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On-shell effective theory for higher-spin dark matter
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Abstract

We apply the on-shell amplitude techniques in the domain of dark matter. Without evok-
ing fields and Lagrangians, an effective theory for a massive spin-S particle is defined
in terms of on-shell amplitudes, which are written down using the massive spinor for-
malism. This procedure greatly simplifies the study of theories with a higher-spin dark
matter particle. In particular, it provides an efficient way to calculate the rates of pro-
cesses controlling dark matter production, and offers better physical insight into how
different processes depend on the relevant scales in the theory. We demonstrate the
applicability of these methods by exploring two scenarios where higher-spin DM is pro-
duced via the freeze-in mechanism. One scenario is minimal, involving only universal
gravitational interactions, and is compatible with dark matter masses in a very broad
range from sub-TeV to the GUT scale. The other scenario involves direct coupling of
higher-spin DM to the Standard Model via the Higgs intermediary, and leads to a rich
phenomenology, including dark matter decay signatures.
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1 Introduction

On-shell amplitude methods, initially developed in the context of massless QCD [1], are find-
ing applications in more and more areas of particle physics. Recently these methods have
shed some new light on dynamics of black holes [2–5], construction of bases of effective field
theories (EFTs) [6–10], calculation of renormalization group running [11–14], to name just a
few examples. An important ingredient in this program was the development of a convenient
spinor formalism to handle massive particles [15]. This opened the opportunity for new appli-
cations within broad classes of theories, such as spontaneously broken gauge theories, massive
gravity, and models with higher-spin particles. In this paper we take the on-shell amplitude
methods to the field of dark matter (DM).

In the past decades, an ever-growing number of experiments has enabled us to target a
large number of DM models and cover extensive regions of their parameter space. In spite
of this rich program, the nature of DM remains elusive, and it is conceivable that our model-
building efforts so far have been misdirected. In fact, a great majority of existing models as-
sumes that the DM particle has spin 0, 1/2, or 1, much as the known particles of the SM. There
are no-go theorems that forbid massless elementary particles with spin higher than two [16,17]
and strongly constrain massless spin-3/2 and spin-2 theories.1 However, there is no obstruc-
tion for a consistent EFT with massive higher-spin particles [18].2 In this vein, dark matter
with spin S > 1 can be realized in the framework of an EFT valid only for energies below some
cutoff scale Λ. Among this class of models, the most studied case by far is the spin-3/2 DM
(see e.g. [23–29]), motivated largely by the gravitino in the supergravity extensions of the
SM. Spin-2 DM can be realized in the context of bigravity [30–32], and spin-3 DM [33, 34]
was also considered. DM with arbitrarily large spin can arise in the framework of large N
gauge theories. In particular, Ref. [35] studied a scenario where the DM particle is a baryon
of a confining SU(Nc) dark sector. In this case the lightest dark baryon corresponds to the
totally symmetric spin configuration, therefore S = Nc/2. Very recently, DM of generic spin
S was explored for a Higgs-portal scenario [36] and for gravitational DM production during
inflation [37].

In this paper, we solve a technical difficulty that impedes the construction of higher-spin

1In this paper we are concerned with Poincaré-invariant, unitary, local QFTs in four spacetime dimensions. If
one of these assumptions is lifted, massless higher-spin particles may be allowed.

2Unitarity and causality impose severe restrictions on the spectrum and interactions of such theories [15,19,20],
but these bounds can be avoided if the EFT cutoff is not much higher than the mass scale of the higher-spin particles.
Positivity [21, 22] may also provide strong constraints, as shown for quartic interactions of a spin-3 particle in
Ref. [18]. However, positivity bounds will not be relevant for the interactions considered in this paper, as it is
unclear whether such bounds apply for gravitational couplings.
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DM models and performing efficient calculations of observables. We completely bypass fields
and Lagrangians (which are notoriously messy for higher spins and introduce complications
due to unphysical degrees of freedom), and instead employ the on-shell amplitude techniques.3

A DM model is defined via its on-shell 3-point amplitudes, which are written down using the
massive spinor formalism of Ref. [15]. Starting from these, the relevant 2-to-2 scattering am-
plitudes with the DM particle(s) are constructed by gluing the 3-point ones according to the
rules of unitarity and locality. We will show that this procedure greatly simplifies dealing with
higher-spin DM theories. Not only the rates of relevant process can be efficiently calculated,
but also the physics is transparent, in particular the overall energy/temperature dependence
can be quickly obtained without any calculations using simple dimensional analysis. Finally,
the validity regime of the EFT can be readily estimated by studying the energy dependence of
several processes (annihilation, Compton scattering, self-scattering), to ensure that the calcu-
lations are consistent with perturbative unitarity.

In order to illustrate the utility of on-shell methods in this context, we study two simple
scenarios with higher-spin DM. We first consider a scenario where the DM particle X has only
minimal coupling to gravity. DM stability is guaranteed by a Z2 symmetry, which also forbids
direct 3-point couplings of X to the SM. In this framework, we focus on the freeze-in DM pro-
duction from a thermalized SM bath, assuming that at some temperature Tmax all SM particles
are thermalized and the initial DM abundance is negligible. The on-shell formalism allows
us to easily compute the annihilation rate of the SM particles into a spin-S DM mediated by
the massless graviton. It also allows us to study the deformations of the gravity-mediated
amplitude by 4-point contact interactions, which can modify the overall energy behaviour of
the amplitude. We find that, even in this truly minimal scenario, the freeze-in DM abundance
can match the experimentally observed one for a broad range of DM masses, from sub-TeV to
GUT-scale masses. This is thanks to the fact that, for higher-spin particles, the gravitational
interaction strength of longitudinal components grows with energy E quicker than E2/M2

Pl.
Next, we relax the Z2 symmetry assumption and allow the DM to couple to the SM. We restrict
to the scenario where X couples only to a pair of Higgs doublets, and does not have direct
3-point couplings with the remaining SM particles. In this scenario new production processes
should be taken into account, in particular Higgs-mediated pair production, as well as single
production in association with an electroweak boson or a top quark. At the same time, DM
stability is no longer protected by Z2, and we have to deal with stringent constraints on de-
caying DM. We again show that one can obtain the correct DM abundance while avoiding the
decay constraints. However, the parameter space where the freeze-in production qualitatively
departs from the gravity-mediated scenario (and is instead dominated by single production)
is limited to a narrow range of fairly light DM masses.

The paper is organized as follows. The freeze-in mechanism of DM production is briefly
reviewed in Section 2. The gravity-mediated scenario is explored in Section 3, in which we
present the annihilation amplitudes for a generic spin-S DM. In Section 4, we allow the DM
to have a direct coupling to the SM through a Z2-violating DM-Higgs-Higgs amplitude. We
reserve Section 5 for conclusions and future directions. A short summary of the massless and
massive spinor formalism can be found in Appendix A and the derivation of the scattering
amplitudes used in the paper is presented in Appendix B.

3A different Lagrangian-less approach to higher-spin calculations is pursued in Ref. [36], based on the formalism
developed in Ref. [38].
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2 Freeze-in recap

In this article we focus on dark matter production via the freeze-in mechanism [39–41]. This
occurs when particles in the thermal bath can annihilate into dark matter but the inverse
process can be neglected due to feeble interactions and/or low number density of dark matter.
Freeze-in is relevant in our scenario, as our higher-spin dark matter couples to the SM only
through irrelevant operators suppressed by powers of a high scale.

We assume that the production occur in the radiation-dominated era and the thermal bath
consists of only SM particles at a common temperature T . The goal is to calculate the yield
YX = nX/s, computed as a function of T , where nX is the number density of the dark matter
particle X , and s is the entropy density. The evolution equation reads

−T Hs
dYX

dT
= RX , (1)

where s = 2π2

45 g∗T
3, the Hubble rate H = pg∗πT2/

p
90 MPl, MPl = 2.44 × 1018 GeV, and

g∗ = 106.75 when all the SM degrees of freedom are in equilibrium with the thermal bath.
On the right-hand side, RX encodes the production rate, which depends on the details of the
interactions between dark matter and SM. We assume thatψχ → φX andψχ → X X annihila-
tion processes dominate the production, whereψ, χ, φ stand for SM particles. The amplitude
for this process is denoted Mann. Ignoring the inverse annihilation and Bose enhancement or
Pauli blocking, the production rate is given by

RX ≡
∫

dΦ fψ fχ |Mann|2, (2)

where fi is the distribution function for a given SM species, and dΦ is the phase space el-

ement, dΦ ≡ (2π)4δ4(pψ + pχ − k1 − k2)dΦ(pψ)dΦ(pχ)dΦ(k1)dΦ(k2), dΦ(pi) ≡
d3pi

2Ei(2π)3
,

Ei ≡
q

pi
2 +m2

i . This expression is valid regardless whether the final state contains one or
two X ’s.4 The amplitude square is implicitly summed/averaged over all internal degrees of
freedom ofψ and χ , such as color or spin. If several distinct annihilation processes contribute
significantly to the number density of X , then RX should be summed over these processes.

We assume the SM particles can be treated as massless (that is, T ¦ 1 TeV), and approx-
imate fi by the equilibrium Maxwell distribution, fi = gie

−Ei/T , where gi is the number of
internal degrees of freedom. Then (2) can be simplified to [42]

RX =
T

64π4

∫ ∞

s0

dsβ
p

s K1

�p
s

T

�

I(s), (3)

where K1 is the modified Bessel function of the second kind, s = (pψ + pχ)2, s0 = 4m2 and
β =

p

1− 4m2/s for annihilation into X X , while s0 = m2 and β = 1−m2/s for annihilation
into φX , where m is the mass of the dark matter particle X . The function I(s) describes the
matrix element squared integrated over the 2-body phase space, and can be expressed as

I(s) =
gψgχ
16π

∫ 1

−1

d cosθ |Mann|2, (4)

where θ is the angle between ψ and X in the center of mass frame.

4If two X ’s are produced in the annihilation, then RX should contain a factor of two in front, which however
cancels against 1/2! in the phase space, due to indistinguishable particles in the final state.
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In the rest of this paper we will use Eq. (1) together with Eq. (3) to calculate the abundance
of higher-spin dark matter in various scenarios. A priori we will be allowing a wide range for
the dark matter mass:

5 keV ® m® MPl. (5)

The lower end corresponds to the limits from small-scale structure [43], while the upper end
is the general limit for elementary point-like particles. We will also require that the maxi-
mum temperature of the universe, denoted as Tmax,5 is within the validity regime of the EFT
describing the DM+SM system. More precisely we impose the constraint

Tmax < αΛ, (6)

where Λ is the EFT cutoff, and α� 1 in order to ensure perturbative control of the freeze-in
calculation. We will demand that the integral in Eq. (3) is dominated by

p
s below the cut-off,

which typically requires α∼O(0.1) for the processes studied in this paper.

3 Gravity-mediated spin-S dark matter

In this section we discuss the most minimal scenario for higher-spin DM. We identify DM with
a particle X of mass m and spin-S > 1, thus with 2S + 1 degrees of freedom corresponding to
different polarizations P ∈ [−S, S] . For the sake of this discussion, we assume X is an isolated
state with no other interactions than the minimal gravitational ones (which are required for
all particles in nature). Direct 3-point coupling between DM and SM, as well as cubic DM
self-interactions are forbidden by the Z2 symmetry acting as X → −X . This is a particularly
simple and economical model, with only a couple of adjustable parameters affecting the DM
abundance in the universe.

We assume the DM particle is produced via the freeze-in process reviewed in Section 2
(we briefly comment on the freeze-out later in the text). In order to compute the relevant
production amplitudes we will use the on-shell formalism. This leads to significant simplifica-
tions to the Lagrangian methods, which are notoriously messy for higher-spin particles. The
basic objects from which we build our amplitudes are 2-component spinors denoted as χ J

i and
χ̃ J

i , (J = 1,2) or |i〉 and |i] in the short-hand notation. These are closely related to the more
familiar spinor wave functions for spin-1/2 fermions. Given the momentum pµi of the i-th
particle, the corresponding spinors can be determined from the equation piσ =

∑2
J=1χ

J
i χ̃i J

up to little group transformations acting on the SU(2) indices J . Amplitudes are composed of
Lorentz-invariant contractions χiχ j ≡ 〈ij〉 and χ̃iχ̃ j ≡ [ij]. More details about our conventions
and a brief summary of the spinor-helicity formalism for massless and massive particles can be
found in Appendix A. Given the 3-point amplitudes consistent with our assumptions, the pro-
duction amplitudes are determined by demanding the correct factorization on the kinematics
poles, as required by unitarity and locality.

3.1 3-point amplitudes

The minimal coupling between the graviton and the spin-S DM is described by the following
on-shell 3-point amplitudes [15]:

M(1X 2X 3−h ) = −
(A−12)

2

MPl

[21]2S

m2S
, M(1X 2X 3+h ) = −

(A+12)
2

MPl

〈21〉2S

m2S
, (1)

5In this paper we assume instantaneous reheating, identify Tmax with the reheating temperature, and avoid
going into details of the reheating process. Going beyond the instantaneous reheating approximation, the relevant
temperature for the DM production Tmax can be higher than the reheating temperature [44, 45], which may be
numerically important when DM production rates, as in our scenario, rapidly increase with the temperature.
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Figure 1: DM pair production in the gravity-mediated scenario. The thick line is
the spin-S DM, the dotted line is a SM particle and the curly line is the graviton. All
momenta are incoming, and ps ≡ p1 + p2.

where A+12 ≡ 〈ζp13]/〈3ζ〉 and A−12 ≡ [ζp13〉/[3ζ], with arbitrary reference spinors |ζ〉 and |ζ].
Due to the Z2 symmetry, couplings between one dark matter particle and two gravitons are
forbidden, which also guarantees DM stability.

As for the SM matter, we approximate it as massless, that is we assume T is much above
the electroweak scale. Then its minimal interactions with the graviton are described by the
following 3-point on-shell amplitudes:

Spin0 : M(1φ2φ3±h ) = −
(A±12)

2

MPl
,

Spin 1/2 : M(1−ψ2+
ψ̄

3±h ) = −
A±12B±12

MPl
,

Spin 1 : M(1−v 2+v 3±h ) = −
(B±12)

2

MPl
, (2)

where B+12 ≡ 〈1ζ〉[23]/〈3ζ〉 and B−12 ≡ 〈13〉[2ζ]/[3ζ], with arbitrary reference spinors |ζ〉 and
|ζ].

3.2 DM production amplitudes

In this scenario DM is produced via annihilation of two SM particles into two DM particles
(schematically on Fig. 1). Independently of the SM and DM spins, the corresponding ampli-
tudes have only s-channel poles corresponding to the massless graviton exchange. We find the
amplitudes describing annihilation of SM matter into spin-S dark matter have the form

M(1φ2φ̄3X 4X ) =
1

s M2
Plm

2S−1

§

t − u
2

�

〈3p14] + 〈4p13]
�

2S−2
∑

k=1

[43]k〈43〉2S−1−k

− m
�

〈3p14] + 〈4p13])2
2S−2
∑

k=0

[43]k〈43〉2S−2−k
ª

+ Cφ , (3)

M(1−ψ2+
ψ̄

3X 4X ) = −
1

s M2
Plm

2S−1

�

〈31〉[42] + 〈41〉[32]
�

§

t − u
2

2S−2
∑

k=1

[43]k〈43〉2S−1−k

− m
�

〈3p14] + 〈4p13]
�

2S−2
∑

k=0

[43]k〈43〉2S−2−k
ª

+ Cψ, (4)
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M(1−v 2+v̄ 3X 4X ) = −
1

s M2
Plm

2S−1

§

〈1p32]
�

〈31〉[42] + 〈41〉[32]
�

2S−2
∑

k=1

[43]k〈43〉2S−1−k

+ m
�

〈31〉[42] + 〈41〉[32]
�2

2S−2
∑

k=0

[43]k〈43〉2S−2−k
ª

+ Cv , (5)

whereφ,ψ, v denote SM particles of spin 0, 1/2, 1, respectively. For the sake of the discussion
in this section we assume S ≥ 2, but notice that these amplitudes are also valid as they stand
for S = 3/2.6 The details of the calculation are shown in Appendix B. In the above, Cφ , Cψ,
and Cv are contact terms without poles in any kinematic channel. The leading contact terms
in the EFT expansion are

Cφ =
1

M2
Plm

2S−2

2S
∑

k=0

C(k+1)
φ

[43]k〈43〉2S−k + · · · ,

Cψ =
1

M2
Plm

2S−1
(〈31〉[42]− 〈41〉[32])

2S−1
∑

k=0

C(k+1)
ψ

[43]k〈43〉2S−1−k + · · · ,

Cv =
1

M2
Plm

2S
〈31〉〈41〉[32][42]

2S−2
∑

k=0

C(k+1)
v [43]k〈43〉2S−2−k + · · · . (6)

These contact terms can be classified in two different kinds. On one hand, the contact terms
that do not change the overall energy behavior, leading to a scenario completely equivalent
to the one without contact terms. On the other hand, contact terms that change the high
energy dependence resulting in a scenario dominated by contact interaction.7 For spin-1/2
and spin-1 matter one could also consider the amplitudes M(1±f 2±f 3X 4X ), f = ψ, v, which
are pure contact terms. Notice that in our normalization the Wilson coefficients scale as
C(i)
φ,ψ,v ∼ g2

∗ M2
Pl/Λ

2, where Λ is the mass scale of the UV completion producing these con-

tact terms, and g∗ is the coupling strength of the new degrees of freedom.8 For this reason,
large values of C(i)

φ,ψ,v are consistent with the EFT expansion if new physics enters below the

Planck scale. In particular, Λ∼O(TeV) and g∗ ∼ 1 correspond to C(i)
φ,ψ,v ∼ 1030.

For most of the following discussion we will ignore the contact terms, and focus on the
s-channel graviton pole contributions in Eqs. (3)-(5). We will comment on the effects of the
contact terms later in Section 3.5.

3.3 Dimensional analysis

Before we plunge into numerical analysis of DM production in our scenario, let us first estab-
lish some basic intuitions using simple dimensional analysis. For s � 4m2, the annihilation
amplitudes in Eqs. (3)-(5) behave as

Mann ∼
E2S+1

M2
Plm

2S−1
. (7)

6Eqs. (3)-(5) are also valid for S = 1 with the convention that the first summation in each amplitude should be
replaced by zero. They are not valid for S = 0 and S = 1/2.

7Operators of higher dimension cannot be obtained simply attaching powers of Mandelstam variables in the
minimum spinor structures. Mass induced identities can relate apparently independent structures and a more
careful analysis is required to determine the basis of independent contact terms [10].

8The g∗ scaling follows from the fact that C(i)
φ,ψ,v is order ħh−1 in the ħh counting (see e.g. [46]) and the assumption

that the contact term is generated at tree level. We work in the normalization where the gauge and Yukawa
couplings are g∗ ∼ ħh

−1/2.
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This scaling is valid for S ≥ 3/2 as long as we ignore the contact terms Ci (for S = 1 one
instead has Mann ∼ E2/M2

Pl). Eq. (7) results in the annihilation rate and DM yield

Tmax� m → RX ∼
T4S+6

M4
Plm

4S−2
→ Y 0

X ∼
T4S+1

max

M3
Plm

4S−2
. (8)

Matching that to the measured dark matter abundance, the required maximal temperature of
the universe to match the observations is given by

Tmax� m → Tmax ∼ (yref M3
Plm

4S−3)
1

4S+1 , (9)

where yref = ρcΩX/s0 ≈ 4.1·10−10 GeV. For very large DM masses, m¦ (yref M3
Pl)

1/4 ∼ 1011 GeV,
the estimate in Eq. (9) returns Tmax ® m, in contradiction to the assumption Tmax � m used
in the derivation. In this regime the estimate of the required maximal temperature has to be
modified. For Tmax � m, DM is produced with small non-relativistic velocities from the SM
particle at the tail of the thermal distribution. Due to the Boltzmann suppression we have

Tmax� m → RX ∼
m8

M4
Pl

e−2m/T → Y 0
X ∼

m3

M3
Pl

e−2m/Tmax , (10)

independently of the DM spin9. Therefore the required maximal temperature is estimated as

Tmax� m → Tmax ∼
2m

log
�

m4

yref M3
Pl

� . (11)

The annihilation amplitude grows with energy and hits the strong coupling at E ' Λa, where
Λa can be estimated as

Λa ∼ (
p

4πMPlm
S−1/2)

1
S+1/2 . (12)

Furthermore, amplitudes for self- and gravitational Compton scattering processes grow even
faster for s� m2. The associated strong coupling scale can be estimated as [48]

Mself ∼MCompton ∼
E4S−2

M2
Plm

4S−4
−→ Λs ∼ (

p
4πMPlm

2S−2)
1

2S−1 . (13)

We have Λs ≤ Λa for any S ≥ 3/2, thus Λs sets the maximum possible value of the EFT cut-
off scale Λ in our scenario. We can see that, as S is increased, Λs approaches m due to the
amplitudes’ steeper growth with energy. This indicates that, in the regime Tmax � m where
freeze-in production is dominated at

p
s ∼ 20m, perturbative control of the calculation will be

lost for large enough S. Indeed, the condition in Eq. (6) together with Eq. (9) can be used to
derive the lower limit on the DM mass:

m>
� M2S−4

pl y2S−1
ref

α(4S+1)(2S−1)(4π)2S+1/2

�
1

4S−5 S�2
→ α−2S

�Mpl yref

4π

�1/2

≈ α−2S × 30 TeV. (14)

Using α ∼ 0.05, that is requiring that Λs is a factor of 20 above Tmax to ensure perturbative
control over the freeze-in calculation, we find that already for S > 3 the lower limit on DM
exceeds (yrefMPl)1/4 ∼ 1011 GeV, in which case the allowed region is fully contained in the
Tmax � m regime. Thus, DM with S > 3 is phenomenologically viable only in the large m
region where DM is produced with non-relativistic velocity and spin plays a minor role in the
freeze-in dynamics. In the Tmax � m regime DM is produced right at the threshold where
physics is always perturbative for m® MPl.

9More precisely, one finds RX ∼
m5 T3

M4
Pl

e−2m/T for bosonic DM, and RX ∼
m4 T4

M4
Pl

e−2m/T for fermionic DM of any spin,

the difference being due to Mann vanishing on the DM production threshold for fermions. In this regime power
corrections in T affect only logarithmically the estimate of Tmax in Eq. (11) and are ignored here. Moreover, we
ignore here possible effects due to bound state formation [47].
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3.4 Quantitative results

For a concrete value of the DM spin-S it is straightforward to calculate the freeze-in rate RX in
Eq. (2) starting from the annihilation amplitudes in Eqs. (3)-(5), which should be substituted
into Eq. (3) to obtain the production rate. Summing over the SM states in the thermal bath, and
numerically calculating the evolution of the DM yield YX , one obtains the DM relic abundance
as a function of the DM mass m and the maximum temperature of the universe Tmax. Given
this expression, we adjust Tmax so as to reproduce the experimentally observed DM yield,
YX ≈ 4.1× 10−10GeV/m. Formally, that adjustment is always possible but for some regions of
the m-Tmax parameter space the perturbative control over the freeze-in calculation is lost, and
we treat those regions as excluded.

We start this discussion with spin S = 2 DM, assuming the absence of contact terms Ci in
Eqs. (3)-(5). Following the algorithm described above, we find that the production rate of DM
produced from annihilation of (complex) SM scalars, spin-1/2 fermion, and spin-1 vectors in
the limit T � m is given by

Rφ ≈
960

π5m6 M4
Pl

T14, Rψ ≈
3840

π5m6 M4
Pl

T14, Rv ≈
11520

π5m6 M4
Pl

T14. (15)

Summing that over all degrees of freedom of the SM, the total rate is

RX = 2× Rφ + 45× Rψ + 6× Rv ≈
243840

π5m6 M4
Pl

T14, (16)

which leads to the DM yield for Tmax� m:

Y 0
X ≈

0.55

m6 M3
Pl

T9
max. (17)

This agrees well with the dimensional estimate in Eq. (9), up to a numerical factor that has
little practical relevance, especially in comparison with the steep dependence on Tmax. On the
other hand, for Tmax ® m the result in Eq. (17) is not valid. In this regime, the DM yield can
be approximated by

Y 0
X ≈

2.7× 10−4 m4 + 1.2× 10−3 m3Tmax + 2.0× 10−2 m2T2
max

M3
PlTmax

e−
2m

Tmax , (18)

which agrees with the dimensional estimate in Eq. (11), up to numerical factors and power cor-
rections in Tmax/m. Again, these power corrections have little practical relevance, as Tmax/m
is O(0.1− 1) in the phenomenologically viable parameter space.

The parameter space in the S = 2 scenario is displayed in Fig. 2. The solid black line marks
the region where the relic abundance matches the observed one. For m ® 1013 GeV it is very
well approximated by the simple estimate in Eq. (9), which is indicated by the dotted line. For
larger m the black line follows instead the estimate in Eq. (11). An important constraint on
this scenario comes from requiring the DM production to be dominated by the energy range
where the EFT is valid. For S = 2, the maximum possible cutoff of the EFT is set by the strong
coupling scale of self-scattering and gravitational Compton scattering: Λs = (

p
4πm2 MPl)1/3.

As discussed earlier, for Tmax� m we demand Tmax < αΛs with some α < 1. Numerically we
find that for S = 2 the production rate is dominated by

p
s ∼ 12m, and becomes negligible

for
p

s ¦ 20m, therefore we pick α= 1/20 in this case. The parameter space excluded by this
condition is marked orange in Fig. 2. We can see that the EFT validity bound is not overly
restrictive in the S = 2 case, only excluding DM mass below ∼ 100 MeV. All in all, for S = 2
the allowed range of DM masses is very generous:

S= 2 : 100 MeV ® m® MPl, (19)
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Figure 2: Spin-2 DM gravity-mediated scenario without contact terms. For a given
DM mass m, the black line shows the maximum temperature of the universe needed
to obtain correct relic abundance from freeze-in. The dashed-gray line indicates the
simple estimate for Tmax based on dimensional analysis, cf. Eq. (9). The lower bound
on the DM mass, m¦ 5 keV, is due to small-structure formation constraints, and the
upper bound is the Planck scale. The orange region is excluded by perturbativity con-
straints on the EFT, requiring the separation between the strong coupling scale and
Tmax to be α = 1/20. The green region corresponds to Tmax below the electroweak
scale.

corresponding to the range of Tmax:

S= 2 : 1 TeV ® Tmax ® 1017 GeV. (20)

Notice that the maximal temperature is always above the electroweak scale, justifying a pos-
teriori approximating the SM degrees of freedom as massless.

Given the calculated production rate, we can also estimate the DM abundance assuming
the standard freeze-out scenario, with DM in equilibrium with the SM. It turns out that then the
correct abundance cannot be obtain in the region of parameters allowed by the perturbativity
condition. This justifies the choice of an out-of-equilibrium DM production.

For higher spins the calculation follows analogous steps. The parameter space for S = 5/2
and S = 3 is shown in Fig. 3. Once again the region where the DM abundance matches the

�=�/�
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Figure 3: Spin-5/2 (left) and spin-3 (right) DM gravity-mediated scenario without
contact terms. See the caption of Fig. 2 for explanations.
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observed one follows the simple estimate in Eq. (9), deviating from it substantially only for
very large DM masses. As anticipated in the previous subsection, the EFT validity bounds
become more and more restrictive as we increase the DM spin. We find

S= 5/2 : 102 TeV ® m® MPl,

S= 3 : 104 TeV ® m® MPl. (21)

For larger spins the phenomenologically viable DM production occurs only in the region where
Tmax < 2m, in which case it is produced with non-relativistic velocities and the dependence
on DM spin is not substantial.

3.5 Effect of contact terms

The leading contact terms shown in Eq. (6) scale as

Cφ ∼
E2S

M2
Plm

2S−2
, Cψ ∼

E2S+1

M2
Plm

2S−1
, Cv ∼

E2S+2

M2
Plm

2S
. (22)

Given that the annihilation amplitudes in the absence of contact terms behave as O(E2S+1),
we can see that for the case of SM vectors annihilating into DM the leading contact term may
dominate the production if the Wilson coefficients Cv are large enough. This modifies the DM
yield to

Tmax� m → RX ∼
T4S+8

M4
Plm

4S
→ Y 0

X ∼
T4S+3

max

M3
Plm

4S
, (23)

which modifies the required maximal temperature to

Tmax� m → Tmax ∼ (yref M3
Plm

4S−1)
1

4S+3 . (24)

Adding contact terms that dominate the production has the effect of lowering the maximal
temperature for a given mass in comparison with the case without the contact terms.

Let us study more carefully the concrete case of S = 2, which givesMann ∼ Cv ∼ E6/m4 M2
Pl.

We include for simplicity a single contact term corresponding to C(2)v in Eq. (6):

C(2)v

m4 M2
Pl

〈31〉〈41〉[32][42][43]〈43〉. (25)

The production rate is dominated by the contact term and the production rate and in the
regime Tmax� m is given by

RX ≈ 1290240
(C(2)v )

2

π5m8 M4
Pl

T16 + 23040
3+ 10 C(2)v + (C

(2)
v )

2

π5m6 M4
Pl

T14 +
174720

π5m6 M4
Pl

T14, (26)

where the result of Eq. (16) is recovered by setting C(2)v = 0. The resulting yield is

Y 0
X ≈ 2.4

(C(2)v )
2

m8 M3
Pl

T11
max +

0.5+ 0.5 C(2)v + 0.05 (C(2)v )
2

m6 M3
Pl

T9
max. (27)

The solutions of this equation evaluated for different maximal temperatures are shown on
Fig. 4. We exclude the regions of the parameter space where Tmax falls below the electroweak
symmetry breaking scale, to be consistent with our approximation of massless SM particles.
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Figure 4: Contours of constant Tmax leading to correct DM relic abundance as func-
tion of the DM mass m and the magnitude C(2)v of the contact term in Eq. (25) for a
spin-2 DM particle in the gravity-mediated scenario. The red region is excluded by
the small-structure bound m ¦ 5 keV. The green region corresponds to Tmax below
the electroweak scale, contrary to the assumption used in our calculation. The right-
bend of Tmax contours marks the cross-over to the region where the contact term
contribution dominates over the purely gravitational one.

The EFT perturbativity constraints on the maximum temperature of the universe have to be
modified in this scenario to

Tmax ® αmin (Λs,ΛC), (28)

where ΛC ∼ (4πm4 M2
Pl/C

(2)
v )

1/6. Notice that with the steeper energy growth of the production
amplitude, Tmax is lower than in the scenario without the contact term. This means that, in
practice, the bound in Eq. (28) is always satisfied. As already anticipated, the addition of the
contact term allows for a lower maximum temperature.

4 Spin-2 dark matter coupled to matter

In this section, we relax the assumption of a Z2 symmetry protecting the DM couplings. This
allows the dark matter particle to have direct 3-point couplings to the SM sector. In the follow-
ing we focus on the scenario where higher-spin DM interacts only with the SM Higgs doublet
(in addition to gravitational interactions, of course). We also restrict the bulk of our discussion
to spin S = 2 DM, and we will briefly comment on possible generalizations to S > 2. As in the
previous section, we assume that freeze-in is the dominant process responsible for the relic
abundance of DM. We continue approximating the SM particles as massless and working in
the unbroken phase of the SM.

4.1 3-point amplitudes

We start with defining the 3-point amplitudes describing interactions of a spin-2 DM particle
X . Regarding gravitational interactions, we continue assuming the minimal coupling, with the
3-point amplitudes given in Eq. (1) with S = 2. In addition, we allow for DM interacting with
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the SM via the Higgs portal.10 In our scenario, the interaction between DM and Higgs doublets
is described by the on-shell 3-point amplitude:

M(1Ha
2H̄b

3X ) = −
cH

MPlm2
δab〈3p13]2. (1)

In fact, the above describes a coupling of a massive spin-2 particle to the energy-momentum
tensor of the Higgs doublet.11 Here, cH is the order parameter for Z2-breaking which measures
the DM-Higgs interaction strength. It scales as cH ∼ O(g∗MPl/Λ) (if the interaction is gener-
ated at tree level) or as cH ∼ O(g3

∗ MPl/16π2Λ) (if the interaction is generated at one loop),
where Λ and g∗ are the mass scale and the coupling strength of the UV completion of our EFT.
Assuming g∗ ∼ 1, |cH | ∼ 1 corresponds to a Planck-suppressed coupling, while |cH | ∼ 1015 can
be achieved if the UV completion enters at a TeV.

Given Z2 is broken by Eq. (1), nothing forbids a cubic self-interaction of DM. In our calcu-
lation we use the same 3-point amplitude as for the spin-2 massive graviton self-interaction in
the DRGT gravity [50], which leads to scattering amplitudes that are maximally well-behaved
in the high-energy limit [51]. Its spinor form is shown in Eq. (C.1) in Appendix C. For the
sake of computing the DM annihilation amplitudes we also need the Higgs gauge and Yukawa
couplings written in the spinor form. The former are

M(1Ha
2H̄b

3−vc
) = −

p
2gv T c

ab
〈13〉〈23〉
〈12〉

, M(1Ha
2H̄b

3+vc
) = −

p
2gv T c

ab
[13][23]
[12]

. (2)

For the SM SU(2) gauge bosons gv = g and T c
ab = σ

c/2 are the Pauli matrices, while for
hypercharge gauge bosons gv = g ′ and T Y

ab =
1
2δab. For the Yukawa interactions we focus on

the ones with the top quark.

M(1Ha
2−Qb

3−t̄R
) = −ytεab〈23〉, M(1Ha

2+Qb
3+t̄R
) = −ytεab[23], (3)

where Q denotes the 3rd generation left-handed quark doublet.

4.2 DM production amplitudes

The relevant processes for freeze-in DM production can be divided into pair and single produc-
tion. The former includes a contribution with the massless graviton in the s-channel, cf. Fig. 1,
which featured also in the gravity-mediated scenario discussed in the previous section and
was given in Eqs. (3)-(5). A new element here is HH̄ → X X mediated either by a t/u-channel
Higgs or by an s-channel DM, see Fig. 5 left. The t/u-channel piece can be approximated as

M(1Ha
2H̄b

3X 4X ) = −δab
c2
H

M2
Plm

3

§

〈3p13]〈4p24] 〈34〉〈3p14]+[34]〈4p13]
t

−〈3p23]〈4p14] 〈34〉〈4p13]+[34]〈3p14]
u +O(m)

ª

. (4)

The derivation is given in Appendix B.2. The s-channel piece is possible in the presence of
cubic DM self-interactions. In Ref. [48] it was shown that it leads to the high-energy behavior
as the t/u-channel piece when the self-interaction has the DRGT form in Eq. (C.1).12 We do
not show it explicitly here as it will play a minor role in the following discussion.

10A different Higgs-portal scenario with spin-S DM was recently studied in Ref. [36], where the interaction is
mediated by a quartic coupling between two Higgs doublets and two DM particles.

11The same coupling is present in the bi-gravity scenario of Ref. [49], however in this case DM couples universally
to all SM particles, leading to a different phenomenology.

12We note also that for suitably chosen parameters a0 and a2 in Eq. (C.1) there can be cancellations between the
s- and t/u-channel pieces, which could soften the high-energy behavior of M(1Ha

2H̄b
3X 4X ) [48] and make this

process (even) less relevant for freeze-in.
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Pair production
Single production

Figure 5: Schematic representation of Higgs-mediated contributions to DM produc-
tion. The DM particle is depicted by a thick line, the Higgs doublet by a thin dotted
line, and fermions by a thin solid line. All momenta are incoming, and we define
ps = p1 + p2, pt = p1 + p3. For pair production, a u-channel contribution related by
crossing to the t-channel one should be included as well.

Furthermore, the Z2-violating interaction in Eq. (1) opens the possibility of single DM
production. There are several processes in this category. One is HH̄ → X v with the Higgs in
the t/u channel, where v stands for an electroweak gauge boson. The amplitude is given by

M(1Ha
2H̄b

3X 4−v ) =
cH gv T c

abp
2 MPlm2

�〈4p1p24〉
tu

([3p13〉2 + [3p23〉2 + [3p43〉2)+

+ 2〈43〉
�〈4p23][3p23〉

t
−
〈4p13][3p13〉

u

��

, (5)

M(1Ha
2H̄b

3X 4+v ) =
cH gv T c

abp
2 MPlm2

�

[4p1p24]
tu

([3p13〉2 + [3p23〉2 + [3p43〉2)+

+ 2[43]
�〈3p24][3p23〉

t
−
〈3p14][3p13〉

u

��

. (6)

The details of the derivation are given in Appendix B.3. Another relevant process is Hv→ X H,
and its amplitude can be obtained from Eq. (5) by crossing. The other processes areψψ′→ X H
with the Higgs in the s-channel, and Hψ→ Xψ′ with the Higgs in the t/u channels, where ψ
and ψ′ stand for a 3rd generation quark doublet or singlet. For the former, the amplitudes up
to contact terms take the form

M(1−Qa
2−t̄R

3X 4Hb
) = εab

yt cH

MPlm2s
〈12〉〈3p43]2, M(1+

Q̄a
2+tR

3X 4Hb
) = εab

yt cH

MPlm2s
[12]〈3p43]2.

(7)
In this case the derivation is trivial: the residue of the s-channel is obtained by simply gluing
the corresponding 3-point amplitudes. The amplitudes for HtR → XQ and HQ→ X tR can be
obtained from Eq. (7) by crossing.
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4.3 Dimensional analysis

Before we give the quantitative results for this model, we first analyze using dimensional anal-
ysis which of the processes discussed in the previous section dominates the DM production.
The single and pair production amplitudes scale at high energies as

M1DM ∼
cH E3

MPlm2
, M2DM ∼

�

1+ c2
H

� E5

M2
Plm

3
, (8)

where we omit the dependence on the SM gauge and Yukawa couplings and other O(1) coeffi-
cients. The pair production is suppressed by more powers of MPl, therefore single production
will dominate, unless cH is very large or very small. In the limit Tmax � m, these two contri-
butions result in the DM yield

Tmax� m → Y 0
X ∼

T5
max

MPlm4

�

c2
H +

T4
max

M2
Plm

2
(1+ c2

H)
2

�

. (9)

Single production dominates when Tmax ®
|cH |

1+c2
H

p

m MPl, while for larger temperatures the pair

production prevails. Matching Y 0
X in Eq. (9) to the observed DM abundance, Y 0

X = yref/m, we
can estimate Tmax for a given m and cH and verify whether it falls into single or pair production
domination region. The results of this investigation are shown in Fig. 6, where in the yellow
region the gravity-mediated pair production dominates, and the scenario reduces to the one
discussed in Section 3. The coefficient multiplying the DM-Higgs interaction in Eq. (1) is of
order |cH | ∼ g∗MPl/Λ so, barring transplanckian UV completions, the requirement |cH | � 1
translates to a very weakly interacting UV completion. On the other hand, the Higgs-mediated
pair production becomes relevant only for values of |cH | ¦ 1070, which cannot be achieved
within the validity of our EFT assuming Λ ¦ 1 TeV. Therefore, we do not show this region
in Fig. 6. Moreover, we can anticipate that large cH will lead to a rapid decay of the DM
particle, and will be excluded by cosmological bounds; this will be made more precise in the
next subsection. Between these two regions the production is dominated by annihilation into
one DM particle.

The dependence of Tmax on m and cH is different in the two regions:

1DM domination : Tmax ∼ (yref MPlm
3/c2

H)
1/5 ∼ 100 GeV

�

m
1 GeV

�3/5� 1
cH

�2/5

, (10)

2DM domination : Tmax ∼
�

yref M3
Plm

5/(1+ c2
H)

2
�1/9 ∼ 10 MeV

�

m
1 GeV

�5/9� 1030

(1+ c2
H)

�2/9

.

The above equation predicts Tmax smaller than the electroweak scale in a portion of the param-
eter space. But then, in the first place, the Higgs and top quark are not present in the heat bath
to initiate the single and Higgs-mediated pair production, contrary to our initial assumptions,
and therefore this region is not viable phenomenologically.

4.4 Quantitative results

We now calculate the DM production rate more carefully, starting from the amplitudes of
Section 4.2. The amplitudes relevant for the single production process are the ones in Eqs. (5)
and (7). Squaring them, integrating over the phase space, summing over all relevant degrees
of freedom, inserting that into Eq. (3), and taking the limit T � m, we obtain the single
production rate

R1DM ≈
12c2

H T10

π5 M2
Plm

4

�

3g2 + g ′2 + 18y2
t

�

≈ 0.75
c2

H T10

M2
Plm

4
, (11)
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Figure 6: Spin-2 DM in the Higgs-portal scenario. We show the regions where DM
production is dominated respectively by pair production with an s-channel graviton
(yellow), and by single production (above the yellow region). The red region shows
the small-scale structure bound m ¦ 5 keV, and in the green region the estimated
Tmax is below the electroweak scale.

where we ignore the contributions proportional to the Yukawa coupling of the lighter SM
fermions. The pair production rate can be split as R2DM = R(GM)

2DM + R(HM)
2DM + R(int)

2DM where R(GM)
2DM

is the gravity-mediated contribution displayed in Eq. (16), the Higgs-mediated R(HM)
2DM is cal-

culated starting from the amplitude in Eq. (4), and the R(int)
2DM comes from the interference

between the gravity-mediated and Higgs-mediated amplitudes. We get

R(HM)
2DM =

11520c4
H T14

π5 M4
Plm

6
, R(int)

2DM = −
3840c2

H T14

π5 M4
Plm

6
. (12)

The above result is obtained without taking into account DM self-interactions, that is for
a0 = a2 = 0 in Eq. (C.1); non-zero a0 or a2 can change the rate by an O(ai) factor, but
they do not affect our results in a qualitative way. Collecting the single and pair production
contributions, the DM yield for Tmax� m is given by

Y 0
X ≈ 9.4× 10−4 c2

H T5
max

MPlm4
+
�

0.55− 0.0087c2
H + 0.026c4

H

� T9
max

M3
Plm

6
. (13)

For a given point in the m-cH parameter space, the above equation allows one to find Tmax
that yields the correct relic abundance. As before, we require that Tmax is below the maximal
cutoff of the EFT set by its strong coupling scale, and the Tmax is above the electroweak scale, in
agreement with our initial assumptions. In this scenario there is another important constraint
on the DM lifetime, since the Z2 breaking interaction in Eq. (1) allows the DM particle to decay.
Indeed, for m� 2mZ we find

τX =
240πM2

Pl

c2
H m3

≈ 3× 1026 sec
�

10−10

cH

�2�1 TeV
m

�3

. (14)

It is clear that for heavy DM we need a tiny coupling cH to avoid the cosmological bounds
on decaying dark matter. As can be seen in Fig. 6, that region corresponds to domination
of gravity-mediated production, which effectively takes us back to the scenario of Section 3

16

https://scipost.org
https://scipost.org/SciPostPhys.10.5.101


SciPost Phys. 10, 101 (2021)

��-� ��� ���
��-��

��-�

��-�

�����

�

����

Figure 7: Spin-2 DM in the Higgs-mediated scenario. We show the contours of
constant Tmax leading to the correct freeze-in relic abundance. The light blue regions
are excluded by the model-independent bound on the DM lifetime [52] and gamma-
ray constraints [53]. The red region is excluded by the lower mass limit from small-
scale structure, while in the green region ensures Tmax is below the electroweak scale.

(except for the possibility of observing the DM decay). A more interesting situation occurs for
smaller m, where 2-body decays of DM are forbidden kinematically, and instead DM decays
via 3-body (for m ∼ mZ) and 4-body (for m � mZ) channels. As can be observed in Fig. 7,
for m ® 100 GeV the decay constraints allow us to access the region where the single DM
production dominates over the gravity-mediated pair production, leading to a scenario qual-
itatively different than the one in Section 3. In our analysis we used the model-independent
bound on dark matter lifetime from Ref. [52], ΓX < 6.3× 10−3 Gyr−1, as well as constraints
from gamma-ray observations worked out in Ref. [53]. In Fig. 7 we also show the contours
of Tmax required to obtain the observed DM relic abundance. The characteristic “bending" of
these contours occurs at the cross-over between the regions where single or pair DM produc-
tion dominate the freeze-in abundance. However, in a part of the m-cH parameter space, Tmax
based on the result in Eq. (13) falls below the electroweak scale, contrary to the assumption
used in that calculation. Since the top quark and the Higgs and electroweak bosons are absent
from the plasma for T < TEW, the Higgs-mediated single production cannot occur, and we are
again back to the gravity-mediate scenario of the previous section.13 To summarize, we find
that for S = 2 DM it is possible to realize the scenario of Higgs-mediated freeze-in production
in a limited region of the parameter space:

S= 2 : 0.1 MeV ® m® 1 TeV, 10−7 ® |cH |® 1, (15)

corresponding to 1 TeV ® Tmax ® 106 GeV. Outside this region the parameter space is either
excluded by DM decay constraints or the Higgs-mediated production is irrelevant compared
to the gravity-mediated production studied in the previous section.

13In principle, DM could be single-produced from lighter fermions, if the suppression due to the small Yukawa
coupling and the Boltzmann suppression is counter-balanced by very large cH (above the region plotted in Fig. 7).
However, we do not study this scenario at a quantitative level in this paper.
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4.5 Generalization to S > 2

The interaction in Eq. (1) can be readily generalized to arbitrary even S:

M(1Ha
2H̄b

3X ) = −
cH

MPlm2S−2
δab〈3p13]S . (16)

In this case the coupling scales as cH ∼O(g∗MPlm
S−2/ΛS−1). Therefore, for S > 2 and m� Λ,

one can more naturally arrive at |cH | � 1, without invoking a very weakly coupled UV comple-
tion. In consequence, one can more naturally satisfy the DM decay constraints in the scenario
with S > 2. For odd S a similar interaction is also possible, but then Bose symmetry requires
that δab is replaced by an anti-symmetric tensor. The different DM production processes dis-
cussed earlier scale with energy as

M(GM)
2DM ∼

E2S+1

M2
Plm

2S−1
, M(HM)

2DM ∼
c2

H E4S−3

M2
Plm

4S−5
, M1DM ∼

cH E2S−1

MPlm2S−2
. (17)

Notice that only for S = 2, the Higgs- and gravity-mediated pair production have the same
energy dependence. With the scaling in Eq. (17), the DM abundance can be estimated as

Tmax� m → Y 0
X ∼

T4S−3
max

MPlm4S−4

�

c2
H +

T4
max

M2
Plm

2
+ c4

H

T4S−4
max

M2
Plm

4S−6

�

. (18)

Single production dominates over gravitational pair production when |cH |>
T2

max
MPlm

. Since Tmax
needed to fit the DM relic abundance decreases with increasing S, the region of pair production
domination migrates toward lower cH as the spin is increased, as can be seen in Fig. 8. Similarly
to the S = 2 scenario, the Higgs-mediated pair production is relevant only for very large
values of cH , which are not possible to obtain in an EFT with the cutoff above a TeV, and are
not shown in Fig. 8. The dark matter lifetime is affected only by O(1) factors compared to
Eq. (14). Indeed, given that ΓX must be proportional to 1/M2

Pl, the only available combination
of dimensionful parameters with the correct dimension is τX ∼ M2

Pl/m
3. Going to higher

spins only leads to order one corrections with respect to Eq. (14) due to a different angular
dependence of the matrix element for the decay process.

5 Conclusions

In this paper we described the effective field theory for a dark matter particle X of arbitrary
spin S. The on-shell amplitude techniques bring huge simplifications to the qualitative and
quantitative study of higher-spin DM models. We were able to derive compact formulas for
the amplitudes of SM SM → DM DM processes mediated by gravity, cf. Eqs. (3)-(5), which
are valid for any S ≥ 1. From these, the gravity-mediated pair production rate of higher-spin
DM from the SM thermal bath can be readily calculated, cf. Eqs. (8) and (10). Since gravity
is universal, this contribution is present in any model of higher-spin DM (though of course it
can be subleading, if other stronger interactions are present). We also calculated amplitudes
for processes of single and pair DM production (Eqs. (5)-(7)) that arise in the presence of the
model-dependent Higgs-DM interaction in Eq. (1).

Moreover, we discussed the cosmological consequences of higher-spin DM. We focused on
DM production via the freeze-in mechanism and we studied two scenarios:

1. Purely gravity-mediated pair production via minimal gravitational interactions.

2. Higgs-mediated single production in association with an electroweak gauge boson or a
top quark.
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Figure 8: Comparison between spin S = 2,4, 6 in the Higgs-mediation scenario.
The area below each line corresponds to the region where gravity-mediated pair
production dominates. In the area above the lines, single production dominates. The
contributions become comparable for Tmax ∼

p

cH m MPl. The red region indicates
the small-scale structure bound m¦ 5 keV.

In the first scenario, the freeze-in DM abundance can match the experimentally observed one
for a broad range of DM masses, from sub-TeV to GUT-scale masses. For longitudinal com-
ponents of higher-spin particles the scale controlling the high-energy behavior of annihilation
amplitudes is [MPlm

S−1/2]1/(S+1/2), which can be well below the Planck scale, especially for
large S and/or small m. Therefore, the minimal gravitational interactions alone can be strong
enough to allow for sufficient DM production (and simultaneously remain in the freeze-in
regime). The challenge for this scenario is to avoid that other processes, such as Compton and
self-scattering, hit the strong coupling before annihilation becomes strong enough. This can
happen for smaller DM masses, and the constraint becomes more restrictive as S is increased.
Nevertheless, even for large S there remains a window to generate correct abundance of su-
perheavy DM right at the production threshold where DM is produced with non-relativistic
velocities.

The gravity-mediated scenario in its minimal form does not have any experimental signa-
tures, other than the usual gravitational effects of DM on the dynamics of the Universe. The
situation is phenomenologically more interesting in the second scenario. Given that the cubic
DM-Higgs interaction we introduced violates the Z2 symmetry, the DM particle is no longer
stable, leading to potentially rich signatures of decaying DM. In fact, the decays provide strin-
gent constraint on the parameter space, and exclude sizable DM-Higgs couplings, unless the
DM particle is much lighter than the electroweak scale. In general, these constraints push
the Higgs-mediated scenario toward the parameter region where the pure gravity-mediated
processes dominate DM production. Nevertheless, we do find viable parameter regions where
the Higgs-mediated single production dominates.

We comment here on the relationship between our work and recent Refs. [36,37], which
also considered higher-spin DM. One feature that sets apart our paper is that we apply the
massive spinor formalism to calculate the DM amplitudes. This is a technical point, but a very
important one, as it allows us to obtain compact analytic formulas for the amplitudes and study
a broad range of possible interactions. In particular, it allows us to tackle gravity mediated
amplitudes, which may be challenging in other formulations, and was not attempted in [36,
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37].14 Our work also differs from Refs. [36, 37] regarding the details of the model and the
parametric regime. In Ref. [36], DM interacts with the SM via 4-point Higgs-portal amplitudes.
This interaction corresponds to the contact term C (S)

φ
in Eq. (3), but in our scenario we assume

it is subleading for the sake of freeze-in production (in Section 3.5 we briefly discussed a
scenario were a different contact term dominates over gravitational interactions, which leads
to similar physics). Thus, Ref. [36] corresponds to the parametric limit of our model where the
contact term C (S)

φ
dominates. Ref. [37] studies gravitational DM production, and it employs the

same minimal coupling to gravity (since it is universal). However, DM production occurs in the
de Sitter phase during inflation, while we are considering the production during the reheating
phase after inflation ends. The two mechanisms are complementary and the question which
one dominates is a model-dependent one, depending on the relationship between the DM
mass, reheating temperature, and the Hubble constant during inflation; e.g. the mechanism
of Ref. [37] is not efficient if mDM is below H. Note that our higher-spin DM particle is not
elementary, and likely corresponds to some bound state, thus it may not even exist during
inflation.

There are countless ways we could deform or generalize the spin-S DM model studied
in this paper. Instead through the Higgs, spin-S DM could couple to the SM via vector or
fermion portals. Moreover, it is unlikely a higher-spin state exists in isolation. Indeed, concrete
frameworks like large N Yang-Mills or string theory lead to families or towers of states with
varying spins. It would be interesting to study DM in higher-spin EFTs derived from realistic
UV completions [19, 54, 55]. In all these investigations, we expect, the on-shell methods will
play a crucial role, as they facilitate the calculations and provide better physical insight.
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A Spinor conventions

We use the mostly-minus metric signature: ηµν = diag(1,−1,−1,−1). The basic objects from
which we build scattering amplitudes are 2-component holomorphic and anti-holomorphic
spinors, transforming respectively in (1/2, 0) and (0,1/2) representations of the Lorentz group.
Following the conventions of Ref. [56], the spinor indices are lowered and raised by the anti-
symmetric ε tensor:

ψα = εαβψβ , ψα = εαβψ
β , (A.1)

with ε12 = −ε12 = 1. Vector and spinor Lorentz indices can be traded via the sigma matrices
[σµ]αβ̇ = (1, ~σ), [σ̄µ]α̇β = (1,−~σ), where ~σ = (σ1,σ2,σ3) are the usual Pauli matrices.

Massless momenta pµ can be represented by two spinors denoted as λα, λ̃β̇ . They are related
to the momentum via the equation

(piσ)αβ̇ = λiαλ̃i β̇ , (pσ̄)ᾱβ = λ̃α̇i λ
β
i , (A.2)

such that p2 = 0. The massless little group of the i-th particle corresponds to U(1) acting as
λi → t−1

i λi , λ̃i → t iλ̃i . An amplitude with the i-th particle having helicity hi must transform

14Note that gravity mediated amplitudes are universal and our results are applicable beyond the specific field of
DM, for example for calculating quantum corrections to classical gravitational interactions of higher-spin objects.
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as M→ t2hi
i M under this U(1). For each massive momentum we have four associated spinors

denoted as χ 1
α , χ 2

α , χ̃β̇ 1, χ̃β̇ 2. They are related to the momentum via [15]

(piσ)αβ̇ =
2
∑

J=1

χ J
iαχ̃i β̇ J , (piσ̄)

αβ̇ =
2
∑

J=1

χ̃ α̇i Jχ
β J
i , (A.3)

and subject to the normalization conditions

χ JχK = δ
J
K m, χ̃J χ̃

K = δK
J m. (A.4)

The index J is associated with the SU(2) little group of a massive particle. An amplitude with
the i-th particle having spin S must be a sum of analytic functions of exactly 2S spinors χi or
χ̃i .

Lorentz-invariant spinor contractions are abbreviated using the bra-ket notation. For mass-
less spinors

〈i j〉 ≡ λαi λ jα = ε
βαλiαλ j β = (λiλ j), [i j]≡ λ̃i α̇λ̃

α̇
j = ε

α̇β̇ λ̃i α̇λ j β̇ = (λ̃iλ̃ j) , (A.5)

and momentum insertions are represented by (λi pkσλ̃ j) ≡ 〈ipk j], (λi pkσplσ̄λ̃ j) ≡ 〈ipkpl j],
etc. Similarly, for massive spinors

〈ij〉 ≡ χαi χ jα = (χiχ j), [ij]≡ χ̃i α̇χ̃
α̇
j = (χ̃iχ̃ j) , (A.6)

with the only difference that bold notation is used in this case.
For a massive particle with the momentum pµ = (

p

|p|2 +m2, |p| sinθ cosφ, |p| sinθ sinφ,
|p| cosθ ) an explicit form of the associated spinors is

χ J
α =

� p

E − |p| cos θ2 −
p

E + |p|e−iφ sin θ2
p

E − |p|eiφ sin θ2
p

E + |p| cos θ2

�

,

χ̃ J
α̇ =

�

−
p

E + |p|eiφ sin θ2 −
p

E − |p| cos θ2
p

E + |p| cos θ2 −
p

E − |p|e−iφ sin θ2

�

. (A.7)

Of course, any SU(2) rotation of the above also gives a valid spinor decomposition of a massive
momentum.

B Derivation of production amplitudes

B.1 Gravity-mediated pair production

We consider the 4-point amplitude M(1 f 2 f 3X 4X ) where f is a massless particle of helicity
h = 0, ±1/2, ±1, and X is a massive particle of arbitrary spin S. In any consistent theory
containing gravity this amplitude has a pole in the s-channel corresponding to a massless
graviton exchange. The residue of that pole is given by

Rs = −
∑

h′±
M(1 f 2 f (−ps)

h′)M((ps)
−h′3X 4X )|s→0, (B.1)

where ps = p1 + p2, and the sum goes over the two helicities h of the intermediate graviton.
Assuming minimal coupling to gravity, the relevant 3-point amplitudes to compute the residue
are given in Eq. (1) and Eq. (2). We get

Rs = −
1

M2
Plm

2S

�

(A+12)
2−2|h|(B+12)

2|h|(A−34)
2[43]2S + (A−12)

2−2|h|(B−12)
2|h|(A+34)

2〈43〉2S
	

|s→0,

(B.2)
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where A+12 = −〈ζp1ps]/〈psζ〉, A−12 = −[ζp1ps〉/[psζ], A+34 = 〈ζp3ps]/〈psζ〉, A−34 = [ζp3ps〉/[psζ],
B+12 = 〈1ζ〉[2ps]/〈psζ〉 and B−12 = 〈1ps〉[2ζ]/[psζ], with |ζ〉 and |ζ] arbitrary reference spinors
orthogonal to ps. We can trivially rewrite it as

Rs = −
1

2 M2
Plm

2S

§�

(A+12)
2−2|h|(B+12)

2|h|(A−34)
2 + (A−12)

2−2|h|(B−12)
2|h|(A+34)

2
��

[43]2S + 〈43〉2S
�

+
�

(A+12)
2−2|h|(B+12)

2|h|(A−34)
2 − (A−12)

2−2|h|(B−12)
2|h|(A+34)

2
��

[43]2S − 〈43〉2S
�ª

|s→0.(B.3)

Now, we can prove the identities that hold in the limit s→ 0:

A+12A−34 + A−12A+34 = −2p1p3,

B+12A−34 + B−12A+34 = −〈1p32], (B.4)

�

A+12A−34 − A−12A+34

��

〈34〉 − [34]
�

= −2p1p3

�

〈34〉+ [34]
�

− 2m
�

〈3p14] + 〈4p13]
�

,
�

B+12A−34 − B−12A+34

��

〈34〉 − [34]
�

= −〈1p32]
�

〈34〉+ [34]
�

+ 2m
�

〈31〉[42] + 〈41〉[12]
�

.(B.5)

This together with

A+12A−12 = 0, A−34A+34 = m2, B+12B−12 = 0, (B.6)

leads to

(A+12)
2−2|h|(B+12)

2|h|(A−34)
2 + (A−12)

2−2|h|(B−12)
2|h|(A+34)

2 = (2p1p3)
2−2|h|〈1p32]2|h| (B.7)

�

(A+12)
2−2|h|(B+12)

2|h|(A−34)
2 − (A−12)

2−2|h|(B−12)
2|h|(A+34)

2
��

〈34〉 − [34]
�

= (2p1p3)
2−|2h|〈1p32]|2h|�〈34〉+ [34]

�

+ 2mF|h|, (B.8)

where F0 ≡ 2p1p3(〈3p14] + 〈4p13]), F1/2 ≡ −2p1p3(〈31〉[42] + 〈41〉[32]),
F1 ≡ −〈1p32](〈31〉[42] + 〈41〉[32]). Armed with these formulae, we can write down the
s-residue as

Rs =−
1

2 M2
Plm

2S

§

(2p1p3)
2−2|h|〈1p32]2|h|

�

[43]2S + 〈43〉2S
�

(B.9)

+
�

(2p1p3)
2−|2h|〈1p32]|2h|�〈34〉+ [34]

�

+ 2mF|h|

� 2S−1
∑

k=0

[43]k〈43〉2S−1−k
ª

|s→0,

or, simplifying,

Rs =
1

M2
Plm

2S

§

(2p1p3)
2−|2h|〈1p32]|2h|

2S−1
∑

k=1

[43]k〈43〉2S−k −mF|h|

2S−1
∑

k=0

[43]k〈43〉2S−1−k
ª

|s→0.

(B.10)
We can trade 2p1p3 for (t−u)/2 on the s-pole. The last step is to isolate the term proportional
to s from the first term in the curly bracket. For example, for h= 1 this can be by applying the
identities

〈1p32]〈43〉 = [12]〈31〉〈41〉 −m
�

〈31〉[42] + 〈41〉[32]
�

,

〈1p32][43] = −〈12〉[32][42]−m
�

〈31〉[42] + 〈41〉[32]
�

. (B.11)
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This allows one to transform Eq. (B.10) into

Rs =
〈31〉[42] + 〈41〉[32]

M2
Plm

2S−1

§

〈1p32]
2S−1
∑

k=0

[43]k〈43〉2S−1−k

+
�

〈12〉[32][42]− [12]〈31〉〈41〉+m
�

〈31〉[42] + 〈41〉[32]
�

� 2S−1
∑

k=1

[43]k−1〈43〉2S−k−1
ª

|s→0.

(B.12)

This has clearly the same UV behavior as the pole term in Eq. (5). Applying in addition the
identity

〈12〉[32][42]− [12]〈31〉〈41〉= −2m
�

〈31〉[42] + 〈41〉[32]
�

− 〈1p32]
�

〈43〉+ [43]
�

, (B.13)

one recovers precisely the s-pole residue in Eq. (5). For h = 0, 1/2, similar steps lead from
Eq. (B.10) to Eqs. (3) and (4).

B.2 Higgs-mediated pair production

We consider the amplitude M(1H2H3X 4X ) where H is a spin-0 particle and X is a spin-2
particle. The two interact via the 3-point amplitude in Eq. (1). From that, the t- and u-channel
residues are simply obtained:

Rt = −
c2

H

M2
Plm

4
〈3p13]2〈4p24]2|t→0, Ru = −

c2
H

M2
Plm

4
〈3p23]2〈4p14]2|u→0. (B.14)

We then use the identities

〈3p13]〈4p24] = (t −m2)〈34〉[34] +m
�

〈34〉〈3p14] + [34]〈4p13]
�

− 〈3p14]〈4p13],

〈3p23]〈4p14] = (u−m2)〈34〉[34]−m
�

〈34〉〈4p13] + [34]〈3p14]
�

− 〈3p14]〈4p13], (B.15)

and also

〈3p13]〈4p24]u+ 〈3p23]〈4p14]t = (tu−m4)〈34〉[34]−m2
�

〈3p14]〈3p24] + 〈4p13]〈4p23]
�

, (B.16)

to rewrite the residues as

Rt = −
c2

H

M2
Plm

3

§

〈3p13]〈4p24]
�

〈34〉〈3p14] + [34]〈4p13]−m〈34〉[34]
�

+
m〈3p14]〈4p13]

u

�

〈3p14]〈3p24] + 〈4p13]〈4p23] +m2〈34〉[34]
�ª

|t→0,

Ru = −
c2

H

M2
Plm

3

§

− 〈3p23]〈4p14]
�

〈34〉〈4p13] + [34]〈3p14] +m〈34〉[34]
�

+
m〈3p14]〈4p13]

t

�

〈3p14]〈3p24] + 〈4p13]〈4p23] +m2〈34〉[34]
�ª

|u→0.(B.17)

Up to contact terms, the full amplitude can be reconstructed as

M(1H2H3X 4X ) = −
c2

H

M2
Plm

3

§〈3p13]〈4p24]
t

�

〈34〉〈3p14] + [34]〈4p13]−m〈34〉[34]
�

−
〈3p23]〈4p14]

u

�

〈34〉〈4p13] + [34]〈3p14] +m〈34〉[34]
�

+
m〈3p14]〈4p13]

tu

�

〈3p14]〈3p24] + 〈4p13]〈4p23] +m2〈34〉[34]
�ª

.(B.18)

Dropping the sub-leading terms in 1/m, one recovers the high-energy limit of this amplitude
displayed in Eq. (4).
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B.3 Single production

We compute the amplitude M(1H2H̄3X 4v), where H is the Higgs doublet and v is an elec-
troweak vector boson in the SM. By crossing, this amplitude encodes information about the
HH† → X v and Hv → X H processes, relevant for single DM freeze-in production. We only
show a derivation for negative helicity v; for positive helicity all steps are analogous. The
amplitude has poles in the t- and u-channels, corresponding to the Higgs exchange. Given the
3-point amplitudes in Eq. (1) and (2) the residues of these poles can be calculated as

Rt = −M(1Ha
(−pt)He

3X )M((pt)He
2Hb

4−vc
)|t→0 =

cH
p

2gv T c
ab

MPlm2u
〈4p1p24〉〈3p13]2|t→0,

Ru = −M(1Ha
(−pu)He

4−vc
)M((pu)He

2Hb
3X )|u→0 =

cH
p

2gv T c
ab

MPlm2 t
〈4p1p24〉〈3p23]2|u→0. (B.19)

In this case the residue in the t-channel contains a pole in the u-channel, and vice-versa, there-
fore some work is needed to reconstruct a valid amplitude consistent with unitarity and locality.
To this end we first rearrange the residues using the identities

〈3p13]2 =
1
2

�

[3p13〉2 + [3p23〉2 + [3p43〉2
�

+ 〈3p43]〈3p23] ,

〈3p23]2 =
1
2

�

[3p13〉2 + [3p23〉2 + [3p43〉2
�

+ 〈3p43]〈3p13] . (B.20)

Next, we use the Fierz decomposition

〈3p23]〈4p1p24〉 = −u〈43〉〈4p23]−m〈4p13]〈4p23],

〈3p13]〈4p1p24〉 = t〈43〉〈4p13] +m〈4p13]〈4p23]. (B.21)

Finally, we apply the identity

〈4p13]〈4p23]〈3p43] =
〈43〉

m

�

u〈4p23]〈3p13] + t〈4p13]〈3p23]
�

. (B.22)

This allows us to rewrite the residues as

Rt =
cH
p

2gv T c
ab

MPlm2

§〈4p1p24〉
2u

�

[3p13〉2 + [3p23〉2 + [3p43〉2
�

+ 〈43〉〈4p23]〈3p23]
ª

|t→0,

Ru =
cH
p

2gv T c
ab

MPlm2

§〈4p1p24〉
2t

�

[3p13〉2 + [3p23〉2 + [3p43〉2
�

− 〈43〉〈4p13]〈3p13]
ª

|u→0.

(B.23)

Thanks to this massaging, the parts of the residues containing the pole are symmetric between
t- and u-channels. We are ready to reconstruct the full amplitude:

M(1Ha
2H̄b

3X 4−vc
) =

cH
p

2gT c
ab

MPlm2

§〈4p1p24〉
2tu

�

[3p13〉2 + [3p23〉2 + [3p43〉2
�

+ 〈43〉
�〈4p23]〈3p23]

t
−
〈4p13]〈3p13]

u

�ª

, (B.24)

up to possible contact terms.
These results can be easily generalized to a DM with arbitrary even spin. In this case, the

cubic DM-Higgs coupling is given by Eq. (16), which allows us to write the residues in the t
and u poles as

Rt =
cH
p

2gv T c
ab

MPlm2S−2u
〈4p1p24〉〈3p13]S|t→0,

cH
p

2gv T c
ab

MPlm2S−2 t
〈4p1p24〉〈3p23]S|u→0. (B.25)
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Just using momentum conservation and the binomial expansion we can generalize Eq. (B.20)
to

〈3p13]S =
1
2

�

[3p13〉S + [3p23〉S + [3p43〉S
�

+
1
2
〈3p43]〈3p23]

S−1
∑

k=1

�

S
k

�

〈3p23]S−k−1〈3p43]k−1 ,

〈3p23]S =
1
2

�

[3p13〉S + [3p23〉S + [3p43〉S
�

+
1
2
〈3p43]〈3p13]

S−1
∑

k=1

�

S
k

�

〈3p13]S−k−1〈3p43]k−1 ,

(B.26)

and apply the identities shown in Eqs. (B.21)-(B.22). We can then reconstruct the full ampli-
tude for the single production of an even spin-S DM:

M(1Ha
2H̄b

3X 4−vc
) =

cH gT c
abp

2 MPlm2S−2

§〈4p1p24〉
tu

�

[3p13〉S + [3p23〉S + [3p43〉S
�

+ 〈43〉
S−1
∑

k=1

�

S
k

�

〈3p43]k−1

�

〈4p23]〈3p23]S−k

t
−
〈4p13]〈3p13]S−k

u

�

ª

.

(B.27)

C DM self-interaction

For a spin-2 DM particle, once the Z2 symmetry is broken by Eq. (1), nothing forbids a cubic
self-interaction. Its presence affects the amplitude for Higgs annihilating into DM, therefore
we quote it here for completeness. We assume the 3-point self-interaction amplitude of the
form

M(1X 2X 3X ) = −cH
[3σµ3〉[3σν3〉

4MPlm6

�

a0m2〈12〉[12]〈1σµ1]〈2σν2] (C.1)

+ a2

�

〈12〉2pµ12 − (〈12〉+ [12])Y µ
��

[12]2pν12 − (〈12〉+ [12])Ỹ ν
��

,

where a0 and a2 are numerical parameters, Y µ ≡ [1σµ2〉+[2σµ1〉+ pµ12〈12〉, Ỹ µ ≡ [1σµ2〉+
[2σµ1〉+ pµ12[12] and pµ12 ≡ pµ1 − pµ2 . Eq. (C.1) is up to normalization identical to the spin-2
massive graviton self-interaction in the DRGT gravity [50], and leads to scattering amplitude
that are maximally well-behaved in the high-energy limit [51].
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