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Abstract

We develop further the study of a system in contact with a multibath having different
temperatures at widely separated timescales. We consider those systems that do not ther-
malize in finite times when in contact with an ordinary bath but may do so in contact with
a multibath. Thermodynamic integration is possible, thus allowing one to recover the
stationary distribution on the basis of measurements performed in a ‘multi-reversible’
transformation. We show that following such a protocol the system is at each step de-
scribed by a generalization of the Boltzmann-Gibbs distribution, that has been studied in
the past. Guerra’s bound interpolation scheme for spin-glasses is closely related to this:
by translating it into a dynamical setting, we show how it may actually be implemented
in practice. The phase diagram plane of temperature vs “number of replicas", long stud-
ied in spin- glasses, in our approach becomes simply that of the two temperatures the
system is in contact with. We suggest that this representation may be used to directly
compare phenomenological and mean-field inspired models. Finally, we show how an
approximate out of equilibrium probability distribution may be inferred experimentally
on the basis of measurements along an almost reversible transformation.
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1 Introduction

Glasses are dynamical objects, the properties that are relevant for them such as large viscosity
and aging, are essentially dynamical in nature. Somewhat surprisingly, a fruitful theoreti-
cal approach to them has been to study the proprieties of the energy landscape through the
equilibrium properties: this led to the Parisi scheme, and the discovery of hierarchical orga-
nization of states-within-states that it implies. On the other side, the mean-field solution of
the dynamics starting from a random configuration is largely well-understood: it is charac-
terized by the emergence of widely separated timescales, each with a different characteristic
temperature: a situation we shall denote as ‘multi-thermalization’. The Parisi and dynamic
multi-thermalization constructions are such that, even if we do not know the actual solution
of any finite-dimensional glass model, we do know what both would imply for it.

The purpose of this paper is to establish a stronger connection between static solution
and dynamic multi-thermalization. In section 2 we review the properties of a system in con-
tact with a bath having different temperatures in the limit of widely-separated timescales:
in short, a ‘multibath’. We establish the notion of ‘multi-thermalization’, as the condition in
which the system is stationary and has, for all its observables, the same fluctuation-dissipation
temperature as the bath, this equality holding at each timescale. A system which would equi-
librate with the fastest of these baths (a liquid, a paramagnet) will also multithermalize, but
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the multibath will in itself generate some slow tails of correlation function syncronized with
it. These clearly disappear when the coupling to the bath is weak. A more dramatic situation
is known to arise in mean-field glass models: the system, starting form a high temperature
configuration, never becomes stationary after being placed in contact with a low-temperaure
bath: it ‘ages’. Instead, a weak multibath may make it stationary: how weak it may be to do
so depends on its timescale - the longer the timescale the weaker the bath needed. We discuss
this situation in detail in Sections 2.1 and 2.2. Beyond mean field models, one may prove that
the multi-thermalization situation is still valid, provided the system satisfies in equilibrium a
Parisi scheme (although we do not have at present any model for which we may prove that this
happens): we know this by extending trivially the result of Franz et al. [19]. This point will
be discussed in Sec. 4.2. In Section 5 we show how to extend the classical thermodynamical
notion of reversible transformation into a multi-reversible one. This allows us, both in theory
and in practice, to transform multi-reversibly a system and then infer the probability distribu-
tion it follows at each step. We come back to this in Sec 8, where we show how this procedure
may be implemented (at least numerically) in a simulation of a realistic structural glass. Thus,
from the dynamic Fluctuation-Dissipation data one may reconstruct the distribution, which is
a generalization of the Boltzmann-Gibbs one. Note that, for this to be the case, it is necessary
that the system admits multi-thermalization at each step of the multi-reversible transforma-
tion. At this stage, one recognizes that the constructions we are using are closely related to the
construction that Guerra [14] used to prove a bound on the free energy of the Sherrington-
Kirkpatrick and other models. In Section 7, we uncover the dynamical content of Guerra’s
scheme: this gives a physically appealing — and numerically realizable — implementation of
the procedure.

2 Multibath and thermalized disorder

In a spin-glass system such as the Sherrington-Kirkpartick(SK) model of spins o; interacting
through a random interaction J;;

N N
1

H(o,J) = —— E JijUin—E Jioy, o)
vN i=1

ij=1

one needs to compute the averaged logarithm of the partition function

E{ln [Ze_ﬁH(a’”]}, 2)

[oa

where E denotes expectation with respect to both the two-body interactions J;;, and the exter-
nal magnetic fields J; . The former expression provides in fact the correct generating functional
for the quenched moments of the Hamiltonian where the quenched measure is defined, for an

observable A, as
. > Alo,J)e PO
ZG e—BH(o.J) )

In other words at fixed disorder J a Boltzmann-Gibbs computation is made on ¢ and later
averaged on the disorder. The (easier to compute) annealed measure has instead a different
physical significance, and corresponds on a standard Boltzmann-Gibbs computation on (J, 0):

E [ZUA(U,J)e—ﬁH(o,J)]
B[, e fH©@]

3

(3)

4)
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The need to calculate the difficult expression (2) gave rise to the replica computation

1 n
—InE —pH(a.]) =1,2,.. 5
n {[Ze » n=L2,.., ()

o

inferring (and guessing with a suitable ansatz) the expression (2) by means of continuation
for n — {, a real positive number, and its limit when { — 0. This was accomplished by Parisi
in a remarkable series of papers [27,32].

Integrals like (5) are ubiquitous in Parisi’s construction, as intermediate steps, with generic
n. One may ask if there is a more physical way to interpret them. Indeed this is so. As we
shall see in detail below, if evolving the spins at temperature T, and, at a much slower rate,
evolving the J’s at temperature T /n, we precisely obtain the averages generated by (5). This
relation between a replica computation and a ‘two-bath’ computation is just one instance of a
deeper and more general one [5,6,10,13,21,36].

Consider a system with two sets of variables x; and x, and Hamiltonian H(x;,X5). We
assume that the variable x, reaches equilibrium with relaxation time 7, while in contact with a
thermal bath at temperature T,. Similarly the variable x; has relaxation time 7, at temperature
T,.

In the limit 7, < 7; we may formalize an equilibrium theory for the system described by
the following thermodynamic functions. Setting 3, = 1/KT;, 85 = 1/KT, (where K is the
Boltzmann constant) the free energy is obtained in two steps :

Fl [X]_] = _ﬂi In |:/ dXz e_ﬁZH(Xl’XZ):I (6)
2
11 1
Fhb, = ——— —]n[/dx e_ﬁlFl(Xl)] =——1nZz 7
° /31 gl ! [32 0

SRS B
Zy = {/dx1 [/dxz e_ﬁZH(Xl’XZ)] } ; G = ﬂ_l . (8)
2

The previous thermodynamic expressions, leading to a nested Gibbs-Boltzmann structure,
assume that one evolution is adiabatic with respect to the other and that both, the slow and
the fast one, have enough time to reach equilibrium.

Remarks: For T; = T, this whole construction reduces to the standard Gibbs-Boltzmann
measure since {; = 1. Identifying x, with o and x; with J and choosing {; = n we find (5).
Moreover for real {; we recover the quenched free energy in the limit {; = O while ; =1
corresponds to the annealed case.

The construction may be generalized to an arbitrary number of timescales r > 2, with their
corresponding variables and temperatures, such that each evolution is adiabatic with respect
to the previous. Namely we consider an Hamiltonian H(x;,X,,...,X,) Where the degree of
freedom x, has relaxation time 7, and is contact with a bath f,. Assuming widely separated
timescales 7, < T,_; ... < 7, one obtain the full measure recursively. In terms of free energy
starting from F, = H we define

e_ﬂaFa—l — /dxa e_ﬂaFa’ (9)

forany 1 < a < r. Defining for any a = 1,...,r the parameter {, = 3./, then the free energy
at the final step can be written as

Fo = —i anO, (]—O)

r

4
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where

grfl/gr Cl/{z 1/C1
Zy= /dx1 [/dxz [/dxr e_ﬁrH(xl’Xz’x3""’xr)] ] . an

It is straightforward to show that the equivalent iterative expression for the generating func-
tional (also called pressure in the mathematical literature):

P,=—pB,F,=1nZ, (12)

turns out to satisfy
efaPa1 = /dxa efaPa, 13

We will call multibath measure the measure induced by the generating functional P,.

Generating functionals of this kind were introduced by Parisi and Virasoro [31], without
connection to any dynamics, as a concrete way to construct order parameters conjugate to
replica symmetry breaking. It was later discussed in a dynamic context in [9, 13], and more
recently in [5]. Moreover the recursion (13) is the core of Guerra’s interpolation scheme [14]
(see section 7). We shall derive dynamically the above measure in detail in two examples
below.

2.1 Thermalized external fields

Referring to the above notation we will consider in this section X1, ..., X, as magnetic fields and
X, as the spin variables. To this purpose we consider a system made of N interacting spins
o = (0)i<n,0; € R, with quenched two-body coupling (J;;); j<y and also coupled with a

family of dynamic external fields (J{ El\r, through the Hamiltonian

A 1
H(o,J)= _YZJijUiO'j—ZYaJiaO'i + 52(05_1)2 + EZ(JI-G)Z, (14)
i a,i i ai

where v, v, are non negative real parameters, A is a large positive constant that forces o; ~ £1.

We use the notationJ = (J1,...,J") and J¢ = (J{)i<n forany a =1,...,r. In the Hamilto-
nian we kept the explicit dependence of only the dynamical variables (o, J) for fixed realization
of (J;j)i j<n-

The main assumption on the dynamics is that the degrees of freedom (o,J) have widely
separated timescales: denoting by 7., 7, the relaxation times of o and J respectively, we
assume that 71 >> 7, >> ... >> 7, >> 7. Clearly these scales may depend on the size of
the system and become infinite as N — oo. The dynamic is described by a system of r + 1
Langevin equations:

. J0H .
To0; = s +mn; with (n;()n;(z")) =2T7,6;;6(7 — ') (15a)
jo=—PH e wim UT)pl (1)) = 2T, 756455 ), a< 15b
Toff == tel with  (pf(1)p; (7)) = 21470660 6(T—7'), a<r.  (15b)
1

From now on we will set the Boltzmann constant equal to 1. Here T = + and T, = ﬁi, for
a=1,...,r, are the temperatures of the thermal bath of the spins and the fields respectively.
For all practical purposes one can also think o; evolving instead following a Glauber or Monte


https://scipost.org
https://scipost.org/SciPostPhys.10.5.113

Scil SciPost Phys. 10, 113 (2021)

Carlo dynamic with energy (14).

Our aim is to show that the stationary measure of such as dynamical system coincides
with the multibath previously introduced. Let us start with the case r = 1. The spins have
temperature T, = T and timescale 7, in addition there is a single family of external fields
J =J! at temperature T; = T’ with timescales 7; > 7. On a short time-scale compared to
T, the spins evolve while the J’s are nearly constant. Hence on timescales 7, > 7 > 7 the
solution of (15a) is the usual Gibbs measure given J:

e_ﬁH(O',J)
u(olJ) = ———. (16)

Z(J)
On the other hand, (15b) is linear, and its solution is
T dT/

. e_(%) [y10:(t) +pi(x)]. a7
—00 1

Ji(t) =

Using the assumption of adiabaticity, we may substitute o; by its fast-time average given by
the measure (16):

o-i—>/d0' ,u(0'|J)ai=l(Tian(J)+Ji), (18)
i\ 9J;

which depends on time through J;. We get:

J(7) = dv (=) [Tian(J)+Ji+pi(r’)]. (19)
—0Q0 T] 3Jl

We now use the identity

(Tli+1)[l e_(%)Q(T—T’)] =6(t—1") (20)
ot T
to transform equation (19) into:
(r i+1)J —[Tian(JHJ + (r)] (21)
157 R (PR

This is a Langevin equation with temperature T’ and potential —T In Z. In equilibrium, it leads
to the distribution:
ul) = Nef 20 = N[z, (22)

where N is the normalization factor and { = T/T’. Thus one obtains the multibath measure
generated by (8)

Z(J)C e~ PH(0.J)
[diz)¢ ZQU)

p(o,J) = uulolJ) = (23)

Notice that the term %(Jil)2 in (14) carries in (23) as a centered Gaussian measure with
variance T'. The general case with several J¢ with nested timescales is obtained by iteration,
i.e. keeping at each step some variables as constants, and identifying the conditional distribu-
tion w(J4J%L,...,J1). For a given a the free energy F, = —% InZ, acts as a potential for J7,
in the sense that in (15b) one can make the substitution

6H 1 0
—_— é —_—
8J% B aJs

InZ,. (24)

6
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Therefore one obtains

T dT/ _(-r—-r’) 1
J¢ = W) | = logZ, +J% + p&(t’
i oo Ta e ﬂ aJ—la g a 1 pl (T)
ol 1 0
(T E+1)J1 = [BaJia ana+Jl.‘1+pf(T’):| given J%!,...,J' constant (25)

again a Langevin equation, which leads to the conditioned equilibrium u(J¢|J%7, ...,J%).

2.2 Correlation and Response for the multibath.

Another way to express the dynamics is to transform the problem with extra fields into a
problem with no fields, in contact with a multibath. We start by writing (15b)

T dT/

—oo Tq

Ji =

L

(=) [ve0:(t) +p%(")] = / dtv’ Ro(v—t)oi(z) + 47, (26)

where we have defined ;
Ra(z) = T—e_a 0(2), (27)

a

z2=1—1',and

d _ 777/
/ i “(T ) with (ﬁf(f)ﬁf(r’)) =604y Co(T—1"), (28)

i . . . ..
where C,(z) = T,e "«. Response and correlation satisfy the identities

2

(Ta% + 1) Ro(z)=6(2) (—Ta% + 1)6 (2) =26(2)7,T (29)

We notice that multibath acts on the spin dynamics as a memory term [10]. Indeed for
(15a) one has:

yZJUJ —A@E -Vt [ dF RE=o A, @0

where R(z) = Y., yﬁRa(z), the memory kernel, is the response function of the bath. The
combined noise p;(7) = >, v,0{(7) is correlated as

(6i()B; (7)) = 5,0 —7) with C(x)= > y2Cu(=)= D ¥2 e ™, (31

which defines the correlation of the multibath. Inserting (27) in the definition of R and com-
paring with (31), we obtain for the correlation and response of the multibath the relation

T(2)R(z) = —a—CQ(z) (32)

where T(z) is constant within every one of the nested scales: T(z) = T, for =~ away from zero
and of order one to stay within the time-scale. The function T(z) defines the effective temper-
ature of the multibath [11-13,21] Since 8, = { B then one can write the inverse effective
temperature f(z) =1/T(z) as

B(z) = B x(z) with x(z) = ¢, if Ti ~1. (33)

a
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Notice that the function x can be viewed as the dynamical analogous of the Parisi order pa-
rameter in Guerra’s bound as explained in detail in section 7. The physical reason for the fact
that effective temperatures increases with increasing timescales was discussed by [6].

Here it is important to remark that although we used a particular set of couplings, leading
to exponential decays in time, any bath with this fluctuation-dissipation relation and nested
timescales will do for the purposes of this paper.

T T T I T d T T
05 .5 — _|
0.4 Tl_loz
- [ s \\ e lelo -
(= I\
\\ \'1', 03 B %@\\\\
04— N |i< 02 ¥ N —
0.1+
B ~ i P T AT T ]
— \\ 0 02 04 06 08 1
- 03— _T' —]
= . N C(t-1)
e | C(t-1) AN 1
~< 0.6 0.8 1 e
— | ' I ' 2
L > _|
0.2 N N i . @\\
SO g
| By N\, ozp o[ =),
1/3\\ N g = 2
01 | \\ ; yl :l -
=23 N —01Fk
L =1/2 - i
0 1 I 1 I 1 O I 1 I 1
0 0.2 0.4 0.6 0.8 1
C(t -1

Figure 1: The fluctuation-dissipation plot of the model with multithermalized exter-
nal field J;. The integrated response T y (7, 7’) is plotted against the autocorrelation
function C(t, ) for a system of N = 2!° spins with random bimodal coupling con-
stants J;; = £1/ VN. The external fields are bimodal variables i\/y_f. The temper-
ature of the spins is T = 1/2 and that of the magnetic field is is T’ = T/, with
¢ =1/2. Curves averaged over 8 —19- 10° realisations, for the various cases (in the
main figure and in the insets). The perturbing field for the computation of y is set
to H = 0.1. The timescale of the slow bath is 7; = 10 for all the curves. 7’ is set
to 7/ = 1500 in order to be in the stationary state. The dotted line is the equilib-
rium slope —1 while the dashed red one are the expected slope —1/2. Lower inset:
comparison, for H = 1, between the case with { = 1/2 (green curve, same as in the
main figure) and { = 2/3 (blue curve). For the latter it is 7 = 600. Upper inset:
comparison, for H = 1 and { = 1/2, between the case with 7; = 10 (green curve,
same as in the main figure) and with 7, = 100. For the latter it is T/ = 6000.
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2.3 The SK model with a multithermalized random field

In this section we briefly discuss the equilibrium properties of the static analogous of the Hamil-
tonian (14), i.e. a SK model with gaussian external fields coupled with different thermal baths.
The Ising spins case has already been introduced in [31] where a Parisi-like formula has been
obtained within the replica framework. More recently the solution has been extended and rig-
orously proved for generic spin distribution showing an interesting link with Hamilton-Jacobi
PDE framework [23]. Here, we briefly review the simpler case of Ising spins and gaussian
external field coupled with an additional thermal bath (r=1). The Hamiltonian of the system
can be written as

Y
HN(U)=——ZJijUin—ZYaJ-an, (34)
VN 4 o

where o; = £1 and the J’s are independent standard Gaussian random variables. The Hamil-
tonian (34) can be seen as the static analogous of (14) where we take Ising spins and the
Gaussian weight is absorbed in the distribution of the J’s variables. The factor j—ﬁ in (34)
ensures a well defined thermodynamic limit. Notice that Hy (o) is a Gaussian process with
covariance

EHy(oYHy(0?) = N [ v3(q12)* + 73412 ] (35)

where g5 = ]% > ailaiz is the overlap. The generating functional of the multibath measure
(23) (also called pressure density) is

1
Pn =7y Bo logE,(Zy)°, (36)
where Eg ; denotes the average w.r.t the quenched coupling and the fields respectively and

Zy = ), e PN, (37)

(o2

If {; — O we recover the SK model in a quenched random field with variance y%. For real
0 < ¢ < 1 one can prove that, following the same procedure presented in [4], the limiting
value may be represented as a Parisi-like variational problem:

Jim py = xiélpi P(x), (38)
where
/52},2 1
P() = log2 + £(0,10) = E1- [ x(qladg (39
0

and f(q, y;x) satisfy a suitable Parisi’s PDE. The infimum is taken over x € X, which is the
space of distribution functions containing the point { in the image. This constraint is due to
the fact that external field is not quenched and it is averaged out according to (36). The opti-
mal x solution of (38) represents the limiting distribution of the overlap w.r.t. the multibath
measure induced by (36).

In order to explain the relation between the multibath measure and the dynamics de-
scribed in the previous section we recall the definition of effective temperature. Given the two-
time correlations C(7) of the spins and the associated response R(7) and integrated response
y(t)= fOT R(t—1")d 7’ then the effective temperature can be defined by the relation [8,12,17]

1 __d)((z)
T~ PP =3

(40)
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Now we consider the integrated response as function of the correlation in the large N, T
limit

lim () = £(C). (41)
C(z)=C
It has been proved in [19] that for a class of spin glass models in finite dimensions and
under suitable assumptions (see the discussion in section 4.2) the quantity y(C) provides a
direct link between static and dynamics, more precisely

_ dy(C)

BE@)| . = 2=,

where i is the distribution of the overlap of the system w.r.t. the equilibrium measure.
We have studied this dynamical quantities by means of numerical simulations, which we

now detail (such description applies to the simulations of Secs. 2.4,2.5,3.1 as well). We con-

sidered a system with bimodal couplings J;; = 1/ VN and similarly for the fields J; = :l:\/y—% .
Such bimodal forms are chosen for numerical convenience, we don’t expect major differences
with respect to the Gaussian case considered insofar. We set N = 10'° (except for the data
in Fig. 4 where N = 10'2). We have checked that larger values of N do not yield substantial
differences. Starting with a random initial distribution of the spins and of the J’s the system
is evolved in time with Montecarlo rules using Glauber transition rates: a spin o; is chosen
at random and flipped with probability w(o; — —o;) = (1/2)(1 —tanh AE/T). The same
transition rate is used for updating the fields J;, with a different temperature T’ = T /{ and an
extra factor TIl realising the slower evolution. The dynamical average (...) is taken over a
large number of initial configurations and thermal histories, namely Montecarlo trajectories.
Due to this large averaging procedure statistical errors on the data are rather small, typically
of the order of the symbols used to draw the data. The most significative source of errors is
represented by systematic effects due, e.g., to finite times, specifically 7,. The response func-
tion is computed routinely by running in parallel a copy of the original system perturbed by a
small (in principle H — 0) external magnetic field H (constant is space and time). Since data
get noisier for smaller values of H we fix the perturbation to the largest value above which we
start seeing a dependence of the results on H. Stationarization is achieved by waiting a suffi-
ciently long time such that both C and y are observed to depend only on the time difference
T —1’. Specific values of the various parameters are given in the captions of the figures.

The result for T y vs C are shown in Fig. 1. In main part of the figure a comparison is shown
between two cases with a relatively strong and weak field intensity, y; = 1 and y; = 0.1,
respectively, for a given value ratio { = 1/2 between the spin and field temperatures. In the
case with strong field intensity }f% = 1, after a short FDT regime for C ~ 1 a constant slope
roughly of order —{ is approximately observed in a wide range of C. For smaller values of
y1 such slope is present only in a narrow range of C after the FDT regime. In the lower inset
we compare two cases with strong field but with two different values of {. We observe that
in both cases the slope of the approximately linear part to the left of the FDT regime roughly
agrees with the values of {. Fitting in the range x € [0.6,0.8] we find slopes —0.6 and —0.5 for
{ =2/3 and 1/2, respectively. In the upper inset we compare two cases with strong field and
the same value of the temperatures (¢ = 1/2) but with two different timescales 7, of the slow
bath. The two curves behave similarly, but the transition from the FDT slope to the non-trivial
one on the left part of the plot is more sharp for larger 7.

Assuming that the static-dynamic correspondence discussed above holds also for SK, these
features can be related to the overlap distribution properties. For y; < v, i.e. weak external
field, we expect that the system and its overlap distribution behaves like a standard SK model
at inverse temperature y. Similarly for y < y;, or equivalently weak two-body coupling,
the system is driven mostly by the multibath measure induced by the external field. Here we

(42)

10
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expect that the overlap distributions develops a plateau at height , or equivalently Ty vs C
has slope —{ at the origin. Besides that, Figure 1 shows that, for finite y; the extension of the
plateau is an increasing function of y;.

2.4 Thermalized interaction parameters

It is also possible that the set of interaction parameters themselves are slow, multithermal-
ized variables [5, 15,26]. Referring to our general notation we choose x; = (J;;); j<y and
X, = (0;);<ny and the Hamiltonian function

k
i ij

for some y, k > 0. The interacting part of (43) is the same of an SK model but here the J;; are
not quenched variables but evolve in time as the spin variables . The o; follows a Langevin
dynamic at temperature T and energy (43) and the J;; evolve with a slower timescale at a
different temperature T':

The noise p;; is centered with variance 2T’ , where T’ is the temperature of the second equi-
librium bath. We write, as before:

Tdt' kg / / /
I = [ e oo+ pi()]) @)
1

If T, > 7> 7, we may replace o;(7")o j(T/ ) with its average respect to the stationary u(o|J)
defined as in (16):

1 0
=———1logZ(J)+ kJ;;. 6

Therefore the solution of (45) gives the stationary measure for the J:

YUi(T/)Uj(T/) - Y(Uin)J

u@) =Nz, (47)

where N is the normalization, matching the definition of multibath measure (23) with T /T’ =
B’/B = . The generating functional of the measure is

¢
Py = CLN 1n/dJ[Z(J)]5 = CLN InE, (/daeﬁyzﬁj”aioj) ; (48)

where E,, denotes the average w.r.t. J;; that are independent Gaussian random variables with

variance T'/k. Taking y = LN and k = T’ one gets the standard setting of the SK model.
If { — 0 then (48) gives the quenched pressure in the same spirit of the replica trick (5).
The thermodynamic limit of (48) for { > 0 has been rigoursly studied in [4, 26]. It turns
out that (48) is represented as a Parisi-like problem of the form (38) where the infimum is
taken over the space of distribution functions that have a jump discontinuity with gap ¢ at the
origin. Notice that this constraint is harder then than the one obtained in the multithermalized
external field case. The reason is that here there are no quenched variables coupled with the
spins. Keeping in mind the connection between statics and dynamics provided by (40) and
(42), we can conclude that the integrated response function reaches the origin with slope £ . In
simple words, the fact that interactions are at temperature T’ has the effect of ‘killing’ all effective
temperatures T,sp > T’ in the original problem. This means that in the fluctuation-dissipation
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diagram Ty vs C the branch to the left of the point with slope ¢ is straight with slope (.
We have checked this fact with numerical simulations, which have been previously detailed in
Sec. 2.3. The only difference is that what is coupled to the slow bath are the coupling constants
Jij, and the fields J; are set to zero. The result of the simulations are showed in Figure 2. In
the main figure, curves for 7, = 10% and three choices of { are shown. We have checked that
different values of the spin temperature T and of { yield similar results. The overall behavior
is similar to the one observed in Fig. 1, with an FDT part of slope 1 on the right sector of the
plot and a different slope on the left. However in this case one observes much nicer straight
behaviors in the latter sector and, in addition, the agreement between the observed slope and
the expected one (i.e. —{) is much better, except for { = 1/4. However, for this value of {, the
comparison shown in the inset between the cases 7; = 10? and 7; = 10° indicates that the
discrepancy is due to an insufficient value of 7, and that there is a convergence to the expected
slope increasing 7;. Fitting the data (using 7; = 10° for { = 1/4) in the range x € [0,0.1] we
find slopes —0.68, —0.54, and —0.38, for { = 2/3,1/2, and 1/4, respectively. The curves are
straight lines with good approximation: indeed the fitted slope is rather stable upon changing
the fit interval in the range x € [0, 0.4], the difference being on the third significant figure.

2.5 Timescales of a system

Let us take advantage of this construction to discuss the question of timescale within a system.
Let us consider the behavior of the autocorrelation function C which, for the SK model ther-
malized couplings J;;, is shown in Fig. 3 in the case with T” = co. Suppose the decay up to
a plateau qg,4 is independent of 7, (for large enough 7,): g, is then defined as the Edwards-
Anderson parameter for the multithermalized system. For correlations below this value, the
decay scales non trivially with 7. One possibility is:

T—1'

a(7q)

C(’L’—’L’/)Nh( ), for C <qggu, (49)
for a(t,) a suitable growing function of 7,. We have put to the test the scaling of C by means
of numerical simulations. The results for the SK model with spin temperature T = 1/2 and
coupling constants J;; coupled to a slow bath at temperature T’ = oo are reported in Fig. 3.
In the upper left panel we see that, for the SK model, the scaling (49) does not work at all. A
scaling that indeed seems to work is the following:

In(t —7")
b(t4)

for b(7) another suitable growing function of 7, and g is a decreasing function [22]. This
can be observed in the upper right panel of Fig. 3. It turns out that b(7;) increases as the
logarithm of 74, see inset and fit described in the caption.

To understand the meaning of this, following [8] we consider triangles of correlations at
three large times t; < ty < t3. Scaling (49) implies:

C(ts—t;) =h{h'[C(ts—t)]+h ' [C(ty— )]} (51)

C(T—T/)Ng( ), for C <qgu, (50)

an isomorphism of the sum. The range of values where the ‘triangle relation’ takes this form
is usually called "a timescale’, because all times involved are commensurate.
Instead, scaling (50) is:

C’(t3 — tl) =g [ b0 D) In (eb(fl)g_l[c(fs_fz)] + eb(Tl)g_l[C(tZ_tl)])]
1

_)Tl—>oo mln{C(tg_tz), C(tZ_tl)} > (52)
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which is ultrametricity in time: there are infinitely many timescales. In reference [8] a com-
plete classification of all possibilities for the triangle relations of the form C(t3, t;) = f (C(t3, t5),
C(t4,t;)) is made, based on the fact that in general f must be an associative function.

Notice that the linear scale of the y axis in the two upper panels of Fig. 3 is only suited for
the inspection of the scaling properties for relatively large values of C. For the smallest values
of correlation, using a logarithmic y scale ( lower panel) allows one to appreciate that, for
C(t—1") < qga(7y), there is a scaling form C(t—1’) = qga(71)f (%) with an exponential
scaling function f (x) for large x. We have checked that all the results discussed in this section
are independent of the number N of spins, provided it is sufficiently large.
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Figure 2: The fluctuation-dissipation plot of the model with multithermalized cou-
pling constants J;;. The integrated response T y(7, 7’) is plotted against the auto-
correlation function C(t,7’) for a system of N = 219 spins with random bimodal
coupling constants J;; = +1/ V'N. The temperature of the spins is T = 1/2 and that
of the J;;s is T’ = T/, with the three values { = 2/3,1/2, and 1/4. All the curves are
computed on a stationary system, which is obtained by letting v’ = 50 for { = 2/3
and ¢ = 1/2, and 7’ = 25 for { = 1/4. Data are averaged over 5 - 10* — 10° real-
isations, for the various cases. The perturbation applied for the computation of the
response function is H = 0.1. The timescale of the slow bath is 7, = 102 for all the
curves (except the blue one in the inset, for which 7, = 10). The dotted line is the
equilibrium slope —1 while the dashed ones are the expected slopes in the small C
sector. In the inset a comparison is presented for { = 1/4 between the system with
7, =10% and 7, = 10%.
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Figure 3: Three scalings for the autocorrelation function C(t,7’) of the SK model
with T = 1/2 and the coupling constants J;; multithermalized with T ’ = o0; and
various timescales 7, of the slow bath (see key in the lower panel). Stationarization
is achieved by letting T/ = 25, 50, 3000, 3000 for 7, = 202,103, 10%, 10°, respectively.
Upper left panel: C(t—1’) is plotted against (T —1’)/a(7;), where a(t;) is a fitting
parameter adjusted so to collapse the curves at C(t —t’) = 0.3. Upper right panel:
C(t — 1’) is plotted against In(t — 7”)/b(7), where b(t;) is adjusted to collapse
the curves at C(7 — 1’) = 0.3 and is plotted in the inset on a log-linear plot (best fit
yields b(t;) =—1.18+1.02:In7;). Bottom panel: C(t—1")/qg4(7;) plotted against
(t—1")/A(7,) on a linear-log scale, where A(7;) and qg4(7,) are fitting parameters
determined as to obtain data collapse among curves at their tails. The system size
is N = 2'°, the coupling constants are random J;; = +1/+/N. All the curves are
averaged over 4 - 10* — 2 - 10° realisations, for the various cases.
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3 Stationarization and Multithermalization

3.1 Stationarization

Some systems never thermalize in the thermodynamic limit: their equilibration time diverges
with the size. The simplest case is phase-separation starting from a mixed situation: the do-
mains of the phases grow with time, and take a time that depends on the size of the sam-
ple to achieve their stationary situation. Another example is the case of spin-glasses, where
the divergence with system size is much more rapid. There are some systems like ordinary
structural glasses, of which we do not know if the equilibration time is infinite or just longer
than we can measure. In all these cases, an autocorrelation function of any observable has
a form that is not time-translational invariant, such as for example in domain growth where
C(t,7")=C1(t—7")+Cy(7’/7) for T > 7’. Such a situation (with C, # 0) is called ‘aging’.

Systems of this kind may achieve stationarity once subjected to a random, time-dependent
interaction [16], even in the thermodynamic limit. By this we mean that all time correlations
and response functions, averaged over randomness, become time-translational invariant (TTI).
This does not mean that the system is in thermal equilibrium, but rather in a non-equilibrium
stationary state. A very intuitive example of this is the case of thermalized couplings discussed
in section 2.4. The J;; evolve with a slow timescale 7, in contact with a bath of a higher
temperature than that of the spins, and follows a Monte Carlo with renewals every 7. If
the fast bath has very low temperature, the spins will be ‘trying to optimize" the free energy,
but they will be ‘chasing’ a continuously changing optimum, and will not be able to improve
beyond some (7 -dependent) level. The dynamics then becomes stationary with a timescale
of order 7.

A more subtle situation is that of a system subjected to a linear field , itself slowly evolving
as in section 2.1. Because the low temperature configurations depend strongly on the fields
J; (‘chaos in field’), again one would expect that the slightest field would stationarize the
evolution. However, this cannot be true for arbitrary 7, since for 7, small the field merely
contributes to the fast bath, and amounts only to a rise in its temperature: aging does not
disappear if this change is not strong enough. We thus have to expect stationarity to happen
in a region of the plane 1/y,,1/7; around the corner (0,0). We have studied numerically this
plane Checking for stationarity can be an hard and ambiguous task, particularly for large 7.
In order to do that we used the following criterion: we stipulate that the system stationarizes
if the energy (H) becomes time independent and/or the autocorrelation becomes stationary
and/or it shows an exponential decay (indeed we noticed that the decay of C as a function of
7 — 1’ for fixed 7’ is approximately exponential or much slower if the system is stationary or
ages). The result of our studies is shown in Fig. 4 which confirms what we expected.

Finally, let us note that more complicated situations are possible. A multibath may partially
stationarize a system which originally had autocorrelations decaying from g4 to g in a time-
translational manner, and from g to zero in an aging one, by enlarging the range of stationarity
qq—q’ [9]. Let us also mention here that some systems, specifically ferromagnets, typically do
not stationarize when detailed balance is broken by coupling to different baths [33] or when
mechanically driven [34]. The reason seems to be that their effective temperature is infinite.

3.2 Multithermalization with a multibath

Let us consider a multibath with two-time correlations C, response R and integrated response
i(t) = fOT R(7")d7’ and a stationary system with two-time correlations C and response R
and integrated response y(7) = fOT R(7")d7’. For example one may think of the multibath as
realized with external fields and the stationary system being a pure SK model as in section 2.3.
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Figure 4: The phase-diagram of the model with a multithermalized external field.
The system is made of N = 22 spins with random bimodal coupling constants
Jij ==+1/ v/N. The spin temperature is T = 0.7 and the field temperature is T’ = co.
The points in the figure represent all the parameter choices investigated. The black
circles correspond to an aging system, the red dots to a stationary one. Black cir-
cles with a red dot inside correspond to ambiguous cases where the three criteria
discussed in the text give weak or opposite indications. The shaded red region is a
pictorial representation of the stationary phase.

At each time scale we consider the effective temperatures (40)

L g i . L e 2
T(Z) —ﬁ(Z) - > - /3(2) - (53)

where z = 7 — 7’ is the time difference. We say that the multibath and the stationary system
are multithermalized if at each z the temperatures are the same T(z) = T(z), for all the pair
of observables of the system used to define C,R. In other words, we have a multi-fluctuation-
dissipation relation consistent with that of the bath (32). We shall see in section 5 that this
has strong implications for then equilibrium measure.

Let us anticipate when we expect multithermalization to happen. i) Any system with short
timescales in contact with a multibath (with suitably separated timescales) develops the scales
that are thermalized with those of the multibath. ii) Systems that do not become stationary
(they age) in contact with an ordinary bath, may become stationary in contact with a multibath.
iii) However, only if the multibath’s temperatures coincide with the natural aging temperatures
of the system multithermalization may be achieved with minimal energy transport, as we shall
see in the dynamical version of Guerra’s scheme in Sec. 7. The possibility that the system
synchronizes its timescales with those of the bath so as to make temperatures match, exists if
the system has reparametrization invariances [7].
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3.3 Work and power of a multibath

Let us compute the work per unit time (power) after the classical definition W= force x ve-
locity. Using the quantities introduced in section 2.2 and (26) we obtain

= Zya (ﬁla di>dyn +y2 / dv'"R,(t—7") <(j'(T)O'(T/)>dyn .

W= <Z Yol 4(T) c'r,-(f)>
’ (54)

The average in (54) is computed over the dynamics (i.e. over the noises). Since the noise

is Gaussian one can rewrites the terms (pf di> dyn using integration by parts. Let us start

yn

recalling that the evolution of o follows (15a):

Eqn(o;) = 1,0; —YZJUU]' —ZYaJia —n; =0 with (n;(7)n;(7)) =27,T5;6(t —").
j a
(55)
Rewriting the solutions of (55) using the Fourier representation of the Dirac delta

/dé_efdr’zi &= [Eqn(oy)], (56)

and keeping track only on the J* term one obtains for the first term of the rh.s. of (54) the
expression

<ﬁgé-i>dyn = /dO'dé' <efdr 22 6:(7N[ 2 vaJf (v)+ other terms]ﬁlg d-i>d_yn' (57)
Now one uses (26) to rewrite the above quantity as

/dO‘dé‘ <ef dq,-’zi éi(f’)[za Yaﬁ?(T/)+ other terms ]p\a o (58)

t i>dyn’

where the other terms in the exponent does not depend on the Gaussian noise p. The covari-
ance of p{ is given by (28), hence integration by parts leads to

(Pl Gi)gyn=Ta / d7'Co(r =) (6:()6:(2N),,, (59)

Now collecting all terms and keeping in mind the definitions of R,C given in (30) and (31),
we get

w =/ dt’ aTR(T—T/)C(T—T/)+/ dtv' 3.C(t —tR(t—1"), (60)

where
C(r,7) =D {oi(D)o(TNayn 5 R(T,7)= D (0:(T)6:(T Nayn 61)
i i
are the correlation and response functions of the system. We may obtain a more explicit
expression by integrating by parts in time, and introducing the (time-dependent) effective
temperatures
R(z) = B(2)3,C(z) and R(z)=p(z)3,C(2), (62)

so that (60) becomes

W= / dtv’ 8.C(t—1)a.C(r =) [B—H1(r—7"). (63)
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This indeed looks like a conduction term. Since C =), yi C,, we may discriminate the work
done at each timescale writing W = >, W, with

W, =12 / 4’ 3.C(v —118.Co(% — ') [Ba— Pl (64)

where we used the fact the [ — (7 —1’) is constant within each timescale. This is an energy
per unit time. If we adimensionalize separately every timescale, we get

wow, =12 [ 47 3.C(r = 7)Cu(r — ) [Ba— ). ©65)

This is energy transferred by the a-bath during a time 7,, and they all vanish upon the multi-
thermalization condition B = .

4 Large-time limits.

At this point we need to be more precise about what we mean by ‘large times’ and their struc-
ture. If the system is finite, the answer is straightforward: we need that at each timescale the
system has had enough time to reach the final distribution of all the ‘faster’ variables, while the
‘slower’ ones are still substantially unchanged. All this fixes a hierarchy. What about systems
in the thermodynamic limit N — oo ?

4.1 Mean-field systems

Consider the paradigmatic case of the Langevin dynamics on a p-spin glass with energy Zil...ip
0,00, O for p > 2. This example is interesting because it shows us where things can go
differently in the thermodynamic limit. The complexity landscape [20] is constituted as in Fig.
5, the states have a density M=) and stop abruptly at a ‘threshold level’. In times of order
one, the dynamics age — without becoming stationary — just over the threshold energy of the
highest, and overwhelmingly more numerous, states. At times t ~ eX" the dynamics penetrate
down to a K-dependent free energy density below the threshold level. Note that each ‘step
down’ in free energy density takes an exponentially (in N) time longer than the previous one.
At each free-energy, we define the effective temperature Tj? = ag—fpf) as in Fig. 5.

Let us now couple the system to a slow bath of intensity y;, temperature T; and timescale
7,. This is the dynamic counterpart of a well-studied procedure, see [30] (see also [29] and
[31]). For very long 7, longer than any timescale of a finite system, and small y; (again, but
not vanishing with N), the system multithermalizes and we find that it eventually sticks at a
level with T,;¢ = T;. Starting from a high energy situation, this takes a long time: the system
has to age its way down to the appropriate multi-equilibrium level, and this takes exponentially
long in N.

If we consider times of order one with the thermodynamic limit taken first, the system
becomes stationary for an arbitrarily weak bath provided its temperature is T; > Tethmh"ld.
It may furthermore multithermalize in times that are large but still do not diverge with N,
but if and only if T; = Tet;‘;“h"ld . We have hence discovered that if the thermodynamic limit
is taken first, in this case a stationary situation exists with energy densities higher than the
equilibrium one, even with a field of low amplitude and timescale of order one. This, we shall
claim, cannot happen in finite dimensions.
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threshold
1/ Teff

7

Figure 5: Schematic picture of the complexity > as a function of the free energy f
for the p-spin glass model. The dotted line represents the threshold free energy. The
red line is the slope of the function %(f) and determines the effective temperature
of the system

4.2 Finite-dimensional systems

In a remarkable paper, Franz et al [19] argued that by using the property of stochastic stability
introduced in [1] the quantities calculated out of equilibrium in an aging finite dimensional
system with short-range interactions at long times coincide with the ones at equilibrium. For
a rigorous study of stochastic stability and its consequences in finite dimensional systems see
[2,3]. In particular, this is expected (see [35] for a discussion of this hypothesis) for the

susceptibilities [8] associated with a perturbation H — H + € Zil idiy i, T 0
0
I(r) = % Z Jil;m,iro-il '"O-ir . (66)

L]5eeeslp e=0

The essence of their argument is the following: if we are guaranteed that the dynamics
lead in times of order one (finite as N — o0) to an energy density that coincides with the one
of the statics, and this for any field J; _; , then, by simple derivatives of the target values we
obtain the same susceptibilities in an aging system as in an equilibrated one. Hence, static
and dynamic susceptibilities coincide at long (but finite in the thermodynamic limit) times. To
show the convergence, they use a nucleation argument that shows that metastable states with
higher free-energy densities are not possible in finite dimensions. What is important to us here
is that under basically the same assumptions, we may apply their arguments to a system under
the action of a multibath, to show that the timescale-separations required for the multibath,
though large, need not diverge in the thermodynamic limit, if the system is finite-dimensional.
For example a term like

> ralio; 67)
a,i

will have the time to relax in finite times to its asymptotic value (7, — o0), provided that y,
is of order one (also an assumption related to stochastic stability [19]). In other words, the
situation we met above for the mean-field p-spin model (p > 2), where one needs 7 that are
exponentially long in N to reach true stationarity, cannot happen in finite dimensions.
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5 Multi-reversible transformations, thermodynamic integration
and measure

The appearance of effective temperatures in aging glassy systems, even in the absence of a
multibath, has long been known [12,17]. The real power of the multi-bath appears when we
use the fact of multi-thermalization with a slowly evolving bath. This allows us to infer the
underlying probability distribution of a system, even in a numerical simulation of a realistic
system, as we shall see in Section 8.

5.1 Ordinary reversible transformations, thermodynamic integration
and Fluctuation-Dissipation relation

Consider a system which depends upon variables that we shall denote collectively by o. Given
two observables A, B the correlation function, denoting by (-)4¥" the dynamic average, is:

Cap(t,7") = (A(T)B(7))) D", (68)
Given a perturbation of the type H — H — 6h(7)B the response function is
5(A) 5"
R / — 6h 6
(7,7 Sh(t’) In=0’ (69)

dyn . .
where (-)5)" is the average under perturbation.

We shall consider transformations of the energy function (via its parameters) that are re-
versible, by which we mean that:

* they are quasi-static: if at any step of the transformation we were to stop and wait
until the average values of all observables (over time-windows, or over several copies
of the system following the same protocol) does not evolve, and, furthermore, two-time
correlations depend exclusively on time-differences.

* the Fluctuation-Dissipation relation holds at each step:

d
RAB(T: T/) = ﬂ ﬁCAB(T’ T/)' (70)

In practice, this means that duplicating all times involved does not change the result. Let us
show that this process leads to the Boltzmann-Gibbs distribution. The idea is to consider a
_ 56
perturbation by , so the expectations will be those associated with the measure e p [H+ P H]
or equivalently § —  + 6. Consider an arbitrary observable A. Then by definition of the

response function (69) and by FDT (70) we have that
n 5 ’ / /
5(A)g% = —?ﬂ /_oo Rpy(7,7)dr
= —8B[Can(7,7) — Capy(7,—00)] = =6 f((AH) " — (AP (H)P™),  (71)

where we have used the clustering property at widely separate times. Because this holds for
every A, one can determine u(c), the distribution of o. Indeed we can choose A= §(c —o”)
and take the average over ¢’ obtaining

du(o) _ d

TR (6(c — o))" = —H(0WV"(0) + (H) u(o) —

B
log (o) = —BH(0) + / dp’ ()" —
u(o) = N(Be PH).
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Imposing the normalization, this gives the Gibbs-Boltzmann measure. What we have done
is to reconstruct this measure by means of a ‘thermodynamic integration’ in f3.

5.2 Multi-reversible transformations, thermodynamic integration
and multi-Fluctuation-Dissipation relation

Suppose now we have a system in contact with a multibath with sufficiently separated timescales.
We consider transformations that change the Hamiltonian slowly enough, so that the transfor-
mation is multireversible, namely

* it is quasi-static: if at any step of the transformation we were to stop and wait, with
the multibath still on, the average values of all observables (over time-windows, or
over several copies of the system following the same protocol) would not evolve, and,
furthermore, two-time correlations and response functions depend exclusively on time-
differences.

* the Fluctuation-Dissipation Ratio of all the observables of the system and of the multibath
coincide at each timescale with a single 5(7):

0
at’

Rup(t—7) = Bz — 7)== Cap(x — 7). (72)

This is just the ‘multi’ version of ordinary reversibility. We shall show, with a procedure that
is a direct generalization of the one above, that we obtain the multibath measure introduced
in section 2.

Let us assume that we evolve T = 1/f, the fast temperature, from T = 0 to any finite
temperature. Consider a system with fast o and slow J variables at inverse temperature (3,
and relaxation time ;. We shall assume multi (bi) thermalization namely with effective tem-
perature (7t —1’) = Bx(t —1’) where

1 if t—1'<71*
Cz% if t—1'>1""’
for some 7* such that 1 < 7% < 7;. Hence we are assuming that the system spontaneously
respects (72), for all observables A, B, namely FDT with temperatures 8 in the fast timescales,
and f3; in the slow timescales. This corresponds to u(c|J) and u(J), the former being the
distribution reached by o before J had the time to move. These are the distributions we wish
to compute. We proceed as above, treating energy as a perturbation, but this time the r.h.s. of
(71) can be split into timescales. We choose the time 7 such that o has performed all its fast
relaxation, but J has not had the time to change. Linear response (69) reads as

x(t—1")= { (73)

*

5Adyn T T T
—%{;ﬁ = %/_OORAH(T,T/)dT/=%/T* RAH(T,T/)dT/—F%/_OORAH(T,T/)

= (AH)D" —(1— O(A(T)H(T*)) 2™ — LAY (H)™. (74)

Now, we make the crucial assumption that the time-difference 7 —7* is large enough that o is
able to thermalize at given J, yet small enough that J hasn’t changed. Then, the expectation
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(A(T)H(7*))4¥™ partially clusters, and (74) corresponds to

o)
6<_2> :—/dOdJAH,u(GlJ).U(J)

+(1—§)/dJ,u(J) (/da’A,u(o'lJ)) (/do”H,u(o”/J))

+¢( [ do'ar auo ) ( [ dotas @ ). 08)

Choosing A(o’,J") = 6(0 —0')6(J —J") we get

15 W) = {=H(o.0)+ (1= 0 [ ao'sie" o' 19)] + Cr(B) o) ), 76

where r() = [dodJ H u(o/J) u(J). Integrating once over o, and rearranging, we get the

two equations:

d
15 oL =~ H(.)+ (1=0) [ / dG’H(G’,J)u(U’/J)] +¢r(B)

%logu(J) =— {[/dxa’H(a',J)u(a’/J)} +¢r(p), (77)

and subtracting them we find

ologu(o|J) Irr( ot /

—p =—H(o,J)+ [/do H(o',Nulo IJ)}

51

%(” =— [ / da/H(a’,J)u(a’/J)] +7r'(B). (78)

The solution of the first equation is u(c|J) = g(J, B)e PH) for some g(J, 8) that may be

fixed by normalization:
e—BH(TD)

[do’ e PH@") "
Plugging this into the second equation, it becomes:

ologu(J) , e—BH(0.J) )
g Q’|:/d0' H(O,J)fdal e—ﬂH(o’,J)] +Zr'(B)

= c% in| [ do’ e P | (), 79)

u(olJ) =

which implies:

Lfdo%_ﬁHWQ”]c

ulJ) = 7>
[dJ [[do’ePH("D)]

(80)

which matches (22). The generalization to r nested timescales is straightforward, one must
be able to choose times 77, ..., T, such that at T — 7, the variables Ji,...,J, did not have the
time to move, while J,,1,...,J,,0 have reached their equilibrium distribution. The effective
temperature is a staircase function taking values 8¢, fora=1...,r.
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Figure 6: A sketch of the {-T phase diagram.

6 Fluctuating couplings and a physical vision of T—{ phase-diagram

As mentioned above, the average (5) was originally only motivated by the value around { = 0.
At = 1 we have the annealed average, and it is easy to check that there is no transition at
any temperature for a spin-glass. Clearly, at low enough temperatures there is a spin-glass
phase as { — 0. The question then arose of what is the transition line in the { — T plane: this
was computed for the random energy model by Gardner and Derrida [18] and later by Guerra
and Talagrand by rigorous methods [24, 26], for the SK model by Kondor [15] using replica
approach (see [4,26] for a rigorous treatment). In both cases, the phase diagram looks like
the sketch in Fig 6.

This may be obtained by a two-temperature multibath, where the spins are at temperature
T and the couplings at temperature T’ = T /{, and evolve at a much slower rate 7, as explained
in section 2.4. The interpretation of the phase diagram is physically appealing, and may be
seen in the sketch of Figure 7 and 8. The values of effective temperatures x of the system
are cut off at the level of T’ = T /{ as follows: the slope of the curve y vs C is approximately
independent of { from qg, down to the point g,,,;, where the tangent g—g = —%; and continues
as a straight line down to the minimal value of C (see Fig. 7). Starting from zero and increasing
¢, the transition takes place at the value of { = x,,;; (at which T’ matches the lowest available

TX

slope §

slope 1

q]min qEA ‘1 C

Figure 7: The y vs. C curve for a system with couplings at temperature % The

curved part of the plot is almost independent of temperature, and the straight part
matches tangentially the curved part. The transition in { takes place at the point
where this tangent happens at the largest value C < gz,
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X
1 -
Xerit T+
é,l - — — — - 7/
é’ r

qmin qEA 1 q

Figure 8: Here the derivative of the function —T y (C) : the curved part is essentially
independent of the temperature, while the plateau to the left is given by {. The
transition takes place when the line x = { intersects the curved part

effective temperature for the system): at this point the relaxation takes place with only two
possible values for x(q) (see Fig. 8). At the transition point one should observe in Fig. 7 two
straight lines with slope — and —1, that intersect with each other at the point C = qg,.

Within the two-temperature interpretation of this diagram, it seems possible to make a
phenomenological description in terms of droplets within the glass phase of this diagram, and
this is a framework that would render the different approaches directly comparable.

7 Physically implementing Guerra’s interpolation
as a multireversible transformation

The multibath measure generated by (13) is the core of the Guerra’s interpolation scheme for
the SK model [14]. In section 2.1 we showed that a multibath measure can be viewed as a
stationary measure for a dynamical system in contact with different thermal baths and widely
separated timescales, hence it is natural to look for a dynamical analogous of Guerra inter-
polation. In this section we investigate this analogy by addressing in particular the following
question: is there a dynamical counterpart of the positivity property in Guerra’s scheme? We
will show that if the system multithermalizes (see section 3.2 for the precise meaning) along the
interpolating path then the answer to the previous question is positive thanks to the property
of a multi-reversible transformation (described in section 5.2).

Let us start by briefly sketching Guerra’s construction, we refer to the original work for the
details [14]. Consider a system of N spins and two independent random Hamiltonian H (o)
and H(o) with centered gaussian disorder and covariances

E[H(oWH()] = 5 (@)° and E[A(ODAGD]=Nap, 51)

where g5 = % D <N ol.lol.z is the overlap. In other words H is the Hamiltonian of the SK model
while H is a gaussian external field. Let t € (0, 1) be an interpolation parameter and r be an
integer. Consider a non decreasing sequence q = (g, )<, With gy = 0,q, = 1. Let (H*)1<q<,

be a family of i.i.d. copies of H and define

H(0) =D Ve —dar H(0), (82)

a

and for t € (0, 1) the interpolating Hamiltonian

H,(o)=vtH(o)+V1—tH(0o). (83)
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Then H, is the Hamiltonian of the SK model while H, contains just one-body interactions.
Following Guerra, for H, we assume a multibath measure associated to a given non decreasing
sequence ¢ = ({,).<,. The generating functional or pressure density for this measure is

1
p(t) = < EPy(0), (849)

where E averages the quenched variables and Py(t) is obtained trough the recursion (13)
starting with

P,(t)=InZ,(t) =log » e PH(). (85)
o

We denote by ( ), the average w.r.t. the multibath measure induced by (84) and x(q) denotes
the discrete distribution associated to the sequences q and ¢ . Then one can prove a crucial

inequality
d _ B dHt> ﬁz/
2P0 = N<—dt ST qx(q)dq, (86)

for any choice of the sequences q and ¢. Integrating both sides of (86) fromt =0to t =1 on
gets the celebrated Guerra’s Replica Symmetry Broken bound [14]. Notice that this procedure
can be viewed as a thermodynamic integration. Next we will show how one can obtain an
inequality analogous to (86) in the dynamical setting.

7.1 Dynamic realization

Consider a dynamical system with Hamiltonian (14) and sety = \/E andy, = v1—t4/q,—qe1
for a < r. We assume as before that the quenched couplings J;; are i.i.d. standard gaussian.
We write the Hamiltonian as H, = Hy + H; + H,:

Hy = \/72‘]1]00- 1/1_1-LZ:\/qa qa— IZJ Oi,

Hi = AY (02-10,
i

1
Hy = > U0, (87)

where A is a large constant forcing O'i2 ~ 1, so that H; is for large A essentially a constant.
We recall that H, is Guerra’s Hamiltonian (83) apart from the term H; that allows us to use
Langevin for o;.

The evolution of o follows, see eq. (15a),

Z‘]l] ]+ZYaJ;1+ni with (T)i(T)nj(T/»:2T5ij6(T_T/): (88)

where we have chosen 7, = 1 and T is the temperature of the main bath. The J evolve
according to (15b):

Tajia = _Jia +Yq0i +P?(T) > <p?(T)p]l-)(T/)> = 2TaTa5ij5ab5(T - T/) . (89)

Consider now the quantity

6H, 1
o~ SN0 Y/ Jio,; (90)
at ZJtN%: e 2\/(1 Z o™ o IZ
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In complete analogy with Guerra’s method, we wish to compute the average of (90) over the
dynamics (i.e. over the noises). We shall need the measure for this. For the fields J it is
simply the Wiener measure

2
__1 r | rajay 8H
Hae 2Tg7q ] drv ZI(T Jl +6Jlfl) , (91)

while for the o we complete the measure with a Fourier representation of Dirac-6 for equation
(88):

/ 4 o) 47 Tiava6i VR Yy 33,y 01564(2)0(+)..o+ other terms) 92)

where we have only specified the terms containing J{* and J;;. We denote by ( )4, the average
with respect to the measure

E / dods dJ e—de’S(O',é',J) + other terms , (93)

where E is the average on the quenched variables and

1 .
S(o,6,J)= Z T o (TaJia +J7! —yaoi)z —Zéi (YZJUU; +ZyaJl.‘10'i) . %9
ar‘a i ] a

i,a

7.2 Integrations by parts

We start noticing that <— aa t >d is the average of a sum of terms containing the variables J;;
t yn

and J{'. We will rewrite those terms using integration by parts.

7.2.1 The JU

The variables J;; are quenched then can use integration by parts for Gaussian vectors. Hence

=>E / do dé dJ et 4700 (e g (D)o (T),  (95)
ij

<Zjij0i(7)0]'(7)>
ij d

where we have used (88) and (92). Integration by parts in this case means to replace in the
average J;; — %, and then we get:
ij

\J tiN <ZJijO'i(T)O'j(T)> B Il\fz/ dT/<0i(T)Uj(f)gi(fl)éf(fl)>dyn ' (96)
i,j d L]

yn

yn

There are two interpretations of this term. The most general one is to notice that this is a
response to fields acting on products o;0; in the links that are coupled. That is, we add a term

) 5h;; . .
in the energy ). i h;jo;0; and compute Zij m(aio i)h=0- Using the fact that correlations
among sites vanishes, we rewrite the last term in (96) as

1 T T
NZ/ dT/(Oi(T)O-j(T)O-i(T/)é-j(T/»dyn:N/ dt’Cc(7,7)R(7, 1), (97)
i,j
where

O, 7 = 2 DT N ayn 5 RE) = DD Ny 98)

i i

are the correlation and response functions of the system to the perturbation h;;.
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7.2.2 The J¢

The core of Guerra’s construction is the evaluation of the terms (Jiaai > dyn' In order to do this,
one should keep in minds formulas (26)-(29). By definition 93 we have that

(J90)ayn = /dU A6 dJ e~z | 4 (vl 010 ) 10 [ A7 S, SV jag (99)

where for simplicity we omit here the subindex i. The integral is Gaussian, we wish again to
integrate it by parts. The variation of the exponent is:

TaTa {_(Ta)zja +J%+ YaTa(j- - Yaa} - Yaé- =

1 0 3 2 )
Tar, {(_T“% i 1) (T‘IE * 1)Ja ~Ya (—T“E + 1)0} ~1e6,  (100)

so that we may replace in the average

K] -1 Kl —1 Kl -1
Jaeya{TaTa(—Ta%-i-l) (Ta%+1) OA'+(—TGE+1) O'} (101)

note the sign in the bracket in the last term, which may be adjusted by integrating by parts.
Now we use (29) in equation (101) to write the inverses obtaining

<O-Ja>dyn —Ya / dt’ {Ca(T - T/)<O-(T)é-(7/)>dyn + Ra(T - T/)(O-(T)O'(T/»dyn} . (102)

Now, reinstating the indices i , keeping in mind that yﬁ — (1 —t)(qq — qq—1) and using (97)
we obtain:

< 1 /—qa—qalzjl‘aoi> =N /TdT’{C(T—T/)R(T—T/)+R(T—T/)C(T—T/)} ’

Vi—t4 g
(103)

where

C= Z(qa - qa—l)ca , R= Z(qa - qa—l) Ra . (104)
7.3 Dynamical version of Guerra’s remainder
Going back to (90) and putting all terms together:

aH T T
—E< t> =—/ dT/{CR-f-RC}(T,T/)—I—/ dt'{CR}(r,1")
N at dyn
T T
= —/ dv'{CR} (7,7 + / dt'{C—CHR—-R}(7,7"). (105)

This is closely analogous to Guerra’s expression for the remainder [14]. To see this bear
in mind the connection between statics and dynamics discussed in the previous sections. We
consider a process, where the parameters are adiabatically varying. We assume the this process
is stationary step by step, and satisfies at each step:

R(t) = —Bx(7)C'(v)=—B(r)C'(7),
R(t) = —p(1)C'(r)=—Pp(r)C(7), (106)
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for two different effective temperatures 8(7), f(7). One can substitute the above relations in
(105). As example one can write

1 dp

/dT/{CR}(T,T/)Z—/O dT{CC/}(T)[;(T)ZE(l-F/O dfcz(f)a).

When the multithermalization condition 8(t) = (t) = Bx(7) holds for all T one gets

o oo
—l<@> - P (1+/ dv cz(f)d—x) Wb / dr{c—cPm . o
N\ ot dyn 4 0 dt 4 Jo dt

and since g—’; has by construction a negative sign, the negativity of the Guerra’s remainder for
dynamical average is obtained in dynamical setting with the assumption of multithermaliza-
tion. We may now perform thermodynamic integration of the 1.h.s., and because of multither-
malization we obtain a dynamical version of the Guerra’s bound (86).

The relevance of such positivity in a dynamical setting is still to be understood. On one
hand, in the equilibrium picture the positivity of the remainder has provided an excellent guide
to search for the rigorous proof of the Parisi solution in the mean field case. On the other
hand the dynamical setting described here provides a bridge with experimentally accessible
computations and thus makes possible to test the robustness of the positivity property also
beyond the assumption of multi-reversible thermalization.

8 Being realistic: practical measures for glasses

A realistic glass may be modelled as a system of particles, of different sizes to avoid crystalli-
sation. One may subject such a system to a multibath, by applying uncorrelated fields to each
particle, themselves in contact with a slow thermal baths.

On the other hand, several developments in the 90’s [10,29,30] based on the Random First
Order scenario, pointed to the fact that the structure of an aging glass could be reproduced by
the measure (5) with a Hamiltonian

H= ) V(& =3)+7 ) T %k D 1P, (108)
ij i i

with § = % and T,¢s a free parameter, adjusted to represent the out of equilibrium system

at its age, of the order of what the temperature was at the moment it fell out of equilibrium.

As one can see, { is not the only parameter because there is also the intensity y, and
herein lies the entire problem. The auxiliary slow bath selects the states with the appropriate
effective temperature, but in order to do so, it needs to have an intensity y that scales with the
rate of escape from those states, their inverse lifetime. In a mean-field situation, as explained
in Section IV A, in which states with higher free-energy density have an exponentially large
lifetime ~ e?V | one can let y — 0 at the end of the calculation, because states have zero escape
rate in the thermodynamic limit. In other words, the thermodynamic limit and the y — 0 limit
do not commute. In a finite-dimensional case, where the escape rate is finite, the limit y — 0
sends us back to the usual Gibbs-Boltzmann measure, and we get nothing. In other words,
the thermodynamic limit and the y — O limit do not commute.We need a value of y that is as
small as possible, but large enough to compensate for the escape rates (i.e. the finite lifetime)
of the states. Clearly, the construction is not without ambiguities.

When we work with a multibath, we make the same construction, and of course we have
the same problem with y. However, here we have a direct experimental test of our assump-
tions. Consider the following protocol: we let our system age. Assume that at time t,, it is
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still out of equilibrium. Regardless of whether it will eventually equilibrate or not, we wish to
characterize the measure that describes it such as it is. We check by measuring correlation and
response that the system has a two-temperature fluctuation-dissipation behavior, a fact that is
well-attested numerically, at least as a good approximation. Now we apply a weak multibath
such that: i) timescale is of the order of the a correlation decay (from qg4 to zero) scale of
the glass, ii) it has the same temperature as the fluctuation-dissipation one of the system, and
crucially, iii) its amplitude is just sufficient so that we verify that the system becomes station-
ary by virtue of its interaction with the bath (the a timescale ceases to grow, as it does in an
aging system). Next, we slowly change parameters of multibath, temperature and intensity v,
always verifying that the timescale of the slow bath is of the order of the a timescale, and that
the effective slow temperatures of bath and system are the same. If such a procedure is possi-
ble, and we can take the system to the liquid situation in which it is in ordinary equilibrium,
then a (multi)thermodynamic integration is legitimate, and we have in effect experimentally
proven, following the results in the previous sections, that the system as it was at the ‘age’ at
which we started, may indeed be described by the multibath measure, with the amplitude we
needed to ascribe to it so that the system remained stationary from the moment we connected
the multibath, and was multithermalized by it.

Note that it is both the parameters T,;; and y that play a role. Indeed, we may describe
this as a (Gedanken) experiment to measure these two parameters.

9 Conclusions

The Parisi construction, although often described as a solution, is in fact something wider: a
symmetry-breaking scheme [32]. In this sense it is more akin to the general ideas of ferromag-
netism from Curie to Landau, than to the Onsager solution for the Ising model. This is why we
may ask if it applies to other problems, such as finite-dimensional spin glasses. Indeed, the fact
that it is a scheme where a symmetry group is broken into symmetry subgroups means that it
is possible to propose a solution of this form in any model. The problem is, however, that the
symmetry in question (replica symmetry) is a very bizarre one, and is too closely dependent
on one particular formalism.

On the other hand, the dynamics with many timescales — and one temperature scale at
each — can be thought of as as a symmetry-breaking situation as well. Consider first ordinary
thermalization of Hamiltonian dynamics. When a system is thermalized at a given temperature
and then isolated, it has a dynamic time-reversal symmetry with temperature as its parameter,
that implies the fluctuation-dissipation and Onsager reciprocity relations. The Hamiltonian
dynamics itself, before choosing a temperature, had a larger group of symmetry, and ther-
malization can be seen as the act of breaking down this symmetry to a subgroup labeled by
the temperature. Multithermalization of widely separated timescales corresponds to a more
complicated breaking of the large symmetry group, with a parameter for each timescale. This
may seem an unnecessarily pompous and abstract way of putting things, but, again, it allows
us to see that any system with slow dynamics and widely separated timescales may possess a
solution with multithermalization.
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