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Abstract

We study the kinetics after a low temperature quench of the one-dimensional Ising model
with long range interactions between spins at distance r decaying as r−α. For α = 0, i.e.
mean field, all spins evolve coherently quickly driving the system towards a magnetised
state. In the weak long range regime with α > 1 there is a coarsening behaviour with
competing domains of opposite sign without development of magnetisation. For strong
long range, i.e. 0 < α < 1, we show that the system shows both features, with probability
Pα(N) of having the latter one, with the different limiting behaviours limN→∞ Pα(N) = 0
(at fixed α < 1) and limα→1 Pα(N) = 1 (at fixed finite N). We discuss how this behaviour
is a manifestation of an underlying dynamical scaling symmetry due to the presence of
a single characteristic time τα(N) ∼ Nα.
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1 Introduction

Systems with long range interactions characterised by an algebraic coupling of the form r−α,
where r is the distance, are of paramount importance in a variety of situations, ranging from
thermodynamics and statistical mechanics [1–3] to astrophysics [4], from hydrodynamics [5]
to plasma physics [6] to atomic [7] and nuclear [8] physics, geophysics [9] and many oth-
ers [1]. According to the value of α fundamental properties of these systems change pro-
foundly. In particular, for large α one usually recovers the features of systems with short
range interactions. Lowering α, a clearcut distinction must be done between the cases with
α > d, the spatial dimension, and α < d. In the former case some new feature, depending
on the specific system at hand, may be determined by the extended interaction with respect
to the corresponding short range system. However gross qualitative features are generally
not overturned, because the basic assumptions of statistical mechanics, which mostly rely on
the additivity property, are retained. This is sometimes called the weak long-range (WLR)
regime [10]. For α < d, instead, extensivity and additivity are lost. This has important phys-
ical consequences since it may lead to [1] non-convex thermodynamic potentials, ensemble
inequivalence, negative susceptibilities and non-equilibrium stationary states with ergodicity
breaking [11]. Because long range interactions change so much the properties of the system
in this case, when α < d one usually speaks of strong long-range (SLR) regime.

In this paper we study the non equilibrium properties of a paradigmatic system of statistical
mechanics, a ferromagnet, with SLR interactions. The non equilibrium process we consider is
a deep temperature quench. Despite the relevance of the subject, to the best of our knowledge
the evolution of such a system has never been studied. Specifically, we will consider an Ising
model. As a first attempt to understand this topic, we focus on the one dimensional system,
which is more suited for analytical approaches. Indeed, d = 1 is the only case where with
nearest neighbor (nn) interaction the kinetics is amenable of an exact solution [12], and an
analytic framework for the case α > 1 was also provided in [13, 14]. Besides that, numerical
simulations are obviously less demanding in d = 1.

Previous studies [13–16] have shown that with WLR interactions the relaxation phenome-
nology of the model is akin to the longly studied nn case. Once quenched, after a microscopic
time, spin domains of opposite sign form, grow and compete: the phenomenon of coarsening.
Let us stress that in this dynamical state there is basically no development of magnetisation,
due to the opposite sign of the domains. For 1 < α < 2, where there is a finite critical tem-
perature Tc , such phase-ordering continues forever if T < Tc and the thermodynamic limit
is considered: the equilibration time diverges. A finite system, instead, equilibrates in a time
which is finite but huge if the size is big, because thermalisation only happens when the domain
size has grown comparable to that of the system. For α > 2 instead, since Tc = 0, coarsening
is interrupted even in an infinite system by the onset of equilibration. However the time when
this happens grows exponentially as T → 0 so that, for sufficiently low temperature, phase-
ordering is promoted to the rank of a macroscopic phenomenon. Of course, apart from such
qualitative similarities, there are some quantitative differences between WLR and short range.
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For instance, referring to nonconserved dynamics which proceeds through single spin flips,
with nn the typical domain size grows algebraically as L(t) ∼ t1/2 [12] whereas for WLR this
happens to be true only for α > 2, while there is a non-universal α-dependent exponent for
1< α≤ 2. Nontrivial low temperature regimes also appear [13,14] and similar differences as
α changes are observed in the aging properties [15,16].

On the other side there is the mean field case, α= 0. The kinetics of this model is radically
different from the one described above. The tiny magnetisation of the initial state, which is
of order 1/

p
N in a random configuration, exponentially grows up in a sample, breaking the

up-down symmetry and preventing the formation of opposite domains. In this case coarsening
is totally absent, the relaxation is trivial, and the system approaches to the low temperature
equilibrium state in a time of order one.

The SLR considered in this article exhibits a non trivial scenario which, in some sense,
accommodate the two contrasting behaviours discussed above. For a given system size N the
non equilibrium ensemble contains a fraction Pα(N) of realisations which display coarsening,
the remaining ones behaving similarly to mean field. The choice between the two options is
made by each sample of the ensemble basing on the features of the initial state and on the
very early stochastic history. A notable consequence of that is the unusual fact that taking the
ensemble average one mixes the two kind of dynamics, which are radically different. This
makes the usual averaging procedure of non equilibrium statistical mechanics questionable
in this case. Let us clarify this with an example. Suppose we have two copies of the system
such that one is coarsening and the other is mean field like. The latter will quickly equilibrate
developing magnetisation, things which do not happen in the second. Taking the average
between the two does not provide a good description of either of them. Related to that, the
self-averaging property is also spoiled, i.e. even for large N , spatial averages do not correspond
to statistical ones.

The dependence of Pα(N) on the size N and on α is also nontrivial. For α ≥ 1, Pα(N)
monotonically converges to 1. This means that coarsening always occurs in a large system.
Instead, for a given α < 1, Pα(N) is non monotonic in N ; it initially increases and then de-
creases to zero for N →∞ when α < 1. Then in the thermodynamic limit all the copies of
the ensemble behave akin to mean field. However concluding that mean field is the physically
relevant behaviour of a thermodynamically extended system is rash, due to the α dependence.
Indeed, the value N = N M F after which Pα(N) starts to decrease diverges as α→ 1. Hence a
finite system, no matter how large, shows coarsening in some of his instances if α is sufficiently
close to 1.

The quantity Pα(N) discussed insofar informs us about the probability that a given reali-
sation will contain domains in its evolution, regardless of the time when these domains will
be present. It can be promoted to a time-dependent quantity Pα(t, N), namely the probability
that, by looking at a given realisation at time t, one finds domains (we use the same symbol for
simplicity, since the two quantities have similar meaning. This does not generate confusion).
If one computes Pα(t, N) along the whole thermal history, from the quench instant down to
the eventual equilibration, one observes that, for large but finite N , Pα(t, N) keeps decreasing
in time. This is expected because domains in the coarsening samples eventually disappear due
to equilibration. We show that the dependence of Pα(t, N) on α, N and t is governed by a
scaling form similar to the usual ones characterising second order phase-transitions. This sug-
gests that the non equilibrium relaxation of a SLR magnet, although so peculiar, is a dynamical
critical phenomenon, as the nn or WLR cases are.

This paper is organised into five sections. The next one is devoted to the definition of the
model and of some quantities that will be considered further on. Sec. 3 contains a discussion
of the behaviour of the model, based on an independent spin approximation, which is suited
to describe the system in the N →∞ limit. The case of a finite system is considered in Sec. 4
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where we first address some properties of isolated domains (Sec. 4.1) and then those of the
whole system where many of such can be found (Sec. 4.2). Finally, in Sec. 5 we discuss the
results, draw some conclusions and point out open issues.

2 Model and non-equilibrium protocol

We consider the one-dimensional Ising model comprising N spins, whose Hamiltonian reads

H = −
∑

i

sihi , (1)

where
hi ≡

∑

j 6=i

Ji js j (2)

is the local field. The model is equipped with a decaying interaction

Ji j = K(N)r−αi j , (3)

where ri j is the distance between two spins si , s j = ±1 on the sites i, j of a lattice and the Kac
factor K(N) = 1/

∑

j 6=i r−αi j is the regularisation necessary to make the energy an extensive
quantity [1]. More precisely, K(N) is defined is such a way that

∑

j 6=i Ji j = 1. The distance is
evaluated to take into account the periodic boundary conditions, ri j =min{|i− j|, N −|i− j|},
The case with Ji j = δi±1, j is the usual nn situation which corresponds to α→∞.

It is clear that the Kac normalization tames the divergence of the sum in Eq. (1) in the
thermodynamic limit N →∞ and makes the energy an extensive quantity also in this case.
However this does not fix the problem of non-additivity, as one can easily get convinced by
controlling that the system obtained by splitting the sample into two parts and bringing them
at infinite distance does not have the same energy of the original one.

The equilibrium properties of the model are well known [17–22]. Long-range order is
absent at any finite temperature for α > 2, while there is a second-order phase transition
for α < 2. Right at α = 2 there is a Kosterlitz-Thouless phase transition with a jump of
the magnetisation. For α = 0 one has mean field, and mean field critical exponents remain
unchanged up to α= 3/2.

We consider the evolution without conservation of the order parameter where single spins
si are randomly chosen and flipped with a transition rate w(si) obeying detailed balance,
namely w(si)/w(−si) = e−β(E f −Ei), where Ei and E f are the energies of the system before
and after the elementary move and β is the inverse temperature, β = 1/(kB T ). We will set
the Boltzmann constant to unity in the following. Time will be measured in units of Monte
Carlo steps (i.e. N attempted spin flips). Detailed balance leaves freedom in the choice of the
transition rates. Imposing the constraint w(si) +w(−si) = 1 leads to the Glauber ones

w(si) =
1

1+ eβ(E f −Ei)
=

1
2
[1− si tanh(βhi)] . (4)

Throughout this paper we will consider the non equilibrium protocol of the quench, where
a system is prepared in an equilibrium state at the initial temperature Ti and then instantly
cooled to a lower one T . In the following we will always consider Ti =∞, where spins are
random and uncorrelated, and T = 0. Notice that, with the transition rates (4), the evolution
at zero temperature proceeds as follows: a spin is randomly chosen and it is flipped if it is
antiparallel to the local field. Modifications induced by a finite final quench temperature will
be briefly discussed in Sec. 5.
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Defining the spatial average x i = N−1
∑N

i=1 x i of a quantity defined on site i, computed on
a given single realisation of the system, the magnetisation density reads

m(t) = si =
1
N

∑

i

si , (5)

which varies from sample to sample. Similarly, in the following we will be interested in the
spatial average of the local field hi . From these quantities one obtains sample independent
observables after computing their non equilibrium average 〈. . . 〉, which is taken over initial
conditions and thermal histories. However, as anticipated in Sec. 1, such averaging procedure
is not very informative in the case considered here.

3 Dynamical process in the thermodynamic limit

In statistical mechanics one is usually interested in the thermodynamic limit N →∞. How-
ever, when a system is brought out of equilibrium the large time sector t →∞ is also relevant.
For the system at hand the order in which the two limits are taken matters, as we will discuss
further on. In this section we study the evolution of the model when the thermodynamic limit
is taken at the onset. The kinetics of a large but finite system will be studied, also with the
help of numerical simulations, in the next section 4.

Because of the quenching from infinite temperature the initial configuration is completely
random: spins at different sites are uncorrelated and the spin is uncorrelated to the local field
acting on it. We expect the hypothesis of uncorrelated spins continues to be a reasonable
approximation at early times. For this reason we will evaluate the zero temperature time
evolution of the magnetization neglecting correlations, testing this hypothesis a posteriori.

The magnetization m varies by 2/N if we flip a negative spin subjected to a positive field,
and by −2/N , if we choose a positive spin with a negative field. Within the uncorrelation hy-
pothesis each possibility is the product of independent events. Since a spin is positive/negative
with probability p = (1±m)/2, if c+ (c−) is the probability that the local field is positive (neg-
ative), we can combine the two types of spin flip and obtain

dm=
�

1−m
2

c+ −
1+m

2
c−

�

2
N

. (6)

Since the time step related to the random choice of a spin is proportional to d t = 1/N we
finally get the following differential equation for the time evolution of the magnetization,

ṁ= (c+ − c−)−m. (7)

In order to evaluate c±, we observe that with uncorrelated spins, after Eq. (2) the local
fields are Gaussian variables with mean hi = m

∑

r J(r), and variance σ2 = (1−m2)
∑

r J2(r),
where J(r) is the coupling constant Ji j between two spins on sites i and j at distance r = ri j ,
previously defined in the first lines of Sec. 2. It is therefore straightforward to write c± = (1/2)

[1 ± erf(x)], with x =
�

hip
2σ

�

= m(1 − m2)−1/2Sα(N), where Sα(N) = Iα(N)/
p

I2α(N) and

Iα(N) =
∑N/2

r=1 r−α.
Hence Eq. (7) becomes

ṁ(t) = erf
�

m
p

1−m2
Sα(N)

�

−m. (8)
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With the limiting behaviours erf(x) ' 2p
π

x for x � 1 and erf(x) ' 1− exp(−x2)/(
p
πx) for

x � 1 we can approximate Eq. (8) as

ṁ(t)'







�

2p
π

Sα(N)− 1
�

m , m< 1/Sα(N)

1−m , m> 1/Sα(N)
. (9)

These equations show that there is a sudden exponential increase of the magnetisation at
early times, m(t) = m(0)exp

��

2p
π

Sα(N)− 1
�

t
�

, followed by a saturation to the equilibrium

value, m(t) = 1− (1−m(tc))e−(t−tc), where tc is the crossover time between the two regimes,
i.e. the time to attain the crossover value m = 1/Sα(N) through the first exponential regime.
The equilibration time t∗α(N) is given by the sum of tc and the time to attain saturation through
the second regime. Summing up we obtain

t∗α(N)'
1

2p
π

Sα(N)− 1
ln
�

1
m(0)Sα(N)

�

+τ0, (10)

where τ0 ∼ 1, m(0)∼ 1/
p

N , and Sα(N)∝
p

N for α < 1/2, Sα(N)∝ N1−α for 1/2< α < 1,
and Sα(N)∼ 1 for α > 1.

This equation shows that in the thermodynamic limit t∗α(N)→ τ0 for α < 1. Therefore in
a time scale of order one (when spins can be safely assumed to be uncorrelated) the magneti-
sation of an infinite system saturates and the model is akin to mean field. Instead for α > 1,
t∗α(N) diverges with N . At large times the uncorrelation hypothesis is surely not satisfied but
the divergence of t∗α(N) signals that the dynamical behaviour of systems with α > 1 is radically
different. As a matter of fact we know that for α > 1 relaxation is characterised by domain
formation and coarsening [13–16].

We also remark that for small, positive (1−α), the first term in Eq. (10) increases for small
N and decreases for large N . More precisely t∗α(N) has a maximum at N ∗α = N0e1/(1−α), where
N0 is an α-independent quantity, which diverges exponentially when α→ 1−. This means that
approaching α= 1 from below we expect a (possibly long) “coarsening" behavior for small N
(i.e. N < N ∗α), followed by the asymptotic mean-field behavior.

All these scenarios, including the crossover between different dynamical regimes, will be
further confirmed by the numerical simulations that will be discussed in the next section.

4 Dynamical process for a large finite system

In this section we tackle the problem of the evolution of a large but finite system. We will show
that, in this case, formation and coarsening of domains is possible, at variance with the case
of an infinite system. In order to do that we start by showing, in Sec. 4.1, that if a sufficiently
large domain is formed, it is stable and then the evolution can only proceed by a coarsening
process due to the displacement of the domain walls. This study can be conducted analytically
in a simple configuration with only two domains where we will also evaluate the time to close
one of such, a result that will be later exported to the general quench case in Sec. 4.2. Here we
will show that domains are actually formed in a finite system and we will study their evolution.

4.1 Stability of individual domains and their evolution

Let us consider a situation with only two domains of size R ≤ N/2 and N − R, respectively,
with periodic boundary conditions. We say that a spin is stable at a certain time if it is aligned
with its local field and ask the following question: If a spin of the R−domain is at distance X

6
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from the closest domain wall, is it stable or not? In the short-range models (α > 1) only the
spin close to the wall (X = 1) may be unstable while in the mean-field case (α = 0) all spins
of the smaller domain R are unstable. We expect to pass from the former to the latter picture
when α decreases but how does such transition occur?

Evaluating the interaction of the spin with all others within a continuum approximation
and introducing rescaled variables, x = X/N and r = R/N , for α < 1 we obtain the instability
condition

x1−α + (r − x)1−α <
1

21−α +
1

N1−α . (11)

Solving Eq. (11) with the equality sign gives the fraction x(r) of flippable spins in the
domain of size R. Two special limits are noteworthy: (i) x vanishes when r = 1/2 and N � 1;
(ii) all spins are flippable (x = r/2) if r ≤ rc = 1/21/(1−α). The latter result shows that
sufficiently large domains can be stable in a finite system. Furthermore, for rc ≤ r ≤ 1/2, x(r)
is a decreasing function of r.

Assuming that at each unitary time step all flippable spins do flip, starting from r(t = 0) =
1/2 the time τα(N) needed to eliminate the smallest domain can be found from the relation

τα(N) =

∫ 1/2

rc

dr
x(r, N)

. (12)

With increasing N the integral in Eq. (12) diverges in r → 1/2, so we can limit our-
selves to evaluate such diverging contribution. Close to the upper limit x is small and the
x−dependence of the second term on the left-hand-side of Eq. (11) is linear, therefore neg-
ligible with respect to x1−α. Furthermore, if r = 1

2 − ε, at the leading order in ε we obtain
x1−α = (1/N)1−α + c1(α)ε with c1 = 2α(1−α). Therefore

τα(N) =

∫

0

dε
x(ε)

=
1−α

c1

∫

1
N

d x
x1+α

=
Nα

α2α
. (13)

In order to check this result we have computed τα(N) by means of numerical simulations done
on a system with two domains as described above. The results are shown in Fig. 1 and they
prove that above picture not only reproduces correctly the exponent, i.e. the dependence on
N , but also the full α dependence. In fact data agree with great precision with the formula
τα(N) = kNα/(α2α), with k of order 1/2 (best fit to the data, in the time accessed by simula-
tions, provides k ' 0.59). It is worth noting that such numerical prefactor gives τ1(N) = N/4,
which is what we expect by applying above considerations when only the spin close to the wall
may flip, which occurs for α > 1.

The above derivation enlightens the mechanism responsible of the domain evaporation
which is faster than the ballistic dynamics of domain walls according to which τα(N)∝ N .
The reason is that the fraction x(r, N) of unstable spins close to the domain walls increases
by decreasing r, speeding up the dynamics. This however preserves features of domain coars-
ening. Let us remark that the process becomes ballistic in the limit α → 1. Recalling that
the ballistic behavior sets in for T = 0 quenches in the WLR regime with any α > 1 [14], we
conclude that τα(N) crosses over with continuity in passing through α= 1.

It should also be stressed that our result τα(N)∼ Nα is found as well at finite temperature
for 1 < α ≤ 2, both in one dimension [14] and in higher dimension [23–26]. Based on our
current understanding this seems a coincidence for a couple of reasons. Firstly, as we will
discuss in Sec. 5, the property (13) is spoiled at finite temperatures. Hence the same quan-
titative result is found in the SLR and WLR cases in different temperature sectors. Secondly,
the physical mechanism controlling the closure of the domain is apparently very different in
the two cases. With α < 1, in a unit time a number of spins is flipped that depends on the
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Figure 1: The time τα(N) taken by a system initially made by two domains of size
N/2 to reach a fully ordered state is plotted against N , on a double logarithmic scale.
Symbols are outcomes of numerical simulations for various α (see caption). Each
curve is averaged over 105 Monte Carlo samples. Continuous lines are the algebraic
behavior τα(N) = k(1/α)(N/2)a, with k = 0.59.

size of the domain R; with α > 1, instead, only one interfacial spin can be flipped in a unitary
time, but with a probability that depends on R [14]. We also stress that the same dynamical
exponent z = α means a dynamics slower than convective (i.e. ballistic) motion if α > 1 and
vice versa if α < 1. We will discuss the consequences of Eq. (13) in Sec. 4.2.

4.2 Kinetics of a finite system

In the previous section we have discussed the fact that sufficiently large domains, if created,
are stable and coarsen. In this section we show that indeed such domains do form in a finite
system. Let us anticipate, however, that their development is a stochastic phenomenon which
may occur (or not), depending on the different dynamical realisations, with a given probability
Pα that we will discuss further below. Before doing this, let us clarify that, from now on, the
word domain does not refer to spin domains, i.e. regions of the lattice with equally aligned
spins, but to local field domains. More precisely, we define a domain as a region of the lattice
where hi does not change sign. Using local field domains is more physical at finite temperature
because it neglects fast fluctuations of individual spins. In order to clarify this let us suppose
to have a large spin domain one of which quickly flips back and forth. Counting spin domains
one has to admit that one domain has split into two. However this has more to do with a
random fluctuation rather than with the formation of a new domain. Instead field domains
overlook such fluctuations, because the flipping of a single spin does not change much the
local fields. At zero temperature field and spin domains almost coincide because spins align
in a time of order one with their local field. However, due to the sequential nature of the
Monte Carlo evolution, individual spins can temporarily (for microscopic times of order one)
remain anti-aligned with the field, introducing a spurious effect similar to the one previously
discussed regarding thermal fluctuations.
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With this definition, for a given realisation of the process at a generic time t we define the
number of domains Dα(t, N) in a system of size N as

Dα(t, N) =
1
2

∑

i

(1− sign(hihi+1)). (14)

Assuming periodic boundary conditions this number is even by definition. Notice that a con-
figuration with the same sign for all the hi is referred to as without domains, Dα = 0. The
probability that, observing a specific sample of size N at time t, it is found in a configuration
with domains is

Pα(t, N) = 1− 〈δDα(t,N),0〉, (15)

where δ is the Kronecker function. If δDα(t,N),0 = 1 the local field has a constant sign, there are
no domains, and the systems behaves qualitatively as a mean field one. Otherwise it contains
domains and coarsens.

Pα(t, N) is computed by means of numerical simulations and it is shown in the left panel of
Fig. 2 forα= 0.7. Different values ofα behave similarly and will be discussed in a while. In this
figure one sees that, for the chosen value of N , Pα(t, N) is definitely finite, despite decreasing in
time. The decrease is expected because during coarsening domains are progressively removed
until at some time even the two remaining ones are eliminated. Hence one can conclude that
a fraction Pα of the dynamical histories develop domains. As it can be seen, their formation
occurs immediately after the quench, since Pα(t, N) appears to decrease in time from the very
onset of the process. In order to study how such initial formation is influenced by the system
size we computed Pα(1, N) whose behaviour, for different values of α is plotted in the right
panel of Fig. 2.

Here one sees that Pα(1, N) is a non-monotonic function of N . For small sizes it initially
increases, reaches a maximum at a certain value N = N M F

α and then decreases to zero. For
N � N M F

α , therefore, the system is found in a mean field like configuration from the very early
times basically in all the realisations, which explains the use of the symbol N M F

α . The large-N
decreasing behaviour of Pα(1, N) is expected after Sec. 3, as in the large-N limit there are no
domains, notice however that such decrease is quite slow. The initial increase, instead, shows
that not only configurations with domains occur, but also that their probability is enhanced
increasing the size up to N M F

α .
The dependence of N M F

α on α can be appreciated in the inset of the figure, showing that this
quantity quickly increases when α→ 1. Data seem to suggest that N M F

α diverges algebraically,
N M F
α ' (1 − α)−n with n ' 4. Let us also recall that the analogous quantity N ∗α, see below

Eq. (10), diverges exponentially in the same limit. This discrepancy may be due either to the
uncorrelation hypothesis leading to Eq. (10) or to the difficulty to probe numerically the limit
of vanishing (1 − α). However the key result is that N M F

α diverges, implying that for α ® 1
coarsening configurations are by far more probable even in systems of huge size. Notice also
that the data suggest that limN→∞ limα→1− Pα(t = 1, N) = 1, meaning that when the limits
are taken in this order (but not in the opposite one) the coarsening state is the typical one.

We finally comment on the fact that the behaviour discussed above is just a piece of infor-
mation of a more general scaling symmetry obeyed by the system, which is reflected by the
functional form of Pα(t, N). In order to speculate on this we consider first, as a guideline, the
known behaviour of the system with α > 1. In this case all the configurations are initially
characterised by domains, i.e Pα(t ' 0, N) = 1, independently of N . Coarsening of domains
occurs with the growth law L(t) ∼ t1/z with z = 2 for α > 2 and z = α for 1 < α ≤ 2. Do-
mains disappear and equilibrium is reached when L(t) ∼ N , which occurs at the typical time
τα(N) ∼ N z , after which one has Pα(t > τα(N), N) ' 0. In this case, therefore one has the
scaling form

Pα(t, N)' N−b fα

�

t
τα(N)

�

, (16)
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Figure 2: Left panel: Pα(t, N) is plotted against t for α = 0.7 and various system
sizes N on a double logarithmic scale. Each curve is averaged over 105 realisations.
Right panel: Pα(t = 1, N) is plotted with log-log scale against N for various values of
α. In the inset the value N M F

α corresponding to the maximum of any curve is plotted
against 1/(1−α)with log-log scale. The last point (green diamond) is a lower bound
since the maximum of the corresponding curve in the main figure is not yet reached
at the longest simulated time. The dashed green line is the behavior (1−α)−4.

with τα(N)∝ N z and b = 0. The latter result is due to the fact that for t � τα(N) one has
Pα = 1 independently of N .

We maintain now that a similar behaviour is present also for α < 1. In this case, the
analysis carried out in the last part of Sec. 4.1 suggests that τα(N) is given by Eq. (13). For
the exponent b, instead, we cannot invoke the same argument leading to b = 0 as for α > 1,
because the constraint Pα(t � τα(N), N) = 1 does not apply. Rather, we can assume that
at very short times Pα(t � τα(N), N) is related to the initial, random configuration of spins
which produces, see Sec. 3, a Gaussian distribution of the local fields with average h̄i = m and
standard deviation

σ =
√

√

∑

r

J2(r)'







const. , α > 1
1/N (1−α) , 1/2< α < 1
1/
p

N , α < 1/2
. (17)

Therefore, with decreasing α the distribution is narrower and consequently the probability to
observe configurations with domains must be smaller, as it is indeed observed in simulations.
Remarkably, the simple ansatz Pα(0, N)' σ seems to be correct. In fact this conjecture gives

b =







0 , α > 1
1−α , 1/2< α < 1
1/2 , α < 1/2

, (18)

which is confirmed by simulations, as we are now going to discuss.
The scaling form (16) is surely correct for α > 1, because domains always form. We

have tested it in the SLR case by numerical simulations, using τα(N) and the exponent b
given in Eqs. (13,18), respectively. To do so we look for data collapse of curves for different
sizes by plotting N bPα(t, N) against t/τα(N). The result of this procedure is shown in Fig. 3,
for different choices of α. One observes a remarkable data superposition in any case, with
the possible exceptions, depending on α, of the small and large sectors of t/τα(N). In these
regions, however, curve do collapse (or tend to do so) if one looks at a fixed t/τα(N) and let N
increase sufficiently. This is enough to conclude that the lack of superposition is just an effect of

10

https://scipost.org
https://scipost.org/SciPostPhys.10.5.109


SciPost Phys. 10, 109 (2021)

10
-1

10
0

t/τ
α
(Ν) 

10
-6

10
-4

10
-2

N
b
 P

α
(t

, 
N

) N = 512
N = 1024
N = 2048
N = 4096
N = 8192
N = 16384
N = 32768

N = 10
5

10
-2

10
-1

10
0

t/τ
α
(Ν)

10
-4

10
-2

10
0

N
b
 P

α
(t

, 
N

)

10
-3

10
-2

10
-1

10
0

t/τ
α
(N)

10
-4

10
-2

10
0

N
b
 P

α
(t

, 
N

)

10
-4

10
-2

10
0

t/τ
α
(N)

10
-4

10
-2

10
0

N
b
 P

α
(t

, 
N

)10
0

10
1

t

10
-6

10
-4

10
-2

10
0

P
α
(N

,t
)

α = 0.3 α = 0.5

α = 0.7 α = 0.9

Figure 3: N bPα(t, N) is plotted against t/τα(N) on a log-log scale, for different values
of α (α = 0.3, 0.5,0.7, 0.9 in the upper left, upper right, lower left and lower right
panels, respectively) and various N , see keys. b as in Eq. (18) and τα(N) as in
Eq. (13). Each curve is averaged over 107 realisations for α = 0.3, over 106 for
α = 0.5, and over 105 for α = 0.7 and α = 0.9. The inset in the lower left panel
reports the (unscaled) data for α= 0.7 but in a quench to T = Tc/2.

preasymptotic corrections for finite N . Corrections at small t/τα(N) are particularly evident
for large α because out of this sector scaling is excellent. Such deviations can perhaps be
ascribed to the divergence of N M F

α as α→ 1. In the large t/τα(N) region corrections probably
arise as due to the basically different kinetics in the final stages of the process when even
the last few surviving domains are expiring. Notice indeed that this happens when Pα(t, N)
is already very small. In conclusion, Fig. 3 strongly support the scaling form (16) with the
quantities τα(N) and b given in Eqs. (13,18).

5 Conclusions

In this paper we have considered the non equilibrium kinetics of the 1d Ising model with long
range interactions decaying algebraically with an exponent smaller than the spatial dimension,
the so called SLR regime. As compared to the contrasting behaviours of the limiting cases
with infinite range (i.e. mean field) and short range interactions, the SLR case shows the
coexistence of both of them. Specifically, different realisations of the ensemble are found either
in a mean-field like state or in a coarsening one. This can be interpreted as a new instance
of a dynamical symmetry breaking phenomenon. With mean field each sample breaks the Z2
symmetry globally building either positive or negative magnetised states. The choice must be
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traced back to the properties of the initial condition. With short (and even WLR) interactions
the symmetry is broken locally inside the freshly formed post-quench domains whose sign is
determined by the initial state and by the early history. With SLR interactions there is space for
breaking the symmetry group into a larger set of subgroups, because either a global or a local
symmetry breaking occurs, the probability of each being given by Pα which again is determined
by the configuration at the quench time and by the early evolution. Such symmetry breaking
scenario is further enriched by the role played by the system size, the local symmetry breaking
with domains formation being disfavoured upon increasing N above a certain (α-dependent)
value N M F

α .
From a thermodynamic perspective, changes of symmetries correspond to phase transi-

tions. Previous considerations imply, therefore, that a phase transition occurs at α = 1 in the
1d Ising model. From the point of view of the properties of Pα, the transition is of a continuous
type for a large but finite system, because we have shown that limα→1− Pα(t ¦ 0, N) = 1=
Pα>1(t ¦ 0, N). However it turns into discontinuous in an infinite system, because limα→1−

limN→∞ Pα(t ¦ 0, N) = 0 6= limN→∞ Pα>1(t ¦ 0, N) = 1.
The rich scenario addressed insofar is limited to zero-temperature quenches. A natural

progress would be understanding the effect of finite quenching temperatures 0< T < Tc . The
question is not trivial because temperature is known to be irrelevant both in the nn case [27–
29] and in mean field [13, 14]. Irrelevant means that the overall qualitative behavior is the
same for all T < Tc and universal quantities such as exponent do not depend on T . Instead,
with algebraic interactions and α > 1 there is a difference between quenches to T = 0 and
to 0 < T < Tc , both in d = 1 [13, 14] and in d = 2 [24, 30]. The situation in the present
1d case with SLR is shown in the inset of Fig. 3. Here we report the behavior of the quantity
Pα(t, N), plotted against time for various values of N , for the model with α = 0.7 quenched
to T = Tc/2 (Tc = 2αJ/(1− α) [1]). A similar behavior is found for different values of α. In
this figure one sees that data for sufficiently large values of N collapse, without need of any
rescaling: this is in striking contrast with quenches to T = 0, see left panel of Fig. 2. At finite
T the small deviations from a perfect collapse are less evident with increasing the size N and
are most likely due to finite-size corrections.

This means that temperature changes radically the behaviour of the system. In particular,
independence on N is the signature of the mean field behaviour, as witnessed by the fact that
Pα goes to zero – hence domains expire – in a microscopic time independent on N . We conclude
that temperature breaks the up down symmetry and instates the mean field mechanism. Of
course, we expect this to happen with a crossover scenario: the smaller is T , the later it will
kill the domains. Indeed, we have checked that with a very low temperature we observe the
same pattern as with T = 0 in the time domain accessed by simulations. However, if one
expects sufficiently, mean field prevails. T = Tc/2 considered in Fig. 3 is evidently a rather
high temperature under this respect: one must not wait that long in this case, it happens in a
microscopic time of order 5-10.

The material presented in this article is a first study of the post-quench kinetics of the Ising
model with SLR interactions. As such, it focuses mostly on basic features of the dynamical
state. However, several properties remain yet unexplored among which the precise nature of
the initial coarsening regime and in particular the growth law L(t) of the domains size. Indeed,
it is known that for α > 1 the relation τα(N) ∼ Nα (Eq. 13) corresponds to L(t) ∼ t1/z with
z = α. However, given the strong long-range nature of the present case, this matter would
require an analysis on much longer timescales than those addressed in this paper.

Besides that, the aging properties, encoded by two-time quantities, as well as the case with
d > 1 are totally unexplored. Furthermore, given the important role played by symmetries dis-
cussed above, ferromagnetic systems with a continuous symmetry are also expected to exhibit
peculiar features.
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