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Abstract

We consider the problem of symmetry decomposition of the entanglement negativity in
free fermionic systems. Rather than performing the standard partial transpose, we use
the partial time-reversal transformation which naturally encodes the fermionic statistics.
The negativity admits a resolution in terms of the charge imbalance between the two
subsystems. We introduce a normalised version of the imbalance resolved negativity
which has the advantage to be an entanglement proxy for each symmetry sector, but may
diverge in the limit of pure states for some sectors. Our main focus is then the resolution
of the negativity for a free Dirac field at finite temperature and size. We consider both
bipartite and tripartite geometries and exploit conformal field theory to derive universal
results for the charge imbalance resolved negativity. To this end, we use a geometrical
construction in terms of an Aharonov-Bohm-like flux inserted in the Riemann surface
defining the entanglement. We interestingly find that the entanglement negativity is
always equally distributed among the different imbalance sectors at leading order. Our
analytical findings are tested against exact numerical calculations for free fermions on
a lattice.

Copyright S. Murciano et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 02-03-2021
Accepted 10-05-2021
Published 19-05-2021

Check for
updates

doi:10.21468/SciPostPhys.10.5.111

Contents

1 Introduction 1

2 Charge imbalance resolved negativity 3
2.1 The fermionic partial time reversal density matrix 3
2.2 Imbalance entanglement via bosonic partial transpose 5

2.2.1 The example of tripartite CFT. 7
2.3 Imbalance entanglement of fermions via partial TR 8

3 Replica approach 10
3.1 Charged moments of the reduced density matrix 10
3.2 Charged moments of the partial transpose 14

4 Charged and symmetry resolved negativities in a tripartite geometry 15
4.1 Low and high temperature limits. 19
4.2 Symmetry resolution 21

5 Charged and symmetry resolved negativities in a bipartite geometry 23

1

https://scipost.org
https://scipost.org/SciPostPhys.10.5.111
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.10.5.111&amp;domain=pdf&amp;date_stamp=2021-05-19
https://doi.org/10.21468/SciPostPhys.10.5.111


SciPost Phys. 10, 111 (2021)

5.1 Low and high temperature limits 25
5.2 A semi-infinite system 27
5.3 Symmetry resolution 27

6 Conclusions 29

Appendices 30

A Numerical methods 30

B Mode expansion of charged moments of ρA and ρR1
A 31

C Lattice-dependent terms and Fisher-Hartwig conjecture 33

D Twisted partial transpose 36

References 37

1 Introduction

The Rényi entanglement entropies are the most successful way to characterise the bipartite
entanglement of a subsystem A in a pure state of a many-body quantum system [1–4], also
from the experimental perspective [5–9]. Given the reduced density matrix (RDM) ρA of
a subsystem A, obtained after tracing out the rest of the system B as ρA ≡ Trρ, the Rényi
entropies are defined as

Sn =
1

1− n
log Trρn

A. (1)

From these, the von Neumann entropy is obtained as the limit n → 1 of Eq. (1) and also
the entire spectrum of ρA can be reconstructed [10]. The essence of the replica trick is that
for integer n, in the path-integral formalism, Trρn

A is the partition function on an n-sheeted
Riemann surface Rn obtained by joining cyclically the n sheets along the region A [11, 12].
Furthermore with the experimental settings developed so far [5–9], only Rényi entropies with
integer n are accessible.

For a mixed state, the entanglement entropies are no longer good measures of entangle-
ment since they mix quantum and classical correlations (e.g. in a high temperature state, S1
gives the extensive result for the thermal entropy that has nothing to do with entanglement).
The Peres criterion [13,14] is a very powerful starting point to quantify mixed state entangle-
ment: it states that given a system described by the density matrix ρA, a sufficient condition
for the presence of entanglement between two subsystems A1 and A2 (with A = A1 ∪ A2) is
that the partial transpose ρT1

A with respect to the degrees of freedom in A1 (or equivalently
A2) has at least one negative eigenvalue. Starting from this criterion a computable measure of
the bipartite entanglement for a general mixed state can be naturally defined as [15]

N ≡
Tr|ρT1

A | − 1

2
, (2)

which is known as negativity. Here Tr|O| := Tr
p

O†O denotes the trace norm of the operator O.
Another equivalent measure, termed logarithmic negativity, has been also introduced in [15]
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and it is defined as
E ≡ logTr|ρT1

A |, (3)

whose advantage with respect to N is that it scales and behaves more similarly to the Rényi
entropies (indeed for pure states E = S1/2 [15]). Both N and E are entanglement monotones
[15, 16]. It is also useful to define the moments of the partial transpose (a.k.a. the Rényi
negativity, RN) as

Rn = Tr(ρT1
A )

n. (4)

Because of the non-positiveness of the spectrum of ρT1
A , the Rényi negativities define two sep-

arate sequences for even and odd n. Then the natural way to exploit the replica trick is to
obtain the negativity by considering the analytic continuation of the even sequence of Rne

at ne → 1 [17, 18] (which is different from R1 = 1). The moments Rn with integer n ≥ 2
can also be measured in experiments [19–21], but they are not entanglement monotones.
The entanglement negativity and Rényi negativities have been used to characterise mixed
states in various quantum systems such as in harmonic oscillator chains [22–30], quantum
spin models [31–44], (1+1)d conformal and integrable field theories [17, 18, 45–52], topo-
logically ordered phases of matter in (2+1)d [53–57], out-of-equilibrium settings [20,58–66],
holographic theories [67–72].

An interesting issue concerns the quantification of mixed state entanglement in fermionic
systems. In particular, it has been pointed out that when ρA is a Gaussian fermion operator,
its partial transpose is the sum of two Gaussians; from this observation a procedure to ex-
tract the integer Rényi negativity was proposed [73] and was also used in many subsequent
studies [74–80]. However, in this way the replica limit ne → 1 is not possible and hence,
the negativity, i.e. the only genuine measure of entanglement, is not accessible. To overcome
this problem, an alternative estimator of mixed state entanglement for fermionic systems has
been introduced based on the time-reversal (TR) partial transpose (a.k.a partial time rever-
sal) [81–88]. The new estimator has been dubbed fermionic negativity, although it is not
related to negative eigenvalues of any matrix. It turned out that not only the fermionic neg-
ativity is an entanglement monotone [84], but also that it is able to detect entanglement in
mixed states where the standard negativity vanishes. For both these reasons, throughout this
work, we will mainly focus on the fermionic negativity.

In this manuscript, we consider a many-body system with an internal global symmetry and
address the question of how mixed state entanglement splits into contributions arising from
distinct symmetry sectors. The explicit idea of considering generally the internal structure of
entanglement associated with symmetry is rather recent (the interested readers can consult the
comprehensive literature on the subject [9,89–122]). For pure states, it has been established
that the symmetry resolution of entanglement follows from the block diagonal form of the
reduced density matrix [89,90]; one of the main findings is that the entanglement entropy is
equally distributed among the different sectors [93]. For mixed states, the literature is limited
to the pioneering work [91], where it was proven that whenever there is a conserved extensive
charge, the negativity admits a resolution in terms of the charge imbalance between the two
subsystems. Here, we first point out that by properly normalising the imbalance sectors (as
also done in Ref. [121]) one obtains a clearer resolution of the entanglement in the imbalance;
then we show that the imbalance-decomposition of negativity also holds using the partial TR
definition for free fermions. We then use such decomposition to study the symmetry resolution
of the entanglement of free fermions at finite temperature, exploiting the same field theory
methods used for the total negativity [17,85].

The paper is organised as follows. In Section 2, we provide some basic definitions and
briefly review the fermionic partial TR, motivating our work by simple examples for a tripartite
and a bipartite geometry. After a brief summary of the results found in [91], we proceed with
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the general definition of the imbalance operator and the consequent decomposition of the
negativity, taking into account the normalisation of each sector. In Section 3, we review a
method based on the replica trick to derive the leading order term for the Rényi entropy of
massless Dirac fermions in (1+1)d when both the temperature T and the system size L are
finite. As a warm-up, we use this method to compute the charged Rényi entropies. In Sections
4 and 5 we then provide results for charged and imbalance resolved negativity for tripartite
and bipartite settings, respectively. Numerical checks for free fermions on the lattice are also
presented as a benchmark of the analytical results. We draw our conclusions in Section 6.
Four appendices are also included: they provide details about the analytical and numerical
computations but they also make connections with some related ideas not developed here.

2 Charge imbalance resolved negativity

In this section, we briefly review the definition of partial time reversal for fermionic density
matrices following Ref. [81]. Then we present the symmetry resolution of the standard partial
transpose and of the partial TR of the density matrix. Simple examples will lead to a general
definition of the imbalance resolution of entanglement negativity, both fermionic and bosonic.
We closely follow Ref. [91], but we normalise differently the partial transpose in each symmetry
sector, so that the symmetry resolved negativity is a genuine indicator of entanglement in the
sector.

2.1 The fermionic partial time reversal density matrix

Let us start our discussion by recapitulating the definition of the partial transpose and its rela-
tion to the time-reversal transformation. Consider a density matrix ρA in which A is partitioned
into two subsystems A1 and A2 such that A = A1 ∪ A2 (ρA can either be the reduced density
matrix of a larger pure system ρA = TrB(ρ) or a mixed density matrix, e.g. thermal, for an
entire system). It can always be written as

ρA =
∑

i jkl

〈e1
i , e2

j |ρA|e1
k , e2

l 〉 |e
1
i , e2

j 〉 〈e
1
k , e2

l | , (5)

where |e1
j 〉 and |e2

k〉 are orthonormal bases in the Hilbert spaces H1 and H2 corresponding to
the A1 and A2 regions, respectively. The partial transpose of a density matrix for the subsystem
A1 is defined by exchanging the matrix elements in the subsystem A1, i.e.

(|e1
i , e2

j 〉 〈e
1
k , e2

l |)
T1 ≡ |e1

k , e2
j 〉 〈e

1
i , e2

l | . (6)

In terms of its eigenvalues λi , the trace norm of ρT1
A can be written as

Tr|ρT1
A |=

∑

i

|λi|=
∑

λi>0

|λi|+
∑

λi<0

|λi|= 1+ 2
∑

λi<0

|λi|, (7)

where in the last equality we used the normalisation
∑

i λi = 1. This expression makes evident
that the negativity measures “how much” the eigenvalues of the partial transpose of the density
matrix are negative, a property which is the reason for the name negativity. Moreover, in the
absence of negative eigenvalues, Tr|ρT1

A |= 1 and the negativity vanishes. For a bosonic system,
it is known [14] that the partial transpose is the same as partial time reversal in phase space.
This correspondence was exploited in harmonic chains to calculate the negativity in terms of
the covariance matrix [22]. However, this is no longer true for fermions. To understand why,
let us consider a single-site system described by fermionic operators f and f † which obey the
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anticommutation relation { f , f †} = 1. We introduce the Grassmann variables ξ, ξ̄, and the
fermionic coherent states |ξ〉 = e−ξ f †

|0〉 and 〈ξ̄| = 〈0| e− f ξ̄. In this basis, the time reversal
transformation reads

|ξ〉 〈ξ̄| → |iξ̄〉 〈iξ| ≡ (|ξ〉 〈ξ̄|)R. (8)

This equation clearly shows that time reversal does not coincide with transposition because
of the presence of the factor i. In the last equality we defined the time-reversal transpose,
specified by the apex R so as to distinguish it from the standard transposition for which we use
the apex T . This transformation rule can be generalised to a many-particle (lattice) system
with a partial TR only on the degrees of freedom within A1 and reads

(|{ξ j} j∈A1
, {ξ j} j∈A2

〉 〈{χ̄ j} j∈A1
, {χ̄ j} j∈A2

|)R1 = |{iχ̄ j} j∈A1
, {ξ j} j∈A2

〉 〈{iξ j} j∈A1
, {χ̄ j} j∈A2

| , (9)

where |{ξ j}〉 = e−
∑

j ξ j f †
j |0〉, 〈{χ̄ j}| = 〈0| e

−
∑

j f j χ̄ j are the many-particle fermionic coherent
states.

Let us consider the normal-ordered occupation number basis

|{n j} j∈A1
, {n j} j∈A2

〉= ( f †
m

1
)nm1 . . . ( f †

m`1
)

nm`1 ( f †
m′

1
)

nm′1 . . . ( f †
m′
`2

)
nm′
`2 |0〉 , (10)

where n j ’s are occupation numbers in the subsystems A1 and A2, which have `1 and `2 sites re-
spectively (in 1D they represent the lengths of intervals), and we use the indices {m1, . . . , m`1

}∪
{m′1, . . . , m′

`2
} to denote the sites within the subsystem. The definition (9) in the occupation

number basis is

(|{n j}A1
, {n j}A2

〉 〈{n̄ j}A1
, {n̄ j}A2

|)R1 = (−1)φ({n j},{n̄ j})(|{n̄ j}A1
, {n j}A2

〉 〈{n j}A1
, {n̄ j}A2

|), (11)

and can be viewed as the analogue of partial transposition in Eq. (6), up to the phase factor

φ({n j}, {n̄ j}) =
[(τ1 + τ̄1)mod2]

2
+ (τ1 + τ̄1)(τ2 + τ̄2), (12)

in which τs =
∑

j∈As
n j , τ̄s =

∑

j∈As
n̄ j are the number of the occupied states in the As intervals,

s = 1,2.
It is useful to rewrite the partial TR using the Majorana representation of the operator

algebra. We introduce the Majorana operators as

c2 j−1 = f j + f †
j , c2 j = i( f j − f †

j ). (13)

The density matrix in the Majorana representation takes the form

ρA =
∑

κ,τ
|κ|+|τ|=even

wκ,τc
κm1
m1

. . . c
κ2m`1
2m`1

c
τm′1
m′1

. . . c
τ2m′

`2

2m′
`2

. (14)

Here, c0
x = I and c1

x = cx , κi ,τ j ∈ {0,1} and κ (τ) is a 2m`1
-component vector (2m′

`2
) with

norm |κ|=
∑

j κ j (|τ|=
∑

j τ j). The constraint on the parity of |κ|+ |τ| is due to the fact that
the density matrix commutes with the total fermion-number parity operator, i.e. we focus our
attention on physical states. Using Eq. (14), the partial TR with respect to the subsystem A1
is defined by

ρ
R1
A =

∑

κ,τ
|κ|+|τ|=even

i|κ|wκ,τc
κm1
m1

. . . c
κ2m`1
2m`1

c
τm′1
m′1

. . . c
τ2m′

`2

2m′
`2

. (15)

We should note that the matrix resulting from the partial TR is not necessarily Hermitian
and may have complex eigenvalues, although TrρR1

A = 1. Nevertheless, we can still use Eq.
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(2) to define a negativity because the eigenvalues of the combined operator [ρR1
A (ρ

R1
A )

†] are
always real. Following Refs. [81, 85, 86], in the rest of the manuscript, we shall use the term
negativity (or fermionic negativity) to refer to the quantity

N ≡
Tr|ρR1

A | − 1

2
=

Tr
Ç

ρ
R1
A (ρ

R1
A )† − 1

2
, (16)

where the trace norm of the operator ρR1
A is the sum of the square roots of the eigenvalues of

the product operator ρR1
A (ρ

R1
A )

†. Usually one also defines the (fermionic) Rényi negativities,
as

Rn =

¨

Tr(ρR1
A (ρ

R1
A )

† . . .ρR1
A (ρ

R1
A )

†), n even,

Tr(ρR1
A (ρ

R1
A )

† . . .ρR1
A ), n odd,

(17)

from which N = 1
2

�

lim
ne→1

Rne
− 1

�

, where ne denotes an even n = 2m [81]. We stress that the

fermionic negativity (16) is not related to the presence of negative eigenvalues in the spectrum
of ρR1

A . Sometimes, we will refer to the standard negativity (2) as the bosonic negativity.

2.2 Imbalance entanglement via bosonic partial transpose

In the presence of symmetries, the RDM has a block diagonal structure which allows to iden-
tify contributions to the entanglement entropy from individual charge sectors. In order to
understand how symmetry is reflected in a block structure of the density matrix after partial
transpose, we start with a simple example, taken from Ref. [91]. Consider a particle in one
out of three boxes, A1, A2, B, described by a pure state |Ψ〉 = α |100〉+ β |010〉+ γ |001〉. The
RDM of A = A1 ∪ A2 is ρA = TrB|ψ〉〈ψ| = |γ|2 |00〉 〈00|+ (α |10〉+ β |01〉)(α∗ 〈10|+ β∗ 〈01|),
i.e.

ρA =







|γ|2 0 0 0
0 |β |2 α∗β 0
0 β∗α |α|2 0
0 0 0 0






, (18)

in the basis {|00〉 , |01〉 , |10〉 , |11〉}. This matrix is clearly block diagonal with respect to the
total occupation number NA = N1 + N2, where N1 and N2 respectively denote the particle
number of the subsystem A1 and A2. According to Eq. (6), the partial transpose of ρA is

ρ
T1
A =







|γ|2 0 0 αβ∗

0 |β |2 0 0
0 0 |α|2 0
βα∗ 0 0 0






. (19)

The total negativity is N =
�

�

�

1
2 |γ|

2 −
q

1
4 |γ|4 + |αβ |2

�

�

�. Once we reshuffle the elements of rows

and columns in the basis of {|10〉 , |00〉 , |11〉 , |01〉}, we get

ρ
T1
A =







|α|2 0 0 0
0 |γ|2 αβ∗ 0
0 βα∗ 0 0
0 0 0 |β |2






, (20)

which has a block structure where each block is labelled by the occupation imbalance q = N2−N1:

ρ
T1
A
∼=
�

|α|2
�

q=−1 ⊕
�

|γ|2 αβ∗

βα∗ 0

�

q=0

⊕
�

|β |2
�

q=1 . (21)

6

https://scipost.org
https://scipost.org/SciPostPhys.10.5.111


SciPost Phys. 10, 111 (2021)

The structure of the above example is easily generalised to a many-body ρA with subsys-
tems A1 and A2 characterised by particle number operator N̂1 and N̂2; performing a partial
transposition of the relation [ρA, N̂A] = 0 yields [91]

[ρT1
A , N̂2 − N̂ T1

1 ] = 0, (22)

from which we can do a block matrix decomposition according to the eigenvalues q of the
imbalance operator Q̂ = N̂2−N̂ T1

1 . We recall that this operator Q̂ is basis dependent, as stressed
in [91]; it has the form of an imbalance in the Fock basis (i.e. Q̂ = N̂2− N̂1), while in others it
can be different (as, e.g., in the computational basis we employ, Q̂ is determined by the sum
of the number operators up to some additive constants, see Appendix A and [91]).

Let Pq denote the projector onto the subspace of eigenvalue q of the operator Q̂. We define
the normalised charge imbalance partially transposed density matrix as

ρ
T1
A (q) =

Pqρ
T1
A Pq

Tr(Pqρ
T1
A )

, Tr(ρT1
A (q)) = 1, (23)

such that
ρ

T1
A = ⊕qp(q)ρT1

A (q). (24)

Here, p(q) = Tr(Pqρ
T1
A ) is the probability of finding q as the outcome of a measurement of Q̂

and corresponds to the sum of the diagonal elements of ρT1
A (q). Although the eigenvalues of

ρ
T1
A can be negative, all the diagonal elements in the Fock basis are ≥ 0 because the partial

transpose leaves invariant all the elements on the diagonal and so they remain the same as
those ofρA which are≥ 0. This is evident in the example (20) and it is the same for any particle
number. Hence p(q) satisfies p(q) ≥ 0 and

∑

q p(q) = 1, as it should be for a probability
measure. We can thus define the (normalised) charge imbalance resolved negativity as

N (q) =
Tr|(ρT1

A (q))| − 1

2
. (25)

Differently from [91], we prefer to deal with normalised quantities to preserve the natural
meaning of negativity as a measure of entaglement: if in the q sector there are no negative
eigenvalues, according to Eq. (25), N (q) = 0. Hence, this definition not only provides a
resolution of the negativity, but also tells us in which sectors the negative eigenvalues are, i.e.
where the entanglement is. The total negativity, N , is resolved into (normalised) contributions
from distinct imbalance sectors as

N =
∑

q

p(q)N (q). (26)

For the example of Eq. (21), the imbalance negativities are N (±1) = 0 and N (0) =
1
2

�

�

�

�

1−
s

1
2 +

�

�

�

2αβ
|γ|2

�

�

�

2
�

�

�

�

with p(0) = |γ|2; the only negative eigenvalue is in the sector q = 0.

Eq. (26) gives back the total negativity. We stress that the imbalance decomposition of the
negativity as in Eq. (26) cannot be performed for the logarithmic negativity in Eq. (3), because
of the nonlinearity of the logarithm.

We conclude this section by discussing the important “pathological” case when p(q) = 0
for some values of the imbalance q, but ρT1

A (q) is non-zero and so the negativity of the sectors
diverges, although the total one is finite. For example, this happens setting γ= 0 in Eq. (18);
in this case ρA corresponds to a pure state. Actually, it is obvious that every time that ρA is
a pure state there will be some p(q) = 0 because N1 + N2 is fixed and hence also the parity
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of N1 − N2 is (so all the p(q)’s where q has a different parity vanish). In such case, the origin
of the problem can be traced back to the fact that the (pure-state) entanglement (entropy)
is better resolved in terms of N1 or N2 rather than in the imbalance, i.e. the symmetries of
ρA and ρT1

A are larger than in the standard mixed case. However, mixed states with some
zero p(q) can be also easily built, although they are difficult to encounter as mixed states in
physical settings (and they all correspond to states in which there is more symmetry than the
imbalance). To understand the situation better, let us recall that p(q) is always the sum of
some diagonal elements of both ρT1

A (q) and ρA. For the latter, the diagonal elements are the
populations of states in the Fock basis. Hence, we need at least a few zero populations to have
a vanishing p(q) (and, e.g., this will never happen in a Gibbs state at finite temperature). In
the matrix ρA, if the populations in a given sector of the total charge are zero, the entire block
is zero (and hence the entanglement entropy of the sector is zero). However, when taking
the partial transpose, the off-diagonal elements are reshuffled in the matrix and, after being
re-organised in terms of the imbalance, we can end up with some blocks with all zeros on the
diagonal (and so p(q) = 0) but with non-zero off-diagonal elements. In these instances, we
cannot normalise with p(q). (Have always in mind the example of Eq. (18) with γ= 0: there
are two sectors in ρA with zero populations, N1 + N2 = 0,2; after the partial transposition,
they both end up in imbalance q = 0, see Eq. (21) which has non-zero off-diagonal terms).
Anyhow, it makes sense that the imbalance negativity diverges in these cases. We are indeed
facing sectors that have exactly zero populations, but still have some quantum correlations.
In practice, as we shall see in the next section, these vanishing p(q) are encountered only in
the limit of a pure state (e.g. for T → 0) and so diverging imbalance negativity signals that
the state is getting pure and that a better resolution of the entanglement is in N1 or N2 rather
than in the imbalance.

2.2.1 The example of tripartite CFT.

As a first simple example to show the importance of the normalisation p(q) in the definition of
imbalance resolved negativity, we reanalyse a simple known result [91] for the ground state
of a Luttinger liquid (with parameter K) in a tripartite geometry. Thus, the results in this
subsection describe gapless interacting 1d fermions. We focus on two adjacent intervals of
length `1 and `2 respectively embedded in an infinite line.

Following [91], we start with the computation of the charged moments of the partial trans-
pose

N T1
n (α)≡ Tr((ρT1

A )
neiQ̂α) = 〈TnVα(u1)T 2

−nV−2α(v1)TnVα(v2)〉 , (27)

where, in the rhs, we use the correspondence with the 3-point correlation function of fluxed
twist field TnVα with scaling dimension

∆n(α) =
1

24

�

n−
1
n

�

+
K
2n

� α

2π

�2
, ∆T 2

no
=∆no

∆T 2
ne
= 2∆ne/2. (28)

Using these scaling dimensions, one finds

log N T1
n (α) = log Rn −

K
2n

�α

π

�2
log

� `2
1`

2
2

(`1 + `2)ε3

�

, (29)

where Rn are neutral Rényi negativities and ε is an ultraviolet cutoff. Notice in Eq. (29) only
Rn does depend on the parity of n [17], while the α dependence is the same for even and odd
n.
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Upon performing a Fourier transform of Eq. (29), we obtain, through the saddle-point
approximation, the (normalised) charge imbalance RN

Rn(q) = Rn

∫ π

−π
dα
2π e−i(q−q̄)αe−α

2 bn/2

[
∫ π

−π
dα
2π e−i(q−q̄)αe−α2 b1/2]n

' Rn

√

√

√(2πb1)n

2πbn
e−

(q−q̄)2
2 ( 1

bn
− n

b1
), (30)

where q̄ is the expectation value of the charge operator Q̂ and

bn =
1
π2n

log
� `2

1`
2
2

(`1 + `2)ε3

�

. (31)

The saddle-point approximation holds for two intervals of length `1,`2 → ∞ embedded in
an infinite line at zero temperature. The replica limit ne → 1 is easily taken since there is no
parity dependence in the imbalance part. For large `1,`2→∞ (hence bn→∞), we get

N (q) =N + o(1), (32)

i.e. we found the equipartition of negativity in the different imbalance sectors at leading
order for large subsystems. This behaviour is reminiscent of the equipartition of entanglement
entropy in a pure quantum system that possesses an internal symmetry [93]. It is clear that
negativity equipartition can be shown only by properly normalising the partial transpose in each
sector as done here. As an important difference compared to the entanglement entropies, we
do not have additional log log` [96] corrections to the symmetry resolved quantities.

2.3 Imbalance entanglement of fermions via partial TR

Now we are ready to understand the block structure of the partial TR density matrix and how
the fermionic negativity splits according to the symmetry. We first revisit the simple example
of the previous section in Eq. (18) for fermions. According to Eq. (8), the partial TR of ρA in
Eq. (18) is

ρ
R1
A =







|γ|2 0 0 iαβ∗

0 |β |2 0 0
0 0 |α|2 0

iβα∗ 0 0 0






, (33)

i.e. the partial TR transformation does not spoil the block matrix structure according to the
occupation imbalance q = N2 − N1:

ρ
R1
A
∼=
�

|α|2
�

q=−1 ⊕
�

|γ|2 iαβ∗

iβα∗ 0

�

q=0

⊕
�

|β |2
�

q=1 . (34)

The (total) fermionic negativity is

N = |γ|
2

2



−1+

√

√

√1
2
+
|αβ |2

|γ|4
+

√

√1
4
+
|αβ |2

|γ|4
+

√

√

√1
2
+
|αβ |2

|γ|4
−
√

√1
4
+
|αβ |2

|γ|4



 . (35)

For a many-body state, the analogue of the commutation relation in Eq. (22) now reads

[ρR1
A , N̂2 − N̂R1

1 ] = 0, (36)

while the (normalised) charge imbalance resolved negativity is given by

N (q) =
Tr|(ρR1

A (q))| − 1

2
, ρ

R1
A (q) =

Pqρ
R1
A Pq

Tr(Pqρ
R1
A )

. (37)
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We also define the charge imbalance resolved RN

Rn(q) =

¨

Tr(ρR1
A (q)ρ

R1
A (q)

† . . .ρR1
A (q)ρ

R1
A (q)

†), n even,

Tr(ρR1
A (q)ρ

R1
A (q)

† . . .ρR1
A (q)), n odd,

(38)

from which N (q) = 1
2

�

lim
ne→1

Rne
(q) − 1

�

. It is important to stress that the diagonal ele-

ments of ρR1
A are the same as ρT1

A (the TR operation does not touch the diagonal elements)
and so the probabilities p(q) are identical for both the standard and the TR partial trans-
pose. Thus, all the considerations for the vanishing of p(q) in the previous subsection ap-
ply also here. For the example of Eq. (34), the imbalance negativities are N (±1) = 0 and

N (0) = 1
2

�

−1+
s

1
2 +

|αβ |2
|γ|4 +

r

1
4 +

|αβ |2
|γ|4 +

s

1
2 +

|αβ |2
|γ|4 −

r

1
4 +

|αβ |2
|γ|4

�

with p(0) = |γ|2. As a

further check,
∑

q p(q)N (q) gives back the total negativity in Eq. (35).
We think it is beneficial to give another basic example (taken from Ref. [85]) of imbalance

resolution with free fermions on a two-site lattice model described by the Hamiltonian

Ĥ = −∆( f †
1 f2 + f †

2 f1), (39)

where ∆ is a tunnelling amplitude. In the basis {|00〉 , |01〉 , |10〉 , |11〉}, the thermal density
matrix is

ρ =
e−β Ĥ

Tr(e−β Ĥ)
=

1
2+ 2cosh(β∆)







1 0 0 0
0 cosh(β∆) sinh(β∆) 0
0 sinh(β∆) cosh(β∆) 0
0 0 0 1






. (40)

Let us take the partial TR

ρR1 =
1

2+ 2 cosh(β∆)







1 0 0 i sinh(β∆)
0 cosh(β∆) 0 0
0 0 cosh(β∆) 0

i sinh(β∆) 0 0 1






. (41)

By reshuffling the elements of rows and columns in the basis of {|00〉 , |11〉 , |10〉 , |01〉}, ρR1

has a block matrix structure in the occupation imbalance between the subsystem and the rest
of the system that we can write explicitly as

ρR1 ∼=
�

cosh(β∆)
2+2 cosh(β∆)

�

q=−1
⊕

�

1
2+2 cosh(β∆)

i sinh(β∆)
2+2 cosh(β∆)

i sinh(β∆)
2+2 cosh(β∆)

1
2+2 cosh(β∆)

�

q=0

⊕
�

cosh(β∆)
2+2 cosh(β∆)

�

q=1
. (42)

When the state becomes pure, i.e. β∆� 1, p(q = 0)→ 0. The interpretation is the same as
the one for the bosonic negativity: when the state is pure, the operator to resolve the symmetry
is N̂1 (or N̂2), rather than the imbalance. For completeness, we report the fermionic negativity

N = 1
2

tanh2
�β∆

2

�

, (43)

and its splitting in the imbalance sectors: N (±1) = 0 and N (0) = 1
2(cosh(β∆)− 1) with

p(0) = 1
cosh(β∆)+1 , so that

∑

q p(q)N (q) = p(0)N (0) = N . Notice that as β →∞, p(0)→ 0,
N (0)→∞, but their product stays finite and tends to 1/2.
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3 Replica approach

In this section, we first review the replica approach to the charged entropies [118] and apply it
to their calculation for a massless Dirac fermion at finite temperature, a result that was not yet
obtained so far. Then we adapt the method to the charged Rényi negativities. Its applications
will be presented in the successive sections.

3.1 Charged moments of the reduced density matrix

We start by recalling the symmetry resolution of the entanglement entropy. As already men-
tioned, in the presence of a U(1) symmetry Q̂, ρA admits a charge decomposition according to
the local charge Q̂A, where each block corresponds to different eigenspaces of Q̂A, which we
can label as q̃ ∈ Z, i.e.

ρA = ⊕q̃ p̃(q̃)ρA(q̃), p̃(q̃) = Tr(Pq̃ρA). (44)

Here we use q̃ for the eigenvalues of Q̂A to make a clear distinction with the eigenvalues of the
imbalance q. Unless differently specified, A is a generic subsystem made of p intervals [ui , vi],
i.e A= ∪p

i=1[ui , vi]. The symmetry resolved Rényi entropies are then defined as [93]

Sn(q̃)≡
1

1− n
logTr[ρA(q̃)]

n. (45)

The direct use of the above definition to evaluate the symmetry resolved entropy requires the
knowledge of the spectrum of the RDM and its resolution in q̃, that is a nontrivial problem,
especially for analytic computations. However, we can use the Fourier representation of the
projection operator and focus on the charged moments of ρA, Zn(α)≡ Tr[ρn

AeiαQ̂A] [90]. Their
Fourier transforms

Zn(q̃) =

∫ π

−π

dα
2π

e−iq̃αZn(α), (46)

are related to the entropies of the sector of charge q̃ as

Sn(q̃) =
1

1− n
log

� Zn(q̃)
Z1(q̃)n

�

. (47)

We exploit the framework of the replica trick to evaluate the charged moments, which are the
main object of interest in this section.

In a generic quantum field theory, the replica trick for computing Zn(α) can be imple-
mented by inserting an Aharonov-Bohm flux through a multi-sheeted Riemann surface Rn,
such that the total phase accumulated by the field upon going through the entire surface is
α [90]. The result is that Zn(α) is the partition function of such a modified surface, that, fol-
lowing Ref. [90], we dub Rn,α. Here we focus on a massless Dirac fermion described by the
Lagrangian density

L= Ψ̄γµ∂µΨ, (48)

where Ψ̄ = Ψ†γ0, γ0 = σ1, γ1 = σ2. Rather than dealing with fields defined on a non trivial
manifold Rn,α, it is more convenient to work on a single plane with a n-component field

Ψ =









ψ1
ψ2
...
ψn









, (49)
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where ψ j is the field on the j-th copy. Upon crossing the cut A, the vector field Ψ transforms
according to the twist matrix Tα

Tα =









0 eiα/n

0 eiα/n

. . . . . .
(−1)n−1eiα/n 0









. (50)

The idea of using the twist matrix for the Dirac fermions at α = 0 was originally suggested
in [123] (see also [124]). The matrix Tα has eigenvalues

λk = ei αn e2πi k
n , k = −

n− 1
2

, . . . ,
n− 1

2
. (51)

By diagonalising Tα with a unitary transformation, the problem is reduced to n decoupled and
multi-valued fields ψk in a two dimensional spacetime. This technique is applicable only to
free theories, otherwise the k−modes do not decouple. In particular, the charged moments
become

Zn(α) =
(n−1)/2
∏

k=−(n−1)/2

Zk,n(α), (52)

where Zk,n(α) is the partition function for a Dirac field that along A picks up a phase equal to

ei αn e2πi k
n , or equivalently the phase picked up going around one of the entangling points ui , vi

is ei αn e2πi k
n and e−i αn e−2πi k

n , respectively. The main difference with respect to the standard
computation for the Rényi entropies is that, for a charged quantity, the boundary conditions
of the multivalued fields along A depend also on the flux α and not only on the replica index.
This multivaluedness can be circumvented with the same trick used for α = 0 [123], i.e. by
absorbing it in an external gauge field coupled to a single-valued fields ψ̃k. Indeed, the singular
gauge transformation

ψk(x) = ei
∮

C d yµAµk(y)ψ̃k(x), (53)

allows us to absorb the phase along A into the gauge field at the price of changing the La-
grangian density into

Lk =
¯̃ψkγ

µ(∂µ + iAk
µ)ψ̃k. (54)

The actual value of Ak
µ in Eq. (53) is fixed by requiring that, for any loop C, the original

boundary conditions for the multivalued field ψk are reproduced. This is achieved with
∮

Cui

d xµAk
µ = −

2πk
n
−
α

n
,

∮

Cvi

d xµAk
µ = +

2πk
n
+
α

n
,

(55)

where Cui
and Cvi

are circuits around left and right endpoints of the i-th interval. If the circuit
C does not encircle any endpoint,

∮

C d xµAk
µ = 0. If more endpoints are encircled the phases

sum up. It is useful to rewrite Eq. (55) in the corresponding differential form, i.e. using
Stokes’ theorem

εµν∂νA
k
µ(x) = 2π

�

k
n
+
α

2πn

� p
∑

i=1

[δ(x − ui)−δ(x − vi)], (56)

where p is the number of intervals.
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After the transformation (53), the desired charged partition sum Zk,n(α) is written as

Zk,n(α) = 〈e
i
∫

d2 xAk
µ jµk 〉 , (57)

where jµk =
¯̃ψkγ

µψ̃k is the Dirac current and Ak
µ satisfies Eq. (55) or, equivalently, (56). Eq.

(57) is more easily calculated by bosonisation, which maps the Dirac current to the derivative
of a scalar field and the Lagrangian of the k-th fermion to that of a real massless scalar field
φk, Lk =

1
8π∂µφk∂

µφk (here we work with the normalisation of the boson field such that the
Dirac fermion corresponds to a compactified boson with radius R= 2, as in [125]). Therefore
we can evaluate Zk,n(α) as the correlation function of the vertex operators Va(x) = e−iaφk(x),
i.e.

Zk,n(α) = 〈
p
∏

i=1

Vk
n+

α
2πn
(ui)V− k

n−
α

2πn
(vi)〉 . (58)

An important observation about Eq. (55) is that we can arbitrarily add 2πm phase shifts,
with m an integer, to the right hand side without affecting the total phase factor along the cir-
cuits Cui

and Cvi
defined above. This ambiguity leads to inequivalent different representations

of the partition function Zk,n(α) in Eq. (52), which in turn must be written as a summation
over all allowed representations. The asymptotic behaviour of each term for large subsystem
size, `, is a power law `−αm and the leading term corresponds to the one with the smallest
exponent αm. For the charged moments, the leading order is given by m = 0, but this is not
the case for the entanglement negativity. See Appendix B for a more detailed discussion of this
issue.

Let us now apply this machinery to study the charged moments of a free Dirac fermion
on a torus with multiple intervals (ua, va), (a = 1, . . . , p). To have more compact formulas,
we rescale the spatial coordinates by the system size L. The torus is defined by two periods
which, in our units, are 1 and τ = iβ/L, where β = 1/T is the inverse temperature. The
partition function depends on the boundary conditions along the two cycles, which specify the
spin structure of the fermion on the torus. Let z be a holomorphic coordinate on the torus: it
has the periodicities z = z + 1 and z = z + τ. The holomorphic component of the fermion on
the torus satisfies four possible boundary conditions

ψ̃k(z + 1) = e2πiν1ψ̃k(z), ψ̃k(z +τ) = e2πiν2ψ̃k(z), (59)

where ν1 and ν2 take the values 0 or 1
2 . The anti-holomorphic component is a function of z̄ and

satisfies the same boundary conditions as the holomorphic part. We denote the ν = (ν1,ν2)
sector where ν = 1, 2,3, 4 corresponds to (0,0), (0,1/2), (1/2,1/2), (1/2,0), respectively (for
standard fermions, the physical boundary conditions are anti-periodic along both cycles and
so ν= 3, but the other spin structures have important applications too). Hence, we just need
the correlation function of the vertex operators Ve(z, z̄) = eieφ(z,z̄) on the torus with boundary
conditions corresponding to the sector ν. These can be found in Ref. [125] and read

〈Ve1
(z1, z̄1)Ve2

(z2, z̄2) . . . VeN
(zN , z̄N )〉ν =

�

�

�

∏

i< j

∂zθ1(0|τ)
θ1(zi − z j|τ)

�

�

�

−2ei e j
�

�

�

θν(
∑

i(eizi)|τ)
θν(0|τ)

�

�

�

2
. (60)

In Eq. (60) and afterwards, we use the notation ∂zθ1(0|τ) = ∂zθ1(z|τ)|z=0. Plugging Eq. (60)
into Eq. (58), we have in sector ν

Z (ν)k,n(α) =
�

�

�

∏

i< j θ1(ui − u j|τ)θ1(vi − v j|τ)
∏

i, j θ1(ui − v j|τ)

�ε

L
∂zθ1(0|τ)

�p�
�

�

2( k
n+

α
2πn )

2

×

�

�

�

θν((
k
n +

α
2πn)

∑

i(ui − vi)|τ)
θν(0|τ)

�

�

�

2
, (61)
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where ε is an ultraviolet cutoff which depends on both α and n, although we almost always
omit such a dependence for conciseness. The total charged moments are finally obtained by
taking the product (52) to get

log Z (ν)n (α) = log Zn,0(α) + log Z (ν)n,1(α), (62)

where the first term is spin-independent

log Zn,0(α) =

�

1
6

�

n−
1
n

�

+
α2

2π2n

�

log
�

�

�

∏

i< j θ1(ui − u j|τ)θ1(vi − v j|τ)
∏

i, j θ1(ui − v j|τ)

�ε

L
∂zθ1(0|τ)

�p�
�

�

≡ log Zn,0(0)−
α2

2
B0

n, (63)

(in the second line we implicitly defined B0
n) while the second one depends on the sector ν

log Z (ν)n,1(α) = 2
(n−1)/2
∑

k=−(n−1)/2

log
�

�

�

θν((
k
n +

α
2πn)

∑

i(ui − vi)|τ)
θν(0|τ)

�

�

�. (64)

The Fourier transform of the charged moments (62) gives the symmetry resolved moments
and entropies. We report only the results for ν = 3, but similarly also the others may be
obtained. Using the product representation of the theta functions

θ3(z|τ) =
∞
∏

m=1

(1− e2πiτm)(1+ e2πize2πiτ(m−1/2))(1+ e−2πize2πiτ(m−1/2)), (65)

the sum over k of the spin-dependent term in Eq. (64) can be explicitly worked out as

log Z (3)n,1(α) = 2
∑

j≥1

(−1) j

j sinh(π jβ/L)

�

n− cos
�

αr j
n

�

sin(π jr)

sin(π jr
n )

�

, (66)

where r =
∑

i(ui − vi). Since the symmetry resolved entropies will be obtained from a saddle
point, we expand at the second order in α, obtaining

log Z (3)n,1(α)'

2
∑

j≥1

(−1) j

j sinh(π jβ/L)

�

n−
sin(π jr)

sin(π jr
n )

�

+
α2r2

n2

∑

j≥1

(−1) j j
sinh(π jβ/L)

sin(π jr)

sin(π jr
n )
=An −

α2

2
B1

n. (67)

The sum converges very fast in j and very few terms are sufficient to get it. Introducing
Bn ≡ B0

n +B1
n, the charged moments of the RDM are

Z (3)n (α) = Z (3)n (0)e
− α

2
2 Bn , (68)

with Fourier transform

Z(3)n (q̃) = Z (3)n (0)

∫ π

−π

dα
2π

e−iαq̃e−
α2
2 Bn '

Z (3)n (0)
p

2πBn

e−
q̃2

2Bn , (69)

where we exploited the saddle point approximation and we used that ¯̃q, the expectation value
of the charge operator Q̂A, vanishes for a free Dirac field at any temperature. From the defini-
tion (47), we get the symmetry resolved Rényi entropies

Sn(q̃) = Sn −
1
2

log(2πB1) +O(1). (70)
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In order to make contact with some known results in literature [93, 96, 98], we report the
explicit expression for B1 in the low and high temperature limit for p = 1

B1 =

(

1
π2 log

�

L
πε sin `πL

�

, LT � 1,
1
π2 log

�

β
πε sinh `πβ

�

, LT � 1.
(71)

The result in Eq. (70) has been dubbed equipartition of entanglement [93]: at leading order
the entanglement is the same in the different charge sectors. In [93] this was proven for
gapless interacting 1d fermions at zero temperature. As a side result, here we showed that
entanglement equipartition holds also at finite size and temperature, at least for a free Dirac
field.

3.2 Charged moments of the partial transpose

The above procedure is easily adapted to the computation of the charged moments of the
partial TR defined as

Nn(α) =

¨

Tr(ρR1
A (ρ

R1
A )

† . . .ρR1
A (ρ

R1
A )

†eiQ̂Aα), n even,

Tr(ρR1
A (ρ

R1
A )

† . . .ρR1
A eiQ̂Aα), n odd.

(72)

Hence, in order to compute the imbalance resolved negativity, we need to study the composite
operator ρR1

A (ρ
R1
A )

†. The charged moments in Eq. (72) are defined for two subsystems A1 and
A2 with different twist matrices respectively denoted by TR1

α and Tα. The new twist matrix TR1
α

for the transposed time reversed subsystem is given by

TR1
α =











0 0 . . . (−1)n−1e−iα/n

e−iα/n 0

0 e−iα/n . . .
. . . . . .











. (73)

The two matrices, Tα and TR1
α , are simultaneously diagonalisable. Consequently, we can de-

compose our problem into n decoupled copies in which the fields have different twist phases
along the two subsystems. As a result, Nn(α) is decomposed as

Nn(α) =
(n−1)/2
∏

k=−(n−1)/2

ZR1,k(α), (74)

where ZR1,k(α) is the partition function for fields with twist phases equal to e−2πi( k
n+

α
2πn) and

e2πi( k
n+

α
2πn−

ϕn
2π ), respectively along A2 and A1. Here ϕn = π for n= ne even and ϕn =

n−1
n π for

n= no odd (as follows from the diagonalisation of Eq. (73)). In particular, the probability p(q)
is the Fourier transform of N1(α) = Tr[ρR1 eiQ̂α], that, with a minor abuse of terminology, we
dub charged probability. In this case, the twist matrices along the two intervals are just phases
given by Tα = eiα and TR1

α = T−1
α = e−iα. For a system of interacting fermions (i.e. for a free

compact boson with different compactification radius), the procedure outlined here does not
apply. The calculation is much more cumbersome and requires to adapt the technique for the
standard negativity (see [18]) to the PT case, but this has not yet been done even for the total
negativity.

A Fourier transform leads us to the imbalance resolved negativities (38)

ZR1,n(q) =

∫ π

−π

dα
2π

e−iαqNn(α), p(q) =

∫ π

−π

dα
2π

e−iαqN1(α), (75)
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u1 v1 v2

`1 `2 e2iπ(
k
n
− ϕ

2π
+ α

2πn)ψk e−2iπ( kn−
ϕ
2π

+ α
2πn)ψk

e−2iπ( kn+
α

2πn)ψk e2iπ(
k
n
+ α

2πn)ψk

Figure 1: Tripartite geometry for two adjacent intervals. In the plot the interval A1
is the blue one on the left and A2 the grey one on the right, of length `1 and `2
respectively. B is the reminder. The partial transpose is taken on A1. For each branch
point, we report the phase taken by the field ψk going around it.

from which

Rn(q) =
ZR1,n(q)

pn(q)
, N (q) = 1

2

�

lim
ne→1

Rne
(q)− 1

�

. (76)

Let us stress the replica limit for Rne
(q) is lim

ne→1

ZR1,ne
(q)

p(q)
, i.e. while it is sufficient to set n = 1

in the denominator, the numerator requires an analytic continuation from the even sequence
at ne→ 1, in agreement with the definition in Eq. (16). In the following section, we compute
the imbalance resolved entanglement negativity for two geometries.

4 Charged and symmetry resolved negativities in a tripartite ge-
ometry

Let us study the negativity of two subsystems consisting of two adjacent intervals A1, A2, of
lengths `1, `2 out of a system of length L, as depicted in Fig 1. We place the branch points
at u1 = −`1/L = −r1, v1 = u2 = 0, and v2 = `2/L = r2 and the multivalued fields ψk take
up a phase e2πi( k

n+
α

2πn−
ϕn
2π ) at u1, e−2πi( k

n+
α

2πn−
ϕn
2π )e−2πi( k

n+
α

2πn ) at v1 and e2πi( k
n+

α
2πn ) at v2. By

introducing a gauge field Ak
µ, as explained in Sec. 3.1, we have to impose proper monodromy

conditions such that the field is almost pure gauge except at the branch points, where delta
function singularities are necessary to recover the correct phases of the multivalued fields.
Hence, the flux of the gauge fields is given by

1
2π
εµν∂νA

k
µ(x) =

�

k
n
+
α

2πn
−
ϕn

2π

�

δ(x−u1)−
�

2k
n
+
α

πn
−
ϕn

2π

�

δ(x− v1)+
�

k
n
+
α

2πn

�

δ(x− v2).

(77)

Through bosonisation, Z (ν)R1,k(α) can be written as a correlation function of vertex operators

Va(x) = e−iaφk(x) as

Z (ν)R1,k(α) =



Vk
n+

α
2πn−

ϕn
2π
(u1)V− k

n−
α

2πn+
ϕn
2π
(v1)V− k

n−
α

2πn
(v1)Vk

n+
α

2πn
(v2)

�

=



Vk
n+

α
2πn−

ϕn
2π
(u1)V− 2k

n −
α
πn+

ϕn
2π
(v1)Vk

n+
α

2πn
(v2)

�

. (78)

Using the correlation function in Eq. (60), the final result is 1

Z (ν)R1,k(α) = |θ1(r1|τ)|−2( k
n+

α
2πn−

ϕn
2π )(

2k
n +

α
πn−

ϕn
2π )|θ1(r2|τ)|−2( k

n+
α

2πn )(
2k
n +

α
πn−

ϕn
2π )

|θ1(r1 + r2|τ)|2(
k
n+

α
2πn )(

k
n+

α
2πn−

ϕn
2π ) ×

�

�

�

ε

L
∂zθ1(0|τ)

�

�

�

−∆k(α)
�

�

�

θν((
k
n +

α
2πn)(r2 − r1) +

ϕn
2π r1|τ)

θν(0|τ)

�

�

�

2
,

(79)

1Differently from Eq. (41) in [85] or Eq. (80) in [81], rather then using the absolute values we explicitly change
ϕn→ ϕn − 2π for k < 0.

16

https://scipost.org
https://scipost.org/SciPostPhys.10.5.111


SciPost Phys. 10, 111 (2021)

where

∆k(α) = −6
k2

n2
−6

kα
n2π
−3

α2

2n2π2
+3k

ϕn

nπ
+3

αϕn

2nπ2
−
ϕ2

n

2π2
−2θ (−k)(1+

3k
n
+

3α
2nπ

−
ϕn

π
), (80)

and θ (x) is the step function. It is important to note that for k < 0, we have to modify the flux
at u1 and v1, ϕn, by inserting an additional 2π and −2π fluxes. Essentially, we need to find
the dominant term with the lowest scaling dimension in the mode expansion, as discussed in
Appendix B. Moreover, the case of odd n= no requires particular attention: as |α|> 2/3π, also
the mode k = 0 requires an additional 2π and −2π fluxes at u1 and v1, respectively. Putting
together the various pieces and using Eq. (74), the logarithm of the charged moments of ρR1

A
are given by

log N (ν)n (α) = log Nn,0(α) + log N (ν)n,1 (α), (81)

where the spin-independent part is

log Nn,0(α) = log Rn −
α2

2π2n
log

�

�

�θ1(r1|τ)2θ1(r2|τ)2θ (r1 + r2|τ)−1
�ε

L
∂zθ1(0|τ)

�−3�
�

�,

log Rno
=−

�n2
o − 1

12no

�

log
�

�

�θ1(r1|τ)θ1(r2|τ)θ (r1 + r2|τ)
�ε

L
∂zθ1(0|τ)

�−3�
�

�,

log Rne
=−

�n2
e − 4

12ne

�

log
�

�

�θ1(r1|τ)θ1(r2|τ)
�ε

L
∂zθ1(0|τ)

�−2�
�

�

−
�n2

e + 2

12ne

�

log
�

�

�θ (r1 + r2|τ)
�ε

L
∂zθ1(0|τ)

�−1�
�

�.

(82)

The first equation for Nn,0(α) is always valid for any alpha for n = ne even, but only in the
region |α|< 2/3π for n= no odd; otherwise it must be modified as

log Nno ,0(α) = log Rno
−

α2

2π2no
log

�

�

�θ1(r1|τ)2θ1(r2|τ)2θ (r1 + r2|τ)−1
�ε

L
∂zθ1(0|τ)

�−3�
�

�

+
|α|
noπ

log
�

�

�θ1(r1|τ)3θ1(r2|τ)θ (r1 + r2|τ)−1
�ε

L
∂zθ1(0|τ)

�−3�
�

�

−
2
n

log
�

�

�θ1(r1|τ)
�ε

L
∂zθ1(0|τ)

�−1�
�

�, for |α|> 2/3π. (83)

Hence for odd n = no, the exponent of the charged moments N (ν)no
(α) has a discontinuity as a

function of α for |α| = 2π
3 . This singular behaviour in α is reminiscent of what was found for

the negativity spectrum of free fermions in [86]. Let us also note that the above result does
not hold for no = 1, for which we will provide an analytical expression in the following. The
spin structure dependent term is

log N (ν)n,1 (α) = 2
(n−1)/2
∑

k=−(n−1)/2

log
�

�

�

θν((
k
n +

α
2πn)(r2 − r1) +

ϕn
2π r1|τ)

θν(0|τ)

�

�

�. (84)

Although our main focus is the state with ν = 3, we notice that N (1)n,1 (α) above is strictly
infinite because θ1(0|τ) = 0. This is related to the fermion zero mode in this sector and is not
a prerogative of the charged quantities.

In the case of intervals of equal lengths `1 = `2 = ` the charged logarithmic negativity
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(i.e., Eν(α)≡ lim
ne→1

log N (ν)ne
(α)) simplifies as

Eν(α) = E (ν) − α2

2π2
log

�

�

�θ1(r|τ)4θ (2r1|τ)−1
�ε

L
∂zθ1(0|τ)

�−3�
�

�,

with E (ν) = 1
4

log
�

�

�θ1(r|τ)2θ (2r|τ)−1
�ε

L
∂zθ1(0|τ)

�−1�
�

�+ 2 log
�

�

�

θν(
r
2 |τ)

θν(0|τ)

�

�

�, (85)

where r = `/L.
Eq. (85) represents our final field theoretical result for the charged logarithmic negativi-

ties in a tripartite geometry with two equal intervals. We now test this prediction against exact
lattice computations obtained with the techniques reported in Appendix A. However, for a di-
rect comparison without fitting parameters, we have to take into account the non-universal
contribution coming from the discretisation of the spatial coordinate, i.e. the explicit expres-
sion for the cutoff ε in (85) that does depend also on α, but not on the size and temperature.
We can exploit the latter property to deduce its exact value from the knowledge of the lattice
negativities at T = 0 in the thermodynamic limit that can be determined via Fisher-Hartwig
techniques, as reported in Appendix C, cf. Eq. (179). The numerical results for the charged
negativities are shown in Fig. 2, where four panels highlight the dependence on `, T , α, and
`/L, respectively. The agreement with the parameter-free asymptotic results (85) is always
excellent. Let us critically discuss these results. First, it is known for α = 0, the logarithmic
negativity saturates at finite temperature once `T � 1 [85], i.e., obeys an area law; conversely
the top-left panel of Fig. 2 shows that E(α) follows a volume law. This scaling can be also in-
ferred analytically from the high-temperature limit reported in the following subsection. In
the top-right panel of the same figure, we observe that E(α) has a plateau at low tempera-
tures, i.e when T � 1/L so that the temperature is smaller than the energy finite-size gap (of
order 1/L); consequently the system behaves as if it is at zero temperature with exponentially
small corrections in T L. For larger T a linear decrease sets up for low enough T , before an
exponential high temperature behaviour takes place (this is not shown in the picture, but see
next subsection). In the bottom-left panel of Fig. 2, we analyse the α dependence fixing `
and L for a few values of β . We observe a fairly good agreement between lattice and field
theory, although when α gets closer to ±π the agreement gets worse. This is not surprising
because charged quantities exactly at ±π are known to be singular [98] and consequently fi-
nite ` effects are more severe. Moreover, the plot clearly shows that E(α) has a differentiable
maximum in α = 0 (that we need for the saddle point approximation). In the bottom-right
panel, we show that the difference E(α, T )−E(α, 0) is a universal function of β/L and `/L: we
verify this behaviour by looking at various system sizes, L, and showing that they all collapse
on the same curve. The agreement also slightly improves as L increases, as it should.

Let us conclude this subsection reporting the result for the charged probability N1(α) =
Tr[ρR1 eiQ̂α] that requires to specialise the above discussion to the case n= 1. Hence, N (ν)1 (α)
reduces to one mode, k = 0, and Eq. (77) becomes

1
2π
εµν∂νA

0
µ(x) =

� α

2π

�

δ(x − u1)−
�α

π

�

δ(x − v1) +
� α

2π

�

δ(x − v2). (86)

As detailed in the last part of Appendix B, we need to find the dominant term, i.e. with the low-
est scaling dimension, in the mode expansion. In particular, it turns out that for |α/π| > 2/3
an additional −2π flux has to be inserted at v1 while an additional 2π has to be added at u1
or, equivalently, at v2. This is the only difference with respect to no 6= 1, when the 2π flux has
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Figure 2: Charged negativity E(α) in a tripartite torus with subsystem length
`1 = `2 = `. CFT results (85), lines, against numerics on the lattice, symbols. Top-
left: E(α) as a function of ` for α = 0.5. We consider different values of β = 1/T :
in particular, GS stands for ground state, i.e. T = 0 while TL refers to the thermo-
dynamic limit T = 0, L →∞. System size is fixed to L = 200 sites, except for the
TL curve. Top-right: E(α) as a function of the temperature T for different values of
α and `, with L = 200. The subtraction of the value E(α, T = 0) cancels the depen-
dence on the cutoff and the resulting curves are universal. Bottom-left: E(α) as a
function α for L = 200 and `= 20 for a few β . The agreement is perfect away from
the boundaries α = ±π. Bottom-right: Scaling collapse of the charged negativity as
a function of β/L and `/L. We fix α= 0.5.

to be inserted only in u1. Hence, the final expression is given by

N (ν)1 (α) =















|θ1(r1|τ)|
− α

2

π2 |θ1(r2|τ)|
− α

2

π2 |θ1(r1+r2|τ)|
α2

2π2

|εN/L∂zθ1(0|τ)|
− 3α2

2π2

�

�

�

θν(|
α

2π |(r2−r1)|τ)
θν(0|τ)

�

�

�

2
|α| ≤ 2π

3

f (r1, r2; |α|) θ1(r1+r2|τ)|
| απ |(|

α
2π |−1)

|εN/L∂zθ1(0|τ)|
− 3|α|(−|α|+2π)

2π2 −2

�

�

�

θν(|
α

2π |(r2−r1)+r1|τ)
θν(0|τ)

�

�

�

2
|α|> 2π

3

, (87)

where f (x , y; q) = 1
2[x

2(q−1)(−2q+1) y2q(−2q+1) + x ↔ y]. The cutoff related to the charged
probability is denoted as εN . Its explicit expression, for a lattice regularisation of the Dirac
field, is given in Eq. (181a) and (181b) for |α| ≤ 2/3π and |α| > 2/3π, respectively. This
introduction of a new symbol εN is necessary in order to avoid confusion with the cutoff ε
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Figure 3: The charged probability N (3)1 (α) for tripartite (left) and bipartite (right)
geometry as a function of α. We set L = 100. Analytical predictions in Eqs. (87) and
(119) are compared with the exact lattice computations at different β . Notice the
discontinuities at α= ±2/3π (left) and α= ±π/2 (right).

obtained in the replica limit as ne→ 1, given explicitly for the lattice model in Eq. (180) (and
it is different from no = 1).

4.1 Low and high temperature limits.

In this section we report the low and high temperature limits of the charged Rényi negativity.
Actually, the results that we are going to derive in the following for the tripartite geometry
can be much more easily deduced by mapping the results in the complex plane (29) (i.e. both
L,β →∞) to a cylinder periodic in either space or time (obtaining the forthcoming Eqs. (92)
and (99), respectively). It is however a highly non trivial check for the correctness of our
formulas that these results are re-obtained in the proper limits. For sake of conciseness, we
focus on even n= ne and on the ν= 3 sector, but similar formulas hold for all other cases.

In the low temperature limit where τ= iβ/L→ i∞, we can take advantage of the relation

lim
β→∞

θ1(z|iβ/L) = 2e−πβ/(4L) sinπz +O(e−2πβ/L). (88)

In this way we obtain for the spin-independent part

log Nne ,0(α) = log Rne
−

α2

2π2ne
ln

�

�

�

�

�

�

�

L
πε

�3 sin2
�

π`1
L

�

sin2
�

π`2
L

�

sin
�

π(`1+`2)
L

�

�

�

�

�

�

�

+O(e−2π/(LT )), (89)

while using the product representation of the theta function (65), the spin structure dependent
term (84) can be rewritten as

log N (3)ne ,1(α) = 2
∞
∑

j=1

(−1) j+1

j
1

sinh(π jβ/L)

�

cos( j(r1 − r2)α/ne)
sin(π jr2)− sin(π jr1)
sin(π j(r2 − r1)/ne)

− ne

�

. (90)

Thus, at the leading order, Eq. (89) is the whole story at zero temperature, since in the replica
limit the above expression contributes to the charged negativity as

E (3)1 (α) = lim
ne→1

log N (3)ne ,1(α) = 4e−π/(LT )
�

cos((r1 − r2)α)
cos(π(r2 + r1)/2))
cos(π(r2 − r1)/2)

− 1
�

. (91)
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Putting everything together, in the low temperature limit the logarithmic charged negativity
of two adjacent intervals for spatially antiperiodic fermions is given by

E(α, LT � 1) = E − α2

2π2ne
log

�

�

�

�

�

�

�

L
πε

�3 sin2
�

π`1
L

�

sin2
�

π`2
L

�

sin
�

π(`1+`2)
L

�

�

�

�

�

�

�

+O(e−2π/(LT )), (92)

where E(LT � 1) = 1
4 log

�

�

�( L
πε)

sin(π`1L ) sin(
π`2

L )

sin(π(`1+`2)L )

�

�

�. We can also study the low-temperature be-

haviour of Eq. (87), which reads

N1(α, LT � 1)'










− α2

2π2 log | L3

π3ε3
N

sin2(π`1L ) sin
2(π`2L )

sin(π(`1+`2)L )
|, |α| ≤ 2π

3

(2π−|α|)|α|
2π2 log | L3

π3ε3
N

sin2(π`1L ) sin
2(π`2L )

sin(π(`1+`2)L )
| − log | L2

π2ε2
N

sin(π`1
L ) sin(

π`2
L )|. |α|> 2π

3 .
(93)

To investigate the high temperature behaviour, τ = iβ/L → 0, we can use the modular
transformation rules for the theta functions:

θ1(z|τ) =− (−iτ)−1/2e−iπz2/τθ1(z/τ| − 1/τ),

θ3(z|τ) =(−iτ)−1/2e−iπz2/τθ3(z/τ| − 1/τ),
(94)

and the asymptotic form of the θ1 function in the small β limit

θ1(z/τ| − 1/τ) = −2ie−
πL
4β sinh(

πzL
β
) +O(e

3πL
β (z−3/4)), 0≤ z ≤ 1/2. (95)

Therefore, the leading terms of the spin-independent part of the charged negativities can be
written as

log Nne ,0(α) = log Rne
+
(`1 − `2)2α2

2πneβ L
−

α2

2π2ne
ln
�

�

�

� β

πε

�3 sinh2
�

π`1
β

�

sinh2
�

π`2
β

�

sinh
�

π(`1+`2)
β

�

�

�

�+O(e−πLT ),

(96)
while for the spin structure dependent term (84) we find

log N (3)ne ,1(α) = −
π

2β L

��

n2
e − 1

3ne

�

(`2 − `1)
2 + ne`1(`2 − `1) + ne`

2
1

�

−
(`2 − `1)2α2

2πLβne
+

− 2
∞
∑

j=1

(−1) j

j
1

sinh(π j L
β )



cosh
� j(`1 − `2)α

βne

�sinh(π`2 j/β)− sinh(π`1 j/β)

sinh
�

π(`2−`1) j
neβ

� − ne



 . (97)

For fixed `1,2/β and τ= iβ/L→ 0 we get

E (3)1 (α) = −
π`1`2

2β L
−
(`2 − `1)2α2

2πLβ
, (98)

and therefore,

E(α, LT � 1) = E − α2

2π2ne
log

�

�

�

� β

πε

�3 sinh2
�

π`1
β

�

sinh2
�

π`2
β

�

sinh
�

π(`1+`2)
β

�

�

�

�+O(e−πLT ), (99)
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Figure 4: Imbalance resolved negativities for a few different values of q, L = 200,
`1 = `2 = ` = 30, with ne → 1 (left-panel) and n = 2 (middle-panel). The dashed
black lines are the truly asymptotic result (108) showing equipartition, while the
solid lines include the first correction due to the cutoffs as in Eq. (107). The dashed
coloured lines are the ratio between the Fourier transforms without exploiting the
saddle point approximation. For small q, the field theory prediction (in which the
lattice cutoffs are included) well describes the numerical data. In the right-panel,
` = 40 is fixed, we report two system sizes and two values of q and plot N (q) as a
function of T . The coloured lines are Eq. (107) while the dashed one represents Eq.
(108). The plot confirms the equipartition of negativity. Moreover, for large T , N (q)
becomes a universal function of π`T .

where E(LT � 1) = 1
4 log

�

�

�( βπε)
sinh(π`1β ) sinh(π`2β )

sinh(π(`1+`2)β )

�

�

�. This limit confirms analytically the volume

law behaviour observed in Fig. 2.
The high-temperature limit of the charged probability N1(α) in Eq. (87) is

N1(α, LT � 1)'
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

− α2

2π2 log | β
3

π3ε3
N

sinh2(π`1L ) sinh2(π`2L )

sinh(π(`1+`2)L )
| |α| ≤ 2π

3 ,

(2π−|α|)|α|
2π2 log | β

3

π3ε3
N

sinh2(π`1L ) sinh2(π`2L )

sinh(π(`1+`2)L )
| − log | β

2

π2ε2
N

sinh(π`1
L ) sinh(π`2

L )|. |α|> 2π
3

(100)

Let us conclude the subsection comparing these new results with those for the standard
(bosonic) charged negativity reported in Eq. (29). At zero temperature and in the thermody-
namic limit `i � L, Eq. (89) matches exactly the bosonic negativity (29) (at K = 1 to describe
free fermions) obtained in the same limit. As discussed deeply in Ref. [85] for the Rényi nega-
tivity (at α= 0), this shows that the choice of charged moments of the partial TR we made in
Eq. (72) provides a partition function evaluated on the same worldsheet Rn,α as the one for
the moments of the standard charged partial transpose in [91].

4.2 Symmetry resolution

Again for conciseness of the various formulas, in this subsection we focus on the case `1 = `2 = `
(when also a closed-form expression for the spin-dependent part is easier to write), but more
general formulas are similarly derived. Since we are ultimately using a saddle point approx-
imation to make the Fourier transform (75), the charged moments (72) can be truncated at
Gaussian level in α as

N (ν)n (α) = R(ν)n e−bnα
2/2, (101)

where

bn =
1
π2n

log
�

�

�θ1(r1|τ)4θ (2r1|τ)−1
�ε

L
∂zθ1(0|τ)

�−3�
�

�. (102)
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The Fourier transform reads

Z(ν)R1,n(q) = R(ν)n

∫ π

−π

dα
2π

e−iqαe−α
2 bn/2, (103)

where we used that the expectation value of the charge imbalance operator Q̂A for a free Dirac
field is q̄ = 0 at any temperature. In the saddle point approximation the integration domain
is extended to the whole real line and we end up in a simple Gaussian integral, obtaining

Z(ν)R1,n(q)'
R(ν)n

p

2πbn

e−
q2

2bn . (104)

Through a similar analysis, we compute

p(ν)(q) =

∫ π

−π

dα
2π

e−iqαN (ν)1 (α), (105)

which through the saddle-point approximation reads

p(q)'
e−

q2

2bN

p

2πbN

bN =
1
π2

log
�

�

�θ1(r1|τ)4θ (2r1|τ)−1
�εN

L
∂zθ1(0|τ)

�−3�
�

�. (106)

Let us note that for α ∈ [−π,π], the quantity Nν1 (α) has a global maximum for α= 0 and two
local maxima for α = ±π, see Fig. 3 (left). However, since Nν1 (±π) < Nν1 (0), we can neglect
the contributions to the integral coming from the regions close to the extrema at α = ±π. A
similar reasoning applies to all odd charged moments Rno

(α). Once again, let us stress the
difference between the cutoff εN and the cutoff ε obtained in the replica limit b = limne→1 bne

,
whose lattice expression is given in Eqs. (181a) and (180), respectively. Putting everything
together, we obtain

R(ν)n (q) = R(ν)n

√

√(2πbN )n

2πbn
e−

q2

2 (
1
bn
− n

bN
), N (ν)(q) =

1
2

�

eE
(ν)

√

√ bN

b
e−

q2

2 (
1
b−

1
bN
) − 1

�

. (107)

When the O(1) terms are negligible with respect to the leading order ones in the variance,
bN ' b , hence

N (ν)(q)'N (ν), (108)

i.e. exact equipartition of negativity in the different imbalance sectors at leading order, as
shown for the bosonic negativity in section (2.2). A similar result holds even if `1 6= `2 in the
low/high temperature limits, it would be sufficient to modify the expression of the variances
in Eqs. (102) and (106).

It is instructive to explicitly write down the first term breaking the equipartition. For large
L, we can expand the exponential in Eq. (107) as

e−
q2

2 (
1
b−

1
bN
) ' 1−

q2 log(|ε/εN |)π2

6(log L)2
≡ 1−

γ

(log L)2
q2, (109)

and
√

√ bN

b
' 1+

γ′

log L
, (110)

where γ and γ′ are implicitly defined, also in terms of the cutoffs ε and εN in Appendix C. To
sum up, we get

N (ν)(q)'N (ν)
�

1+
γ′

log L
−

γ

(log L)2
q2 + . . .

�

, (111)
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u1 v1 v2

`1

e2iπ(
k
n
− ϕ

2π
+ α

2πn)ψk e−2iπ( kn−
ϕ
2π

+ α
2πn)ψk

e−2iπ( kn+
α

2πn)ψk e2iπ(
k
n
+ α

2πn)ψk

`2
2

`2
2

u2

`1

`2 → L− `1

e−2iπ( kn+
α

2πn)ψk e2iπ(
k
n
+ α

2πn)ψk

Figure 5: The tripartite geometry (left) of an interval of length `1 symmetrically
embedded inside another subsystem of total length `2. A single interval in a chain
of total length L (right) is obtained taking the limit `2 → L − `1 of this tripartite
geometry. The bottom panel shows the phase taken by the fieldψk going around each
branch point. The reduced density matrix corresponds to the union of the coloured
regions, and the partial transpose is applied to the blue region.

where we have derived the leading q-dependent contributions and shown that the equiparti-
tion is broken at order 1/(log L)2.

In Fig. 4 we test the accuracy of our predictions against exact lattice numerical calculations.
It is evident that equipartition is broken for all the values of `, T, L we considered and the effect
is more pronounced as |q| is increased. However, the main smooth part of corrections to the
scaling is captured by Eq. (107), see the full line in the plots, and does not come as a surprise.
Also the presence of further subleading oscillating (in q) corrections have been observed for
the resolved entropies [96] and were expected. In our case, such corrections are enhanced
by the presence of the maxima at α = ±π in N1(α), see Fig. 4, that provide large corrections
to the scaling in p(q). Indeed, taking the Fourier transforms without making the saddle-point
approximation, the agreement between numerics and field theory is perfect. As `� 1/T , all
these corrections become smaller and imbalance resolved negativity flattens in q, mainly as a
consequence of the lowering of the maxima at α= ±π in N1(α), see Fig. 4.

5 Charged and symmetry resolved negativities in a bipartite ge-
ometry

In this section we move to the imbalance resolved negativity of a single interval at finite tem-
perature. This geometry can be studied more effectively by considering a tripartite geometry
where an interval of length `1 is symmetrically embedded inside another subsystem of total
length `2, as depicted in Fig 5. Eventually, we take the limit `2 → L − `1 in our calculations,
where L is the total length of the chain, in such a way that the part B becomes the empty set
and consequently the system becomes bipartite.

Choosing the locations of the branch points at u1 = −`2/(2L) = −r2/2, v2 = (`2/2+`1)/L =
r2/2 + r1, u2 = `1/L = r1, v1 = 0, the multivalued field ψk takes up a phase e2πi( k

n+
α

2πn−
ϕn
2π ),

e−2πi( k
n+

α
2πn−

ϕn
2π ) going around v1 and u2, respectively while going around v2 and u1 picks up

a phase e2πi( k
n+

α
2πn ), e−2πi( k

n+
α

2πn ), respectively. As repeatedly used, this multivaluedness of the
fieldψk can be removed by introducing a single-valued field coupled to an external gauge field
Ak
µ, as in Eq. (53). In order to recover the correct phases of the multivalued fields, Ak

µ has to
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satisfy

1
2π
εµν∂νA

k
µ(x) =

�

2k
n
+
α

πn
−
ϕn

2π

�

(δ(x− v1)−δ(x−u2))+
�

k
n
+
α

2πn

�

(δ(x− v2)−δ(x−u1)).

(112)

Therefore, Z (ν)R1,k(α) can be expressed as the following correlation function of vertex operators

Z (ν)R1,k(α) = 〈V− k
n−

α
2πn
(u1)V2k

n +
α
πn−

ϕn
2π
(v1)V− 2k

n −
α
πn+

ϕn
2π
(u2)Vk

n+
α

2πn
(v2)〉 . (113)

Using Eq. (60), we have

Z (ν)R1,k(α) = |θ1(r1|τ)|−2( 2k
n +

α
πn−

ϕn
2π )

2
�

�

�

θ1(
r2
2 |τ)

θ1(
r2
2 + r1|τ)

�

�

�

−4( k
n+

α
2πn )(

2k
n +

α
πn−

ϕn
2π )

|θ1(r1 + r2|τ)|−2( k
n+

α
2πn )

2
×
�

�

�

ε

L
∂zθ1(0|τ)

�

�

�

−∆k(α)
|
θν((

k
n +

α
2πn)(r2 − r1) +

ϕn
2π r1|τ)

θν(0|τ)
|, (114)

where

∆k(α) = −10
k2

n2
−10

kα
n2π
−5

α2

2n2π2
+4k

ϕn

nπ
+2
αϕn

nπ2
−
ϕ2

n

2π2
−2θ (−k)(1+

4k
n
+

2α
nπ
−
ϕn

π
). (115)

Also in this case we fix the value of ϕn for k < 0 according to the discussion in Appendix B,
taking care of the mode k = 0 for n= no. This leads to the spin-independent terms

log Nn,0(α) = log Rn −
α2

2π2n
log

�

�

�

θ1(r1|τ)4θ1

� r2
2 |τ

�4
θ1(r1 + r2|τ)

θ1

�

r1 +
r2
2 |τ

�4
( εL∂zθ1(0|τ))5

�

�

�,

log Nno ,0(|α|> π/2) = log Rno
−

α2

2π2no
log

�

�

�

θ1(r1|τ)4θ1

� r2
2 |τ

�4
θ1(r1 + r2|τ)

θ1

�

r1 +
r2
2 |τ

�4
( εL∂zθ1(0|τ))5

�

�

�

+
2|α|
πno

log
�

�

�

θ1(r1|τ)2θ1

� r2
2 |τ

�

θ1

�

r1 +
r2
2 |τ

�

(ε/L∂zθ1(0|τ))2

�

�

�−
2
n

log
�

�

�

θ1(r1|τ)
( εL∂zθ1(0|τ))

�

�

�,

log Rno
=−

�n2
o − 1

6no

�

log
�

�

�

θ1(r1|τ)θ1

� r2
2 |τ

�

θ1(r1 + r2|τ)

θ1

�

r1 +
r2
2 |τ

�

( εL∂zθ1(0|τ))2

�

�

�,

log Rne
=−

�n2
e − 4

6ne

�

log
�

�

�

θ1(r1|τ)θ1

� r2
2 |τ

�

θ1

�

r1 +
r2
2 |τ

�

( εL∂zθ1(0|τ))

�

�

�

−
�n2

e − 1

6ne

�

log
�

�

�θ1(r1 + r2|τ)(
ε

L
∂zθ1(0|τ))−1

�

�

�,

(116)

and

log N (ν)n,1 (α) = 2
(n−1)/2
∑

k=−(n−1)/2

log |
θν((

k
n +

α
2πn)(r2 − r1) +

ϕn
2π r1|τ)

θν(0|τ)
| (117)

for the spin structure dependent term. In this geometry, N (ν)no
(α) presents a discontinuity for

|α|= π
2 , as shown for no = 1 in Fig. 3.

At this point, we derived all the needed formulas to take the limit r2 → 1 − r1 and to
reproduce the bipartite geometry in which we are interested. Using that θ1(z + 1) = θ1(z),
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the spin-independent part of the charged logarithmic negativity (for even n and for odd and
α < |π/2|) becomes

log Nn,0(α) = log Rn −
2α2

π2n
log

�

�

�

Lθ1(r1|τ)
ε∂zθ1(0|τ)

�

�

�, (118)

while the spin-dependent ones are just given by (117) without major simplifications.
At this point, we analyse the charged probability N1(α) = Tr[ρR1 eiQ̂α]. The final expression

can be read off from Eq. (116) and, after some standard manipulations, can be put in the form

N (ν)1 (α) =







�

θ1(r1|τ)
εN
L ∂zθ1(0|τ)

�−2( απ )
2�
�

�

θν(|
α

2π |(1−2r1)|τ)
θν(0|τ)

�

�

�

2
|α| ≤ π

2 ,
�

θ1(r1|τ)
εN
L ∂zθ1(0|τ)

�−2(| απ |−1)2�
�

�

θν(|
α

2π |(1−2r1)+r1|τ)
θν(0|τ)

�

�

�

2
, |α|> π

2 .
(119)

The cutoff for the charged probability is denoted by εN and its explicit expression is given in
Eq. (183a) and (183b) for |α| ≤ π/2 and |α| > π/2, respectively. We recall that, as in the
tripartite case, εN is different from the cutoff ε obtained in the replica limit as ne → 1 and
explicitly given in Eq. (182).

5.1 Low and high temperature limits

In this section we report the low and high temperature limits of the charged Rényi negativity,
focussing, once again, on even n = ne and on the ν = 3 sector. The low temperature limits of
the spin-independent part, Eq. (116), can be obtained through the relation (88), finding

log Nne ,0(α) = log Rne
−

2α2

π2ne

�

log
�

�

�

L
πε

sin
�π`1

L

�

�

�

�

�

+O(e−2π/(LT )), (120)

while the low temperature limit of the spin-dependent term, Eq. (117), can be obtained
through the product representation (65) of the theta functions and it reads

E (3)1 (α) = lim
ne→1

log Z (3)ne ,1(α) = 4e−π/(LT )
�

cos((r1 − r2)α)
cos(π(r2 + r1)/2))
cos(π(r2 − r1)/2)

− 1
�

. (121)

Therefore, as τ= iβ/L→ 0 and r2→ 1− r1, we get in the replica limit

E(LT � 1)(α) =
�1

2
−

2α2

π2

�

log
�

�

�

L
πε

sin
�π`1

L

�

�

�

�+O(e−2π/(LT )). (122)

We notice that Eq. (122) coincides with 2 log Tr(ρ1/2
A1

eiQ̂A1
α), as it should for pure states (and

mentioned in the introduction for α= 0).
The low-temperature limit of Eq. (119) is

log N1(α)'







−2α2

π2 log
�

�

�

L
πεN

sin(2π`1
L )

�

�

�, |α| ≤ π
2 ,

−2(|α|−π)2
π2 log

�

�

�

L
πεN

sin(2π`1
L )

�

�

�, |α|> π
2 .

(123)

Interestingly, the previous expansion shows that its Fourier transform vanishes for odd values
of the imbalance q. This agrees with the discussion at the end of Section 2.3: as τ= iβ/L→ 0,
the state becomes pure and the vanishing of p(q) occurs because the parity of the imbalance
is fixed by the conservation of N̂1 + N̂2. This reflects the fact that the entanglement is better
resolved in subsystem charges rather than in the imbalance.
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As done in Sec. 4.1, the high temperature limit can be obtained using the modular prop-
erties of theta functions, Eq. (94), and the relation (95). The result for the spin-independent
part in Eq. (116) is

log Nne ,0(α) = log Rne
−

2α2

π2ne

�

−
π2`2

1

β L
+ log

�

�

�

β

επ
sinh

�π`1

β

�

�

�

�

�

+O(e−πLT ). (124)

The spin-dependent term in Eq. (116) can be evaluated as follows

log N (3)ne ,1(α) = −
π

2β L

��

n2
e − 1

3ne

�

(L − 2`1)
2 + ne`1(L − 2`1) + ne`

2
1

�

−
(L − 2`1)2α2

2πLβne
+

− 2
∞
∑

j=1

(−1) j

j
1

sinh(π j L
β )

�

cosh
� j(L − 2`1)α

βne

�sinh(π(L − `1) j/β)− sinh(ϕne
`1 j/β)

sinh
�

π(L−2`1) j
neβ

� − ne

�

,

(125)

which gives in the replica limit, for β/L→ 0 and `1/β fixed,

E (3)1 (α) =
π`1(`1 − L)

2β L
−
(L − 2`1)2α2

2πβ L
+O(e−πLT ). (126)

To sum up, we find in the high temperature regime

E(LT � 1)(α) =
�1

2
−

2α2

π2

��

log
�

�

�

β

πε
sinh(

π`1

β
)
�

�

�−
π`1

β

�

−
α2 L
2πβ

+O(e−πLT ). (127)

Given the result found in Eq. (122), one could be tempted to do a conformal mapping to
a cylinder periodic in time, to get

E(LT � 1)(α)naive =
�1

2
−

2α2

π2

�

log
�

�

�

β

επ
sinh

�π`1

β

�

�

�

�, (128)

which is nothing but the finite temperature logarithmic charged entropy of order 1/2. This
naive derivation provides a wrong result whose origin has been extensively discussed in [46]
and it remains the right interpretation also for α 6= 0. Indeed, for pure states (i.e. T → 0), the
ne−sheeted Riemann surface, Rne ,α, decouples in two independent (ne/2)-sheeted surfaces

characterised by the parity of the sheets and therefore E(α)(LT � 1) = 2 log Tr(ρ1/2
A1

eiQ̂A1
α).

Conversely, this decoupling of the sheets does not occur at finite temperature. The lack of
decoupling is manifested in the presence of the linear terms `/β and L/β in Eq. (127) which
cannot be derived through a simple conformal mapping.

We also present the high-temperature limit of the charged probability in Eq. (119), that is

log N1(α)'







−2α2

π2

�

log
�

�

�

β
πεN

sinh(2π`1
β )

�

�

�− π`1
β

�

− α2 L
2πβ , |α| ≤ π

2 ,

−2(α−π)2
π2 log

�

�

�

β
πεN

sinh(2π`1
β )

�

�

�− 2α`1
β + 2α2`1

πβ −
α2 L
2πβ , |α|> π

2 .
(129)

5.2 A semi-infinite system

A simple generalisation of the previous calculation concerns the charged logarithmic negativity
for a semi-infinite system. For free fermions, the semi-infinite geometry is obtained from the
infinite one by cutting the interval A1 in half. Because of the structure of the vertex operators
correlations in Eq. (113), the entanglement in the semi-infinite system is equal to half of
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Figure 6: The charged logarithmic negativity for a bipartite geometry in the infinite-
line (left) or semi-infinite (right). We set L = 200. Analytical prediction in Eqs.
(127) and (132).

that of the infinite one in Eq. (116). Therefore, the charged logarithmic negativity of a finite
interval with length `1 = r1 L is given by

log N (ν)n (α) = log Rn −
α2

π2n
log

�

�

�

θ1(2r1|τ)
( εL∂zθ1(0|τ))

�

�

� (130)

+
(n−1)/2
∑

k=−(n−1)/2

log
�

�

�

θν((
k
n +

α
2πn)(1− 4r1) +

ϕn
π r1|τ)

θν(0|τ)

�

�

�. (131)

The low and high temperature limits of this expression are obtained in analogy with the infinite
line case, e.g. as τ→ 0 we get

E(α) =
�1

4
−
α2

π2

��

log
�

�

�

β

πε
sinh(

2π`1

β
)
�

�

�−
2π`1

β

�

−
α2 L
4πβ

+O(e−πLT ). (132)

The correctness of these CFT charged negativities is tested against lattice calculations in
Fig. 6. Here we plot E(α, T )−E(α, T = 0) that turns out to be a universal function of π`T and
πLT , in agreement with Eqs. (127) and (132). As for the tripartite case, in order to test our
final field theoretical results, we have taken into account the explicit expression for the cutoff
ε. Since it does not depend on the temperature, it can be extracted from the knowledge of
the lattice charged moments Tr(ρ1/2

A1
eiQ̂A1

α) at T = 0, derived in [96] and explicitly reported
in the Appendix, see Eq. (182).

5.3 Symmetry resolution

As usual, the Fourier transform (75) is performed in the scaling regime with a saddle point
approximation. Hence, the charged moments (72) can be truncated at Gaussian level in α as

N (ν)(α)n = R(ν)n e−
α2
2 bn , (133)

where

bn =
4
π2n

log
�

�

�A(1)n
Lθ1(r1|τ)
ε∂zθ1(0|τ)

�

�

�, (134)
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and we used a quadratic approximation for

log N (ν)n,1 (α) =A(0)n −
2α2

π2n
logA(1)n . (135)

The RN in the sector q are

R(ν)n (q) =
ZR1,n(q)

[p(q)]n
= R(ν)n

∫ π

−π

dα
2π

e−iqαe−α
2 bn/2

�

∫ π

−π

dα
2π

e−iqαN1(α)
�n

, (136)

and, through the saddle point approximation,

R(ν)n ' R(ν)n

√

√(2πbN )n

2πbn
e−

q2

2 (
1
bn
− n

bN
), N (ν)(q)'

1
2

�

eE
(ν)

√

√2πbN

2πb
e−

q2

2 (
1
b−

1
bN
) − 1

�

, (137)

with

b = lim
ne→1

bne
, bN =

4
π2

log
�

�

�A(1)N
Lθ1(r1|τ)
εN∂zθ1(0|τ)

�

�

�. (138)

The explicit expressions for the cutoff ε and εN can be found in Eqs. (182) and (183a),
respectively. When the O(1) terms are negligible with respect to the leading order ones, b ' bN
and we find the exact equipartition of negativity in the different charge sectors at leading order,
i.e. N (ν)(q) ' N (ν), on the same lines as for the tripartite case. We used that the leading
contribution to the integral p(q) comes from the region near the saddle point α = 0, despite
the presence of two local maxima at α = ±π. This is possible as long as T > 0: when T → 0,
the secondary maxima become degenerate with the one in 0 and they cannot be neglected.
Their degeneracy is indeed related to the fact that p(q) becomes zero for all odd q.

Finally, it is worth reporting the high temperature limits of the variances in Eq. (138), that
following the steps in Section 5.1, simplify as

b = lim
ne→1

4
π2ne

�

log
�

�

�

β

πε
sinh(

π`1

β
)
�

�

�−
π`1

β
+
πL
4β

�

,

bN =
4
π2

�

log
�

�

�

β

πεN
sinh(

π`1

β
)
�

�

�−
π`1

β
+
πL
4β

�

.
(139)

The symmetry resolved negativities for a single interval embedded inside a semi-infinite chain
or in the low-temperature regime are straightforwardly derived with minor modifications of
the above calculations.

Also for this bipartite geometry it is instructive to identify the first term breaking equipar-
tition. Expanding to order O((log L)−2) the above expressions, we get

N (ν)(q)'N (ν)
�

1−
γ̃

log |θ1(r1|τ)(∂zθ1(0|τ)/L)|)
−

q2γ̃π2

4(log |θ1(r1|τ)(∂zθ1(0|τ)/L)−1|)2
�

, (140)

where γ̃ = π2

8 log(εNA/(εAN )). Since A/AN ' 1, γ̃ can be explicitly computed through the
results for ε and εN found in Appendix C.

Our analytic results for the symmetry resolved negativity are compared with the numerical
data in the left panel of Figure 7. The equipartition of negativity is broken for all the considered
values of `, T, L and the effect is more evident as |q| is increased. However, Eq. (137) can
capture the smooth part of these corrections to the scaling, as shown by the full line in the
plots. As ` � 1/T , the corrections due to the presence of the maxima at α = ±π in N1(α)
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Figure 7: Left panel: The imbalance-resolved negativity as a function of q in a bipar-
tite geometry. The subsystem size is fixed, `1 = 40, the total system sizes is also fixed,
L = 200, while T is varied. The coloured full lines represent Eq. (137) while the
dashed ones represent Eq. (136) in the replica limit. Right panel: The probability of
finding q as outcome of a measurement of Q̂. As the state becomes pure (i.e. T → 0),
p(q)→ 0 for odd q, as explained in Sec. 2.3. The full lines correspond to the Fourier
transforms of the charged probability in (119) without saddle-point approximation.

become smaller and the imbalance resolved negativity flattens in q, mainly as a consequence
of the lowering of the maxima at α= ±π in N1(α), see Fig. 4. We also check the correctness of
our prediction for p(q) in the right-panel of the same figure: we can observe that as the state
becomes pure (i.e. T → 0), p(q)→ 0 for odd q, as explained above. As already stressed many
times, the divergent behaviour of negativity in the same charge sector is a consequence of the
fact that the imbalance is no longer the right quantum number to resolve the entanglement.

6 Conclusions

We studied the entanglement negativity in systems with a conserved local charge and we found
it to be decomposable into symmetry sectors. The partial TR operation does not spoil the result
found for the standard partial transposition operation [91]: the resulting operator that com-
mutes with the partial TR density matrix is not the total charge, but rather an imbalance op-
erator, which is essentially the difference operator between the charge in the two regions. We
introduced a normalised version of the charge imbalance resolved negativity (both fermionic
and bosonic) which has the great advantage to be an entanglement proxy also for the sym-
metry sectors, e.g. it vanishes if the standard partial transpose has only positive eigenvalues
in the sector. The price to pay is that the normalised symmetry resolved negativity diverges
(for some sectors) in the limit of pure states, as a consequence of the fact that the imbalance
is no longer the best quantity to resolve the entanglement. Another interesting property of
this normalisation for the sector partial transpose is the negativity equipartition, i.e. the entan-
glement is the same in all imbalance sectors, in full analogy to entropy equipartition for pure
states [93].

We then considered the (1+1)d CFT corresponding to free massless Dirac fermions at finite
temperature T and finite size L. We derived field theory predictions for the distribution of
negativity in both tripartite and bipartite settings (i.e. the entanglement between two adjacent
intervals and the one between one interval and the remainder, respectively). We tested our
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prediction against numerical computations for a lattice version of the Dirac field, in which
the non-universal terms are fixed from exact analytic computations. In both geometries, we
find that, at leading order, the charge imbalance resolved negativity satisfies entanglement
equipartition. We identify the subleading terms responsible for the breaking of equipartition
in the lattice model.

There are different aspects that our manuscript leaves open for further study. The first one
concerns the calculation of the time evolution of the charged and imbalance resolved nega-
tivity to understand if and how the quasiparticle picture remains true within the sectors of an
internal local symmetry of a quantum many-body system, as recently done for the resolved
entropies [95]. Secondly, one may use the corner transfer matrix to investigate the symmetry
decomposition of negativity in gapped one-dimensional models by combining former studies
of the total negativity [42] with those for symmetry resolution [99]. Eventually, the gener-
alisation of one-dimensional results to higher dimensions can be done using the dimensional
reduction approach, as already done for the total negativity in [85]. Decoupling the initial
d-dimensional problem into one-dimensional ones in a mixed space-momentum representa-
tion [100] would allow to generalise the above results to higher dimensional Fermi surfaces.
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Appendix A Numerical methods

In this first appendix, we report how to numerically calculate the charged negativity associated
with the partial TR (15) for free fermions on a lattice described by the hopping Hamiltonian
on a chain

HF F = −
L−2
∑

j=0

f †
j+1 f j + f †

0 fL−1 +H.c., (141)

with anti-periodic condition (corresponding to the ν = 3 sector discussed in the main text).
The technique is a straightforward generalisation to α 6= 0 of the one presented in [85]. This
method is used throughout the main text to obtain all lattice numerical results.

Even though we use the computational basis of the Majorana modes, for particle-number
conserving systems such as the lattice model in Eq. (141), the covariance matrix is simplified
into the form σ2 ⊗ Γ , with Γ = I− 2C , Ci j = Tr(ρ f †

i f j) is the correlation matrix and σ2 is the
second Pauli matrix (see Ref. [86] for a more detailed discussion). For a thermal state, the
single-particle correlator reads

Ci j =
∑

k

u∗k(i)uk( j)

eβωk + 1
, (142)

where ωk and uk(i) are the single-particle eigenvalues and eigenvectors of the Hamiltonian
(141). For a bipartite Hilbert space HA⊗HB where A= A1 ∪ A2, the covariance matrix takes
a block form

Γ =

�

Γ11 Γ12
Γ21 Γ22

�

, (143)

where Γ11 and Γ22 are the reduced covariance matrices of the two subsystems A1 and A2,
respectively, while Γ12 and Γ †

21 contain the cross correlations between them. By simple Gaussian
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states’ manipulations, the correlation matrices associated with ρR1
A , (ρR1

A )
† can be written as

[85]

Γ± =

�

−Γ11 ±iΓ12
±iΓ21 Γ22

�

. (144)

The objects we are interested in are Nne
= Tr[(ρR1(ρR1)†)ne/2eiQ̂α] and N1(α) = Tr[ρR1 eiQ̂α].

The imbalance of the relativistic Dirac field corresponds to the discretised operator Q̂ = N̂A1∪A2
−

1/2(`1+`2). Notice that in this basis, Q̂ is not the difference, but the sum of the number oper-
ators. Furthermore, it presents a shift compared to the number operator of the non-relativistic
fermions. The single particle correlation matrix associated to the normalised composite den-
sity operator ρx = ρR1(ρR1)†/Zx is [85,126]

Γx = (1+ Γ+Γ−)
−1(Γ+ + Γ−) , (145)

where the normalisation factor is Zx = Tr(Γx) = Tr(ρ2
A). In terms of eigenvalues of correlation

matrices, we can write [85]

log Nn(α) =− iα
`1 + `2

2
+

N
∑

j=1

log





�1− νx
j

2

�n/2

+ eiα

�1+ νx
j

2

�n/2




+
n
2

N
∑

j=1

log
�

ζ2
j + (1− ζ j)

2
�

,

(146)

where νx
j and ζ j are eigenvalues of the matrices Γx (145) and C (142), respectively. In terms of

the eigenvalues ν’s of Γ± (144) (Γ+ and Γ− have the same spectrum), the charged normalisation
N1(α) is

log N1(α) = −iα
`1 + `2

2
+

N
∑

j=1

log

��

1− ν j

2

�

+ eiα

�

1+ ν j

2

��

. (147)

Taking the Fourier transform of the numerical data for Nne
(α) and N1(α), we finally obtain the

imbalance resolved negativities.

Appendix B Mode expansion of charged moments of ρA and ρR1
A

Following Ref. [123], we report some details about the transformation of the trace formulas
into a product of n decoupled partition functions for non-interacting systems with conserved
U(1) charge. As mentioned in the main text, after diagonalising the twist matrices a partition
function on a multi-sheet geometry can be decomposed as

Zn(α) =
∏

k

Zk,n(α), Zk,n(α) = 〈e
i
∫

d2 xAk
µ jµk 〉 , (148)

in which

εµν∂νAk,µ(x) = 2π
2p
∑

i=1

νk,i(α)δ(x − ui), (149)

where 2πνk,i(α) is the vorticity of gauge flux determined by the eigenvalues of the twist ma-
trix, p are the intervals defined between a pair of points u2i−1 and u2i . The vorticities satisfy
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the neutrality condition
∑

i νk,i(α) = 0 for every k. As already stressed, there are several rep-
resentations of the partition function Zk,n(α). In order to obtain the asymptotic behaviour, one
needs to take the sum over all the representations

Z̃k,n(α) =
∑

{mi}

Z (m)k,n (α), Z (m)k,n (α) = 〈e
i
∫

d2 xA(m)k,µ jµk 〉εµν∂νA
(m)
k,µ(x) = 2π

2p
∑

i=1

ν̃k,i(α)δ(x − ui),

(150)

where mi is a set of integers and ν̃k,i(α) = νk,i(α) + mi are shifted flux vorticities obeying
∑

i mi = 0 because of neutrality condition. By the bosonisation technique, we may write

Z̃k,n(α) = E{mi}

∏

i< j

1

|ui − u j|−2ν̃k,i(α)ν̃k, j(α)

`→∞
−−−→ Z̃k,n(α)∼

∑

{mi}

E{mi}

`
∑

i ν̃
2
k,i(α)

, (151)

where ` is a length scale and we absorbed all non-universal effects (e.g. cutoff and microscopic
details in the case of lattice models) in the constants E{mi}. In the large ` limit, the leading
order term(s) is (are) the one(s) which minimises the quantity

∑

i ν̃
2
k,i(α). As shown in the

following appendix, this is identical to (and consistent with) the condition derived from the
generalised Fisher-Hartwig conjecture. We now carry out this procedure for Nne

(α) in (74) for
two adjacent intervals. We need to minimise the quantity

fm1m2m3
(ν) = (ν− 1/2+m1)

2 + (ν+m2)
2 + (−2ν+ 1/2+m3)

2, (152)

for a given ν = k
n +

α
2πn , with k = − n−1

2 , . . . , n−1
2 , by finding the integers (m1, m2, m3) con-

strained by
∑

i mi = 0. The triplet (m1, m2, m3) that minimises Eq. (152) is
¨

(0,0, 0), ν≥ 0,

(1,0,−1), ν < 0.
(153)

For the charged probability in Eq. (87), we need to minimise

fm1m2m3
(ν) = (ν+m1)

2 + (ν+m2)
2 + (−2ν+m3)

2, (154)

for ν= α
2π . In this case, the minimising sets of triplets are











(0,0, 0), |ν| ≤ 1/3,

(−1, 0,1), (0,−1,1), ν > 1/3,

(1,0,−1), (0,1,−1), ν < −1/3,

(155)

where in the two last lines the two reported triplets are degenerate.
A similar derivation can be carried out for Nne

(α) in Eq. (74) for the geometry in Fig. 5.
The quantity to minimise is

fm1m2m3m4
(ν) = (ν+m1)

2 + (−ν+m2)
2 + (−2ν+ 1/2+m3)

2 + (2ν− 1/2+m4)
2, (156)

where now we have four integers (m1, m2, m3, m4) constrained by
∑

i mi = 0. The quadruplet
(m1, m2, m3, m4) that minimises Eq. (158) is

¨

(0, 0,0,0), ν≥ 0,

(0, 0,1,−1), ν < 0.
(157)

For the charged probability in Eq. (119), where ν= α
2π , we have to minimise

fm1m2m3m4
(ν) = (ν+m1)

2 + (−ν+m2)
2 + (−2ν+m3)

2 + (2ν+m4)
2, (158)

by choosing the quadruplet
¨

(0,0, 0,0), |α| ≤ π/2,

(0,0, 1,−1), |α|> π/2.
(159)
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Appendix C Lattice-dependent terms and Fisher-Hartwig conjec-
ture

We focus on the evaluation of the explicit cutoffs induced by the lattice for the charged Rényi
negativity, for the ground state of the Hamiltonian (141). Analogous results for the charged
Rényi and entanglement entropies have already been worked out in [96]. The evaluation of
the charged negativity relies on the Fisher-Hartwig conjecture for the determinant of Toeplitz
matrices. Here we closely follow the derivation for the negativity at T = 0 [81]. We focus on
a chain of length L with sites labelled by j = [0, L − 1]; the intervals are A1 = [0,`− 1] and
A2 = [`1,`2−1]. The non-universal additive constant does not depend on the finiteness of the
chain. Denoting by ũi(r j) = 〈r j|ũi〉 the single particle eigenstate, the wave function describing
the ground state of the Hamiltonian has the form of a Slater determinant

〈{r j}|Ψ〉= det[ũi(r j)]. (160)

Hence, the partition function ZR1,k(α) in Eq. (74) is

ZR1,k(α) = det MR1,k
mm′ (α) = det

�

〈ũm|T
R1
α,k|ũm′〉

�

, (161)

where TR1
α is a diagonal matrix whose entries [TR1

α ] j j = TR1
α,k( j) are

TR1
α,k( j) =











eiϕ−2πi k
n−i αn 0≤ j < `1,

ei2π k
n+i αn `1 ≤ j < `1 + `2,

1 `1 + `2 ≤ j < L,

(162)

where the phase are fixed according to the conventions in Figure 1. Writing explicitly the
single particle eigenstates as plane waves ũi(r j) =

1p
L
ei πm

L j , m = ±1,±3, ...,±(L/2− 1), we
obtain

MR1,k
mm′ (α) = 〈ũm|T

R1
α,k|ũm′〉 =

1
L

L−1
∑

j=0

e−i π j
L (m−m′)TR1

α,k( j) =
1

2π

∫ 2π

0

dθ e−iθ (m−m′)/2 T̃R1
α,k (θ ) ,

(163)

The last identity in (163) is obtained in the scaling regime L →∞, `→∞ and `/L fixed
and T̃R1

α,k(θ ) is the continuum limit ( j→ Lθ
2π ) of Eq. (162), i.e.

T̃R1
α,k(θ ) =











eiϕ−2πi k
n−i αn 0< θ < πr1

ei2π k
n+i αn πr1 < θ < π(r1 + r2)

1 π(r1 + r2)< θ < 2π

, (164)

where we introduced ri = 2`i/L. Hence, in this basis, the matrix MR1,k
mm′ (α) is a Toeplitz matrix

where (m−m′)/2= 0,1, 2, . . . , (L/2− 1) which implies that the size of the matrix is L
2 ×

L
2 .

The asymptotic evaluation of the determinant of a Toeplitz matrix is based on a special stan-
dard structure that we now describe. In general, a Toeplitz matrix has the form TL[φ] = (φi− j),
where φk is the k-th Fourier coefficient of the symbol φ(θ ). The Fisher-Hartwig conjecture
gives the asymptotic behaviour of the determinant of Toeplitz matrices whose symbol admits
a canonical factorisation as

φ(θ ) =ψ(θ )
R
∏

r=1

tβr ,θr
(θ )uαr ,θr

(θ ), (165)
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where
tβr ,θr

(θ ) = exp[−iβr(π− θ + θr)], θr < θ < 2π+ θr , (166)

uαr ,θr
(θ ) = (2− 2cos(θ − θr))

αr , Re[αr]> −
1
2

, (167)

ψ(θ ) is a smooth vanishing function with zero winding number and R is the number of dis-
continuities of φ(θ ). For L→∞, the Fisher-Hartwig formula gives

det TL[φ] = (F[ψ])L
� R
∏

r=1

Lα
2
i −β

2
i

�

EFH, (168)

where

F[ψ] = exp

�

1
2π

∫ 2π

0

lnψ(θ )dθ

�

, (169)

and assuming that ψ(θ ) admits the Wiener-Hopf factorisation

ψ(θ ) = F[ψ]ψ+ (exp(iθ ))ψ− (exp(−iθ )) . (170)

Here E[ψ] = exp
�∑∞

k=1 ksks−k

�

, with sk corresponding to the k-th Fourier coefficient of lnψ(θ ),
and G are the Barnes G-function

G(1+ z) = (2π)z/2e−(z+1)z/2−γEz2/2
∞
∏

n=1

[(1+ z/n)ne−z+z2/(2n)], (171)

and γE the Euler constant.
In the case of the negativity for two adjacent intervals and even n = ne, the symbol φ(θ )

is given by

φ(θ ) =











eiπ−2πi(k/n+α/(2πn)), −πr1 < θ < 0,

e2πi(k/n+α/(2πn)), 0< θ < πr2,

1, πr2 < θ < 2π−πr1.

(172)

Therefore, it has three discontinuities and admits the following canonical factorization:

φ(θ ) =ψ(θ )tβ1(k),−πr1
(θ )tβ2(k),πr2

(θ )tβ3(k),0(θ ), (173)

where

ψ(θ ) = eiπr1/2−iπ( k
n+

α
2πn )(r1−r2), (174)

β(k) =
k
n
+
α

2πn
= β1(k) +

1
2
= β2(k), (175)

β3(k) = −2β(k) +
1
2

, (176)

so we can apply the conjecture with R = 3 and αi = 0. When β < 0, we have |β3| > 1/2
and the FH conjecture in its original form breaks down (we can also use the most general
hypothesis in which the Fisher-Hartwig conjecture works, i.e. if we introduce the seminorm
|||β ||| = max j,k|βk − βk|, where 1 ≤ j, k ≤ 3, the conjecture has been verified for |||β ||| < 1
[127]). In this case we should use the generalised Fisher-Hartwig conjecture, see e.g. [127,
128] in which one sums over all the inequivalent representations of the symbol, i.e. summing
over all possible {β̂i} such that

β̂i = βi + ni ,
R
∑

i=1

ni = 0. (177)
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The leading terms is given by the set(s) of integers {ni} that minimises the function
∑R

i=1 β̂
2
i .

This is identical to the condition derived in Sec. B. We denote the corresponding set of solutions
by Mβ . The Toeplitz determinant is sum of the standard form (168) corresponding to these
solutions. Then, the asymptotic behaviour of the Toeplitz determinant in (161) is

ZR1,k(α) =(2− 2 cos(2π`1/L))−(|k/n+α/(2πn)|−1/2)(2|k/n+α/(2πn)|−1/2)

× (2− 2cos(2π`2/L))−|k/n+α/(2πn)|(2|k/n+α/(2πn)|−1/2)

× (2− 2cos(2π(`1 + `2)/L))|k/n+α/(2πn)|(|k/n+α/(2πn)|−1/2)

× Jα(k)(L)
∆k(α),

(178)

where∆k(α) is given by Eq. (80) and Jα(k) =
∏3

i=1 G(1+βi(k))G(1−βi(k)). Using standard
manipulation of the Barnes G-function, we can rewrite the O(1) terms as

�n2 − 2
4n

+
3α2

2π2n

�

logε=
k= (n−1)

2
∑

k=− (n−1)
2

log 22∆k Jα(k) = − log 2
�n2 − 2

4n
+

3α2

2π2n

�

− (1+ γE)
�n

4
−

1
2n
+

3α2

2nπ2

�

+
∞
∑

m=1

−2π2 + n2π2 + 6α2

4mnπ2

+
∞
∑

m=1

2m log
( 2

m3n3 )nΓ [
2+n−2nm

4 − α
2π]Γ [

2+n−2nm
4 + α

2π]Γ [
1+n+2nm

2 − α
2π]Γ [

1−n+2nm
2 − α

2π]

Γ [2−n−2nm
4 − α

2π]Γ [
2−n−2nm

4 + α
2π]Γ [

1−n+2nm
2 + α

2π]Γ [
1−n+2nm

2 − α
2π]

.

(179)

Eq. (179) is well approximated by the expansion at the second order in α since higher correc-
tions O(α4) are negligible for most practical purposes (this is in full analogy with the charged
entropies [96]). In particular, in the replica limit ne→ 1 we have

−
�

1
4
−

3α2

2π2

�

logε' 0.47295− 0.29990α2. (180)

In conclusion, the Fisher-Hartwig technique allows us to re-derive the leading CFT terms (at
T = 0) and also provides the cutoff due to lattice regularisation.

Similar derivation can be carried out to compute the cutoff εN of the charged probability
in Eq. (87) and we report the final result

3α2

2π2
logεN ' −0.34514α2 |α| ≤ 2π/3 (181a)

−
�

1−
|α|
π

�

|α|
π

logεN ' −3.21853+ 1.93194|α| − 0.30748α2 |α|> 2π/3 . (181b)

For a bipartite geometry, the lattice cutoff ε can be computed using the equivalence be-
tween the (charged) negativity and the (charged) 1

2 Rényi entropy for pure states, exploiting
the results of Ref. [96], i.e.

−(
1
2
−

2α2

π2
) logε' 0.94590− 0.36978α2. (182)

We also write down the final result for the cutoff εN of the charged probability in Eq. (119)

2α2

π2
logεN ' −0.46020α2, |α| ≤ π/2, (183a)

(π− |α|)2

π2
logεN ' −0.46020(|α| −π)2, |α|> π/2. (183b)
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As already discussed in the main text, the knowledge of the exact expression for this non-
universal quantities is relevant in order to test our analytical predictions against numerical
data without any fitting parameter.

Appendix D Twisted partial transpose

For T = 0, the fermionic Rényi negativity in CFT (17) is equal [85] to the bosonic Rényi
negativity for both even and odd values of n, also in the charged case [91]. The definition
(17) has been employed since ρR1

A is not necessarily Hermitian. Then, the trace norm in terms
of square root of the eigenvalues of the composite operator ρx = ρ

R1
A (ρ

R1
A )

† provides a well-
defined entanglement negativity for fermions. However, one can also introduce a hermitian
partial transpose, which is suitable to define another fermionic negativity because of its real

spectrum [86]. This is done by considering the composite operator ρ̃x = (ρ
R̃1
A )

2, in terms of

the twisted partial transpose ρR̃1
A = ρ

R1
A (−1)F1 , with (−1)F1 the fermion number parity in A1.

The associated charged moments are Ñn = Tr[(ρR̃1
A )

neiQ̂α]. The use of the composite operator

ρ̃x is distinct from the previous one. In fact, the T R̃1
α matrix which glues together ρR̃1

A is

T R̃1
α =











0 0 . . . −e−iα/n

e−iα/n 0

0 e−iα/n . . .
. . . . . .











. (184)

The technical difference is that the twist phases of the two intervals are now e2πi( k
n+

α
2πn−

ϕn
2π )

and e−2πi( k
n+

α
2πn), with ϕn = π for both n even and odd. This means that for n even the two

Rényi negativity are equal (and indeed the negativity may be obtained from the replica limit
ne→ 1 of both). Hence, we report the final results for the two geometries studied in the main
text for n= no.

1. Adjacent intervals: The spin-independent part of the moments of negativity are given
by

log Ñno ,0(α) = log R̃no
−

α2

2π2no
log |θ1(r1|τ)2θ1(r2|τ)2θ (r1 + r2|τ)−1(

ε

L
∂zθ1(0|τ))−3|

+
|α|

2noπ
log |θ1(r1|τ)3θ1(r2|τ)θ (r1 + r2|τ)−1(

ε

L
∂zθ1(0|τ))−3|,

(185)

while the spin structure dependent term is the same as Eq. (84) with ϕno
= π.

2. Bipartite geometry: In this case, one has

log Ñno ,0(α) = log R̃no
−

α2

2π2no
log

�

�

�

θ1(r1|τ)4θ1

� r2
2 |τ

�4
θ1(r1 + r2|τ)

θ1

�

r1 +
r2
2 |τ

�4
( εL∂zθ1(0|τ))5

�

�

�

+
|α|
πno

log
�

�

�

θ1(r1|τ)2θ1

� r2
2 |τ

�

θ1

�

r1 +
r2
2 |τ

�

( εL∂zθ1(0|τ))2

�

�

�,

(186)

for the spin-independent part while the spin structure dependent term is the same as Eq. (117)
with ϕno

= π.
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