
(rapidities) {pℓ}Nℓ=1, each one associated with a spin up in an even (b = 0) or odd (b = 1)
position. Interactions are characterised by the two-body scattering matrix

Sb1,b2

�

p1, p2

p2, p1

�

= −1+ b1(1− b2)
�

1− ei(p1−p2)
�

. (10)
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The energy of the state |p1, . . . , pN 〉BN
, specified by the momenta and the configuration, is given

by

E = 4J
N
∑

ℓ=1

cos pℓ . (11)

The momenta p1, . . . , pN solve Bethe equations that can be integrated explicitly, as shown
in Ref. [1]. The solution reads

pℓ =
2π
�

Iℓ +
ϕ
2π

�

+ M
N P

L
2 +M

, (12)

where the total momentum and the shift of quantum numbers are defined as

P =
4π
L

N
∑

ℓ=1

�

Iℓ +
ϕ

2π

�

,
ϕ

2π
=
η+ g − 1

2
+

g I0

N
, (13)

respectively. The integer quantum numbers Iℓ satisfy

0≤ I1 < I2 < · · ·< IN <
L
2
+M , 0≤ I0 <

N
g

, (14)

N/g = min{m|bn+m = bn, ∀n} denoting the size of the unit cell in the sequence (b1, . . . , bN ),
and M =

∑N
j=1 b j(1− b j+1), with bN+1 = b1 the number of subsequences (1,0).

We point out that some configurations of integers within the domain specified by Eq. (14)
give rise to the same set of momenta. This subtlety, however, does not affect the thermo-
dynamic limit, so we will not be more specific about it; the interested reader can find more
details in Ref. [1]. Since the momenta are invariant under the transformation Iℓ → Iℓ − n,
ϕ→ ϕ + 2πn, with n ∈ Z, the parameter ϕ can be defined modulo 2π.

An alternative parametrisation of the solution to the Bethe equations is through the rational
quantum numbers Jℓ = Iℓ +

ϕ
2π , in terms of which we have

pℓ =
2πJℓ +

M
N P

L
2 +M

, P =
4π
L

N
∑

ℓ=1

Jℓ . (15)

We emphasise that the rational quantum numbers lie in the affine lattice Z+ ϕ
2π , whose shift,

with respect to integers, depends on the state itself. Importantly, for large N almost all the
states have g = 1 [1]. In light of this, we will refer to them as generic states.

1.4 Conservation laws

In the first part of our work [1] we have shown that, in finite chains, the momenta of the
Bethe Ansatz characterise the eigenvalues of an “extended”2 family of local conservation laws.
Among them, we have identified two charges that are diagonal in the standard σz basis:
Sz = 1

2

∑

ℓσ
z
ℓ

and

M=

L
2
∑

ℓ′=1

L
2−1
∑

n′=0

1+σz
2ℓ′−1

2

 

2ℓ′−1+2n′
∏

j=2ℓ′

1−σz
j

2

!

1+σz
2ℓ′+2n′

2
, (16)

the latter operator’s eigenvalue being equal to the parameter M in the Bethe equations (12).
The remaining charges of the family are not diagonal and can be organized into two sequences:

2The extension comes from allowing the index of the charge, which, up to a given value, represents its range,
to be arbitrarily large.
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Q±n =
∑L
ℓ=1 q±n,ℓ. The local density q±n,ℓ can be defined so as to be supported on 2n+ 1 neigh-

bouring sites and, by convention, Q+1 = H̃ηF . The expectation value of any charge Q±n in the
Bethe state can be written as

Q = 〈Q〉 − 〈vac|Q|vac〉=
N
∑

ℓ=1

q(pℓ) , (17)

where the sum runs over the momenta. Here, q(p) denotes the one-particle eigenvalue of
the charge, for example, q+1 (p) = 4J cos p = E(p) is the one-particle energy. In Eq. (17) we
subtracted the vacuum expectation value of the charge, since the reference state |vac〉 has no
momenta, i.e., the right-hand side of the equation is zero in that case.

In general, the single-particle eigenvalues of the charges in the integrable hierarchy read

q+n (p) = 4J cos(np), q−n (p) = 4J sin(np) , (18)

and notably span the Fourier basis in the space of functions of the momentum. As an example,
we state the local densities of the first few conservation laws, Q±1 and Q+2 :

q+1,ℓ =
J
2

Kℓ,ℓ+2(1−σz
ℓ+1) ,

q−1,ℓ = −
J
2

Dℓ,ℓ+2(1−σz
ℓ+1) ,

q+2,ℓ = −
J
4

�

Kℓ+1,ℓ+4Kℓ+2,ℓ+3 −Dℓ+1,ℓ+4Dℓ+2,ℓ+3 + (1−σz
ℓ+1)σ

z
ℓ+2(1−σ

z
ℓ+3)Kℓ,ℓ+4

�

,

q−2,ℓ =
J
4

�

Dℓ+1,ℓ+4Kℓ+2,ℓ+3 +Kℓ+1,ℓ+4Dℓ+2,ℓ+3 + (1−σz
ℓ+1)σ

z
ℓ+2(1−σ

z
ℓ+3)Dℓ,ℓ+4

�

,

(19)

where Kn,m = σx
nσ

x
m +σ

y
nσ

y
m, Dn,m = σx

nσ
y
m −σ

y
nσ

x
m. For any fixed n, the conserved charges

Q±n are connected by the adjoint action of L=
∑L
ℓ=1 ℓσ

z
ℓ
, namely, i[L,Q±n ] = Q∓n . In integrable

spin chains one usually refers to such an operator as a “boost” or “ladder” operator if it allows
the reconstruction of the entire hierarchy of local conserved quantities from a single charge.
In our case it is evidently not so. Moreover, there seems to be no local boost operator of this
form, by means of which one could translate between conserved charges with different n. This
is consistent with the fact that the energy current (its explicit form is provided in Section 4.2)
is not conserved [14], as well as with the fact that the R-matrix that constitutes the Algebraic
Bethe Ansatz for the two-component Bariev model is not of the difference form [15].

We point out that the family of local charges with local densities (19) is not complete, and
we can even exhibit a local charge that does not belong to the family: the staggered spin along
the z-axis

Sz
st =

1
2

L
∑

ℓ=1

(−1)ℓσz
ℓ . (20)

We will denote its expectation value by Sz
st =

L
2 mz

st and refer to it as staggered magnetisation.
The staggered spin along the z-axis is one of the diagonal operators that commute with the
Hamiltonian and span the configuration space. The common property of such diagonal charges
is that their eigenvalues are functionals of the configuration BN .

Summary

Section 2 considers the thermodynamic limit of the Bethe equations and develops a (gener-
alised) thermodynamic Bethe Ansatz description. Thermal states are analysed in detail,
including low-temperature and high-temperature asymptotic expansions.
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Section 3 proposes a definition of elementary quasiparticles (excitations) and works out their
dressed charges.

Section 4 develops generalised hydrodynamics (GHD) in the dual folded Hamiltonian for a
class of states that are characterised by a minimal set of charges.

Section 5 uses GHD to investigate time evolution after two (local) macrostates have been
joined together. It is shown that the profiles of essentially all local observables remain
discontinuous in the ballistic scaling limit.

2 Thermodynamic Bethe Ansatz

The thermodynamic Bethe Ansatz (TBA) was originally developed by Yang and Yang for the
one-dimensional Bose gas with Dirac-delta repulsive interactions [16]. In this section we will
follow their approach with few minimal changes necessary for accommodating the TBA in the
richer structure of the folded XXZ Hamiltonian. We note that an alternative, albeit more com-
plicated, approach towards TBA exists for our model. It can be obtained as a particular limit
of the nested Bethe Ansatz solution of the more general multi-component Bariev model [17].

2.1 Root densities and expectation values of charges

We start by noting that the solution (12) to the Bethe equations can be recast into the standard
form

L
2

h(pℓ) = 2πJℓ , h(p) := p+
2M
LN

N
∑

j=1

(p− p j) , ℓ= 1,2, . . . , N . (21)

Here we have introduced the monotonous counting function h(p): ∂ph(p) = 1+ µξ > 0, where

we denoted µ = M/N and ξ = L
2N . Whenever evaluated in the momentum that solves the

Bethe equations, the value of L
4πh(p) falls into the affine lattice Z + g

N I0 +
η+g−1

2 populated
by quantum numbers Jℓ. Bethe equations (21), in particular the prefactor L/2 in front of pℓ,
manifest that our momentum generates translations for two sites on the spin chain.

The counting function associates certain elements of the affine lattice Z+ g
N I0 +

η+g−1
2 to

momenta that form a particular solution of Bethe equations. Specifically, a Bethe state with
quantum numbers {J1, J2, . . . , JN} contains momenta {p1, p2, . . . , pN} that solve L

4πh(pℓ) = Jℓ.
If, for instance, J2 + 1 is not among the quantum numbers {J1, J2, . . . , JN}, the momentum
p, for which L

4πh(p) = J2 + 1, does not belong to the set {p1, p2, . . . , pN} of momenta in the
Bethe state. We refer to the vacant quantum number J2+1 as a hole, in the sense that adding
that quantum number corresponds to an elementary excitation – see Section 3. In the ther-
modynamic limit (TD) N , M , L→∞, with fixed ratios µ = M/N and ξ = L

2N , the momenta
characterising the excited states become densely distributed. Then, L

4πdh(p) yields the num-
ber of vacancies (both, particles and holes) in the infinitesimal interval [p, p+ dp) ⊂ [−π,π).
Defining the root density ρ and the density of holes ρh as

L
2
ρ(p)dp = number of particles with momentum in [p, p+ dp) ,

L
2
ρh(p)dp = number of holes with momentum in [p, p+ dp) ,

(22)

we obtain dh(p) = 2π[ρ(p) +ρh(p)]dp. The derivative of the counting function is thus pro-
portional to the total density of vacancies

∂ph(p) = 1+
µ

ξ
= 2πρt , (23)

7

https://scipost.org
https://scipost.org/SciPostPhys.10.5.099


SciPost Phys. 10, 099 (2021)

which is notably independent of the momentum. From Eqs (17) and (22) it then follows

2
L

Q
TD
−→

∫ π

−π
dpρ(p)q(p) , (24)

which is the standard way to express the charge densities as functionals of the root density in
the thermodynamic limit.

We are now in a position to recast Eq. (23) in the form of a standard TBA equation. Indeed,
the macrosite density of particles is given by

ξ−1 =
2N
L

TD
−→

∫ π

−π
dpρ(p) , (25)

whence we have – cf. Eq. (23):

ρt =
1

2π
+
µ

2π

∫ π

−π
dpρ(p) . (26)

It is also customary to define the filling function as the density of occupied vacancies, namely,
n(p) = ρ(p)/ρt, which clearly satisfies 0≤ n(p)≤ 1. We then have the analogous equation

ρt =
1

2π−µ
∫ π

−π dp n(p)
. (27)

2.2 Macrostates and Yang-Yang entropy

In the thermodynamic limit different states can share the same local properties and are usu-
ally said to be “locally equivalent”. The concept of state is then replaced by the concept of
macrostate, which represents the set of all locally indistinguishable states. It is usually under-
stood that macrostates are stationary, and this will be assumed in this section.

We consider first the macrostates characterised by the strictly local integrals of motion;
in order to distinguish them from more general macrostates, we will refer to them as “local
macrostates”. A local macrostate corresponds to a set of microstates (representative states)
that, by construction, are simultaneous eigenstates of all quasilocal conservation laws [18].
The expectation value of a quasilocal charge takes, however, the most probable value at
fixed local integrals of motion. In particular, as long as the Hamiltonian is local, the equi-
librium properties at finite temperature are described by local macrostates. The situation is
more complicated when the system is out of equilibrium. For example, local macrostates in
the XXZ model were originally conjectured to describe the late-time properties after quan-
tum quenches [19, 20]. The failure of such an assumption was reported in Refs [21, 22],
and Ref. [23] later pointed out that the model possesses additional quasilocal charges (i.e.,
conserved operators with exponentially localised densities) that constrain the dynamics to a
greater extent. It soon became evident that the state at late times becomes equivalent to a
“quasilocal macrostate”, characterised by all quasilocal integrals of motion [24]. In our spe-
cific case the stationary properties in the particle space are completely determined by the
local charges and a single quasilocal one, M. The rest of the charges, diagonal and generally
quasilocal, characterise solely the configuration space, i.e., their eigenvalues are functionals
of the configuration BN of a Bethe state.
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2.2.1 Local macrostates

Except for the staggered magnetisation 〈Sz
st〉 ≡ Sz

st =
L
2 mz

st, all local integrals of motion that we
identified are completely determined by the momenta (rapidities), which depend on the con-
figuration through M . An important representation of a local macrostate is the (generalised)
canonical state, which is described by a density matrix of the form

ρ =
1
Z

exp
�

hSz
st −

∑

n

λ+n Q+n −
∑

n

λ−n Q−n −λ0Sz
�

. (28)

Such a state minimises the “generalised free energy”, namely, the functional3

f loc[ρ] =
2
L

tr[ρ logρ]−
2
L

tr
�

�

hSz
st −

∑

n

λ+n Q+n −
∑

n

λ−n Q−n −λ0Sz
�

ρ
�

, (29)

under a generic trace-preserving variation of ρ. A local macrostate of the folded XXZ model is
characterised by three thermodynamic quantities: µ, mz

st, and the root density ρ(p). In turn,
the variation of ρ is realised by an arbitrary variation of µ, mz

st, and ρ(p) in the functional
f loc[µ, mz

st,ρ], which represents the thermodynamic limit of f loc[ρ]. The thermodynamic limit
of the second term on the right hand side of Eq. (29) has already been worked out – it is an
expectation value of the form (24). The first term, on the other hand, is the entropy of the state
per macrosite and is proportional to the logarithm of the number of microstates associated with
the particular macrostate [16]. In our specific case, it consists of two terms: the entropy in
the configuration space and the entropy in the particle space; both are computed below.

Entropy in the configuration space. The number of generic configurations BN (for the defi-
nition, see Section 1.3) that share the same set of momenta {pℓ}Nℓ=1 has been computed in
Ref. [1] and behaves asymptotically as 2

N

� N
2M

�

. The corresponding entropy per macrosite
is therefore

sB[µ,ρ]∼
2
L

log
2
N

�

N
2M

�

TD
−→ ξ−1H(2µ) , (30)

where H(p) = −p log p− (1− p) log(1− p) is the binary entropy function. An analogous
calculation gives the entropy at fixed staggered magnetisation Sz

st =
L
2 mz

st [1],

sB[µ, mz
st,ρ]∼

2
L

log
2
N

�N+Sz
st

2

M

��N−Sz
st

2

M

�

TD
−→

TD
−→ ξ−1

�1− ξmz
st

2
H
� 2µ

1−ξmz
st

�

+
1+ ξmz

st

2
H
� 2µ

1+ξmz
st

�

�

, (31)

which reduces to the previous expression for mz
st = 0.

Entropy in the particle space. In the thermodynamic limit the distribution of momenta is
encoded in the root density ρ(p). Following Ref. [16], the entropy associated with the
number of microstates with the same root density is

s{p}[µ, mz
st,ρ]∼

2
L

log
∏

p

� L
2ρtdp

L
2ρ(p)dp

�

TD
−→

∫ π

−π
dpρt H

�ρ(p)
ρt

�

, (32)

where index p in the product runs over the momenta representing the centres of N cells
of width dp; they are coarse-grained momenta in the interval [−π,π).

3Parameters h, {λ+n }n, and {λ−n }n are the Lagrange multipliers that correspond to constraints of fixed Sz
st, {Q

+
n }n,

and {Q−n }n, respectively.
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Yang-Yang entropy. We call Yang-Yang entropy the thermodynamic limit of 2
L logΩ, where Ω

is the size of the space associated with the macrostate. In our specific case, it is given by
the sum of Eqs (31) and (32), namely,

sYY[µ, mz
st,ρ] = ξ

−1
�1− ξmz

st

2
H
� 2µ

1−ξmz
st

�

+
1+ ξmz

st

2
H
� 2µ

1+ξmz
st

�

�

+

∫ π

−π
dpρt H

�ρ(p)
ρt

�

.

(33)

Here, ξ and ρt must be interpreted as the functionals of ρ(p) and µ shown in Eqs (25)
and (26), respectively.

We can now work out the variation of f loc[µ, mz
st,ρ]. To that aim, we represent the local

macrostate as

ρ =
ehSz

st−Q

tr[ehSz
st−Q]

, (34)

where Q can be any linear combination of the local charges forming the integrable hierarchy
described in Section 1.4, namely, Sz or Q±n . According to Eq. (24), the expectation value of the
charge Q can be written as

2
L

tr [ρQ]
TD
−→

∫ π

−π
dpρ(p)q(p) , (35)

where q(p) is its single-particle eigenvalue. By definition, the staggered magnetisation per
unit macrosite is equal to mz

st, the generalised free energy thus reads

f loc[µ, mz
st,ρ] =

∫ π

−π
dpρ(p)q(p)− hmz

st − sYY[µ, mz
st,ρ] . (36)

We can readily find the minimum of the functional f loc[µ, mz
st,ρ]. It is reached in the state

with the staggered magnetisation

mz
st = ξ

−1

Æ

µ2 + (1−µ)2 sinh2 h−µ cosh h
sinh h

�

mz
st ∈ [−1,1]

�

, (37)

and the filling function

n(p) =
1

1+ eq(p)−w
, w=

1
2

log
1− (ξmz

st)
2

(1− 2µ)2 − (ξmz
st)2

, (38)

where µ is implicitly defined as the solution to the equation
∫ π

−π

dp
2π

log
�

1+ e−q(p)+w
�

= log
4µ2

(1− 2µ)2 − (ξmz
st)2

. (39)

Alternatively, we can interpret these equations as the statement that a local macrostate
with given local integrals of motion satisfies

∫ π

−π

dp
2π

log
�

1+ µ
ξ − 2πρ(p)

�

= − log
4µ2ξ

�

(1− 2µ)2 − (ξmz
st)2
�

(ξ+µ)
. (40)

The latter equation can be used to express µ as a functional of ρ(p) and mz
st; this is the point of

view used when describing the late-time dynamics after quantum quenches. There, the initial
state fixes the integrals of motion, i.e., in our specific case, ρ(p) and mz

st.
In Section 5.2 we will use Eq. (39) to show that the locally quasistationary state emerging

at late times after joining two thermal states is not locally equivalent to a local macrostate.
This eventually necessitates the generalisation of local macrostates to quasilocal ones, which
we discuss in Section 2.2.2.
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Range of µ in local macrostates. The height µ[mz
st,ρ] of the surface characterised by

Eq. (40) extends over a restricted interval of µ. In particular, we have

4µ2ξ

((1− 2µ)2 − (ξmz
st)2)(ξ+µ)

= exp
�

−
∫ π

−π

dp
2π

log
�

1+ µ
ξ − 2πρ(p)

�

�

≥
ξ+µ− 1

ξ
, (41)

where we used the Jensen’s inequality
∫ π

−π
dk
2π f (g(k)) ≥ f

�∫ π

−π
dk
2π g(k)

�

for the convex func-
tion f (x) = − log(1− x). We note that the inequality in Eq. (41) is saturated for ρ(p) = 1

2πξ ,
which is a physical value for the root density. Thus, for generic ρ(p), the bound on µ that
originates in Eq. (41) cannot be improved.

The parameter ξ is also constrained: we observe |mz
st| ≤ 1 − |mz|, where

mz = 2
L 〈S

z〉= ξ−1 − 1 is the magnetisation per macrosite. The resulting bound reads

ξ≥
1

2−mz
st

. (42)

Regions of allowed µ and ξ, for different values of mz
st, are plotted in Fig 1.

Figure 1: Bounds on µ and ξ, imposed by inequalities (41) and (42), for different
values of staggered magnetisation mz

st.

For less generic states it is instead useful to start from Eq. (39) and use the Jensen’s in-
equality for the convex function f (x) = log(1+ ewe−x). In that case one has

4µ2

(1− 2µ)2 − (ξmz
st)2
= exp

�

∫ π

−π

dp
2π

log
�

1+ ewe−q(p)
�

�

≥ 1+ ewe−
∫ π

−π
dp
2π q(p) . (43)

For
∫ π

−π
dp
2πq(p) = 0, which corresponds, for example, to thermal states, plugging Eq. (37) into

Eq. (43) yields

µ≥
1

1+ 2cosh h
. (44)

In the specific case of a one-site shift invariant macrostate, this bound reduces to µ≥ 1/3 .
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2.2.2 A class of quasilocal macrostates

Equation (40) manifests the limitations of considering local macrostates: µ = M/N is not
independent of the other parameters, i.e., it is a functional µ[mz

st,ρ]. Nevertheless, its value
can still be changed by incorporating into the macrostate the quasilocal charge M, reported in
Eq. (16). Such a quasilocal macrostate is represented by a canonical ensemble of the form

ρ =
eχM+hSz

st−Q

tr[eχM+hSz
st−Q]

, (45)

where Q is, again, any combination of local charges Q±n and Sz . The generalised free energy
is now given by

fq-loc[µ, mz
st,ρ] =

∫ π

−π
dpρ(p)q(p)−χµ

∫ π

−π
dpρ(p)− hmz

st − sYY[µ, mz
st,ρ] . (46)

The minimum of the functional fq-loc[µ, mz
st,ρ] is the state in which staggered magnetisa-

tion and filling function are again given by Eqs (37) and (38), respectively, while µ is now
implicitly defined as the solution to the equation

∫ π

−π

dp
2π

log
�

1+ e−q(p)+w
�

= log
4µ2

(1− 2µ)2 − (ξmz
st)2
−χ . (47)

Contrary to Eq. (39), the additional parameter χ allows us to vary µ (almost) independently
of the other integrals of motion.

We point out that Eq. (45) does not describe the most general quasilocal macrostate, as
there are still infinitely many quasilocal charges in the configuration space [1]. It will never-
theless suffice to describe the late-time behaviour after the junction of two local macrostates
(e.g., thermal states). More generally, indicating with C a generic quasilocal charge in the
configuration space, the most general quasilocal macrostate can be represented as follows:

ρ =
eχM+C−Q

tr[eχM+C−Q]
. (48)

Like the staggered spin along the z-axis, the charge C affects the entropy in the configuration
space, which, for given C, becomes a functional of µ, ξ, and 2

L 〈C〉. This, in turn, moves the
minimum of the generalised free energy without however affecting the general functional form
of n(p), given on the left-hand side of Eq. (38).4

2.3 Thermal states

The Gibbs canonical ensemble at temperature T = 1/β is described by the density matrix
ρ = e−βH/tr[e−βH], and it corresponds to setting h = 0 and q(p) = βE(p) in Eq. (34). Here
E(p) = 4J cos p denotes the single-particle eigenvalue of the energy. The TBA equations can
be solved numerically to obtain, for example, the macrosite energy density as a function of
the inverse temperature β . In the latter case, comparison with the DMRG-based numerical
simulation confirms the TBA prediction, as evident in Fig. 2.

Consistently with the results of Ref. [1], we find that µ tends to 1/2 as the temperature
drops to zero. In addition, Fig. 3 clearly shows that the limit is approached exponentially fast
in β . It is then convenient to parametrise µ as

µ=
1
2
(1− e−4Jβ cos k(β)) . (49)
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Figure 2: Energy per macrosite as a function of the inverse temperature β . The
results of the ancilla-based DMRG simulation reproduce those of the thermodynamic
Bethe Ansatz calculation up to 10−4. See Appendix B, in particular Fig. 11, for more
details on numerical simulations.

Figure 3: Parameter µ as a function of β (blue curve). The dotted line captures the
asymptotic behaviour at low temperature.

Plugging this Ansatz into Eq. (39), splitting the integration domain, and changing the
integration variables into linear functions of cos p results in the identity

∫ 1−cos k(β)

0

log(1+ e−4Jβ x)dx

π
p

1− [x + cos k(β)]2
+

∫ 1+cos k(β)

0

log(1+ e−4Jβ x)dx

π
p

1− [x − cos k(β)]2
+

+
4Jβ
π

∫ 1+cos k(β)

0

xdx
p

1− [x − cos k(β)]2
= 8βJ cos k(β) + 2 log(1− e−4Jβ cos k(β)) . (50)

4Note, however, that the parameter w on the right-hand side of Eq. (38) can still be affected. For instance, in
the local macrostate with a fixed staggered magnetisation it depends on mz

st.

13

https://scipost.org
https://scipost.org/SciPostPhys.10.5.099


SciPost Phys. 10, 099 (2021)

In Appendix A it is shown that the first two terms on the left-hand side of Eq. (50) asymptoti-
cally behave as

∫ 1−z

0

dx log(1+ e−4Jβ x)

π
p

1− [x + z]2
=

j
∑

n=0

arcsin(n+1)(z)(1− 2−n−1)ζ(n+ 2)
π(4Jβ)n+1

+O((Jβ)− j−2) , (51)

where ζ is the Riemann zeta function and we performed a Sommerfeld expansion of the inte-
grand. On the other hand, we can analytically integrate the third term on the left-hand side
of Eq. (50) to obtain the asymptotic expansion

π+ k(β)− tan k(β) =
j−1
∑

n=0

(2− 2−2n)ζ(2n+ 2)
(4Jβ)2n+2

arcsin(2n+1)[cos k(β)]
cos k(β)

+O((Jβ)−2 j−2) ,

(52)

which is effective as long as j≪ Jβ/ log(Jβ).

Ground state. In the limit T → 0 we can approximate n(p) = [1+ e4Jβ(cos p−cos k(β))]−1 by a
characteristic function

n(p)
β→∞
−−−→ χ[−π,−kF)∪[kF,π) =

¨

1, if k ∈ [−π,−kF)∪ [kF,π),
0, if k ∈ [−kF, kF) ,

(53)

where kF ≡ limβ→∞ k(β) is the Fermi momentum. In addition, in this limit Eq. (52) reduces
to a simple transcendental equation

kF = arctan(kF +π) . (54)

The solution to Eq. (54) exists and is such that cos kF is nonzero: consistently with the numer-
ical observation and with Ansatz (49), we find that the ground state has µ= 1/2. The energy
per unit macrosite is now computed by enforcing the replacement (53) in the root density
ρ(p) = ρtn(p), where ρt is reported in Eq. (27). We finally obtain

2EGS

L
TD
−→ 4J

∫ π

−π
dk cos k lim

β→∞
ρ(k) = −

8J sin kF

kF +π
= −8J cos kF , (55)

where Eq. (54) has been used in the last equality. The numeric value of the ground state energy
per unit macrosite reads −8J cos kF ≈ −1.73787J and perfectly agrees both with numerical
investigations and with the thermodynamic limit of the analytic result that was obtained in
our first work [1] focused on finite chains. We can therefore conclude that the thermodynamic
ground state matches the actual ground state. Finally, we report the number of particles per
unit macrosite, ξ−1, which is given by 2NGS/L

TD
−→ 2(π− kF)/(π+ kF)≈ 0.796625.

Low temperature. For large but finite β the right-hand side of Eq. (52) can not be neglected.
Instead, the leading finite-temperature corrections are obtained by setting j = 2 in the latter
equation, yielding

π+ k(β)− tan k(β) =
π2

3sin(2kF)
1

(4Jβ)2
+

7π4

360
1+ 2 cos2 kF

sin5 kF cos kF

1
(4Jβ)4

+O((Jβ)−6) . (56)
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By expanding k(β) = kF +
∑

n>1 cn(4βJ)−n, for some real coefficients cn, we can then obtain
cos k(β) as a function of Fermi momentum kF:

cos k(β) = cos kF +
π2 cos kF

6sin2 kF

1
(4Jβ)2

+
π4 cos kF(43+ 9 cos(2kF))

720sin6 kF

1
(4Jβ)4

+O((Jβ)−6) . (57)

Using this in Eq. (49) we see that µ remains exponentially close to 1/2.
As shown in Appendix A, ξ(β) and the energy E(β) per unit macrosite can be obtained by

carrying out expansions analogous to the one in Eq. (51). In particular we have

mz(β) = ξ−1(β)−1=
π− 3kF

π+ kF
+

4π3 cos3 kF

3sin5 kF(4Jβ)2
+
π5 cos3 kF(74+ 29 cos(2kF))

45sin9 kF(4Jβ)4
+O((4Jβ)−6) ,

(58)
and

E(β) = −8J cos kF +
4Jπ2 cos kF

3 sin2 kF(4Jβ)2
+
π4J cos kF(43+ 29cos(2kF))

30sin6 kF(4Jβ)4
+O((Jβ)−6) , (59)

the first terms reproducing the thermodynamic limits of the ground state values 2NGS
L − 1 and

2EGS/L, respectively.
We also report the first orders of the asymptotic low-temperature expansion of the specific

heat,

cV (β)≡ −β2∂β E(β) =
2π2 cos kF

3sin2 kF(4Jβ)
+
π4 cos kF(43+ 29cos(2kF))

30sin6 kF(4Jβ)3
+O((Jβ)−5) , (60)

which is shown in Fig. 4. We point out that the sub-leading correction, i.e., O((Jβ)−4) in the
energy and in the magnetisation, is practically irrelevant, somehow manifesting the asymptotic
character of the expansion.

High temperature. In the limit of infinite temperature β = 0 one immediately obtains
µ = 1/3, n(p) = 3/4, and hence ρ(p) = 1

2π . This is consistent with all traceless local op-
erators having zero expectation value in the infinite-temperature state. An example is given
by the conserved charges with single-particle expectation values given in Eq. (18).

At small, but finite β , µ remains close to 1/3, and we are about to show that the deviation
scales as β2. It is then convenient to parametrise µ as

µ=
1
3
+

J2β2

18
z(β) , (61)

where z(β) is to be computed. Plugging this into Eq. (39) yields

∫ π

−π

dp
2π

log
�

1−
J2β2

12
z(β) +

3
4
(e−4Jβ cos(p) − 1)

�

= log

�

1+ J2β2

6 z(β)
�2

1− J2β2
3 z(β)

, (62)

which can easily be expanded about Jβ = 0. In particular we have

z(β) = 1−
1
3
(Jβ)2 +O((Jβ)4) , (63)

confirming the quadratic scaling of the deviation of µ from the infinite-temperature value 1/3.
Since, in the limit, the root density remains smooth, we can directly expand it for small

Jβ , and find
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Figure 4: The specific heat as a function of the temperature (black solid line). The
solid blue and orange lines represent the first orders of the low-temperature (given
in Eq. (60)) and the high-temperature (given in Eq. (65)) asymptotic expansions,
respectively.

ρ(p) =
1

2π

�

1− Jβ cos p− J2β2 cos2 p+
J3β3

12
(6cos p+ cos(3p)) + J4β4

�1
8
+

5 cos4 p
3

�

+

+
J5β5

240

�

− 37+ 34cos(2p) + 26 cos(4p)
�

�

+O((Jβ)6) . (64)

The asymptotic values of the energy per unit macrosite and the specific heat now readily follow
(see Fig. 4):

E(β) = −2J2β + J4β3 −
J6β5

6
+O((Jβ)7) ,

cV (β) = 2(Jβ)2 − 3(Jβ)4 +
5
6
(Jβ)6 +O((Jβ)8) .

(65)

Analogously, the magnetisation per macrosite is given by

mz = ξ−1 − 1= −
1
2
(Jβ)2 +

3
4
(Jβ)4 +O((Jβ)6) . (66)

3 Elementary excitations

We define here the elementary excitations of the model. In Ref. [1]we have classified the Bethe
states with a set of N momenta that depend on the particle configuration BN = {(b1, . . . , bN )}c
only through N and M . We distinguish two types of elementary excitations:

A: creation or annihilation of a momentum along with a Bethe shift of the remaining mo-
menta;

B: global “fractional” shift of the momenta.
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A close look at the solution (12) to the Bethe equations reveals the following. Excitations of
type A are obtained by adding or removing a quantum number Iℓ, and choosing I0 so as to
make the change in ϕ negligible in the thermodynamic limit. These are the standard excita-
tions, analogous to the ones in the XXZ model, which are defined through addition or removal
of a Bethe-Takahashi quantum number. On the other hand, the excitation of type B can be
interpreted as a global shift of quantum numbers Iℓ by a fractional amount. It is achieved by
changing ϕ (through I0).

BN I0 {I1, . . . , IN}
eigenstate {(. . . , 1, 1, 0, 1, 0, . . . )}c 0 {1,3, 4,5, 6, . . . }
hole excitation (type A) {(. . . , 1, 1, �A0, 1,0, . . . )}c 1 {1,3, 4, �A5, 6, . . . }
particle excitation (type A) {(. . . , 1, 1, 0,1, 1, 0, . . . )}c 3 {1,2, 3, 4, 5, 6, . . . }
excitation of type B {(. . . , 1, 1, 0, 1, 0, . . . )}c N/3 {1,3, 4,5, 6, . . . }

Figure 5: Examples of elementary excitations over an eigenstate assuming g = 1 both
before and after the excitation. In the example above the hole excitation decreases
M by 1, whereas the particle excitation does not change M .

Excitations of type A. In terms of the rational quantum numbers, {J1, . . . , JN}, excitations
of type A correspond to removing or adding a quantum number at an integer distance from
the others;

hole excitation: {J1, . . . , JN} → {J1, . . . , Jℓ−1, Jℓ+1, . . . JN}+O(N−1) ,

particle excitation: {J1, . . . , JN} → {J1, . . . , Jℓ−1, J ′, Jℓ, . . . JN}+O(N−1) , J ′ − J j ∈ Z .
(67)

A hole excitation corresponds to removing an integer Iℓ or, equivalently, the corresponding ra-
tional quantum number Jℓ. Since N → N−1, this is necessarily accompanied by a change in the
configuration; we propose to update it by removing an elementary particle – see, e.g., Figure 5.
As a consequence, M can either remain unchanged or decrease by 1, i.e. ∆M ∈ {0,−1}. More
quantitatively, representing this operation by an operator C(pℓ; b j) acting on the eigenstate,
we have

C(pℓ; b j) |{p1, . . . , pN}; {(b1, . . . , bN )}c〉 ∝
|{p1 +δp1, . . . , pℓ−1 +δpℓ−1, pℓ+1 +δpℓ+1, . . . , pN +δpN}; {(b1, . . . , b j−1, b j+1, . . . , bN )}c〉 .

(68)

Here, using Bethe equations (12), we find

L
2
δp⃗ =W p⃗−µpℓu⃗+O(N−1) , (69)

where u⃗ = [1]N−1
j=1 , p⃗ = [p1, . . . , pℓ−1, pℓ+1, . . . , pN ], δp⃗ = [δp1, . . . ,δpℓ−1,δpℓ+1, . . . ,δpN ],

and we have defined

W =
2ξ
L

�

µ−
|∆M |
1+ µ

ξ

�

u⃗⊗ u⃗+
|∆M |
1+ µ

ξ

1 . (70)

Analogously, a particle excitation corresponds to adding an integer Iℓ. The configuration
is updated by adding an elementary particle. As a consequence, N → N + 1 and M can either
remain unchanged or increase by 1, i.e., ∆M ∈ {0, 1}. Representing this operation by an
operator B(pℓ; b j) acting on the eigenstate, we have

17

https://scipost.org
https://scipost.org/SciPostPhys.10.5.099


SciPost Phys. 10, 099 (2021)

B(pℓ; b j) |{p1, . . . , pℓ−1, pℓ+1, . . . , pN}; {(b1, . . . , b j−1, b j+1, . . . , bN )}c〉 ∝
|{p1 −δp1, . . . , pℓ−1 −δpℓ−1, pℓ, pℓ+1 −δpℓ+1, . . . , pN −δpN}; {(b1, . . . , bN )}c〉 , (71)

where δp⃗ is still given by Eq. (69).
Almost always, both before and after the excitation, g = 1, and thus I0 can be left un-

changed. If, before or after the excitation, g ̸= 1, but still g ≪ N , the change in ϕ can always
be compensated up to O(N−1) by a change in I0. If, instead, after the excitation g∝ N , then
the compensation is not always possible and generally such excitation is composite, consisting
of an elementary excitation of type B, followed by an elementary excitation of type A.

Excitation of type B. An excitation of type B does not modify the configuration and corre-
sponds to an extensive change of I0 – see Figure 5. In terms of the rational quantum numbers
{J1, . . . , JN} we have

{J1, . . . , JN} → {J1 +
δϕ
2π , . . . , JN +

δϕ
2π } . (72)

If we agree on representing this operation by an operator ei 2ϕ
L X acting on the eigenstate,

we have5

ei 2δϕ
L X |{p1, . . . , pN}; {(b1, . . . , bN )}c〉 ∝ |{p1 +

2δϕ
L , . . . , pN +

2δϕ
L }; {(b1, . . . , bN )}c〉 . (73)

We note that ei 4π
L X can be written in terms of excitations of type A – cf. Eqs (67) and (72):

ei 4π
L X |{p1, . . . , pN}; {(b1, . . . , bN )}c〉 ∝

N
∏

ℓ=1

B(pℓ +
4π
L ; b jℓ)C(pℓ; b jℓ) |{p1, . . . , pN}; {(b1, . . . , bN )}c〉 . (74)

We warn the reader that we conceived these elementary excitations so as to form a basis of
the space of excitations and to preserve the macroscopic properties of the excited states. We did
not investigate, however, whether the matrix elements of local observables could be nonzero
even between states differing in a macroscopically large number of elementary excitations.

Dressed charges

The changes in the expectation values of the local charges (17) after an elementary excitation
are of the order O(1). It is customary to interpret such discrepancies as the charges carried
by the excitation. In interacting systems these values depend on the state and are usually
called “dressed charges”. For example, after a hole excitation of type A, generated by operator
C(pℓ; b j), the integral of motion with a single-particle eigenvalue q(p) changes as

−qdr(pℓ; b j) =∆Q =
N
∑

j=1
j ̸=ℓ

q(p j +δp j)−
N
∑

j=1

q(p j) = −q(pℓ) + q⃗′ ·δp⃗+O(N−1) , (75)

and hence, using Eq. (69), we find

qdr(k; b j)
TD
−→ q(k) +µ

k 〈1〉 − 〈p〉
〈1〉

〈q′(p)〉 −
|∆M j|

1+µ 〈1〉
〈q′(p)p〉 〈1〉 − 〈q′(p)〉 〈p〉

〈1〉
. (76)

Here, we have extended the notation 〈•〉, for the average of an operator in the macrostate
described by ρ(p), to functions of momenta:

〈 f (p)〉=
∫ π

−π
dpρ(p) f (p) .6 (77)

5Notation follows from the standard way of defining the momentum-shift operator.
6When unambiguous, we will use simply 〈 f 〉= 〈 f (p)〉, in order to ease the notation.
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The dressed momentum ℘ thus reads

℘(k; b j)≡ iddr(k) =
�

1+
µ

ξ

�

k−µ
∫ π

−π
dpρ(p)p . (78)

Comparing this with Eq. (26), we obtain the standard relation between the dressed momentum
derivative and the total root density, i.e., 2πρt = ∂k℘(k; b j).

Analogously, the dressed energy ϵ ≡ Edr of the excitation corresponds to q(p) = 4J cos p
and is given by

ϵ(k; b j) = 4J
�

cos k−µ
k 〈1〉 − 〈p〉
〈1〉

〈sin p〉+
|∆M j|

1+µ 〈1〉
〈p sin p〉 〈1〉 − 〈sin p〉 〈p〉

〈1〉

�

. (79)

In the specific case of a thermal state at temperature β−1 the expectation value of any charge
that is odd under spatial reflections zeroes, so we have

ϵβ(k; b j) = 4J cos k+ 4J
|∆M j|

1+ µ
ξ

〈p sin p〉β , (80)

where 〈•〉β signifies that the average is taken in a thermal macrostate. Contrary to the XXZ
model, the dressed energy of an elementary excitation does not match β−1 log

� 1
n(p)−1

�

, which

is unhappily called “dressed energy” as well7. In a thermal state, however, their derivatives
with respect to the momentum coincide.

For the sake of completeness, we finally report the derivative of the dressed charge with re-
spect to the momentum (rapidity), which plays a key role in the thermodynamic Bethe Ansatz.
It reads

∂kqdr(k; b j) = q′(k) +µ

∫ π

−π
dpρ(p)q′(p) , (81)

where (•)′ denotes the derivative.

4 Hydrodynamics with a minimal set of charges

This section develops the tools necessary to describe time evolution of inhomogeneous states
in the folded XXZ model. A theory, now known as “generalised hydrodynamics”, was proposed
in the seminal papers [5, 6] to describe the late-time behaviour of the expectation values of
local observables in integrable systems that evolve in time in the presence of inhomogeneities.
Specifically, it was assumed that one can describe the time evolution of a large class of inho-
mogeneous states by lifting the root densities that characterise stationary states into functions
of space and time (in addition to the momentum). In this way, the concept of local equilibrium
is generalised to integrable systems, where the stationary states are characterised by infinitely
many conservation laws.

The structure underlying local equilibrium in noninteracting spin chains was clarified in
Ref. [25]. There, it was shown that generalised hydrodynamics can be interpreted as a phase-
space description of the dynamics in a subspace of the Hilbert space that is invariant under time
evolution. When scrutinised locally, the states belonging to that subspace are quasistationary –

7By identifying the filling function with a Fermi-Dirac distribution, β−1 log
�

1
n(p)−1

�

represents the single-particle
energy.
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for that reason they have been called “locally quasistationary states” [26] – and the generalised
hydrodynamic equation of motion is simply the projection of the Schrödinger equation onto
the invariant subspace.

In interacting integrable systems the structure is less transparent and the aforementioned
invariant subspaces have not yet been identified. The theory is therefore still based on the
weaker assumption that, after a long-enough time, the unspecified degrees of freedom that
can not be described by space-time dependent root densities become irrelevant. This corre-
sponds to identifying the leading order(s) of an asymptotic expansion in the degree of the
inhomogeneity. To that aim, we first need to define the charge densities and the currents of
the integrable hierarchy introduced in Section 1.4. We will then develop first-order generalised
hydrodynamics in the dual folded XXZ model.

4.1 Charge densities

A local charge Q that commutes with the shift operator eiP, where P is the operator of the
total momentum, can always be represented as a sum of localised operators that differ only
in their position: Q =

∑

ℓ qℓ, with qℓ+1 = eiPqℓe
−iP. The operators qℓ are referred to as

charge densities, but their definition is not at all unique. For example, if qℓ is a charge density,
the operator qℓ + zℓ − zℓ−1 is as well, whatever zℓ is. Such an ambiguity can be used to
simplify either the definition of the operator or its dynamical equations, the latter point of
view being taken, for example, in Ref. [25]. In both cases, it is usually convenient to choose a
density with as many symmetries as possible. Simple symmetries that can be easily enforced
are generated by operators with equally spaced eigenvalues. Consider, for example, the total
magnetisation Sz . The eigenvalues of L

2 + Sz are integers, thus eiϕ( L
2+Sz) is 2π-periodic in ϕ.

This implies that the averaged density

q̄=

∫ 2π

0

dϕ
2π

eiϕSz
qe−iϕSz

, (82)

commutes with Sz8. Since a rotation does not change the range of q, the local density q̄ has
the same locality properties as q, but is, in addition, U(1)-invariant.

As a matter of fact, a similar conclusion can be drawn even if we replace Sz with a less trivial
charge with equally-spaced spectrum, say A. The averaged charge still commutes with A, but
its range might increase. Nevertheless, the range can not become arbitrarily large, provided
that the local terms of A decay exponentially with their range. This follows from a result of
Ref. [27], which showed that, if q is a local operator with range r, the operator eiϕAqe−iϕA can
be approximated, with exponential accuracy, by an operator with range r + 2vLRT , where vLR
is the Lieb-Robinson velocity of A. Specifically, the error of this approximation, i.e., the part of
operator eiϕAqe−iϕA with a range larger than r + 2vLRT , is exponentially small in vLR(T −ϕ).
This bound can be readily adapted to the averaged charge density by replacing ϕ with its
maximum, namely 2π.

In our specific case, the invariance of the configuration can be expressed as the conserva-
tion of infinitely many quasilocal charges with equally spaced spectrum (including Sz , Sz

st, and
M). It is therefore natural to define charge densities that preserve the configuration. Remark-
ably, the local densities (19) are already of such form. This holds even if one redefines them
by adding a local operator z±n,ℓ that preserves the configuration and satisfies

∑L
ℓ=1 z±n,ℓ = 0.

8

[q̄,Sz] =

∫ 2π

0

dϕ
2π

eiϕSz
[q,Sz]e−iϕSz

=

∫ 2π

0

dϕ
2π

i∂ϕ
�

eiϕSz
qe−iϕSz �

= 0 .
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Concerning the diagonal charges (the ones commuting with any σz
ℓ
), a sensible choice is

to enforce their densities to be diagonal as well. In particular, we will use sz
ℓ
= σz

ℓ
/2 and

mℓ =
σz
ℓ

2
+

1
2

L
∏

j=1

1−σz
j

2
+

L−2
∑

n=1

ℓ+n
∏

j=ℓ

σz
j − 1

2
, (83)

as diagonal local densities of Sz and M, respectively. Finally, we mention that the expectation
value of mℓ can be rewritten in terms of the emptiness formation probability

Pℓ(n) = 〈
∏ℓ+n−1

j=ℓ
1−σz

j
2 〉 as follows:

〈mℓ〉=
1
2
+

1
2

Pℓ(L) +
L−1
∑

n=1

(−1)nPℓ(n) . (84)

4.2 Currents

A fundamental role in generalised hydrodynamics is played by the continuity equations that
relate the local charge densities to the corresponding currents. In a spin chain, they are ob-
tained by applying the Heisenberg equation to the charge restricted to a half-open interval
∆X = a[n−, n+), where n− and n+ are the integers denoting the boundary sites, while a is
the lattice spacing. In particular, the equation reads ∂t

∑

ℓ∈∆X/a qℓ(t) = i[H,
∑

ℓ∈∆X/a qℓ(t)];
since the commutator acts nontrivially only around the boundaries of the region, it can also
be written as

∂t

∑

ℓ∈[n−,n+)

qℓ(t) +
jn+(t)− jn−(t)

a
= 0 . (85)

If the region ∆X includes a mesoscopically large number of sites ((x+ − x−)/a≫ 1) and the
local properties of the state vary in a sufficiently smooth way on a larger scale, the continuity
equation can also be expressed in a differential form. Here, the expectation values are inter-
polated by smooth functions 〈qℓ〉 (t) = a 〈q〉 (x , t) and 〈jℓ〉 (t) = a 〈j〉 (x , t), with x = aℓ, and,
according to the trapezoidal rule and the definition of the derivative, we have
∑

ℓ∈[n−,n+)
〈qℓ(t)〉

x+ − x−
∼
∫ x+

x−

dx
x+ − x−

〈q〉 (x , t)− a
〈q〉 (x+, t)− 〈q〉 (x−, t)

2(x+ − x−)
x+→x−−−−−→ 〈q〉 (x−, t) ,

〈jn+(t)〉 − 〈jn−(t)〉
a(x+ − x−)

=
〈j〉 (x+, t)− 〈j〉 (x−, t)

x+ − x−

x+→x−−−−−→ ∂x 〈j〉 (x , t)
�

�

�

x=x−
.

(86)
Importantly, if the ranges of qℓ and jℓ are both small with respect to∆X/a, one can ignore the
inhomogeneity of the state in the region where qℓ and jℓ act nontrivially, so that the state can
be effectively replaced by a homogeneous one.

In our specific case, there exist local and quasilocal conservation laws that break one-site
shift invariance, therefore we can not generally expect the smoothness hypothesis to hold on
a mesoscopic scale if ℓ is associated with a chain site. The natural choice for the constituents
of the unit cell are instead macrosites – the index ℓ in Eqs (85) and (86) should then refer to
a pair of neighbouring spins. Technically speaking, this is a consequence of the fact that the
momentum entering the Bethe equations (21) generates two-site translations. For the sake of
clarity, let us introduce the notations qℓ′ = q2ℓ′−1 + q2ℓ′ for the macrosite charge density and
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ȷℓ′ for the macrosite current. For example, using definitions (19), the energy current reads

ȷ+1,ℓ′ =−
aJ2

2

�

(1−σz
2ℓ′−2)σ

z
2ℓ′−1(1−σ

z
2ℓ′)D2ℓ′−3,2ℓ′+1

+ (1−σz
2ℓ′−1)σ

z
2ℓ′(1−σ

z
2ℓ′+1)D2ℓ′−2,2ℓ′+2

+D2ℓ′−2,2ℓ′+1K2ℓ′−1,2ℓ′ +K2ℓ′−2,2ℓ′+1D2ℓ′−1,2ℓ′

�

, (87)

whereas the current of Q−1 is given by

ȷ−1,ℓ′ = −
aJ2

2

�

(1−σz
2ℓ′−2)σ

z
2ℓ′−1(1−σ

z
2ℓ′)K2ℓ′−3,2ℓ′+1

+ (1−σz
2ℓ′−1)σ

z
2ℓ′(1−σ

z
2ℓ′+1)K2ℓ′−2,2ℓ′+2

+K2ℓ′−2,2ℓ′+1K2ℓ′−1,2ℓ′ −D2ℓ′−2,2ℓ′+1D2ℓ′−1,2ℓ′ + 4σz
2ℓ′−1 + 4σz

2ℓ′ − 4σz
2ℓ′−1σ

z
2ℓ′

�

.

(88)

Note that the macrosite current equals the spin-site current evaluated at odd sites ȷℓ′ = j2ℓ′−1.9

The continuity equation for ∆X = {ℓ′} is represented schematically in Fig. 6. Importantly,
having defined the charge densities so as to preserve the configuration, the corresponding
currents will commute with Sz , M, as well as with other charges related to the conservation of
the configuration.

. . .
2ℓ′ − 1 2ℓ′

. . .
q+1,2ℓ′

q+1,2ℓ′−1

ȷ+1,ℓ′+1ȷ+1,ℓ′

Figure 6: Two macrosites (four neighbouring spins) constitute the unit cell (in light
blue), for which continuity equation (85) holds, where the local charge corresponds,
for instance, to the Hamiltonian Q+1 = H̃ηF . On each side of the unit cell another
macrosite is coupled to it by the energy current (87) that is supported on six sites.

To the best of our knowledge, the staggered spin along the z-axis is the unique strictly local
charge that breaks one-site shift invariance. Setting the local density equal to
s z

st,ℓ′ = (σ
z
2ℓ′ −σ

z
2ℓ′−1)/2, the staggered spin current reads

ȷℓ′[s
z
st] = aJ

�

D2ℓ′−2,2ℓ′
1−σz

2ℓ′−1

2
−D2ℓ′−3,2ℓ′−1

1−σz
2ℓ′−2

2

�

= a(−q−1,2ℓ′−2 + q−1,2ℓ′−3) . (89)

We now turn to the current of the quasilocal charge M. As evident from Eq. (16), we can
choose the quasilocal operator

mℓ′ =
1+σz

2ℓ′−1

2

L
2−1
∑

n′=0

 

2ℓ′−1+2n′
∏

j=2ℓ′

1−σz
j

2

!

1+σz
2ℓ′+2n′

2
, (90)

as the charge density. Using −i[K, 1+sσz

2 ⊗
1+s′σz

2 ] = s−s′
2 D, a straightforward calculation gives

ȷℓ′[m] = D2ℓ′−3,2ℓ′−1

1−σz
2ℓ′−2

2

L
2−1
∑

n′=0

�

2ℓ′−3+2n′
∏

j=2ℓ′

1−σz
j

2

�1+σz
2ℓ′+2n′−2

2
. (91)

9For translationally invariant charges, one can obtain the macrosite continuity equation ∂tqℓ′ + ȷℓ′+1 − ȷℓ′ = 0
by combining spin-site continuity equations ∂tq2ℓ′−1 + j2ℓ′ − j2ℓ′−1 = 0 and ∂tq2ℓ′ + j2ℓ′+1 − j2ℓ′ = 0, whence the
identification ȷℓ′ = j2ℓ′−1.
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4.3 Expectation values of charges and currents

4.3.1 In a macrostate

In a macrostate characterised by a root density ρ(p), the expectation value of a charge Q is
computed according to Eq. (24), which can be written as

〈qℓ′〉 − 〈vac|qℓ′ |vac〉=
∫ π

−π
dpρ(p)q(p) . (92)

Here, q(p) is the single-particle value of charge Q and |vac〉 = |↓↓ . . . ↓〉 is the Bethe Ansatz
reference state. On the left-hand side of Eq. (92) we subtract the vacuum expectation value,
since the right-hand side is always zero in the vacuum state (the latter contains no momenta,
so ρ(vac)(p) = 0). The subtraction is allowed, because the charge density expectation value is
defined up to an additive constant.

Remarkably, we can also relate the expectation value of the corresponding current to the
root density. To that aim, it is convenient to take a step backward and consider first a finite
system with L spins. Reference [28] showed that the expectation value of the current in a
Bethe state can be expressed in terms of the Gaudin matrix G, which is a quantity discernible
directly from the Bethe equations, as follows:

〈 ȷℓ′[q]〉 − 〈vac| ȷℓ′[q] |vac〉=
N
∑

i, j=1

E′(pi)[G
−1]i jq(p j) . (93)

Here, (•)′ denotes the derivative, and N is fixed because both the charge density and the
current commute with the total magnetisation along the z-axis, Sz . The elements of the Gaudin
matrix are given by

Gi j = ∂p j
(2πJi) . (94)

Analogously to what was said for N , the partial derivative in Eq. (94) is taken at fixed M .
Indeed, both the charge density and the current commute with M as well, and hence the
continuity equation (85) can be enforced at fixed M . Comparing Eqs (21), (78), and (94), we
see that the Gaudin matrix corresponds to the Jacobian of the transformation p 7→ ℘, up to a
multiplicative factor. In the end we find

Gi j =
�

L
2
+M

�

δi, j −
M
N

. (95)

Using E(p) = 4J cos p, the expectation value of the current then reads

〈 ȷℓ′[q]〉 − 〈vac| ȷℓ′[q] |vac〉= −
4J

L
2 +M

N
∑

i=1

q(pi) sin pi −
8MJ

LN( L
2 +M)

N
∑

i=1

sin pi

N
∑

i=1

q(pi) .

(96)

Relation (96) is expected to hold for the currents of all local charges Q±n ,10 and we have
checked it for J±1 (see Eqs (87) and (88)) by means of exact diagonalisation, up to L = 14
sites. In the thermodynamic limit it becomes

〈 ȷℓ′[q]〉 − 〈vac| ȷℓ′[q] |vac〉
TD
−→

∫ π

−π
dpρ(p)v(p)q(p) , (97)

10The expectation value of M’s current will be derived in the next section directly in the thermodynamic limit.
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providing the sought-after relation between the expectation value of the current and the root
density. Here, v(p) = ∂pϵ(p)/∂p℘(p) is the effective velocity of quasiparticles, explicitly ex-
pressible as

v(p) = E′(p) +µ

∫ π

−π

dk
2π

n(k)[E′(k)− E′(p)] =
E′(p) +µ 〈E′〉

1+µ 〈1〉
, (98)

where we used the dressing equations (78) and (79).
Finally, summing Eq. (96) over the macrosites gives the expectation value of the total

current. Its diagonal (stationary) part, which we indicate with Jd[•], can be readily extracted
and reads

Jd[Zn] = iJ
L

L
2 +M

(Zn+1 − Zn−1) + 2iJ
M
Z0

Z1 − Z†
1

L
2 +M

Zn , (99)

where Zn(≡ Z†
−n) =

1
4J (Q

+
n + iQ−n ). In the noninteracting sector, where M = 0, Jd[Zn] are

equivalent to local operators. This property is, however, immediately lost in the presence of
interactions.11

4.3.2 In a locally quasistationary state

Reference [26] named “locally quasistationary state” (LQSS) the inhomogeneous macrostate
that captures the expectation values of local operators in an inhomogeneous out-of-equilibrium
state at asymptotically large times, after the fastest degrees of freedom have stopped affecting
the dynamics of local observables. In particular, at each point in space an LQSS is locally
equivalent to some stationary state. A route to a formal definition of locally quasistationary
states is based on the identification of the smallest families C of operators, including both the
set of conserved charges and their densities, that are closed under time evolution [25]. A
locally quasistationary state could than be represented by a density matrix ρ = eW/tr[eW],
with W ∈ C. A basic property of the family C is that, for any conserved operator O ∈ C, its
charge density is defined in such a way that Jd[O] (which generalises functional (99) to the
conserved operators belonging to C) is in C as well. Notwithstanding the simplicity of Eq. (99)
suggesting the potential to identify a family C of such operators in the folded XXZ model, we
leave this problem to future investigation. Here, we stick to the heuristic method that has
been used to obtain the first-order generalised hydrodynamics (GHD) equation in interacting
integrable systems.

To that aim, we consider the continuity equation (85) in the limit described by Eq. (86):

∂t 〈q〉 (x , t) + ∂x 〈j〉 (x , t) = 0 . (100)

The local equivalence of an LQSS to a stationary state indicates the possibility to lift the root
density to a function of space and time. Let us then assume that the expectation values in the
LQSS characterised by the density matrix eW/tr[eW], with W ∈ C, are completely determined
by a root density depending on space and time. Even if we do not really know how to compute
expectation values in such an inhomogeneous macrostate, if the range of the operator is much

11Note that, as discussed in the first part of our work [1], for finite L the local charges Zn are not functionally
independent. Indeed, we have

Z0Z L
2 +ℓ
=

L
2
∑

M=0

ΠM Zℓ−M Z L
2 +M ,

where ΠM is the projector on the subspace with M= M (see Ref. [29] for some observations concerning the inde-
pendence of integrals of motion in the presence of such a functional dependence). This is a further manifestation
of the incompleteness of the charges Qn.
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smaller than the typical length of the inhomogeneity, we can simply compute its expectation
value in the macrostate characterised by ρx ,t(p), by treating x and t as external parameters.
Under such a low-inhomogeneity assumption, using Eqs (92) and (97), we finally obtain

∫ π

−π
dp
�

∂tρx ,t(p) + ∂x[ρx ,t(p)vx ,t(p)]
�

q(p) =O(∂ 2
x ) . (101)

The higher order derivatives signify the corrections due to the modulation of the root density
on length scales smaller than the typical size of the inhomogeneity. Since the single-particle
values q±n (p) of the charges Q±n form a basis in the space of square-integrable functions of the
momentum p ∈ [−π,π), we end up with the fundamental equation of generalised hydrody-
namics

∂tρx ,t(p) + ∂x[ρx ,t(p)vx ,t(p)] =O(∂ 2
x ) . (102)

By symmetry, the density of holes ρh(p) is expected to satisfy the same equation, which then
implies

∂tρt;x ,t + ∂x[ρt;x ,t vx ,t(p)] =O(∂ 2
x ) , (103)

where we used that, in our specific case, ρt = ρ(p) +ρh(p) does not depend on the rapidity.
At first sight the latter equation might look wrong, since it relates the rapidity-independent

function ρt to a function that, instead, seemingly depends on the rapidity. This is only appar-
ent: plugging Eq. (98) into the continuity equation (103) and using 2πρt = 1 + µ 〈1〉 (cf.
Eq. (26)), we obtain

∂tρt;x ,t + ∂x

�µx ,t

2π
〈E′〉x ,t

�

=O(∂ 2
x ) , (104)

where we used notation (77). By virtue of Eq. (102), this can be recast into a continuity
equation for µx ,t :

∂tµx ,t +
〈E′〉x ,t

〈1〉x ,t
∂xµx ,t =O(∂ 2

x ) . (105)

Equations (102) and (103) can also be used to obtain the dynamical equation satisfied by the
filling function nx ,t(p) = ρx ,t(p)/ρt;x ,t , which is given by

∂t nx ,t(p) + vx ,t(p)∂x nx ,t(p) =O(∂ 2
x ) . (106)

The O(∂ 2
x ) corrections become irrelevant in a particular scaling limit, often refered to as “Euler

scale” or “ballistic scaling limit”. In this limit one can truncate generalised hydrodynamics at
the first order. The description of diffusive, sub-diffusive, and Tracy-Widom scaling behaviours
requires the development of higher-order generalised hydrodynamics [25,30,31].

Finally, we note 2
L 〈M〉x ,t = 2πρt;x ,t − 1, therefore Eq. (104) can be used to infer the

expectation value of the corresponding current ȷℓ′[m], given by Eq. (91), in a macro-state:

〈 ȷℓ′[m]〉 − 〈vac| ȷℓ′[m]|vac〉= µ
∫ π

−π
dpρ(p)E′(p) . (107)

In other words, the diagonal part of the total current reads

Jd[M] = 2iJ
M
Z0
(Z1 − Z†

1) . (108)

An attentive reader might have noticed that the picture developed so far does not include
the staggered magnetisation. We conjecture that the staggered magnetisation – as well as the
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other quasilocal charges whose eigenvalues describe the configuration – satisfies the same
GHD equation as µ= 〈m〉/ 〈1〉, namely

∂t

�mz
st;x ,t

〈1〉x ,t

�

+
〈E′〉x ,t

〈1〉x ,t
∂x

�mz
st;x ,t

〈1〉x ,t

�

=O(∂ 2
x ) . (109)

In the next section we study the first-order GHD equation, expressed by Eqs (105) and
(106), in the inhomogeneous setting where two local macrostates are joined together.

5 Junction of two local macrostates

A nonequilibrium setting that has been intensively studied for its potential to elucidate trans-
port properties of both classical and quantum many-body systems is the junction of two pieces
of materials kept at different temperatures [32–39]. The system of interest is typically sand-
wiched between the materials at the junction. In this case the materials act as thermal baths,
and such a setting is a paradigm of a non-isolated system. If, however, the two pieces are in
direct contact, one can take both of them as constituents of a larger isolated system. In the
latter, however big the pieces of materials are, they will experience a nontrivial evolution over
time. In some cases the evolution can be captured by assuming local thermalisation, where
the state of the system is still characterised by a temperature, but the latter depends on space
and time. An important exception are the integrable systems, where local thermal equilibrium
states do not form invariant subspaces. In other words, the nonequilibrium state can not be
characterised solely by the time evolution of the local temperature. Instead, the full set of gen-
eralised chemical potentials (or generalised temperatures) is required for the determination
of such an out-of-equilibrium state.

We consider here the junction of two local macrostates in the folded XXZ model, for exam-
ple, two thermal states. Besides its physical relevance, this scenario carries some mathematical
simplifications. Firstly, the boundary conditions, i.e., n(p) and µ in the initial state, are func-
tions of the ray ζ= x/t, so the solution to the GHD equations is expected to depend on x and
t only through their ratio. Secondly, the corrections to Eqs (105) and (106) are irrelevant in
the ballistic (B) scaling limit t →∞, at fixed ζ= x/t, so the GHD equations reduce to

(ζ− vζ(p))∂ζnζ(p)
B
−→ 0 , (ζ− Vζ)∂ζµζ

B
−→ 0 , (110)

where we have defined

Vζ :=
〈E′〉ζ
〈1〉ζ

=

∫ π

−π dp nζ(p)E′(p)
∫ π

−π dp nζ(p)
. (111)

The ballistic scaling limit is supposed to exist whenever the limits

n±(p) = lim
x→±∞

nx ,0(p) , µ± = lim
x→±∞

µx ,0 , (112)

exist.

5.1 On the solution to the GHD equation

The initial conditions (112) fix the values of nζ(p) and µζ in the limits ζ → ±∞. Thus, in
order for the solution to be unique, the equations ζ = vζ(p) (for each given momentum p)
and ζ= Vζ should only have one solution. In this section such uniqueness conditions will just
be assumed to be satisfied.
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The solution to the second of the GHD equations (110), namely, the equation for µζ, is a
piecewise constant function with one discontinuity (due to the uniqueness assumption). It is
then convenient to define the auxiliary velocities

v±ζ (p) := E′(p) +µ±

∫ π

−π

dk
2π

n±ζ (k)[E
′(k)− E′(p)] =

E′(p) +µ± 〈E′〉
±
ζ

1+µ± 〈1〉
±
ζ

,

V±ζ :=
〈E′〉±ζ
〈1〉±ζ

=

∫ π

−π dp n±
ζ
(p)E′(p)

∫ π

−π dp n±
ζ
(p)

,

(113)

and the auxiliary GHD equations

(ζ− v±ζ (p))∂ζn
±
ζ (p) = 0 , (ζ− V±ζ )∂ζµ

±
ζ = 0 , (114)

with the same boundary conditions as in the original problem. The sign in the superscript or
subscript refers to the region, with respect to the discontinuity in µζ, where the equations or
quantities are defined.

The full solution to Eq. (110), with a single discontinuity, can be constructed from the
solutions to the auxiliary GHD equations (114) by joining n−

ζ
(p) and n+

ζ
(p) at the ray of the

discontinuity in µζ, i.e., the ray that solves both ζ= V−
ζ

and ζ= V+
ζ

. The latter two equations
should therefore have the same solution. To find it, we note that a change in µ+ does not affect
V−
ζ

. This implies that the common solution of equations ζ= V−
ζ

and ζ= V+
ζ

is, in fact, indepen-
dent of µ+. We can then specialise the calculation to the noninteracting case µ+ = 0, in which
the effective velocity is simply v+(p) = E′(p) = −4J sin p, so that n+

ζ
(p) = nsgn(4J sin p+ζ)(p).

The equation ζ= V+
ζ

can then be rewritten as

0= f (ζ; n+(p), n−(p)) :=

∫ π

−π
dp nsgn(4J sin p+ζ)(p)

�

sin p+
ζ

4J

�

. (115)

Since f (ζ; n+(p), n−(p)) is a monotonous function of ζ, and
limζ→±∞ f (ζ; n+(p), n−(p)) = ±∞, equation f (ζ; n+(p), n−(p)) = 0 has a single solution
ζ= ζd. This simple observation allows us to conclude that, assuming a single discontinuity in
µ, the ray ζd of the discontinuity is the unique zero of f (ζ; n+(p), n−(p)).

Again assuming uniqueness, the first of the GHD equations (110) is solved by

nζ(p) =
n+
ζ
(p) + n−

ζ
(p)

2
+

n+
ζ
(p)− n−

ζ
(p)

2
sgn(ζ− ζd) , (116)

where n±
ζ
(p) are the filling functions on each side of the ray of the discontinuity. They sepa-

rately solve the first of the auxiliary GHD equations (114) and read

n±ζ (p) =
n+(p) + n−(p)

2
+

n+(p)− n−(p)
2

sgn(ζ− v±ζ (p)) . (117)

In addition to this solution, the following two facts should be kept in mind:

1. The maximal (minimal) ray at which the filling function undergoes a transition from
n−(p) to n+(p) corresponds to the right (left) edge of the light cone, emanating at the
junction of the two local macrostates. It is given by

ζ±lc =
±4J +µ± 〈E′〉±

1+µ± 〈1〉±
. (118)

In the ballistic scaling limit, the expectation value of any local observable outside the
light cone is constant and equal to its initial value.
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2. At the ray ζ= ζd of the discontinuity we have

ζd − v±ζd
(p) =

ζd − E′(p)
1+µ± 〈1〉

±
ζd

, (119)

where we have used ζd = V±
ζd

and the definitions (113) of the auxiliary velocities. Since

1+µ± 〈1〉
±
ζd
≥ 0, this implies

sgn(ζd − v+ζd
(p)) = sgn(ζd − v−ζd

(p)) = sgn(ζd − E′(p)) , (120)

for all momenta p. In particular, for momenta p that satisfy ζd = E′(p) = −4J sin p, the
filling function changes its value from n−(p) to n+(p) at the ray ζd. This will be used in
the next section, where we discuss the discontinuities in the expectation values of local
charges.

ζd

ζ= −∞ ζ=∞

v−
ζ
(k)ζ

n−(p)

p

n+(p)

p

nζ(p)

p
k

Figure 7: When the ray ζ crosses v−
ζ
(k), the value of the filling function at momen-

tum k jumps from n−(k) to n+(k). When ζd is crossed, µ− changes discontinuously
into µ+, and v−

ζ
(k), at k satisfying E′(k) = ζd, continuously into v+

ζ
(k). Sweep-

ing the interval ζ ∈ (−∞,∞), the left-hand side state n− completely transforms
into n+. The data shown corresponds to the junction of two thermal states with
β− = 0.25 and β+ = 2.75. Clearly visible are the asymmetric light cone between
the rays ζ−lc ≈ −3.0140J and ζ+lc ≈ 2.9400J , computed according to formula (118),
as well as the ray of discontinuity ζd ≈ 0.2416J . The sketched filling functions are
purely qualitative.

To summarise, the picture that unfolds is as follows (see Fig. 7). When the ray ζ sweeps
from ζ = ζ−lc to ζ = ζd, the filling function transforms from n−(p) to n+(p) at the momenta
p, for which ζ = v−

ζ
(p). When ζd is crossed, v−

ζ
(p) is replaced by v+

ζ
(p), the change being, in

fact, continuous. By “continuous” we mean that, at the momenta p for which the transition of
the filling function from n−(p) to n+(p) occurs at ζd (these momenta satisfy ζd = E′(p)), the
velocities coincide: v+

ζd
(p) = v−

ζd
(p) = ζd.

5.2 Non-ballistic behaviour

Let us assume that the filling functions of the boundary conditions are smooth; in this way
any non-analytic behaviour can be traced back to the “domain-wall” structure of the initial
state. As it generally happens, the discontinuity in the filling functions that is caused by the
discontinuity of the initial state does not directly produce non-analytic behaviour in the profiles
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of the local observables (except for the neighbourhoods of the light cones). Indeed, if µ+ = µ−,
the ballistic profiles are smooth inside the light cone12. On the other hand, a discontinuity in
µ at the initial time immediately spoils the smoothness of the profiles. At first sight, this bears
resemblance to the effect of a discontinuous sign of magnetisation in the XXZ model [40].
However, in that case, in the ballistic scaling limit the operators that are even under the change
in the sign of Sz are not affected by the discontinuity. In contrast, in our case µ+ ̸= µ− makes
the ballistic profile of any generic local charge and current discontinuous. In other words,
there is no global symmetry (independent of the initial state) that protects the smoothness of
the profiles. In the following we quantify the discontinuities of charges and currents, which
turn out to be deducible a priori.

Denoting fζ−d = limζ↗ζd
fζ and fζ+d = limζ↘ζd

fζ, the left and right limits of the expectation
values of charges and currents at the discontinuity are given by

〈qℓ′〉ζ±d =
∫ π

−π
dpρζ±d (p)q(p) =

∫ π

−π dp n±
ζd
(p)q(p)

2π−µ±
∫ π

−π dp n±
ζd
(p)

,

〈 ȷℓ′[q]〉ζ±d =
∫ π

−π
dpρζ±d (p)vζ±d (p)q(p) =

∫ π

−π dp n±
ζd
(p)v±

ζd
(p)q(p)

2π−µ±
∫ π

−π dp n±
ζ
(p)

,

(121)

where n±
ζd
(p) and v±

ζd
(p) readily follow from ζd = V±

ζd
and Eqs (113), (117), and (120):

n±ζd
(p) =nsgn(ζd+4J sin p)(p)

v±ζd
(p) =− 4J sin p+µ±(ζd + 4J sin(p))

∫ π

−π

dk
2π

nsgn(ζd+4J sin k)(k) .
(122)

Remarkably, these expressions, along with Eq. (115), are written solely in terms of the bound-
ary conditions. We also note that the existence of two rays ζ±d , described by the same filling
function but different µ, rules out the possibility to interpret the locally quasistationary state
as a collection of local macrostates, since in the latter µ is fixed by Eq. (39). In particular, since
thermal states at different temperatures have different values of µ (see Fig. 3), this observation
applies also to the junction of thermal states.

The charge discontinuity at ray ζ= ζd is now given by

〈q〉ζ+d − 〈q〉ζ−d =
(µ+ −µ−)

∫ π

−π dk nsgn(ζd+4J sin k)(k)
∫ π

−π dp nsgn(ζd+4J sin p)(p)q(p)

(2π−µ+
∫ π

−π dk nsgn(ζd+4J sin k)(k))(2π−µ−
∫ π

−π dp nsgn(ζd+4J sin p)(p))
,

(123)

which implies
〈q〉ζ+d − 〈q〉ζ−d
〈q〉ζ±d

= (µ+ −µ−) 〈1〉ζ∓d . (124)

The current discontinuity at ray ζ= ζd instead reads

〈 ȷ[q]〉ζ+d − 〈 ȷ[q]〉ζ−d = ζd(〈q〉ζ+d − 〈q〉ζ−d ) , (125)

which can be immediately inferred from the continuity equation ζ∂ζ 〈q〉 − ∂ζ 〈 ȷ[q]〉= 0.

12We remind the reader that in the XXZ model the presence of (for∆≥ 1, infinitely) many species of excitations
creates non-analyticities at the light cones of the species [40].
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Remarkably, the ratio of expectation values of any two local charge densities qa and qb is
continuous

〈qa〉ζ±d
〈qb〉ζ±d

=

∫ π

−π dp nsgn(ζd+4J sin p)(p)qa(p)
∫ π

−π dp nsgn(ζd+4J sin p)(p)qb(p)
. (126)

Although this does not extend to the expectation values of currents, it holds true for the shifted
currents ȷ[q]+q⋆q−1 , where qa⋆qb denotes the charge with a single-particle value qa(p)qb(p).
Indeed, we have

〈 ȷ[qa] + qa ⋆ q−1 〉ζ±d
〈 ȷ[qb] + qb ⋆ q−1 〉ζ±d

=

∫ π

−π dp nsgn(ζd+4J sin p)(p)(ζd + 4J sin p)qa(p)
∫ π

−π dp nsgn(ζd+4J sin p)(p)(ζd + 4J sin p)qb(p)
. (127)

Similar calculations can be performed for the expectation value of m. Here, the left and
right limits are given by

〈m〉ζ±d = µ± 〈1〉ζ±d =
µ±
∫ π

−π dp nsgn(ζd+4J sin p)(p)

2π−µ±
∫ π

−π dp nsgn(ζd+4J sin p)(p)
, (128)

while the discontinuity reads

〈m〉ζ+d − 〈m〉ζ−d =
2π(µ+ −µ−)

∫ π

−π dp nsgn(ζd+4J sin p)(p)

(2π−µ+
∫ π

−π dp nsgn(ζd+4J sin p)(p))(2π−µ−
∫ π

−π dp nsgn(ζd+4J sin p)(p))
.

(129)
Finally, we point out that the GHD equation for µ can be replaced by the additional bound-

ary condition nζd
(p) = nsgn(ζd+4J sin p)(p) for the filling function in the two independent regions

ζ < ζd and ζ > ζd, in which µ is constant.

Entanglement entropy

The expectation values of charges and currents are not the only physical quantities that exhibit
non-ballistic behaviour. At large time, the entanglement entropy of a subsystem per unit length
is supposed to approach the Yang-Yang entropy density in the emerging locally quasistationary
state [41, 42]. In our case the Yang-Yang entropy is reported in Eq. (33).13 For the sake of
simplicity we assume that the initial state has zero staggered magnetisation. Then, around the
discontinuity, the Yang-Yang entropy reads

sYY;ζ±d
=

H(2µ±)
∫ π

−π dp nsgn(ζd+4J sin p)(p) +
∫ π

−π dp H(nsgn(ζd+4J sin p)(p))

2π−µ±
∫ π

−π dp nsgn(ζd+4J sin p)(p)
. (130)

The resulting discontinuity is computed as

sYY;ζ+d
− sYY;ζ−d

=
(µ+ −µ−)

∫ π

−π dp H(nsgn(ζd+4J sin p)(p))
∫ π

−π dp nsgn(ζd+4J sin p)(p)

(2π−µ+
∫ π

−π dp nsgn(ζd+4J sin p)(p))(2π−µ−
∫ π

−π dp nsgn(ζd+4J sin p)(p))
+

+
H(2µ+)

∫ π

−π dp nsgn(ζd+4J sin p)(p)

2π−µ+
∫ π

−π dp nsgn(ζd+4J sin p)(p)
−

H(2µ−)
∫ π

−π dp nsgn(ζd+4J sin p)(p)

2π−µ−
∫ π

−π dp nsgn(ζd+4J sin p)(p)
.

(131)

13We are assuming that the locally quasistationary state is locally equivalent to a quasilocal macrostate defined
in Section 2.2.2. If that is not the case, our estimation of the Yang-Yang entropy becomes an upper bound.
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Figure 8: Panels (a) and (c) show evolution of the energy profile after a sudden junc-
tion of two thermal states. Red and blue lines on panel (b) denote the light cone
rays ζ−lc = −6.00495J and ζ+lc = 6.12411J , respectively, computed from Eq. (118).
The animated version of the energy profile is accessible through QR codes in Fig. 9.
Panels (c) and (d) show comparison between the numerically computed profiles of
energy (c) and magnetisation (d) on the one hand (both per spin site), and the GHD
prediction on the other. In panel (c), the GHD prediction for the macrosite energy
density has been divided by 2, in order to obtain the average energy per spin site.
In panel (d), the magnetisation on the left-hand side oscillates between the solid
lines that border the shaded region (it is staggered as a result of the initial condi-
tion). The shaded region expands in time, as the discontinuity propagates towards
the right-hand side with velocity computed from Eq. (115). In all plots, the profiles
are centered at the geometrical center of the spin chain used in the simulation.

As a case study we could consider the junction of the ground state, in which µ− = 1/2,
n−(p) = θ (|p|−kF), with a pure state in which any traceless charge has zero expectation value:
the late-time behaviour on the right of the light cone would then be described by the infinite
temperature state, where µ+ = 1/3, n+(p) = 3/4. Calculation then yields ζd ≈ −0.272252J ,
∫ π

−π dp nsgn(ζd+4J sin p)(p)≈ 4.16302, and
∫ π

−π dp H(nsgn(ζd+4J sin p)(p))≈ 1.72832. The entropy
discontinuity is then given by sYY;ζ+d

− sYY;ζ−d
≈ 0.482976. To the best of our knowledge, this is

the first model where a discontinuity is predicted in the ballistic scaling limit of the entangle-
ment entropy.

5.3 Comparison with numerical simulations

Figure 8 shows a comparison between the generalised-hydrodynamics predictions and the
numerical simulations based on tDMRG algorithms [43–46]. We simulated the dynamics in
a spin chain with open boundary conditions; the boundary effects are mitigated by choosing
initial states that are locally stationary. We consider two scenarios: in the first scenario two
thermal states are prepared at temperatures TL = 10 and TR = 1 on the left half and on
the right half of the spin chain, respectively, where we set J = 1. In particular, denoting
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HL =
∑L/2−2
ℓ=1 q+1,ℓ and HR =

∑L−2
ℓ=L/2+1 q+1,ℓ, with q+1,ℓ given in Eq. (19), the initial state reads

ρ(0) =
e−HL/TL

tr[e−HL/TL]
⊗

e−HR/TR

tr[e−HR/TR]
. (132)

It is prepared by performing imaginary-time evolution of the infinite-temperature state, using
the ancilla tDMRG annealing technique [46, 47]. Once thermalised, the two halves of the
system are coupled and evolved in real time with the full folded Hamiltonian. The boundary
conditions for the GHD continuity equations read

n−(p) =
1

1+ eE(p)/TL−wL
, n+(p) =

1
1+ eE(p)/TR−wR

, (133)

where the energy shifts w± are computed by solving Eqs (38) and (39) at zero staggered
magnetisation mz

st = 0.
In the second scenario, the initial state is prepared so as to have a nonzero staggered

magnetisation in the left half of the spin chain. It reads

ρ(0) =
ehLSz

st−HL/TL

tr[ehLSz
st−HL/TL]

⊗
e−HR/TR

tr[e−HR/TR]
, (134)

where we have chosen hL = 4. To obtain the new left-hand side boundary condition for the
GHD continuity equations, one has to compute the staggered magnetisation per macrosite
according to Eq. (37). This only affects wL, through Eqs (38) and (39). For more details on
numerical simulations see Appendix B.

6 Conclusion

In this work we have considered the dual folded XXZ model in the thermodynamic limit. We
have developed the thermodynamic Bethe Ansatz that enables description of generalised Gibbs
ensembles constructed from the strictly local charges and a special quasilocal conservation law
related to the number of domain walls in a particle configuration. We have studied thermal
states in some detail, exhibiting the low- and high-temperature asymptotic expansions of the
energy, the magnetisation, and the specific heat. We have then moved our attention to the time
evolution of inhomogeneous states prepared so as to be locally equivalent to local macrostates
on large space and time scales. Such systems can be successfully investigated within the frame-
work of generalised hydrodynamics. We have adapted this theory to the folded XXZ model and
applied it to the crucial setting in which two macrostates (e.g., thermal states) are joined to-
gether at time t = 0. We found that the profiles of the expectation values of charge densities
and currents are discontinuous in the ballistic scaling limit. To the best of our knowledge,
there are no global symmetries that would protect some charges from developing discontinu-
ities, contrary to the analogous scenario in the XXZ model.

Besides solving the first-order GHD equations numerically, we have also obtained analyti-
cal predictions for the position of the discontinuity and for the macrostates that describe the
expectation values of the local observables in its neighbourhoods. We have tested our theoret-
ical predictions against extensive tDMRG simulations of time evolution. The agreement was
always fair, the discrepancies being reasonably explainable as finite-size or finite-time effects,
and as numerical inaccuracies.

We warn the reader that, despite being sufficient for our purposes, the thermodynamic
Bethe Ansatz that we developed (and, in turn, the generalised hydrodynamic theory) is not
complete, as we did not include all quasilocal charges that complete the characterisation of
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the configuration space. Some of these deficiencies could be filled rather easily. However,
the solution would nevertheless remain deficient, as it would not take into account the non-
abelian integrability of the folded XXZ model. The interest in the latter structure comes from
its striking effects on the dynamics at intermediate times, therefore this aspect deserves fur-
ther investigations, especially in the presence of interactions. Finally, despite non-ballistic
behaviour being manifest in the inhomogeneous setting, we only worked out generalised hy-
drodynamics at the first order (ballistic scaling limit). In this regard we wonder whether the
folded XXZ model is simple enough to make a step forward in the development of higher-order
generalised hydrodynamics in interacting integrable systems.
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A Sommerfeld expansion

In this section we provide more details about the Sommerfeld expansion in the folded XXZ
model. First of all, we provide a bound for the error of approximation (51). To that aim,
we note that all derivatives arcsin(n) x of arcsin x are non-negative in the interval [0,1]. In
addition, they are absolutely continuous in [0,1 − z0], for any 0 < z0 < 1. Thus, for given
x ∈ [0, 1− z − z0] and 0< z < 1− z0 there exist real numbers 0< ν0,ν1 < 1, such that

arcsin(z + x)−
j
∑

n=0

arcsin(n)(z)
n!

xn =
arcsin( j+1)(z + ν0 x)x j+1

( j + 1)!
,

1
p

1− (z + x)2
−

j
∑

n=0

arcsin(n+1)(z)
n!

xn =
arcsin( j+2)(z + ν1 x)x j+1

( j + 1)!
.

(135)
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Expressions on the right-hand side are the Lagrange remainders of the Taylor polynomials. For
some 0< ν2 < 1 we thus have

∫ 1−z

0

dx log(1+ e−4Jβ x)

π
p

1− (x + z)2
=

∫ 1−z

1−z−z0

dx log(1+ e−4Jβ x)

π
p

1− (x + z)2
+

∫ 1−z−z0

0

dx log(1+ e−4Jβ x)

π
p

1− (x + z)2

= log
�

1+ e−4Jβ(1−z−ν2z0)
��1

2
−

1
π

arcsin(1− z0)
�

+

+

∫ 1−z−z0

0

dx log(1+ e−4Jβ x)
π

arcsin( j+2)(z + ν1(x)x)x j+1

( j + 1)!
+

+
j
∑

n=0

arcsin(n+1)(z)
n!

∫ 1−z−z0

0

dx
π

xn log(1+ e−4Jβ x)

= log
�

1+ e−4Jβ(1−z−ν2z0)
��1

2
−

1
π

arcsin(1− z0)
�

−

−
j
∑

n=0

arcsin(n+1)(z)
n!

∫ ∞

1−z−z0

dx
π

xn log(1+ e−4Jβ x)+

+

∫ 1−z−z0

0

dx log(1+ e−4Jβ x)
π

arcsin( j+2)(z + ν1(x)x)x j+1

( j + 1)!
+

+
j
∑

n=0

arcsin(n+1)(z)
n!

∫ ∞

0

dx
π

xn log(1+ e−4Jβ x) ,

(136)

where, in the second equality, we used Eq. (135) to rewrite the integral over the interval
[0,1 − z − z0]. The first two terms can easily be bounded with terms that are exponentially
small in β . In particular, we have

log
�

1+ e−4Jβ(1−z−ν2z0)
��1

2
−

1
π

arcsin(1− z0)
�

≤
1
2

e−4Jβ(1−z−z0) ,
∫ ∞

1−z−z0

dx
π

xn log(1+ e−4Jβ x)≤
Γ (n+ 1, 4Jβ(1− z − z0))

π(4Jβ)n+1
∼

1
4Jβ

e−4Jβ(1−z−z0) .
(137)

The last but one term in Eq. (136) is instead a power law correction, namely,

∫ 1−z−z0

0

dx log(1+e−4Jβ x)
π

arcsin( j+2)(z+ν1(x)x)x j+1

( j + 1)!
≤

arcsin( j+2)(1−z0)
π(4Jβ) j+2

(1−2−2− j)ζ( j+3) ,

(138)
where ζ is the Riemann zeta function. For any 0 < z0 < 1− z all of the correction terms are
bounded by a power law. We therefore find the asymptotic expansion

∫ 1−z

0

dx log(1+ e−4Jβ x)

π
p

1− [x + z]2
=

j
∑

n=0

arcsin(n+1)(z)(1− 2−n−1)ζ(n+ 2)
π(4Jβ)n+1

+O((Jβ)− j−2) , (139)

where the integral in the last term of Eq. (136) has been worked out.
An analogous calculation allows us to work out the asymptotic expansion of expressions

of the type 〈 f (cos p)〉/(2πρt) =
∫ dp

2πn(p) f (cos p), for a given smooth function f . Indeed, we
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have

〈 f (cos p)〉
2πρt

=

∫ π

−π

dp
2π

f (cos p)
1+ e4Jβ[cos p−cos k(β)]

=

∫ 1

−1

dx

π
p

1− x2

f (x)
1+ e4Jβ[x−cos k(β)]

=

=
1

4Jβ

∫ 4Jβ[1+cos k(β)]

0

f (cos k(β)− y
4Jβ )dy

π
Ç

1− [cos k(β)− y
4Jβ ]2
−

−
1

4Jβ

∫ 4Jβ[1+cos k(β)]

0

f (cos k(β)− y
4Jβ )

π
Ç

1− [cos k(β)− y
4Jβ ]2

dy
1+ e y

+

+
1

4Jβ

∫ 4Jβ[1−cos k(β)]

0

f ( y
4Jβ + cos k(β))

π
Ç

1− [ y
4Jβ + cos k(β)]2

dy
1+ e y

≈

≈ g(cos k(β)) +
∞
∑

n=0

(2− 2−2n)ζ(2n+ 2)
(4Jβ)2n+2

g(2n+2)(cos k(β)) ,

(140)

where

g(x) =

∫ x

−1

dy
π

f (y)
p

1− y2
, (141)

and the last step is exponentially accurate in β . The lowest-order coefficients of the expansion
of g(x) about x = cos kF, for f (x) = 1 and f (x) = x , are shown in Table 1.

Table 1: Coefficients of the expansion of g(x) around cos kF, for f (x) = 1 and
f (x) = x , up to fourth order.

f (x) g(cos kF) g(1)(cos kF) g(2)(cos kF) g(3)(cos kF) g(4)(cos kF)
1 1− kF

π
1

π sin kF

cos kF

π sin3 kF

2+cos(2kF)
π sin5 kF

3 cos kF(4+cos(2kF))
π sin7 kF

x − sin kF
π

1
π tan kF

1
π sin3 kF

3cos kF

π sin5 kF

3(3+2cos(2kF))
π sin7 kF

In the main text we, in addition, showed

cos k(β) = cos kF+
π2 cos kF

6sin2 kF

1
(4Jβ)2

+
π4 cos kF(43+ 9 cos(2kF))

720sin6 kF

1
(4Jβ)4

+O((Jβ)−6) . (142)

Thus, at the fourth order, we have

〈1〉
2πρ t

= 2−
tan kF

π
+
π

3
cos kF

sin3 kF
(4Jβ)−2 +

π3 cos kF(64+ 19 cos(2kF))
180sin7 kF

(4Jβ)−4 +O((4Jβ)−6) ,

(143)
from which we obtain

ξ−1 =
4π cos kF − 2 sin kF

sin kF
+

4π3 cos3 kF

3 sin5 kF(4Jβ)2
+
π5 cos3 kF(74+ 29 cos(2kF))

45sin9 kF(4Jβ)4
+O((4Jβ)−6) ,

(144)
and

2πρt =
2π cos kF

sin kF
+

2π3 cos3 kF

3 sin5 kF
(4Jβ)−2+

π5 cos3 kF(74+ 29cos(2kF))
90 sin9 kF

(4Jβ)−4+O((4Jβ)−6) .

(145)
Analogously, we find

〈cos p〉
2πρt

= −
sin kF

π
+
π(3+ cos(2kF))
12 sin3 kF(4Jβ)2

+
π3(739+ 580cos(2kF) + 9 cos(4kF))

2880 sin7(kF)(4Jβ)4
+O((Jβ)−6) ,

(146)
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from which we can extract the first order of the low-temperature expansion of the energy

4J 〈cos p〉= −8J cos kF+
4π2J cos kF

3sin2 kF(4Jβ)2
+
π4J cos kF(43+ 29 cos(2kF))

30 sin6 kF(4Jβ)4
+O((Jβ)−6) . (147)

B DMRG simulations

Numerical calculations are performed using C++ ITensor library [48]. We use the ancilla-
based DMRG technique [46,47] to prepare initial state with a given inverse temperature β . We
fix the maximal bond dimension to be Nmax = 600 and a truncation, such that the sum of the
discarded Schmidt values is smaller than 10−13. The imaginary-time step in the preparation
of the initial state and the real-time step in the time evolution of the state are both set to
δt = δβ = 0.01J−1. The code and the animated evolution of the energy profile are freely
accessible (see also Fig. 9).14,15,16

Figure 9: QR codes that link to animated version of the Fig. 8. Alternatively, follow
the links in the footnotes below.

B.1 Preparing the initial state

In order to use algorithms based on the matrix product state representation, the density matrix
is vectorised as

|ψ(β)〉= e−
β
2 H |ψ(0)〉 , (148)

where the infinite temperature state is defined as a product of maximally entangled physical
and ancilla spins:

|ψ(0)〉=
⊗

j

1p
2
(|↑↓〉 j, ȷ̃ − |↓↑〉 j, ȷ̃) . (149)

Here, indices j and ȷ̃ denote the physical and the ancilla spin, respectively.
In numerical simulations we consider the Hamiltonian (8) with open boundary conditions.

It is written as a sum of three parts H= H1 +H2 +H3, such that local terms in each mutually
commute. This allows to approximate the evolution operator by Trotter gates [49–51]. In the
present work we use second order Trotter-Suzuki approximation

e−δt(H1+H2+H3) = e−
δt
2 H1 e−

δt
2 H2 e−δtH3 e−

δt
2 H2 e−

δt
2 H1 +O(δt3) , (150)

which can be factorised in terms of Trotter gates exp
�

i J
2δt(σx

ℓ
σx
ℓ+2 + σ

y
ℓ
σ

y
ℓ+2)(1 − σ

z
ℓ+1)

�

that act on the physical sites only, the ancilla spins remaining untouched. This helps avoid
additional truncation.

14The code: https://github.com/kbidzhiev/Folded_XXZ
15Evolution of the energy profile: https://github.com/kbidzhiev/Folded_XXZ/raw/master/Pictures/

Energy_profile.gif
16Evolution of the rescaled energy profile: https://github.com/kbidzhiev/Folded_XXZ/raw/master/

Pictures/Energy_profile_rescaled.gif
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Figure 10: Panel (a) shows the energy profile for different values of β (left-hand
side) and a cartoon of the cooling procedure (right-hand side). Trotter gates act on
the wavefunction and gradually decrease the temperature from T =∞ (β = 0) to
TL (β−). Panel (b) shows the energy profile for a state with temperature TL (TR) on
the left (right) half of the system. We keep acting with Trotter gates on the right-hand
side, until the temperature TR is reached.

Starting from the infinite temperature state |ψ(0)〉, we gradually cool the system by
imaginary-time evolution until it reaches a state |ψ(β−)〉, with β− = 1/TL. For a typical ex-
ample, see panel (a) of Fig. 10. The further cooling is provided by Trotter gates that act only
on the right half of the system, until the right subsystem reaches the temperature β+ = 1/TR,
as shown in panel (b) of Fig. 10. This protocol creates initial correlations between the left
and the right subsystems. Alternatively, one could zero the initial correlations between the
two parts by acting with the Trotter gates on both subsystems separately, omitting the three
central Trotter gates that overlap with the junction between the two subsystems. The lat-
ter protocol, however, introduces larger oscillatory finite-size effects. The energy profile that
results from this last protocol is presented in panel (a) of Fig. 8.

B.2 Energy density

At time t = 0 the two halves of the system are prepared at different temperatures TL = 10J
and TR = J , then left to evolve in time with the Hamiltonian of the full system with open
boundary conditions. In the vicinity of the centre and boundaries one can observe Friedel-
like oscillations, which increase as the temperature drops to zero. The oscillations reach the
maximal amplitude in the ground state, as shown in panel (b) of Fig. 11. They decay as the
inverse square root of the “chord length”, i.e.,

r = 1/

√

√ L + 1
π

sin
� πx

L + 1

�

L→∞
−−−→

1
p

x
, (151)

where x denotes the distance from the boundary of the system, as measured in the number of
spin sites.

The energy front in the left (right) half of the system propagates with velocity |ζ±lc| ≈ 3,
measured in macrosites, or ≈ 6, measured in terms of spin sites. This gives rise to a “light
cone” shown in Figs 7 and 8. The energy smoothly tends to the initial-state values near the
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Figure 11: Panel (a) shows the energy density as a function of Jβ . Discrep-
ancy between the analytical and numerical result for the energy 〈Htotal〉 is a con-
sequence of the boundary Friedel-like oscillations. To avoid the inaccuracies due to
these oscillations, we average the energy in the vicinity of the centre, i.e., on sites
−L/4 ≤ i < L/4, as shown in panel (b) (the corresponding average is denoted by
〈Hcentre〉). The effect of oscillations is larger at low temperatures and reaches the
maximum in the ground state – see panel (d). Panel (c) shows the energy density for
different system sizes. Already for relatively small systems of ∼ 40 spins the results
perfectly agree with the analytical predicitions. Panel (d) shows the energy profile in
the ground state (β →∞). The Friedel-like oscillations reach their maximal value
and slowly vanish as ∼ 1/

p
x , where x is the distance from the boundary. The enve-

lope of the oscillations is described by the “chord length” formula.

light cone edges. The discontinuity in the numerically obtained profile is relatively small on
the achievable time scales.
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