
SciPost Phys. 10, 115 (2021)

Non-Wilson-Fisher kinks of O(N) numerical bootstrap: From the
deconfined phase transition to a putative new family of CFTs

Yin-Chen He1?, Junchen Rong2 and Ning Su3

1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
2 DESY Hamburg, Theory Group, Notkestraße 85, D-22607 Hamburg, Germany

3 Institute of Physics, École Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland

? yinchenhe@perimeterinstitute.ca

Abstract

It is well established that the O(N)Wilson-Fisher (WF) CFT sits at a kink of the numerical
bounds from bootstrapping four point function of O(N) vector. Moving away from the WF
kinks, there indeed exists another family of kinks (dubbed non-WF kinks) on the curve
of O(N) numerical bounds. Different from the O(N) WF kinks that exist for arbitary
N in 2 < d < 4 dimensions, the non-WF kinks exist in arbitrary dimensions but only
for a large enough N > Nc(d) in a given dimension d. In this paper we have achieved a
thorough understanding for few special cases of these non-WF kinks, which already hints
interesting physics. The first case is the O(4) bootstrap in 2d, where the non-WF kink
turns out to be the SU(2)1 Wess-Zumino-Witten (WZW) model, and all the SU(2)k>2 WZW
models saturate the numerical bound on the left side of the kink. This is a mirror version
of the Z2 bootstrap, where the 2d Ising CFT sits at a kink while all the other minimal
models saturating the bound on the right. We further carry out dimensional continuation
of the 2d SU(2)1 kink towards the 3d SO(5) deconfined phase transition. We find the
kink disappears at around d = 2.7 dimensions indicating the SO(5) deconfined phase
transition is weakly first order. The second interesting observation is, the O(2) bootstrap
bound does not show any kink in 2d (Nc = 2), but is surprisingly saturated by the 2d
free boson CFT (also called Luttinger liquid) all the way on the numerical curve. The
last case is the N =∞ limit, where the non-WF kink sits at (∆φ,∆T ) = (d − 1, 2d) in
d dimensions. We manage to write down its analytical four point function in arbitrary
dimensions, which equals to the subtraction of correlation functions of a free fermion
theory and generalized free theory. An important feature of this solution is the existence
of a full tower of conserved higher spin current. We speculate that a new family of CFTs
will emerge at non-WF kinks for finite N, in a similar fashion as O(N)WF CFTs originating
from free boson at N =∞.
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1 Introduction

Conformal field theory (CFT) is of fundamental importance and has applications in various
fields of physics, ranging from AdS/CFT in string theory to phase transitions in condensed
matter physics. Bootstrap [1, 2], a technique utilizing intrinsic consistencies and constraints
from the conformal symmetry, is one of most powerful tools in the study of conformal field
theories. In two dimensions, thanks to the special Virasoro symmetry and Kac-Moody symme-
try, bootstrap provides exact solutions of many CFTs including the 2d Ising CFTs and minimal
model in 1980s [3]. However, for decades there was little progress of applying bootstrap to
higher dimensional (d > 2) CFTs until the seminal work [4], which initiated the modern re-
vival of the bootstrap method aiming at solving known CFTs (e.g. Wilson-Fisher (WF), QED,
QCD, etc.) in higher dimensions, as well as exploring the uncharted territory of CFTs. In cer-
tain examples, the bootstrap method was used to extract the world’s most precise predictions
of critical exponents [5–12] of known CFTs. Many other successful applications were sum-
marised in a recent review [13]. It is also possible that the bootstrap method can help us make
progress on another frontier, namely discovering new CFTs.

Interesting CFTs usually sit at“kinks” of the bootstrap curve, such as the Ising model [14],
the three dimensional O(N) vector models [15] and many Wilson-Fisher CFTs with flavor
symmetry groups to be subgroups of O(N) [16–20]. Sometimes bootstrap curves shows more
than one kink [19–23] 1. For example, on the O(N) bootstrap curve there are at least two
kinks, the first one was successfully identified as O(N)WF CFTs, while the nature of the second
kink (we dub non-WF kink) remains an open question 3. For a given space-time dimensions
d, typically the non-WF kinks only appear when N is larger than a critical Nc [22]. In this
paper, we focus on the study of the physics of non-WF kinks, and in some special cases we
have achieved a thorough understanding analytically and numerically. These include the O(4)

1The non WF kinks of the O(N) bootstrap curves were first discovered in 2d in [21]. Similar results were
discovered in higher dimensions in 2.

3See [19,22] for attempts in identifying these non Wilson-Fisher kinks.
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bootstrap kink in two space time dimensions, and the N →∞ limit in arbitrary dimensions.
Even though the O(2) bootstrap curve in two dimensions does not develop a kink, we find that
the numerical bound is saturated by the free boson theory, which is also called Luttinger liquid
in condensed matter literatures.

The 2d O(4) non-WF kink turns out to be the SU(2)1 Wess-Zumino-Witten (WZW) the-
ory [24], and we find its dimensional continuation shows an interesting connection to the
deconfined quantum critical point (DQCP) [25,26]. The DQCP was originally proposed to de-
scribe a phase transition between two different symmetry breaking phases, namely Neel mag-
netic ordered state and valence bond state. Its critical theory has many dual descriptions [27],
one of which is 3d SO(5) non-linear sigma model (NLσM) with level-1 WZW term. There
is a long debate on whether DQCP is continuous or weakly first order [28–33]. Monte Carlo
simulations are consistent with a continuous phase transition, but also show abnormal finite
size scaling behaviors [32, 33]. More importantly, the critical exponent η from Monte Carlo
violates the rigorous bound from conformal bootstrap [13, 34], which dashes the hope of a
continuous phase transition if SO(5) symmetry is emergent. An interesting proposal to recon-
cile these inconsistencies is, DQCP is slightly complex (non-unitary) [27,35,36], hence shows
pseudo-critical (weakly first order) behaviors. More concretely, a way to study the pseudo-
critical behaviors is through dimensional continuation from 2d to 3d [37, 38]. The scheme
of this dimensional continuation is motivated by the connection between DQCP and SU(2)1
WZW theory: the former can be described by a 3-dimensional SO(5) NLσM with a level-1
WZW therm, while the latter is a 2-dimensional SO(4) NLσM with a level-1 WZW term. The
action in integer dimensions can be written as

S =

∫

d xd 1
2g2
(∂µ~n) · (∂ µ~n) + kΓW ZW [~n]] . (1)

The scalar field ~n has d + 2 conponents, and satisfies the constraint ~n · ~n = 1. Here ΓW ZW is
the standard Wess-Zumino-Witten term. Notice π2+1(S3) = π3+1(S4) = Z, the level k takes
integer values. Naively, a physically plausible (though may not be mathematically concrete)
way of dimensional continuation is to consider d = 2+ε dimensional SO(4+ε) NLσM with a
level-1 WZW therm. This maybe seems impossible in the action level, it is however not hard
to study this scheme using numerical bootstrap. We study O(4 + ε) bootstrap in d = 2 + ε,
and observe that the kinks disappear at around d∗ = 2.7. This agrees reasonably with the
one-loop value d∗ = 2.77 [37] and supports the scenario that the SO(5) DQCP is weakly first
order (pseudo-critical).

The solution of the O(N =∞) non-WF kink is more exotic. It turns out to be equal to the
superposition of two physical four point function, for example, in d = 3 dimensions,

1
2
〈ψ̄iη(x1)ψ̄ jη(x2)ψ̄kη(x3)ψ̄lη(x4)〉 − 〈φi(x1)φ j(x2)φk(x3)φl(x4)〉GF F , (2)

where ψi are N free Majorana fermions carrying O(N) vector index, η is another Majorana
fermion that is neutral under O(N) transformation, and φi is a scalar operator with scaling
dimension ∆φ = 24. The bracket 〈. . .〉GF F means the four point function of generalised free
field (GFF) theory, or in other words, the four point function is calculated using Wick con-
traction. The exotic structure of subtracting two four point functions at N =∞ limit makes
it difficult to interpret finite-N non-WF kinks as known CFTs. An important property of the
solution at N =∞ limit is, there exists a full tower of conserved higher spin current, a feature
reminiscent of the free fermion theory. Therefore, it is possible that the non-WF kinks at finite

4We thank Zhijin Li and Andreas Stergio to suggest the possibility that this kink could be related to the free
fermion theory.
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N become a new family of CFTs in a similar manner of O(N) WF CFTs originating from the
free boson theory.

The paper is organised in the following way. In Sec. 2 we discuss the general features of
the non-WF kinks. In Sec. 3, we discuss the dimension continuation of the 2d O(4) non-WF
kink which corresponds the SU(2)1 WZW model and its dimensional continuation. In the
subsequent section, we discuss the O(2) bootstrap bounds in two dimensions and the infinite-
N limit of O(N) bootstrap. The plots in the paper are all calculated with Λ= 27 (the number of
derivatives included in the numerics). For the definition of Λ and other bootstrap parameters,
we refer to [39].

Note added. After the completion of this work, we became aware of a parallel paper [40]
which has some overlap with ours.

2 Non-WF kinks on the O(N) bootstrap curve
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Figure 1: Bounds on ∆T (the scaling dimension of the leading scalar operator in the
rank-2 symmetric traceless tensor representation of O(N)) in terms of∆φ of 2d CFTs
with O(3), O(5), O(10), O(48), and O(∞) global symmetries (from left to right).
Shaded regions are consistent with bootstrap constraints, therefore allow unitary
CFTs to exist.
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Figure 2: Bounds on ∆T (the scaling dimension of the leading scalar operator in
the rank-2 symmetric traceless tensor representation of O(N)) in terms of ∆φ of 3d
CFTs with O(16), O(20), O(40), O(100), and O(∞) global symmetries (from left
to right). Shaded regions are consistent with bootstrap constraints, therefore allow
unitary CFTs to exist.
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We start by considering the 4-point correlation function 〈φi(x1)φ j(x2)φk(x3)φl(x4)〉 of
a CFT with O(N) global symmetry, with operator φi(x1) carrying O(N) vector index, and
calculating it using the φa(x1)×φb(x2) OPE:

φa ×φb = S+ + T+ + A− . (3)

Here S, T and A refer to the operators in the O(N) singlet, symmetric rank-2 tensor, and anti-
symmetric rank-2 tensor. The superscript “±” denotes the spin selection: the S and T sectors
contain even spin operators, while the A sector contains only odd spin operators. The 4-point
function from the s-channel decomposition is [41,42],

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉 =
1

x
2∆φ
12 x

2∆φ
34

�

δi jδkl

∑

O∈S+
λ2
φφO g∆,l(u, v)

+(
1
2
δilδ jk +

1
2
δikδ jl −

1
N
δi jδkl)

∑

O∈T+
λ2
φφO g∆,l(u, v)

+(
1
2
δilδ jk −

1
2
δikδ jl)

∑

O∈A−
λ2
φφO g∆,l(u, v)

�

. (4)

g∆,l(u, v) is the conformal block, and u = x2
12 x2

34/(x
2
24 x2

13), v = x2
14 x2

23/(x
2
24 x2

13). Similarly,
by considering the four point in the crossed channel one can get another conformal block
decomposition of the 4-point correlation function, which is Eq. (4) with i↔ k and x1↔ x3.
Equating two different channels one obtains a non-trivial crossing symmetric equation [41,42].

∑

O∈S+
λ2
φφO





F
−H
0



+
∑

O∈T+
λ2
φφO





F(N−2)
2N

H(N+2)
2N
F
2



+
∑

O∈A−
λ2
φφO





F
2
H
2
− F

2



= 0 , (5)

with
F = v∆φ g∆,l(u, v)− u∆φ g∆,l(v, u), H = v∆φ g∆,l(u, v) + u∆φ g∆,l(v, u) .

By demanding the OPE coefficients λφφO to be real, from the bootstrap equation one can
obtain numerical bounds of scaling dimensions of operators in the φ×φ OPE, in terms of φ’s
scaling dimension ∆φ [4]. Typically one will bound the lowest scaling dimensions (e.g. ∆S ,
∆T ) of scalar operators in different channels of group representations. It is well known that
the O(N) WF CFT appears at kinks on the curve of numerical bounds of ∆S and ∆T in d = 3
dimensions [15]. The result can be easily generalized to 2 < d < 4. Besides the O(N) WF
there are also other kinks (i.e. non-WF kinks), which, for example, are shown in Fig. 1 and
Fig. 2. These non-WF kinks exist on both the ∆φ −∆S and ∆φ −∆T curve, and it seems that
the kinks on two curves have identical ∆φ . We find that the bounds of ∆T converge faster
than those of ∆S . Also as will be clear later, in most cases it is more physically meaningful to
study the ∆φ −∆T curve rather than the ∆φ −∆S curve.

Different from the O(N)WF kinks which only occur in 2< d < 4 dimensions, the non-WF
kinks seem to exist in arbitrary dimensions (2≤ d ≤ 6 at least). Also in 2< d < 4 dimensions,
the positions of non-WF kinks are quite far away from WF kinks. For example, in d = 3 dimen-
sion (see Fig. 2) non-WF kinks have (∆φ ,∆T ) ≈ (1.2 ∼ 2.0,3.8 ∼ 6.0) (as N varies), while
WF kinks are pretty close to the Gaussian theory with (∆φ ,∆T ) ≈ (0.5 ∼ 0.52, 1.0 ∼ 1.3).
Another crucial feature is, for a given space-time dimension d the non-WF kinks only appear
when N is larger than a critical Nc [22]. In d = 2 dimension Nc = 2, and Nc seems to increase
with d 5. Also the kink becomes sharper as N increases (see Fig. 1 and Fig. 2), and in the
N →∞ limit the kink evolves into a sudden jump at (∆φ ,∆T ) = (d − 1,2d).

5It is also worth mentioning that the numerical convergence is slower for a larger d.
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In general, except for a few cases, it is unclear if these non-WF kinks as well as the nu-
merical bounds have any relation to CFTs or any physical theories. The rest of the paper will
discuss several special cases where we have good understanding, through which we hope to
inspire the understanding of non-WF kinks in general cases.

3 From 2d SU(2)1 WZW to 3d SO(5) DQCP

3.1 O(4) symmetry in 2d: SU(2)k WZW theory
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Figure 3: Numerical bounds of∆S (the scaling dimension of the leading scalar oper-
ator in singlet representation of O(4)) and ∆T (the scaling dimension of the leading
scalar operator in the rank-2 symmetric traceless tensor representation of O(4)) of
O(4) CFTs in 2d. Shaded regions are consistent with bootstrap constraints, there-
fore allow unitary CFTs to exist. The scaling dimensions of SU(2)k WZW theory are
(∆φ ,∆T ,∆S) = (

3
2(k+2) ,

8
2(k+2) , 2 + 8

2(k+2)) for k ≥ 2, which is denoted as blue dots
connected by a solid line. The k = 1 theory, located at (∆φ ,∆T ,∆S) = (0.5, 2,4), is
denoted as the red dot.

The SU(2)k WZW theory has a SO(4)∼= SU(2)L×SU(2)R
Z2

global symmetry, and a special parity
which flips one space direction and the two SU(2) groups simultaneously. It turns out that a
subset of the crossing equation which equals (5) at N = 4 is already sufficient for detecting
SU(2)k WZW models (see Appendix A for more discussion on this). Fig. 3 shows the numerical
bound for the leading singlet (S) and rank-2 tensor (T), which has a kink at (∆φ ,∆S) = (0.5, 4)
and (∆φ ,∆T ) = (0.5,2), respectively. They match the theoretical values of SU(2)k=1 WZW
theory. More interestingly, SU(2)k≥2 WZW theory seems to saturate the numerical bound of
∆T on the left side of SU(2)k=1 WZW theory. This phenomena is a mirror version of well-
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known observation of the Z2 bootstrap in 2d, in which the 2d Ising CFT appears at the kink
and all the minimal models saturate the numerical bound on the right hand side of Ising CFT
[4,43]. The reason that SU(2)1 WZW appears as a kink is the leading operator in the T -channel
of SU(2)k WZW gets decoupled from the theory at k = 1. On the other hand, the numerical
bound of ∆S seems to be larger than the SU(2)k≥2 WZW theory. It is unclear whether it is a
convergence issue, although we do not see a visible improvement from Λ= 19 to Λ= 27.

One can further read out the spectrum of S, T and A channel operators from the extremal
functional method [44]. It is also possible to numerically study the OPE’s of the leading oper-
ators of each channel. We found that the spectrum and OPE coefficients of the solution at the
kink agrees with the SU(2)1 WZW theory.

3.2 Dimensional continuation to SO(5) DQCP
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Figure 4: The numerical bounds for ∆T (the scaling dimension of the leading scalar
operator in the rank-2 symmetric traceless tensor representation) and∆S (the scaling
dimension of the leading scalar operator in singlet representation) for CFTs with
O(4 + ε) symmetry in d = (2 + ε) dimensions. Shaded regions are consistent with
bootstrap constraints, therefore allow unitary CFTs to exist. The plots correspond to
ε= 0.2, 0.4,0.5, 0.6,0.7 from top (below) to below (top) for ∆S (∆T ).

The dimensional continuation of the WF kinks has been explored before [45], and it was
found the scaling dimensions at the WF kinks in fractional dimensions 2 < d < 4 are in
agreement with the ε-expansion calculation. In this section we will study an exotic way of
dimensional continuing the non-WF kink, motivated by recent papers [37,38] that studied the
deconfined quantum critical point (DQCP) [25,26].

As shown in previous section, the SU(2)1 WZW theory appears as a kink in the curve of
O(4) bootstrap bounds in d = 2 dimensions, so we can further bootstrap O(4+ ε) symmetry
in d = 2 + ε dimensions. As shown in Fig. 4, for small ε the kink still exists, but becomes
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weaker and weaker as ε increases, and finally disappears around ε∗ ≈ 0.7 6 This reasonably
agrees with the one-loop value ε∗ = 0.77 [37]. η = 2∆φ − d + 2 and ∆S − d decreases with
ε, which is also consistent with the expectation of pseudo-critical behavior. Theoretically, the
CFT can become complex when the lowest singlet operator becomes relevant [27, 35, 36]. In
our numerical data, however, ∆S seems to be larger than d when ε = 0.7. This might be an
artifact of numerical convergence, also it is hard to locate the precise critical ε∗ as the kink
becomes very weak.

4 Analytical results for some other bootstrap bounds

4.1 O(2) symmetry: 2d free boson/ Luttinger liquid
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Figure 5: The numerical bounds for ∆T (the scaling dimension of the leading scalar
operator in the rank-2 symmetric traceless tensor representation of O(2)) and∆S (the
scaling dimension of the leading scalar operator in singlet representation of O(2))
for CFTs with O(2) symmetry in 2d. Shaded regions are consistent with bootstrap
constraints, therefore allow unitary CFTs to exist. The solid line corresponds to 2d
free boson which has ∆T = 4∆φ and ∆S = 2.

The numerical bounds from O(2) bootstrap does not show any kink 7, but it indeed detects
2d CFTs, namely a 2d free boson (also called Luttinger liquid in condensed matter literatures).

6The critical ε∗ is read out from the∆φ−∆S curve as the kink is sharper there. Notice a subtlety when we apply
bootstrap method to study conformal field theories in factional dimensions is that these theories are intrinsically
non-unitary, due to negative norm states [46, 47]. Such non-unitary states have high scaling dimensions and the
bootstrap results are insensitive to them. The disappearance of the kink at ε∗ ≈ 0.7, on the other hand, should be
explained by the fixed point annihilation mechanism proposed in [37,38].

7In 2d the non-WF kink appears only when N > 2.
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It is well known that the 2d free boson is a CFT with an exact marginal operator. Its global
symmetry is U(1)L ×U(1)R, but we can just consider its diagonal U(1), i.e. the charge conser-
vation symmetry. The charge creation operator (i.e. vertex operator), eiαΦ, can be written as
a O(2) vector (φ1,φ2) = (Re(eiαΦ), Im(eiαΦ)). Its scaling dimension ∆φ can be continuously
tuned from 0 to ∞ by deforming the compactification radius of bosons. The lowest scaling
dimension in the T -channel is∆T = 4∆φ , while in the S-channel one has∆S = 2 independent
of ∆φ . The four point function is,

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉 =
1

x
2∆φ
12 x

2∆φ
34

�

δi jδkl(v
−∆φ + v∆φ )

+(δilδ jk +δikδ jl −δi jδkl)u
2∆φ v−∆φ

+(δilδ jk −δikδ jl)(v
−∆φ − v∆φ )

�

. (6)

Fig. 5 shows the numerical bounds of ∆T and ∆S in terms of ∆φ . In the ∆φ −∆T curve it
is clear that the 2d free boson saturates the numerical bounds. For large ∆φ there is a small
discrepancy due to the numerical error of finite Λ. The ∆φ −∆S curve, on the other hand, is
only saturated by the 2d free boson at small ∆φ . At large ∆φ the numerical bounds approach
the point (∆φ ,∆S)=(1,4), which corresponds to the four point function (7) to be discussed
later. This result again suggests that the ∆φ −∆T curve is more intrinsic for understanding
the non-WF physics in the O(N) bootstrap calculation.

4.2 Infinite-N limit

The infinite-N limit can be studied directly by taking 1/N = 0 in the bootstrap equation.
In d dimensions the kink sits at (∆φ ,∆T ) = (d − 1, 2d), and on the left of the kink the GFF
saturates numerical bounds∆T = 2∆φ . The S-sector spectrum ofφ×φ OPE is very exotic: the
scalar channel (l = 0) is totally empty with no operator present (except the identity operator),
while in other spin (l > 0) channel only one operator, i.e. the higher spin conserved current
(∆S,l = l + d − 2), is present for each l. The 4-point correlation function at the kink turns out
to be 8,

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉=
1

|x12 x34|−2(d−1)

× (δi jδkl G
a[u, v] +δilδ jkGb[u, v] +δikδ jl G

c[u, v]) , (7)

Ga[u, v] = 1−
ud/2−1(−1+ u+ v + vd/2 + uvd/2 − vd/2+1)

2vd/2
,

Gb[u, v] = ud−1v1−d Ga[v, u] ,

Gc[u, v] = Gb[u/v, 1/v] .

This four point function is unitary 9. Surprisingly, The above four point function equals to
the subtraction of correlation functions of two different theories, namely a free fermion theory
(FFT) and a GFF theory: in d = 3 dimensions, where (7) equals

1
2
〈ψ̄iη(x1)ψ̄ jη(x2)ψ̄kη(x3)ψ̄lη(x4)〉 − 〈φi(x1)φ j(x2)φk(x3)φl(x4)〉GF F . (8)

The FFT contains N free Majorana fermions ψi and a single free Majorana fermion η, so the
fermion bilinear ψ̄iη is a O(N) vector. Using Wick contraction, the above expression reduces

8Notice this four point function can also be viewed as a solution to the O(N) bootstrap equations even at finite
N. The point (∆φ ,∆T ) = (d − 1, 2d) almost saturates the finite N bootstrap bound.

9In two and four dimensions, by expanding the four point function in conformal blocks, we have proven that
for each channel, the operators have positive OPE2.
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to products of two point functions

〈ψ̄i(x1)ψ j(x2)〉= δi j
xµ12γµ

|x12|3
, 〈η̄(x1)η(x2)〉=

xµ12γµ

|x12|3
, and 〈φ(x1)φ(x2)〉=

1
|x12|4

. (9)

With a few lines of algebra one can show that (7) and (8) are identical.
The solution (7) has quite a few exotic features. First of all, if we bound the λ2

φφTµν
OPE

coefficient numerically, we will get that the central charge c = c f . Here c f is the central charge
of a single Majorana fermion. Its spectrum also contains conserved higher spin currents. This
poses a puzzle that the theory seemingly contradicts a theorem [48] saying that CFTs with
conserved higher spin currents are free theories which have a central charge proportional to
N . From (8), the solution to this puzzle is clear. The theory contains more than one conserved
spin-2 current,

T1
µν = ψ̄iγ[µ∂ν]ψi , and T2

µν = η̄γ[µ∂ν]η , (10)

while the theorem in [48] assumed a single spin-2 current. Notice

λ2
φφT1

µν
∼

1
N

, and λ2
φφT2

µν
∼

1
c f

. (11)

Only the contribution of λ2
φφT2 survives in the large N limit. We can also think about what

kind of 1
N corrections that will turn (7) into a “good” CFT. By “good” we mean CFTs with a

single conserved current and order N central charge. This is possible if T2
µν acquires anomalous

dimension. The second exotic feature is the minus sign in front of the GFF four point function
in (7), this makes the interpretation of it as known CFTs really difficult. Another exotic feature
is that if we decompose the four point function (7) into conformal blocks, we will find that
there is no spin-0 block in the S-channel. This is also observed numerically. It turns out that
the OPE coefficients of S-channel scalars of both FFT and GFF scales as O(1/N), therefore
disappears at the strict N =∞ limit. We also observe that the spectrum of GFF is a subset of
the spectrum of FFT. Consequently, a four point correlation function c1〈4pt〉F F T − c2〈4pt〉GF F
is consistent with bootstrap as long as the OPE coefficients c1λ

2
F F T − c2λ

2
GF F are positive for all

the operators in GFF. More importantly, by choosing c1, c2 properly (c1 = 1/2, c2 = 1), many
operators disappear in the block expansion. These includes the (∆, l) = (2d−2,0) operator in
the T -channel and many other operators. After this superposition, the leading scalar operator
in the T -channel has scaling dimension to be (∆, l) = (2d, 0). This explains why the numerical
bound follows ∆T = 2∆φ (GFF) for small ∆φ , and has a sudden jump at ∆φ = d − 1 from
∆T = 2d − 2 to ∆T = 2d. Since FFT and GFF are present in arbitrary dimension, we expect
the non-WF kink in the infinite-N limit to also exist in arbitrary dimensions, and we have
numerically verified it for 2≤ d ≤ 6 dimensions.

This teaches us an important lesson, a kink on the bootstrap curve can correspond to the
subtraction of four point functions of two different theories. The key requirement for this
to happen is the spectrum of one theory is a subset of the spectrum of the other theory. This
requirement is apparently very stringent in d > 2 dimensions, namely except for (generalized)
free theories there is no known pair of theories satisfying it. On the other hand, the non-WF
kinks at finite N obviously do not correspond to free theories. Therefore, it would be interesting
and exotic if the appearance of non-WF kinks at finite N are also due to the subtraction of four
point functions of two theories.

The other possibility is that non-WF kinks detect a single theory rather than the subtraction
of two theories. The four point function in the infinite-N limit, on the other hand, just happens
to be identical to the subtraction of FFT and GFF. Previous identification of 2d SU(2)1 WZW
theory as the O(4) non-WF kink seems to favor this scenario.
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5 Conclusion

We study the non-WF kinks in the O(N) bootstrap curves. This family of kinks, different from
the WF kink, exists in arbitrary dimension. In a given dimension, there exists a critical Nc below
which the kink disappears. In general, we do not understand the physics of this new family
of kinks except for few cases. In the infinite-N limit, the kink sits at (∆φ ,∆T ) = (d − 1,2d)
with d being the space-time dimensions. The four point function at the kink equals to the
subtraction of correlation functions of a free fermion theory and generalized free theory. One
lesson from this example is, subtracting two theories (whose spectrum are similar) could also
generate a kink in the curve of bootstrap bounds. However, it seems that the kink at finite N
cannot be interpreted in this way. For example, the O(4) kink in 2d corresponds to the SU(2)1
WZW theory. We further study the dimensional continuation of the SU(2)1 WZW kink to 3d
and discuss its relation with deconfined phase transitions.

Besides the kink, the numerical bounds in 2d also have a few intriguing properties. The
O(2) curve does not have a kink, but is saturated by the free boson theory (∆T = 4∆φ), a CFT
with continuously tunable scaling dimensions due to an exact marginal operator. On the O(4)
curve, the SU(2)1 WZW theory appears at the kink and SU(2)k>1 WZW theories (∆T =

8
3∆φ)

saturate the numerical bounds on the left side of the kink. For a general N , the numerical
bounds on the left side of the kink seems to obey a simple algebraic relation ∆T =

2N
N−1∆φ . It

will be interesting to know if there exists an analytical four point function giving this relation
for a general N .

Except for few cases it is rather unclear which physical theories the non-WF kinks corre-
spond to. A major challenge is that there is no known CFT whose symmetry and operator
contents are similar to what we observed numerically at the non-WF kinks 10. There was one
proposal that the intrinsic symmetry of 3d non-WF kinks is SU(N ∗) rather than O(N) (with
N ∼ (N ∗)2 − 1, and one should bootstrap the four point function of SU(N ∗) adjoint operators
instead of O(N) vector operators [22] 11. In the 3d SU(N ∗) adjoint bootstrap, there appear two
adjacent kinks on the bound of leading SU(N ∗) singlet operator, and they were interpreted as
QED3-Gross-Neveu and QED3 CFTs respectively, while the SU(N ∗) adjoint scalar field φ is in-
terpreted as the fermion bilinear operator. 12 This proposal is interesting however one should
be particularly careful about the following: Firstly, the scaling dimension of SU(N ∗) singlet
at the kink is way larger than that of QED3 (e.g. the kink of SU(15) has ∆S ∼ 10 but the
N f = 15 QED3 has ∆S < 4). A plausible but unsettling possibility is the numerical conver-
gence is extremely slow due to that the OPE coefficient is small. Secondly, at large enough
N , QED3-Gross-Neveu has a relevant singlet (i.e. the mass term of Yukawa field φ2 with
∆S = 2 + O(1/N ∗)) while the leading S-channel scalar operator of QED3 is irrelevant (with
∆S = 4+O(1/N ∗)). Their the fermion bilinear operators have similar scaling dimensions, it is
hard to imagine that they both saturate the bootstrap bound. It would be interesting to study
the large N limit so as to improve our understanding.

Although a thorough understanding of the non-WF kinks remains elusive, we think many
of these kinks would have contact with physical theories given the presented results of O(2),
O(4) at 2d and O(∞) at arbitrary dimensions. An exciting possibility is that they correspond

10Besides the O(N) WF CFTs, QCD3 with O(Nc) gauge group also has O(N) global symmetry. However, in such
QCD3 theories the low lying operators are fermion bilinears which are the O(N) rank-2 tensors rather than the
O(N) vectors we considered here.

11The S-channel bootstrap bounds obtained by studying four-point functions of scalar operators in the O(N)
vector representations coincides with the S-channel bootstrap bounds obtained by studying four-point functions of
scalar operators in the SU(N ∗) adjoint representation. See [40] for a proof of the coinciende of the bounds.

12Since the two kinks are so close to each other, it would be interesting to confirm that the two kinks indeed
corresponds to two separate solutions of the crossing equation, possibly by studying the extremal functional with
higher numerical precision.
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to a new family of CFTs that were unknown before. To make progress it is necessary to obtain
precise spectra of the putative CFTs, which might be achieved by studying the mixed correlator
bootstrap of O(N) vector V and symmetric rank-2 tensor T .
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A Bootstrapping the SU(2)k WZW theory: O(4) versus SO(4)

The action (1) preserves a usual SO(d + 2) symmetry and a special kind of parity

P∗ = {ZO(d+2)
2 × P}diag . (12)

One can choose its action on the scalar fields ~n to be

(n1(xµ), n2(xµ) . . . , nd+2(xµ))→ (−n1( x̃µ), n2( x̃µ) . . . , nd+3( x̃µ)),

x̃µ = (x0,−x1, . . . xd−1) . (13)

Specialized to SU(2)1 WZW models, the symmetry fixes the four point function to have the
following form

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉 =
1

|x12|2∆φ |x34|2∆φ

×
�

P(0,0)
i jkl

∑

O∈(0,0)

λ2
φφO

�

g∆,l(z, z̄) + g∆,−l(z, z̄)
�

+P(1,1)
i jkl

∑

O∈(1,1)

λ2
φφO

�

g∆,l(z, z̄) + g∆,−l(z, z̄)
�

+
∑

O∈(0,1)+(1,0)

λ2
φφO

�

P(1,0)
i jkl g∆,l(z, z̄) + P(0,1)

i jkl g∆,−l(z, z̄)
�

�

.

(14)

The cross ratio is defined in two dimension as

z =
z12z34

z13z24
, z̄ =

z̄12z̄34

z̄13z̄24
, with zi j = x0

i j + x1
i j , and z̄i j = x0

i j − x1
i j . (15)
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The SO(4) projectors are defined as

P(0,0)
i jkl =

1
4
δi jδkl ,

P(1,1)
i jkl =

1
2
δilδ jk +

1
2
δikδ jl −

1
4
δi jδkl ,

P(0,1)
i jkl =

1
4

�

δilδ jk −δikδ jl

�

+
1
4
εi jkl ,

P(1,0)
i jkl =

1
4

�

δilδ jk −δikδ jl

�

−
1
4
εi jkl . (16)

The conformal blocks are

g∆,l = k∆+l(z)k∆−l(z̄)

kβ(x) = xβ/22F1(β/2,β/2,β , x) . (17)

Notice the parity symmetry (12) does the following interchanges

P(1,0)
i jkl ↔ P(0,1)

i jkl , z↔ z̄, and g∆,l(z, z̄)↔ g∆,−l(z, z̄) , (18)

therefore fix the last term in (14). Let us rewrite (14) into the following form

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉=
1

|x12||x34|

�

Gi jkl(z, z̄) + G(t)i jkl(z, z̄))
�

,

(19)

where

Gi jkl(z, z̄) =
1
4
δi jδkl

∑

O∈(0,0)+
λ2
φφO

�

g∆,l(z, z̄) + g∆,−l(z, z̄)
�

+
�

1
2
δilδ jk +

1
2
δikδ jl −

1
4
δi jδkl

�

∑

O∈(1,1)+
λ2
φφO

�

g∆,l(z, z̄) + g∆,−l(z, z̄)
�

+
�

1
2
δilδ jk −

1
2
δikδ jl

�

∑

O∈(0,1)−+(1,0)−
λ2
φφO

�

g∆,l(z, z̄) + g∆,−l(z, z̄)
�

, (20)

and

G(t)i jkl(z, z̄) =
1
4
εi jkl

∑

O∈(0,1)+(1,0)

λ2
φφO

�

g∆,l(z, z̄)− g∆,−l(z, z̄)
�

.

(21)

Gi jkl(z, z̄) is invariant under the usual parity transformation, while G(t)i jkl(z, z̄) is only invariant
under the twisted parity (12). As is clear from the invariant tensor, they satisfy the crossing
equation independently.

The parity even combination of the block

g∆,l(z, z̄) + g∆,−l(z, z̄) , (22)

can be dimensional continued to d > 2, while the parity odd combination

g∆,l(z, z̄)− g∆,−l(z, z̄) , (23)

can not. This can be shown by solving the Casimir equation directly. Another way to under-
stand this is that in d = 2, the rotation group is SO(2), the spin l state and spin −l state are
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two independent irreducible representation of the conformal group. Their blocks g∆,l(z, z̄)
and g∆,−l(z, z̄) (hence (22) and (23)) appear independently in the four point function. In
higher dimensions, however, they belong to the same irreducible representation. There is a
unique block. We can derive the crossing equation from (14),

∑

O∈(0,0)+
λ2
φφO









1
4 F
−1

4 H
0
0









+
∑

O∈(1,1)+
λ2
φφO









F
4

3H
4
F
2

1
4H









+
∑

O∈(1,0)−+(0,1)−
λ2
φφO









F
2
H
2
− F

2
0









= 0 , (24)

with

F = ((1− z)(1− z̄))∆φ

×(g∆,l(z, z̄) + g∆,−l(z, z̄))− (zz̄)∆φ (g∆,l(1− z, 1− z̄) + g∆,−l(1− z, 1− z̄))

H = ((1− z)(1− z̄))∆φ

×(g∆,l(z, z̄) + g∆,−l(z, z̄)) + (zz̄)∆φ (g∆,l(1− z, 1− z̄) + g∆,−l(1− z, 1− z̄))

H = ((1− z)(1− z̄))∆φ

×(g∆,l(z, z̄)− g∆,−l(z, z̄)) + (zz̄)∆φ (g∆,l(1− z, 1− z̄)− g∆,−l(1− z, 1− z̄)) .

(25)

The last row of the crossing equation (24) comes from the twist parity invariant part G(t)i jkl .
Since we do not know how to dimensional continue it to higher dimension, we will discard
this line when doing numerical bootstrap. This truncation can also be viewed as originated
form the fact that the invariant tensor εi1...iN of SO(N) group can not appear in the four point
function 〈φi1(x1)φi2(x2)φi3(x3)φi4(x4)〉 as long as N 6= 4. (The εi1...iN tensor appears in the
N-point function.) After rescaling the S-channel OPE, the first three lines of the above crossing
equation becomes exactly the N = 4 case of (5). As we show in the main text, the constraints
form the first three lines of crossing equation already allows detect the two dimensional SU(2)k
WZW model.

As a final remark, the four point function of SU(2)1 WZW model is,

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉 =
1

|x12||x34|

×
�

P(0,0)
i jkl

4(z − 2) (z̄ − 2)
p

(z − 1) (z̄ − 1)

+P(1,1)
i jkl

4zz̄
p

(z − 1) (z̄ − 1)

+P(1,0)
i jkl

−4zz̄ + 5z̄ + 3z
p

(z − 1) (z̄ − 1)
+ P(0,1)

i jkl
−4zz̄ + 3z̄ + 5z
p

(z − 1) (z̄ − 1)

�

.

(26)

In literature [49] it is often written in terms four point function of SU(2) group elements,

〈g(x1)a1
b1 g(x2)

−1
b2

a2 g(x3)
−1
a3

b3 g(x4)b4
a4〉=

1
|x12||x34|

G(u, v),

G(u, v) = zz̄
Æ

(z − 1) (z̄ − 1)
�δ

a4
a3
δ

a2
a1

z
+
δ

a2
a3
δ

a4
a1

1− z

��δ
b3
b4
δ

b1
b2

z̄
+
δ

b1
b4
δ

b3
b2

1− z̄

�

,

with g being a SU(2) group element and a, b = 1,2.
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