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Abstract

We examine the space of allowed S-matrices on the Adler zeros’ plane using the recently
resurrected (numerical) S-matrix bootstrap program for pion scattering. Two physical
quantities, an averaged total scattering cross-section, and an averaged entanglement
power for the boundary S-matrices, are studied. Emerging linearity in the leading Regge
trajectory is correlated with a reduction in both these quantities. We identify two po-
tentially viable regions where the S-matrices give decent agreement with low energy S-
and P-wave scattering lengths and have leading Regge trajectory compatible with experi-
ments. We also study the line of minimum averaged total cross section in the Adler zeros’
plane. The Lovelace-Shapiro model, which was a precursor to modern string theory, is
given by a straight line in the Adler zeros’ plane and, quite remarkably, we find that this
line intersects the space of allowed S-matrices near both these regions.
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1 Introduction

Before the advent of QCD, Chew’s S-matrix bootstrap program [1] was at the forefront of
research in the 1960s. One of the most studied questions was finding a bootstrap solution
to pion scattering, which was consistent with Lorentz invariance, crossing symmetry and
which could produce the phenomenologically observed Regge trajectories for the light mesons
(Chew-Frautschi plot). String theory originated in an attempt to find such a solution, leading
to the Veneziano amplitude [2] and its generalizations, particularly the so-called Lovelace-
Shapiro model [3, 4] for pion scattering. Unitarity led to the Regge intercept of unity, while
phenomenology demanded that the Regge intercept be near half. String theory ideas took
off in a different direction, leading to the identification of consistent string theories as quan-
tum theories of gravity,–see [5] for a very nice account of the early history of string theory.
This original attempt to connect with hadron physics was more or less abandoned until the
discovery of the AdS/CFT correspondence,–see [6] for a recent review of holography inspired
string hadron physics. The question of whether the bootstrap could give a consistent picture of
hadron physics thus lay unanswered until the current re-examination of this question through
the papers [7,8].

In this work, we will closely follow the numerical methods initiated in [7, 8] to study the
space of allowed S-matrices, allowing for some interesting modifications. The ingredients we
will borrow from [7] are a) using a crossing symmetric basis which took into account the
cut at s = 4 in the complex s-plane b) imposing Adler zeros in the isospin-0 and isospin-2,
spin-0 partial waves, and crucially c) Imposing the ρ resonance at

√
s = (5.5 − 0.5i) in units

where mπ = 1. Using these ingredients and demanding partial wave unitarity, an exclusion
region called the “lake” was found in the space of Adler zeros. In [9], we supplemented these
conditions by imposing the signs on the D-wave scattering lengths dictated by unitarity and
the Froissart-Gribov formula. In addition, we set the same signs on the linear combinations of
S-wave scattering lengths, which follow from chiral perturbation theory (χPT). Equivalently,
these signs follow from demanding certain sign-definiteness in the quantum part of relative
entropy, as explained in [9]. A narrower allowed region called the “river”,–see fig.(1)–was
obtained.

With such a huge class of potentially interesting S-matrices, a natural question is which of
these boundary S-matrices exhibit linear Regge trajectories (we will refer to this as linearity
frequently) and are compatible with the experimental S- and P-wave scattering lengths [10].
We will focus on the leading Regge trajectory. Quite fascinatingly, we find that the regions
along the river bank which admit linearity are limited. In particular, one region is close to
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the Adler zero values, which follow from two loop χPT . Another small region with linearity
and decent S- and P-wave scattering lengths lies in the lower boundary, far from the χPT
values. More remarkably, both these regions also coincide with where the Lovelace-Shapiro
model passes through the allowed space of S-matrices. In the Lovelace-Shapiro (LS) model,
the slope and intercept can be adjusted to allow Adler zeros in the isospin-0 and isospin-2,
spin-0 partial waves. This gives a line of models that intersects the river in distinct places. The
zero-width LS model itself is not unitary in these interesting regions1 but we will see that the
bootstrap approach potentially leads to a unitary, finite width version of the LS model.

Once these observations are in place, one of the main questions arises: What is so unique
about the QCD point, or less ambitiously, the models exhibiting linearity? While the two-loop
χPT point lies within the river and hence, in the current formulation of the bootstrap, is
challenging to study directly2, we can ask what is so special about the kink type feature near
this point. We find that if we consider the averaged total scattering cross-section, σ̄, which
is related to the imaginary part of the AB → AB type amplitude in the forward limit via the
optical theorem, for individual boundary S-matrices, then this QCD kink is the region where
the sharpest decrease in σ̄ happens. A related observation we also report is that the isospin
space entanglement entropy (more appropriately the entanglement power to be described
below) for the final state particles in the forward direction also exhibits a similar reduction.
These observations hint at a natural quantum information-theoretic selection principle in the
space of allowed S-matrices.

2 S-matrix bootstrap reloaded

Let us begin by briefly recalling the key numerical ideas used in [7]. For more details, we
refer the reader to Appendix A. We are interested in pion-pion scattering in 3 + 1 dimensions,
where the S-matrix is decomposed into the isospin channels. For numerical purposes, using
the technology developed in [8], a crossing symmetric basis is used, which encapsulates the
s-channel cut at s = 4. A corresponding partial wave expansion is done, and partial wave
unitarity is checked. The low energy Adler zeros are imposed on the isospin-0 and isospin-2,
spin-0 partial wave coefficients. These are at unphysical values of the Mandelstam variable s
and are treated as parameters to vary. State of the art two-loop χPT [12] places these zeros at
s0 = 0.4195 , s2 = 2.008 which provides a comparison point3. We will sometimes refer to this
as the “QCD point” and the kink in the neighbourhood of this, as the “QCD kink”. Note that the
former is an abuse of terminology since the location of the QCD Adler zeros, non-perturbatively,
is of course not known. The ρ resonance at

√
s = 5.5−0.5i is imposed as a zero on the physical

sheet. Using these, an exclusion region dubbed as the “lake” was obtained in [7]. On further
imposing the experimental S and P-wave scattering lengths as inputs, a smaller region dubbed
the “peninsula” was also obtained. Borrowing a terminology from the numerical conformal
bootstrap, a “kink” was identified at (s0, s2) ≈ (0.36, 2.04). Following [7], we will truncate
the crossing symmetric basis at Nmax and impose unitarity on Lmax partial waves on an s-grid
of 200 points.

In [9], in addition to the conditions above, dispersion relations and χPT motivated in-
equalities constrained the lake further leading to a “river” like allowed region. The D-wave
inequalities were found using the Froissart-Gribov representation which rely on subtractions–

1See for example, [11].
2Since each point inside the river corresponds to infinitely many allowed S-Matrices, there is no unique S-Matrix

which describes two-loop χPT in our current formulation.
3The orange and red points in fig 1 are associated with uncertainties of 0.12 on the x-axis and 0.08 on the

y-axis. We have only represented the mean value for clarity
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Figure 1: Pion river at Nmax = 16. The behaviour changes rapidly at points A,B,C and
D. The red cross marks the two-loop χPT . The brown straight line is the Lovelace-
Shapiro model allowing for general Adler zeros. The green regions(near regions A
and C) exhibit linearity. The inset shows a zoomed version with the tree-level, one-
loop and two-loop χPT values indicated in black, orange and red respectively.

(for details refer to [13]),– and are of the form,

a(0)2 + 2a(2)2 ≥ 0 , a(0)2 − a(2)2 ≥ 0 . (2.1)

The S-wave inequalities were motivated from 2-loop χPT and are:

a(0)0 + 2a(2)0 ≥ 0 , a(0)0 − a(2)0 ≥ 0 , a(2)0 ≤ 0 , (2.2)

where a(I)
`

’s are the scattering lengths defined in eq.(A.7). The first two S-wave inequalities
are the analogs of the D-wave inequalities but do not have a dispersion relation proof4. In
addition to these inequalities, χPT results also suggest a(2)2 ≥ 0. The S-wave inequalities lead
to stronger constraints than the D-wave ones; this is because of the form of the ansatz used
in the analysis in [7]. In section 5, we will discuss S-matrix bootstrap without imposing the
S-wave or D-wave inequalities.

The river is indicated in fig.(1). We have indicated by A, B, C, D, four obviously interesting
points where there is some sharp change in behaviour, as will be elaborated below. The point
A is what we will refer to as the “QCD kink” and is given by (s0, s2) = (0.33, 2.12)5. This is
different from the “kink” in [7] since, barring the signs on the scattering lengths explained
above, we have not incorporated anything from experiments. Note that the two-loop χPT
value for the zeros is quite close to the kink. It appears that the tree-level, one-loop, and
two-loop zeros are slowly moving towards the kink A.

4Zvi Bern tells us that if there is a dimensional continuation of the dispersion relations that enables us to
bypass subtractions, then one should be able to impose the inequalities that follow from unsubtracted dispersion
relations. If a dimension can be found where the dispersion relation converges, one can use it without worrying
about subtractions(See [33]).

5B: (0.92,1.66), C:(2.43,0.46), D:(0.62,1.0) .
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The straight brown line in fig.(1) is the zero-width (non-unitary) Lovelace-Shapiro (LS)
model extended to allow for Adler zeros as described in detail in Appendix C. The LS model
equation in the plane of Adler zeros is given by s2 ≈ 2.37 − 0.79 s0 and intersects the river
at several locations as can be seen in fig.(1)6. These intersection points cause a remarkable
change in the behaviour of the river boundary. The two intersections (A and B) are on the
upper boundary, and the third intersection (C) is on the lower boundary. Apart from the
intersection, there is also a tip like structure on the lower boundary at D.

Next, we will check for the resonances along the river.

3 Linear Regge trajectory

We shall use the methods developed in Appendix B.1 to determine the location of resonances
in partial waves. As can be seen in eq.(B.8), resonances correspond to peaks in ∣ f`∣2. Since
we do not have elastic unitarity, we will track peaks in the ratio ∣ f`∣2/∣S`∣2. Curiously enough,
there is a small region around the kink near A (specifically, we have observed almost linear
Regge for s0 ∈ (0.34, 0.44)) of fig.(1), where we observe discernible peaks for all spins (we
have checked up to ` = 8.). When we plot their locations vs. spin, `, they are approximately
linear7 (with the statistical coefficient of determination R2 ≥ 0.9). Furthermore, they are close
to their corresponding experimental values, as shown in fig.(2) and fig.(10), which is great.
As shown in fig.(2.b) the slopes for the even and odd peaks coincide only near A.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

sR

J

s0
0.34
0.35
0.36
0.37
0.38
Expt

0.35 0.40 0.45 0.50 0.55 0.60

0.2

0.3

0.4

0.5

0.6

s0

α
'

(a) (b)

Figure 2: (a) Variation of best fit line with s0 on the upper boundary. For s0 = 0.35
the best fit line including ` = 0 to ` = 6 is given by J = 0.38 + 0.51sR while the
experimental one is J = 0.27 + 0.54sR (Experimental masses of mesons taken from
[29]).(b) Variation of the slope α′ of even(black) and odd(red) spins with s0 on the
upper boundary in the neighbourhood of A. Except near s0 ≈ 0.35 the even/odd
spins separate.

In fig.(1), there is also a region near C, which has approximate linearity of resonances.
However, the area where this linearity holds is small in comparison to A, and the individual
peak values are somewhat further away from experimental values, as can be seen in fig.(10).

6LS line enters the disallowed region for some values of s0. This is allowed since LS is non-unitary.
7We measure linearity only for those S-matrices who show peaks for all `. If the peaks are missing for some `,

the corresponding S-matrix is deemed not linear
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Nevertheless, we do not have a definitive way to rule out the S-matrices in this region as unfea-
sible for describing experiments. In region B, curiously, even/odd spins line up separately with
different slopes (see Appendix B.2). Finally, in region D, there is approximate linearity with
a larger slope; however, ` = 8 peaks are missing. The bottom line is that there is interesting
linearity of different kinds in all four discernibly interesting regions in fig.(1).

One might wonder whether these peaks are simply numerical artifacts. To put these un-
savoury thoughts to rest, we shall show convergence with Nmax and Lmax in Appendix D. It
is somewhat challenging to demonstrate convergence with Nmax , since the river boundary
changes slightly with Nmax . Also, as can be seen in fig.(10), several discontinuous jumps in
peak positions can alter the best fit and R2 values significantly. The Lmax convergence is some-
what easier to demonstrate since the river changes considerably less with Lmax .

4 Selecting the QCD point

One of the main lessons that the conformal bootstrap has taught us is that physical theories like
the 2d, 3d Ising models, and the Wilson-Fisher fixed points in fractional dimensions lie at the
kinks in allowed spaces of theories [14]. Multiple correlators further constrain these allowed
regions down to islands (which we do not consider here). In the same spirit, it is indeed
quite striking that the QCD values appear to lie at a kink in the space of allowed S-matrices
on the Alder-zeros plane. But what is so unique about the QCD point? More generally, what
is so special about the models which describe linearity in the resonances? To examine these
questions, we will use two different observables: (a) Averaged total scattering cross-section
for π0π0 and π+π− and (b) Entanglement entropy in isospin space using entanglement power.

0.4 0.6 0.8 1.0 1.2
0.6

0.7

0.8

0.9

1.0

s0

R
2

2.48 2.50 2.52 2.54 2.56 2.58
0.90

0.92

0.94

0.96

0.98

1.00

s0

R
2

(a) (b)

Figure 3: (a) Region A: Plot of R2 vs s0 of even(Black) and odd(red) trajectories
for upper boundary near Region A. We have good linearity when R2 (coefficient of
determination) is closer to 1. (b) Region B: Plot of R2 vs s0 of even(Black) and
odd(Red) trajectories for upper boundary near Region C
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4.1 Averaged total scattering cross section

Let us consider the total scattering cross section for the process AB → anything which arises
from the optical theorem. Specifically we compute the averaged total cross section given by

σ̄(s0, s2) =
1

2scut
∫

scut

4
ds

√
s − 4

s
Im (MAB→AB(s, t = 0)) , (4.1)

with scut denoting the cut-off s up to which the average is considered. Since we are going to
consider σ̄(s0, s2) along the river boundaries, we can just write σ̄(s0). We will consider π0π0

and π+π− total scattering cross-sections.
What we find is that σ̄ dramatically decreases near A–see fig.(14). ∂s0σ̄ at the point A

is the minimum amongst all boundary S-matrices. The location of the ∂s0σ̄ minimum does
not alter significantly with scut while the σ̄π

0π0
minimum shifts to s0 ≈ 0.60 with higher scut .

Furthermore, other reactions like π+π0 → π+π0 lead to the same conclusion for ∂s0σ̄. This
dramatic drop in the total cross-section is reminiscent of “operator decoupling” in the con-
formal bootstrap which causes the kink there [14]. It is tempting to conjecture that a similar
phenomena is at play here and may in fact pave the road for a non-perturbative understanding
of the pion scattering problem in QCD.

It is also worth noting that the lower boundary intersection point C also shows a similar
sharp drop, although smaller than A. The fact that Regge behaviour, intersection of the LS line,
and this drop in ∂s0σ̄ occur around the same region seems quite remarkable.

4.2 Entanglement Power

In our previous work, [9], following [16] we had considered a quantity called Entanglement
Power (E) and had initiated its investigation in the context of pion scattering. Starting from an
arbitrary initial state, we define the final state in a specific manner (details given in Appendix
E) through the S-matrix. It has the following form,

E = 1 − ∫
dΩ1

4π
dΩ2

4π
tr1[ρ̄2

1], dΩi ∶= sinθidθidφi . (4.2)

Here ρ̄1 is the reduced density matrix obtained after averaging over the isospins of the in-
coming states and tracing out one of the final state particles. For a d-dimensional spin-space,
E is bounded from above by 1 − 1/d = 2/3 [17, 18]–this provides a nontrivial check for our
calculations. E near threshold s ≈ 4 has a complicated form as shown in Appendix E, but it
can be checked that E ≤ 2/3 and occurs for a(2)0 = 0. Near threshold, we also find E ≳ 0.14.
For higher values of s, the lower bound can decrease (we have not found an absolute lower
bound). In order to define an analogue of the averaged scattering cross section, we shall
consider an averaged entanglement power,

Ē = 1
scut
∫

scut

4
Eds . (4.3)

Figures (4.a) and (4.b) show variation of E with s0. scut = 375 is chosen in order to include
the contribution of all experimentally known resonances. The figures suggest that there is a
correlation between the sharp decrease in σ̄ with decrease in Ē . The joint decrease in σ̄ and
Ē selects out regions A,B,C,D as special.

4.3 Selection rules

Our findings suggest the following selection criteria which pick out S-matrices describing linear
Regge trajectories:
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Figure 4: (a) Variation of Ē and σ̄ with s0 for scut = 375 for upper boundary. (b)
Variation of Ē and σ̄ with s0 for the lower boundary for scut = 375. Blue line is for
σ̄π

0π0
, black for σ̄π

+π− and red for Ē . The green bar indicates linear Regge trajectory
with R2 > 0.93.

1. σ̄ exhibits a minimum,–see fig.(4.a), (4.b), as well as the discussion in Appendix E.
Mandelstam [19] pointed out that linear Regge trajectory with associated narrow widths,
can also be expected to be correlated with low scattering cross sections. Our findings
render support to this expectation.

2. Ē exhibits a minimum. While one may have expected that a minimum in the total cross-
section will be correlated with reduction in entanglement, fig.(4) makes it clear that the
relation is more subtle. While there is a local minimum in Ē where σ̄ is minimized,
the global minimum occurs elsewhere. This is not entirely unexpected since E involves
an averaging in isospin space as well, while the total scattering cross-section involves
averaging over s only. It is clear however, that onset of linear Regge behaviour happens
when both σ̄ and Ē are minimized.

3. The sharpest decrease in σ̄ occurs near A which remarkably is the location of the QCD
point, as witnessed in fig. (14). On the upper boundary near s0 ≈ 0.9, all three quantities
show a minimum; however the even and odd spin resonances lie on straight lines with
different slopes. This indicates that the minimization of σ̄, Ē criteria are not sharp
enough to distinguish when the even, odd slopes are the same. The minimum in ∂s0σ̄ is
a better indicator of this feature.

Applying these criteria select out S-matrices in regions A, C as special. They also have S and
P-wave scattering lengths compatible with experiments8.

5 Diving into the allowed region

Inspired by our observations in the previous section, we consider a method to investigate the
possibility of using the selection rules (as described in 4.3) within the river. We are required

8We refer to the experimental values quoted in [10], namely a(0)0 = 0.2220±0.0215tot , a(2)0 = −0.0432±0.0148tot .
Note that there are more stringent values quoted in [10] which were used in [7] but these need inputs from
analyticity and χPT which we will not use. For the P-wave we will use the older result quoted in [7],
a(1)1 = 0.038 ± 0.002.
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Figure 5: (a) The black curve within the river river gives the s2 with minimum average
cross section for each s0. Note that the curve passes very close to regions A and C
described earlier (b) The value of the corresponding minimum as a function of s0 for
Nmax = 14 and Lmax = 19. The global minimum average cross section appears to be
at s0 = 4

to extremize some quantity to determine a unique S-matrix for any point in the allowed space.
The averaged total cross section is the best candidate for this minimization as it is linear in the
ansatz parameters.

Therefore we minimize the π0+π0 → π0+π0 averaged total cross section for each allowed
point s0, s2; namely we use eq.(4.1) with scut = 375. Now, for each s0, we determine the s2

which has the minimum σ̄. This generates a curve of minimum s2 points. Plotting vs s0, we get
the minimum curve given in figure 5. Remarkably, this curve passes very close to both A and C.
We also repeated the analysis after removing the S and D wave inequalities (which produced the
river) and observed no change to the minimum curve. Furthermore, all the S-matrices along
the curve show Regge behaviour for even spins. This validates our observation motivated
by [19] that minimizing σ̄ will lead to Regge behaviour. Furthermore, in fig.(7), we plot the
entanglement power along this curve and observe local minimum near A and C. Convergence
properties with Nmax and Lmax are provided in appendix D.

We can also perform hypothesis testing following [9] with χPT by calculating averaged
relative entropy, SR(ρboot ∣∣ρχPT),

SR (ρboot ∣∣ρχPT) = ∫
scut

4
ds∫

1

−1
d x P boot

g (x) ln
⎛
⎝
P boot

g (x)
PχPT

g (x)
⎞
⎠

and

Pg(x) = g(x) ∣M(s, x)∣2

∫ 1
−1 d x g(x) ∣M(s, x)∣2

, g(x) = 1

2
√

2σ
e−
(x−y)2

4σ ,

(5.1)

where in calculating P boot
g and PχPT

g corresponding to ρboot comes from bootstrap and ρχPT ,
M(s, x) comes from bootstrap and χPT respectively. y is chosen to be 0.01 and σ is chosen
to be 10−6 . Hypothesis testing results do not depend on y . As shown in 7, we take a maxi-
mum scut of 20 since the validity of χPT decreases at higher s. Very interestingly, we observe
that the S-matrices near region A show the minimum deviation from χPT . Thus hypothesis
testing(w.r.t χPT) favours region A of the minimum curve.
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6 Future directions

The minimization of entanglement power being correlated with interesting physical theories
has been alluded to before in [16] and in a semi-classical context of black hole physics in
[20]. Here we find a remarkable correlation between the minimization of total scattering
cross-section, entanglement power, and emerging linear Regge behaviour. The minimization
of entanglement is consistent with emerging classicality–see, for instance, [21]. One may
expect that for effective field theory description to be valid, such a reduction in entanglement
must happen. For a minimization in entanglement, one may also expect that interaction will
be reduced, a fact corroborated by the total scattering cross-sections’ behaviour. This chain of
arguments supports our findings in this paper, and it will be very worthwhile to investigate
further9.

We found two potentially interesting regions (A and C in fig.(1)), which satisfy linearity
in resonances and exhibit the experimental S and P-wave scattering lengths. Which of these
regions then describes the real world? We do not have a definitive answer to this fascinating
question10, and we leave it to future work to settle this. Our hypothesis testing using quantum
relative entropy does suggest that these S-matrices are “close” to one another in the manner
discussed in [9]. One parting comment is that the absolute value for the interaction range
∣b(2)0 ∣ for the C region is an order of magnitude bigger than A, which itself is in the ball-park
that is predicted by χPT . May be, only experiments will settle this issue in the future.

From a practical point of view, to investigate the physics considered in this paper further,
it would be desirable to have better and faster numerical approaches, perhaps building on the
recent proposals in [23, 24, 32]; for instance, using the current methods, the decay widths
appear to be quite sensitive to Nmax . Furthermore, it may also be beneficial to consider a
better starting point inspired by the narrow resonance approximation. The current ansatz
being employed may be too restrictive to study higher energies–for instance, there is little
hope for exploring the Froissart bound using present numerics. A more ambitious program
of trying to connect with string theory (even a less ambitious question of probing daughter
trajectories) will need such a development. It may also be a fruitful exercise to correlate the
observations in this paper in the large N limit using the AdS/CFT correspondence.
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A S-matrix bootstrap review

Here we briefly review the S-matrix bootstrap describing 2 → 2 scattering of pions as con-
sidered in [7, 9], which built on [8]. Let the initial state and final state be ∣p1, a; p2, b⟩ and
∣q1, c; q2, d⟩ respectively, where a, b, c and d are O(3) group indices. The S-matrix can be
defined as

⟨q1, a; q2, b∣S∣p1, a; p2, b⟩ = 1 + i δ4(p1 + p2 − q1 − q2)Mc d
a b(s, t, u) , (A.1)

where s, t, u are the usual Mandelstam variables. Mc d
a b(s, t, u) has O(3) symmetry and hence

can be expanded as

Mc d
a b (s, t, u) = A(s∣t, u)δa bδ

c d + A(t ∣u, s) δa c δb d + A(u∣s, t) δa d δb c ,

= (3A(s∣t, u) + A(t ∣u, s) + A(u∣s, t))P0 + (A(t ∣u, s) − A(u∣s, t))P1

+ (A(t ∣u, s) + A(u∣s, t))P2 .

(A.2)

PI are the 3 projectors of the O(3) group channels defined as

Psing = P0 =
1
3
δabδ

cd , Panti = P1 =
1
2
(δc

aδ
d
b−δd

aδ
c
b) , Psym = P2 =

1
2
(δc

aδ
d
b+δd

aδ
c
b−

2
3
δabδ

cd) .

(A.3)
Crossing symmetry constraints A(s∣t, u) to follow A(s∣t, u) = A(s∣u, t). Next, the partial wave
expansion is given by

M(s, t, u) = 16 i π
√

s√
s − 4

∑
I=0,1,2
PI ∑
`=0

(2` + 1) (1 − S(I)
`

(s)) P`(x = u − t
u + t

) . (A.4)

We use the following crossing symmetric ansatz for A(s∣t, u)

A(s∣t, u) =
∞

∑
n≤m

anm (ηm
t η

n
u + ηn

tη
m
u ) +

∞

∑
n,m

bnm (ηm
t + ηm

u ) ηn
s , (A.5)

where ηs =
(

√

4− 4
3−
√

4−s)

(

√

4− 4
3+
√

4−s)
, and similarly for ηt ,ηu. Following [7], we truncate to Nmax and

impose unitarity for Lmax partial waves through ∣S(I)
`

(s)∣
2
≤ 1 for a grid of s-values. We can

also define

f (I)
`

(s) =
√

s
s − 4

S(I)
`

(s) − 1

2i
, (A.6)

to satisfy the equivalent unitarity condition of Im ( f (I)
`

(s)) ≥ 2
√

s−4
s ∣ f (I)

`
(s)∣

2
. In terms of

T (I)
`

(s), the scattering lengths (a(I)
`

)’s and effective ranges (b(I)
`

)’s can be defined as,

Re [ f (I)
`

(k)] = k2`[a(I)
`

+ b(I)
`

k2 +O(k2)] , k =
√

s − 4
2

. (A.7)

To get unique S-matrices, we extremize a linear combination of above parameters (anm and
bnm), under the constraint of unitarity, using SDPB [25, 26], similar to [7]. To specialize for
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pions, we include the ρ-resonance. Resonances will be further described in Appendix B. The
ρ-resonance is imposed as,

S1
1 (m2

ρ) = 0 , mρ = 5.5 + i 0.5 . (A.8)

The sign of the imaginary part is such that it corresponds to a zero in the physical sheet. For
bootstrap, we shall consider the Adler zeros in singlet and symmetric channel using,

S(0)0 (s0) = 1 and S(2)0 (s2) = 1 . (A.9)

Tree-level χPT predicts s0 = 0.5 , s2 = 2, one-loop has zeroes at s0 = 0.437 , s2 = 2.003, while
the two-loop values [12] are s0 = 0.4195 , s2 = 2.008. The location of the zero in the (s0, s2)
plane appears to move towards the “kink” at A located at s0 ≈ 0.34 , s2 ≈ 2.1.

To proceed, we first determine which of these pairs of Adler zeros are allowed by unitarity
and the ρ-resonance. This is checked by imposing T (0)0 (s0) = 0 for some s0 ∈ (0, 4) and

checking the sign of Max(T (2)0 (s2)) and Min (T (2)0 (s2)). If the maxima is positive and minima
is negative, the point (s0, s2) in the Adler zero plane is allowed. Repeating this for different
s′0s and s′2s we get the pion lake in [7].

0 1 2 3 4
0

1

2

3

4

s0

s
2

A

B

C

D

X

Figure 8: Experimental “Peninsula” inside the river (indicated by grey dashed line).
This serves as an indicator as to the points where we can expect experimental scat-
tering lengths. Green indicates R2 > 0.9.

Now since the disallowed region of pion lake is very small, one method of increasing
the disallowed region is to impose more experimental constraints. The scattering lengths
a(0)0 , a(2)0 and a(1)1 can be constrained to be within the experimental values [7, 10]
0.2220±0.0215,−0.0432±0.0148, 0.038±0.002 respectively. Imposing these values, in addi-
tion to the ρ-resonance and unitarity, gives us the pion Peninsula, as shown in fig.8. Note that
the experimental values we use here are the weaker ones quoted in [10] which do not use any
analyticity or χPT inputs. As a result, the peninsula we plot below is somewhat larger than
the one in [7].

B Detecting resonances

In this section, we will outline our strategy to locate the resonances. Recent discussions in-
clude [27, 28] in the context of 2d-bootstrap. However, our approach will be a more approx-
imate one, mimicking what happens in an experiment, following the discussions in [29, 30].
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Resonances occur as poles of the S-matrix, with non-zero imaginary part (since the wave func-
tion must decay with time). The complex pole is at s = sr = m2

A− imAΓtotal, where Γ is the decay
width and this pole must be in the second sheet as we will review below.

Subsequently, the partial waves can inherit these poles after projection for isospins I = 0, 1, 2
and angular momentum `. Let us call partial wave on physical sheet as S(I)

`
(s) and on the sec-

ond sheet as R(I)
`

(s). Now, we know that the threshold due to Π(−s) is actually responsible
for square-root branch cut starting at s = 4. It is a single square root type branch cut in the
elastic region which connects two sheets (more complicated for multiple branch cut systems).
Now we write down the elastic-unitarity condition as

lim
ε→0+

S(I)
`

(s + iε)S(I)
`

(s − iε) = 1 . (B.1)

Since, in the elastic range of the branch-cut we must have that limε→0+ R(I)
`

(s+iε) = S(I)
`

(s−iε) ,
hence,

lim
ε→0+

S(I)
`

(s + iε)R(I)
`

(s + iε) = 1 . (B.2)

This is a product of two analytic functions. Now, if we map both the sheets or part of both the
sheets into one, connected through the elastic region branch-cut, the product of these analytic
function will remain 1 as we extend to the whole domain containing this elastic region. If there
was a pole at s ≈ m2

A−imAΓtotal in the second sheet and m2
A is smaller than the inelastic threshold,

then, eq.(B.2) will imply a a zero at s ≈ m2
A − imAΓtotal in the physical sheet. Therefore, from

Schwartz reflection principle,

S(I)
`

(m2
A + imAΓtotal) = (S(I)

`
(m2

A − imAΓtotal))∗ = 0 . (B.3)

This is precisely the resonance condition being used on the physical sheet.

B.1 Breit-Wigner form

Here we will briefly summarize the Breit-Wigner form for resonances. Assuming a well sepa-
rated resonance at s = m2

` − im`Γ for the `th partial wave, we will have the form

f`(s) = g`(s)
s − (m2

`
− im`Γ )

, g`(s) ∈ R . (B.4)

Now, assuming that Γ ≪ m`, i.e. a small enough decay rate, we can analytically continue this
form from below the branch cut in the second sheet onto the branch cut. Next,when s is real
and s > 4, we can impose unitarity, or even stronger, elastic unitarity. Thus we have that

∣S`(s)∣2 = 1 Ô⇒ g`(s) = −m`Γ
√

s
s − 4

. (B.5)

This gives us that

S`(s) =
(s − m2

`) − im`Γ
(s − m2

`
) + im`Γ

. (B.6)

This form has the required zero in the first sheet, if we continue extending further. Note that
this is a consequence of strict elastic unitarity.

Next, we see that in eq.(B.6), when we scan the real axis (which is what we have access
to experimentally), our partial wave will behave as

S`(s)
s→m2

`ÐÐÐ→ −1 + 2(
s − m2

`

m`Γ
)

2

− 2i (
s − m2

`

m`Γ
) . (B.7)
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So we have that near the real part of the resonance, the amplitude will tend to −1, or equiv-
alently, the phase tends to π. It is the latter which is of use to us since in cases when elastic
unitarity is not valid, we can instead define the resonance through a sudden change in phase!
Another alternate definition can be motivated by looking at the form of f`(s) found from
eq.(B.6) which leads to

∣ f`(s)∣2 = 2
s

s − 4
m`Γ

(s − m2
`
)2 + m2

`
Γ 2

. (B.8)

Hence, we see that f`(s) and more generally ∣ f`(s)/S`(s)∣2 has a peak at s = m2
` and this

can be used as a much more general definition of a resonance. Using this strategy we find
fig.(10). For a further check of validity, see appendix D. We have observed that unlike the
peak locations, the widths are not in good agreement with experiments and are sensitive to
Nmax and we will refrain from presenting them.

B.2 Linearity of even and odd trajectories

Here we give plots where linearity emerges for odd and even spins in fig.(9). Only in region
A and to a lesser extend in region C do the odd and even spins line up together.
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Figure 9: (a) Region A: Red lines give best fit odd trajectories and blue lines describe
best fit even trajectories (equations mentioned in the inset). Both even and odd lines
are close together. (b) Region B: Even and odd lines somewhat separated (c) Region
C: Even and odd lines closer than region B but farther than region A and (d) Region
D: ` = 8 missing. Some daughter resonances can be observed in all regions.
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C Lovelace-Shapiro model in the plane of Adler zeros
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Figure 10: (a) Position of peaks vs s0 near the kink A and (b) Position of peaks vs
s0 near the kink C. These peaks were calculated for Nmax = 16 and Lmax = 19. The
bands of a particular color indicate the experimental range of resonances associated
with that spin. Uncertainties taken from [29] and re-scaled in units of ρ mass.

Here, we will briefly discuss the Lovelace-Shapiro (LS) model. We start with the form of the
amplitude in the LS model as [3,4,11,31]

A(0)(s, t, u) = 3
2
(A(s, t) + A(s, u)) − 1

2
A(t, u) , (C.1)

A(1)(s, t, u) = A(s, t) − A(s, u) , A(2)(s, t, u) = A(t, u) , (C.2)

with

A(s, t) = C4
Γ (1 − α(s))Γ (1 − α(t))
Γ (1 − α(s) − α(t)) . (C.3)

Here, C4 is a normalization constant and α(s) is the normalized, linear Regge trajectory of the
ρ−meson (or equivalently the ρ resonance) such that

α(s) = α0 + α′s , α(m2
ρ) = 1 . (C.4)

Now it is usual to demand that the Regge trajectory is fixed by demanding an Adler zero
when one of the external momenta goes to 0. This can be easily implemented using the poles
of the Gamma function. In other words, we simply demand a pole of the Gamma function in the
denominator wherever we want a zero of the amplitude. Now,
when one of the external momenta goes to 0 (lets choose p1 → 0 w.l.o.g), we have that
s = (p1 + p2)2 = p2

2 = m2
π , t = (p1 − p3)2 = p2

3 = m2
π. Hence, we have an Adler zero at

s = t = m2
π and therefore, the Gamma function in the denominator must have a pole there. We

choose the first pole of the Gamma function for this purpose, 2α(m2
π) = 1. This, along with

the normalization of α(m2
ρ) = 1 is enough to fix the trajectory as

α0 =
m2
ρ − 2m2

π

2(m2
ρ − m2

π)
, α′ = 1

2(m2
ρ − m2

π)
. (C.5)
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It can be shown that the above is equivalent to demanding that s2 = 2(m2
π) in our Adler

zero language. This is so as s2 will be the zero of A(2)0 (s) such that

A(2)0 (s) = 1
2 ∫

1

−1
d x P0(x)A(2) (s, t(x), u(x)) , (C.6)

with t(x) = −1
2(s − 4m2

π)(1 − x) , u(x) = −1
2(s − 4m2

π)(1 + x) being the Mandelstam variables
in terms of the scattering angle cos(θ) = x .

Now, we observe that

A(2)(s, t(x), u(x)) = Γ (1 − α(t(x)))Γ (1 − α(u(x)))
Γ (1 − α(t(x)) − α(u(x))) . (C.7)

So, we can see that the numerator is a complex function of x . However, the denominator is

actually independent of x as 1 − α(t(x)) − α(u(x)) = 1 − 2α (4m2
π−s
2 ) .

Therefore, the denominator can be taken out of the integral in eq.(C.6) directly. This leads

to the partial wave A(2)0 (s) inheriting the pole structure of Γ (1 − 2α (4m2
π−s
2 )) in the denom-

inator. Equivalently, we must have that A(2)0 (s2) = 0 should imply that 1 − 2α (4m2
π−s2
2 ) = 0.

This leads to s2 = 2m2
π.

Now, we want to generalize this Regge trajectory such that we do not demand a specific
Adler zero. Instead, we consider the Adler zeros to be free parameters which can take values
between (0, 4) (back in units of m2

π = 1). This is equivalent to the procedure where under
the normalization α(m2

ρ) = 1, we scan the (α0,α′) parameter space. While scanning, we
calculate the Adler zeroes (s0, s2) numerically for each such value of (α0,α′). Upon doing
this, we will obtain a curve in the (s0, s2) plane. Then, we see that all feasible Adler zeroes can
be theoretically parametrized using α0. Therefore, the set of points (s0(α0), s2(α0)) will form
a curve in the Adler zero space. What we actually end up observing is that only for a small
range of values of the parameter, do the Adler zeros actually exist. Furthermore, when they
do exist, they surprisingly form a straight line in the Adler zero space with the approximate
formula of s2 = 2.37168 − 0.787739 s0. Note that this is remarkably close to the large ρ-mass
straight line approximation to the lake [7] which is given by s2 = 2.4 − 0.8s0 and will pass
through the free theory point (s0, s2) = (0.5, 2).

While scanning the parameter space of (α0,α′), we first of all observe that the Adler zeroes
s0, s2 do not exist for the majority of the space. For instance, s2 lies in its expected region of
(0, 4) only for a tiny range of α0 ∈ (0.46, 0.5) which is further decreased when considering
both the Adler zeroes simultaneously. Overall, in the total LS line, α0 varies approximately in
the range of (0.465, 0.486) while the corresponding range of α′ (which is fixed from the nor-
malization of α(m2

ρ) = 1) is approximately α′ ∈ (0.0177, 0.0170)–which in units where mρ = 1
becomes α′ ∈ (0.535, 0.514). Lastly, in the neighborhood of the kink, α0 ∈ (0.48385, 0.48395)
and α′ ≈ 0.516. Furthermore, we have checked using the arguments in [11] that the models
of interest here are not unitary.
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Figure 11: (a) This is the river (black dashed) with all resonances imposed at the
mean value of the experimental ranges. The values of resonances determined from
the S-matrices of this river serve as our benchmark for the method in appendix B.
(b) Behaviour near kink for different Nmax . The LS line (black) passes very close to
the QCD kink. Also note the transition from the tree-level (black cross) to the 1-loop
(orange cross) and finally to the 2-loop (red cross) χPT values.

D Numerics: Checks

Determination of Peaks

As described in Appendix B.1, we shall look to find the peaks of ∣ f`(s)∣2 to determine the loca-
tion of the resonances. However the Breit-Wigner form depends on whether elastic unitarity is
satisfied or not. Since we cannot (at least not yet) impose elastic unitarity, we check the peaks
of ∣ f`(s)∣2/∣S`∣2 instead.
As an exercise, we also constructed another river (fig 11) by imposing resonances upto ` = 6
at masses [29],

mσ = 3.5 − 2 i, mρ = 5.5 − 0.5 i, m f2 = 9 − 0.7 i, mρ3 = 12 − 0.6 i

m f4 = 15 − 0.8 i, mρ5 = 17 − 1.8 i, m f6 = 18 − 1.1 i .
(D.1)

Apart from σ, all other resonances gave favourable results as a function of s0 in the sense
that the location of the peak did not vary more than a few percent. However, we observed a
large variation of the σ peak with s0. Nevertheless, since the variation was within the (large)
experimental error, we should not dismiss our sigma values of fig.(10).

Convergence with Lmax , Nmax

To demonstrate convergence with Lmax , we shall fix the point s0 = 0.35 where we are imposing
the Adler zero, and also the maximisation point s2 = 2.89. We shall work with Nmax = 16. As
can be seen in fig.(12), we can see good convergence with Lmax . For convergence with Nmax ,
we see in fig.(12), the convergence is not as great as `. There may be several reasons for this.
For larger values of Nmax , Lmax = 25 may not be sufficient. Variation of river with Nmax is also
larger than Lmax and it may change the peak profile. Such numerical explorations are beyond
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Figure 12: (a) This shows convergence of peaks for Lmax ∈ [15, 25] at Nmax = 16 and
fixed (s0, s2) = (0.35, 2.89) (b) This shows convergence of peaks for Nmax ∈ [14, 20]
at Lmax = 25 and fixed (s0, s2) = (0.35, 2.89)

our capabilities at this point. But since the general area of peak variation remains small we
can conclude that the peaks do exist and are not numerical artefacts.

The averaged minimum values of section 5 also vary with Nmax and Lmax as given in fig
13. We choose to calculate the minimum values for Nmax = 14 and Lmax = 19 as the values
obtained and the S-matrix behaviour(regge, E and SR(ρ1∣∣ρ2)) are very similar to Nmax = 16
and Lmax = 25. Position of the minimum (as given in fig 5) barely changes with both Nmax

and Lmax .
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Figure 13: Variation of Average minimimum for s0 = 0.3 and s2 = 1.5 with Nmax and
Lmax
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E Details for E and σ̄

E.1 Entanglement Power

We shall briefly describe the derivation of Entanglement Power for S-matrices following [17,
18], [16] and [9]. Since we shall be dealing with isospin indices only, we can write,

∣kn̂, a1;−kn̂, a2⟩ ≡ ∣a1⟩⊗ ∣a2⟩ , (E.1)

where n̂ is a unit 3-vector and a1,a2 are isospin indices. The initial state is defined as,

∣ψi⟩ ∶= R̂(Ω1)⊗ R̂(Ω2) ∣pẑ, a1;−pẑ, a2⟩ , (E.2)

where R̂(Ωi) is rotation in the isospin space of the i th particle. In terms of usual spherical
polar coordinates (θi ,φi), the rotation operator R̂(Ωi) is [9]

R̂(Ωi) =
⎛
⎜⎜⎜⎜
⎝

eiφi cos2 (θi
2 ) − eiφi sin(θi)

√

2
eiφi sin2 (θi

2 )
sin(θi)
√

2
cos (θi) − sin(θi)

√

2

e−iφi sin2 (θi
2 ) e−iφi sin(θi)

√

2
e−iφi cos2 (θi

2 )

⎞
⎟⎟⎟⎟
⎠

. (E.3)

The final state is defined using the S-matrix as,

∣ψ f ⟩ ∶=
1

w(p)2 ∑c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩ ⟨pn̂, c1;−pn̂, c2 ∣S ∣ pẑ, b1;−pẑ, b2⟩ ⟨pẑ, b1;−pẑ, b2 ∣ψi⟩

= 1
w(p)(2π)4δ(4)(0) ∑

c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩S c1c2
b1 b2

(s, cosθ) ⟨b1 ∣ R̂(Ω1) ∣ a1⟩ ⟨b2 ∣ R̂(Ω2) ∣ a2⟩ ,

(E.4)

where we have used the notation,

⟨pn̂, c1;−pn̂, c2 ∣S ∣ pẑ, b1;−pẑ, b2⟩ = (2π)4δ(4)(0)S c1c2
b1 b2

(s, cosθ) , (E.5)

and the inner product,

⟨kn̂, b1;−kn̂, b2 ∣ψi⟩ = w(k) ⟨b1 ∣ R̂(Ω1) ∣ a1⟩ ⟨b2 ∣ R̂(Ω2) ∣ a2⟩ . (E.6)

Using this final state, we can define the total density matrix ρψ f = N̄ ∣ψ f ⟩ ⟨ψ f ∣. Evaluating in
the isospin basis, we get,

(ρψ f )
b1 b2

c1c2

(s, cosθ) =
∑x1 ,x2 ∑y1 ,y2

Mb1 b2
x1 x2(s, cosθ) [My1 y2

c1c2 (s, cosθ)]∗ R̂(1)b1
a1 R̂(2)b2

a2 (R̂(1)c1
a1 R̂(2)c2

a2)
∗

∑z1z2 ∑x1 ,x2 ∑y1 ,y2
Mz1z2

x1 x2(s, cosθ) [My1 y2
z1z2 (s, cosθ)]∗ R̂(1)z1

a1 R̂(2)z2
a2 (R̂(1)y1

a1 R̂(2)y2
a2 )∗

,

(E.7)

where, R̂(1)a
b = ⟨a ∣ R̂(Ω1) ∣ b⟩ and we assume that the scattering is strictly in non-forward di-

rection. The reduced density matrix is defined using, ρ̄1 = tr 2ρψ f . which is used in eq.(4.2)
in the main text, and where dΩi = sinθidθidφi . The general expression in terms of the ampli-
tudes is quite hideous but near threshold, we find the following somewhat simpler expression
for E:

E = 1 − 1
16π2 ∫

2π

0
dφ1∫

2π

0
dφ2

EN(φ1,φ2)
ED(φ1,φ2)

, (E.8)

where with χ1 = cos(φ1 −φ2),χ2 = cos(φ1 +φ2)

EN(φ1,φ2) = 54(a(2)0 )4 (1 + 6χ2
1 + χ4

1) + 48 (a(2)0 )2(a(0)0 − a(2)0 ) (a(0)0 + 2a(2)0 ) (3χ2
1 + 1)χ2

2

+ 16 (a(0)0 − a(2)0 )2 [(a(0)0 )2 + 2a(0)0 a(2)0 + 3(a(2)0 )2]χ4
2

(E.9)
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and
ED(φ1,φ2) = 3[3(a(2)0 )2(1 + χ2

1) + 2(a(0)0 − a(2)2 )(a(0)0 + a(2)2 )χ2
2 ]2 . (E.10)

The φ1,φ2 integrals cannot be carried out analytically even for this case. Nevertheless, using
the NMaximize and NMinimize commands in Mathematica, one can with some effort show
that

0.14 ≲ Es≈4 ≲ 0.67 . (E.11)

The upper limit can be analytically derived to be 2/3. In general, for d-dimensional “spin”-
space the upper bound [17, 18] for our distribution defined through eq.(4.2) 11 is 1 − 1/d
and our result follows since d = 3. This is a non-trivial check on our calculations since it is
unobvious from the complicated form of eq.(E.8) how this arises. In our numerical exploration
we have not found any violation to the upper limit although we do not have a direct proof for
any s.

E.2 Drop in σ̄
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Figure 14: (a) Variation of σ̄π
0π0

with s0 on the upper boundary and (b) Variation
of ∂s0σ̄ with s0 on the upper boundary for different scut . (c) Variation of σ̄ with s0

on the lower boundary and (d) Variation of ∂s0σ̄ with s0 on the upper boundary for
different scut .

11In [17, 18], a stronger upper bound of 1/2 exists for uniform distribution. Our averaging is not using a
uniform distribution and our upper bound simply follows from the known [17, 18] upper bound on the linear
entropy 1 − tr1ρ

2 ≤ 1 − 1/d .
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In fig.(14), we show the behaviour of σ̄π
0π0

as a function of s0 for different choices of
scut . While the actual location of the global minimum near A appears to shift to the right, the
sharpest drop occurs at the same point near A as is clear from the plot of ∂s0σ̄. The situation
is similar near C.
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