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Abstract

We study the mechanisms setting the radius of convergence of hydrodynamic dispersion
relations in kinetic theory in the relaxation time approximation. This introduces a quali-
tatively new feature with respect to holography: a nonhydrodynamic sector represented
by a branch cut in the retarded Green’s function. In contrast with existing holographic
examples, we find that the radius of convergence in the shear channel is set by a col-
lision of the hydrodynamic pole with a branch point. In the sound channel it is set by
a pole-pole collision on a non-principal sheet of the Green’s function. More generally,
we examine the consequences of the Implicit Function Theorem in hydrodynamics and
give a prescription to determine a set of points that necessarily includes all complex
singularities of the dispersion relation. This may be used as a practical tool to assist in
determining the radius of convergence of hydrodynamic dispersion relations.
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1 Introduction

Understanding the foundations of relativistic hydrodynamics as a description of nonequilib-
rium physics has been an important research theme of the past decade. The experimental
motivation behind it comes from the field of ultrarelativistic heavy-ion collisions, where rel-
ativistic hydrodynamics is the framework successfully used to connect the early time physics
of quantum chromodynamics (QCD) with the properties of the particle spectrum in the de-
tectors [1,2]. On the theoretical side, how the hydrodynamic regime emerges from QCD in
particular and quantum field theories in general has turned out to be a subject ripe for discov-
eries.

Our work is motivated by three interrelated lines of theoretical physics research. The first
one concerns microscopically accurate descriptions of strongly-coupled quantum field theories
with large number of degrees of freedom in terms of their classical gravity duals [3]. The
second one concerns partial differential equations that embed relativistic hydrodynamics in
a form of well-behaved and numerically tractable equations of motion for relativistic matter.
We will refer to such frameworks as MIS-type models [4]. The last one concerns relativistic
kinetic theory, which may arise as an effective description of QCD, or as a standalone model.
The common feature among them is the absence of stochastic effects.

Broadly speaking, there are two main strategies to explore the transition to hydrodynam-
ics in these different frameworks. The first involves studying highly symmetric flows, with the
boost-invariant (Bjorken) flow being a widely used model of expanding matter in ultrarelativis-
tic heavy-ion collisions [5]. The second utilizes linear response theory studies of singularities
of retarded two-point functions Gy in the complex frequency plane at a fixed spatial momen-
tum. In our work we will be mostly concerned with the latter situation and we will return to
expanding plasma systems only in the summary.

The key observation of holography is that in a class of quantum field theories, the retarded
two-point functions of the stress tensor in equilibrium have singularities in the form of infinitely
many single poles [6]. Each pole gives rise to a decaying and oscillating contribution upon
inverting the Fourier transform. A similar story holds in MIS-type models, in which the number
of such singularities is finite and small. As a result, some features encountered in holography
can also be understood in these settings where they are often analytically tractable.

Among such poles, there are two special ones, which are arbitrarily long-lived upon making
spatial momentum sufficiently small. These are the hydrodynamic shear and sound modes
characterized by gapless dispersion relations of the respective form,

M g2 4 + 1 2 1M 0 3
w; =—1—k“+O(k and w; =f—k—i——k“+ O(k”), 1

1 sT ( ) I 1/§ 35T ( ) 1)
where 7/s is the ratio of shear viscosity to entropy density and T is the equilibrium tempera-
ture. The small-k expansion is a direct momentum space manifestation of the hydrodynamic
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gradient expansion and in (1) we dropped contributions from terms having two and more
derivatives of fluid variables. The other modes are exponentially decaying in time and corre-
spond to transient effects when perturbing equilibrium by a small amount. For holographic
models, hydrodynamic and transient excitations are nothing else than quasinormal modes of
anti-de Sitter black holes with planar horizons [7].

In the context of the aforementioned foundational aspects, the question that rose to promi-
nence in the past two years, see [8-16], is what is the radius of convergence of the hydrody-
namic dispersion relations when expanded around k = 0 and, if finite, what sets it.

It turns out that in the holographic quantum field theories studied to date starting with [8],
as well as in the MIS-type models analyzed so far [12], the radius of convergence, |k*|, is finite
and the critical momentum it corresponds to, k*, is set by a branch point singularity of the
hydrodynamic dispersion relation. This branch point is the result of a collision between the
hydrodynamic mode in question and one of the transient modes in a complexified spatial
momentum plane. By this we mean that the single pole singularities of the retarded correlator
move in the complex frequency plane as a function of momentum and for some momenta they
degenerate (collide).

Note that in linear response theory it is sufficient to study only the radius of convergence
of the small-k expansion of the dispersion relations. This is because this radius also dictates
the radius of convergence of the position-space gradient expansion of the hydrodynamic con-
stitutive relations as shown in [12], when supplemented with a choice of initial data.

Holography is a framework dealing with strongly-coupled quantum field theories and a
natural question that arises is how the story of modes and their collisions generalizes to weakly-
coupled situations. This is addressed in our present work. The starting point for our consid-
erations is relativistic kinetic theory

p"a.f =C[f], ®))

where f is a one-particle distribution function, that depends on spacetime coordinates and the
particle momenta p*, and C is a collision kernel that defines the model and encodes interac-
tions between particles.’

Kinetic theory can act as an effective description of processes in weakly-coupled quantum
field theories when interference effects can be neglected [17,18]. In particular, the effective
kinetic theory of QCD [19-21] has recently become a framework of significant theoretical and
phenomenological interest in the context of ultrarelativistic heavy-ion collisions [22-31].

In general, little is known about the inner workings of retarded correlators in kinetic theo-
ries with nontrivial collision terms (see, however, [32]). In the present work we will specialize
to a particularly simple and, therefore, widely employed collision kernel that encodes expo-
nential relaxation to the equilibrium distribution function

u f(x>p)_f0(x1p)

T

where u" is the comoving velocity vector, T is the relaxation time and we take f,(x,p) to be
given by a Boltzmann distribution

1 puut

(271:)36 T, @))]

fO(x>p) =

For this so-called relaxation time approximation (RTA) kinetic theory [33] and for massless
particles, the retarded correlators were computed in closed-form in [34] (see also [35]). If

!Throughout the text we assume mostly plus metric sign convention.
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x° denotes time and k is the Fourier transform momentum component along the x direction,
then the retarded correlator in the shear channel takes the form

Gpl (,k)  2kt(2K2T% +3(1 — itw)?) + 3i(1 —itw)(kK21? + (1 —itw)?) L

= 5
—(E+P) 2k7(3+2k272 —3itw) + 3i(k272 + (1 —itw)?) L ’ (%)
whereas in the sound channel one gets
03,03
Ge (w,k) 1, . 2kt +i(1—itw)L ©

—3(E+P) ~3 TZkT(kZT+3ico)+i(k27+3w(i+’rco))L ’

with L denoting the logarithmic term

w—k+%
L=log| —— | . (7)
w+k+

In the above equations £ and P are equilibrium energy density and pressure. The remain-
ing nontrivial components can be obtained using tracelessness and conservation of the stress
tensor. In the rest of the text, if not explicitly stated, we will set T = 1 without loss of generality.

While, unsurprisingly, one finds that there exist shear and sound mode frequencies arising
as single pole singularities of respectively (5) and (6), the correlators also contain logarithmic
branch point non-analyticities. The corresponding branch cuts emanate from w = —% +k
and, therefore, represent a transient sector whose real-time imprint is an exponential decay
supplemented with oscillations and power-law corrections [4].

Following [35], one can understand the branch cuts as originating from the free propaga-
tion of particles whose interactions with the background equilibrated medium are captured by
their finite lifetime set by 7. The branch cut arises because perturbations of the stress tensor
at a given spatial point receive contributions from particles moving with the speed of light and
coming in from various directions. The latter are single pole contributions that the integration
over angles converts to the logarithm (7). Because one deals with a correlator of a conserved
quantity, the contribution of the decaying particles to the stress-energy tensor cannot be lost
and needs to be transferred to other degrees of freedom - the hydrodynamic shear and sound
waves.

The aim of our study of kinetic theory is to understand the interplay between the hydrody-
namic modes — described by single poles which, at low k, are localized close to the origin in the
complex w-plane — and the branch cut transient sector (7). In particular, we want to under-
stand what kind of phenomena set the radius of convergence for the hydrodynamic dispersion
relations in this setup. In [34,35] it was noticed that since the correlator (5)-(6) contains a
branch cut, the hydrodynamic poles can move to a non-principal sheet as a function of (in these
works, real) momentum, labelled as the ‘hydrodynamic onset transition’. However, since the
position of branch cuts is largely a matter of choice, we do not anticipate that this transition
is related to the radius of convergence of the hydrodynamic expansion, and indeed it is not.

Starting from the explicit expressions of the retarded thermal two-point functions con-
tained in equations (5)-(6), we will provide substantial numerical evidence supporting the
fact that, in RTA kinetic theory, the mechanism determining the critical momentum k* is dif-
ferent from holography. Our main findings are the following:

1. In the shear channel, the radius |k7 | is set by a collision between the hydrodynamic pole
w (k) and a nonhydrodynamic branch point w, (k). This corresponds to a logarithmic
branch point singularity of w (k). We find |k7 | = 3/(27).

2. In the sound channel, the radius |k|”|‘| corresponds to a collision between the hydrody-
namic pole wﬁt(k) and another gapless pole that originates in a non-principal sheet of

4
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the retarded correlator. The collision itself takes place on a non-principal sheet of the
correlator, and corresponds to a branch point singularity of wﬁt(k). We find numerically
|ki| 0.7410387 /7.

With the mechanisms in both RTA kinetic theory and holography established, we turn our
attention to general lessons. We use the Implicit Function Theorem to place constraints on
the singularities of the dispersion relation w(k) in any theory where they can be defined by
an equation of the form P(w, k) = 0. Both the location of the singularities and the type of
singularity can be constrained by the form of P.

The structure of the paper is as follows. The shear and the sound channel dispersion
relations in RTA kinetic theory are respectively discussed in sections 2 and 3. Afterward, in
section 4 we comment on our results in light of the Implicit Function Theorem, where we also
provide a general prescription for determining the radius of convergence of the hydrodynamic
modes. We close the paper with a summary in section 5.

2 The shear channel

In the shear channel, the poles of the retarded thermal two-point function (5) correspond to
the solutions of

P (w,k) =2k(3+2k? —3iw) + 3i(k> + (1 —iw)?)L =0. 8)

For future reference, we define A(w, k) = 2k(3 + 2k? —3iw) and B(w, k) = 3i(k* + (1 —iw)?).
Apart from the hydrodynamic mode w | (k), that behaves as

w, (k) =—ék2+..., 9
when k — 0, (5) is endowed with two nonhydrodynamic branch points located at
wfp(k) =+k—i. (10)

Our main focus is the large-order behavior of the series expansion (9). Introducing the ansatz

w (k)= cgk™ an
q=1

into (8), expanding around k = 0, and demanding that the resulting series vanishes order-by-
order, we can find the ¢, coefficients straightforwardly. We have carried out this procedure up
t0 q = qmqx = 500. The results of applying the ratio test to the sequence {c,, q € N} are plotted
in figure 1 (left). We find that the norm of the critical momentum in the shear channel, which
must satisfy

c
lim 2] = (k22 (12)
= | ¢,
is compatible with the value
3
kl=5. (3)
This is illustrated in the left plot in figure 1 by a dashed blue line corresponding to |k 2= g,
as well as in the right plot, where we show that the difference between ’Ci—;l and ijl_2

indeed goes to zero as ¢ — ©0. In order to cross-check this result, we analytically continue
the series expansion (11) into the complex k-plane by means of symmetric Padé approximants,


https://scipost.org
https://scipost.org/SciPostPhys.10.6.123

Scil SciPost Phys. 10, 123 (2021)
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Figure 1: Left: ratio test applied to the sequence {c;, ¢ € N}. As q increases, the
. C . o . _
quantity |2 | approaches a constant. The conjectured limitas g — oo, k7 | 2=4/9,
q
is represented by the dashed blue line in the plot. Right: difference between |kj|_2
C . .
and qc—” as ¢ — 0o. We clearly see that this difference tends to zero as a power-law.
q
o) e |-372
0.500}
4
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Figure 2: Left: location of the poles of the symmetric Padé approximant of order
250 in the complex k-plane. Two lines of pole condensation along the imaginary
k-axis are clearly visible. For the resolution employed here, these lines start at
k = £1.50020004i. These values are compatible with [k | = % Right: difference
between |k.| and |k7 | as the order of the symmetric Padé approximant, q”é“, is in-
creased.

and determine the single poles of the resulting rational function. In this approach, a branch
point singularity of the exact w | (k) manifests itself as a line of pole condensation. The results
of this procedure, for a symmetric Padé approximant of order 250, are shown in figure 2 (left).
We find two lines of pole condensation along the imaginary k-axis, starting at

k = ky = £1.500200041, 14)

in very good agreement with the observations performed above. Furthermore, upon increas-
ing the order of the symmetric Padé approximant, the difference between |k.| and |k} | = %
decreases monotonically in a power-law fashion, as can be seen in figure 2 (right).

In the light of the results presented so far, it is natural to conjecture that the series ex-
pansion of w (k) around k = 0 stops converging due to the presence of two branch point
singularities located at k = :l:%i.

It can be checked directly that (8) vanishes at k = :I:gi, w = %, since the divergence
of the logarithmic term as w — % is suppressed by its w — % prefactor. Hence, the points
(k = :l:%i, w= %) are valid solutions of P; = 0. These points are special from several view-

points. First, when k = :I:%i, the nonhydrodynamic branch point w:btp is located at %, which

6
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implies that at k = :l:%i the hydrodynamic pole collides with a nonhydrodynamic branch point,
as claimed in the Introduction. Second, since these points can also be found by demanding
that

A(w,k)=B(w,k)=0, (15)

at nonzero k, they also correspond to the only finite momentum solutions at which the coeffi-
cient of the logarithmic branch point present in (8) disappears.

Let us illustrate the first point mention above. We will do this by computing numerically
w | along theray k = ky = |k|e'?, calculating its distance to the conrp branch point, and showing
that this distance vanishes as 6 — 7.

Before presenting our results, let us emphasize an important observation that needs to be
taken into account in order to carry out this computation. As originally found in reference [34]
for the real k case, w, can cross the branch cut joining a);;p and w;p.z This crossing does not
entail that | ceases to exist [35]; it just means that | migrates to a different sheet of the
retarded two-point function defined by analytical continuation. While this branch cut crossing
does not pose any obstruction to the convergence of the series expansion of w; around k = 0,
it has to be taken into account when obtaining w ; numerically.

There are essentially two different ways to achieve this. The first one is to trade (8) for an
ODE for w | ; the second, to analytically continue L to a non-principal branch once the branch
cut crossing has taken place. In particular, to go the n-th sheet of P, one just has to replace

L as given in (7) by
w—k+i

L =1
n Og(w+k+i

We have verified explicitly that both approaches are compatible with one another.
To get the ODE, we calculate

%PL(‘ULU(): k)= 0,P, (w) (k), k)’ (k) + P, (w (k),k) =0, 17)

)+27tin. (16)

and employ (8) to replace the logarithmic term in (1 7).2 The final result is that
k(i—2w)) | 43w, (i+w;)—k*=0. (18)

This equation is to be solved with initial conditions given by the hydrodynamic shear mode
small-k expansion. Some results for |w | (kg)— w;;p(ke)l when 6 = 5 —66, 66 > 0 are shown
in figure 3. Our findings confirm our expectations: in the limit 56 — 0, the hydrodynamic pole
and the branch point collide at |k| = %.4 An equivalent plot can be obtained by monitoring
the distance between «w and Opp along the ray defined by 6 = —3 +66.

We would also like to offer an alternative way of picturing the branch point, hydrodynamic
pole collision, more in line with the observations around equation (15). This alternative pic-
ture builds upon the crucial fact that the structure of the solutions of (8) can change quali-
tatively if we analytically continue P, to other sheets. For instance, gapless solutions require
n = 0 and hence do not exist in the non-principal sheets; at the same time, while gapped
solutions are absent in the principal sheet, they do appear when n # 0.

Let us focus on these gapped solutions. By performing the replacement L — L, in P, (as
mentioned in equation (16)) it is possible to obtain them as the following series expansion
around k =0,

(NH,n) _ 1.5 2, 1. 5 21.4 1 2 215
W, n(k)——l+ak+§l(a — 1Dk +al(a —1)*k +%a(a — 1k +..., (19

2Unless stated otherwise, we will always consider that the log function is evaluated on the principal branch.
3The sequence of steps involved in obtaining the equation breaks down right at the point where the hydrody-

namic mode collides with the branch point; we are not interested in this precise point, only in its vicinity.
“Choosing 66 to be negative but of the same magnitude gives the same results.
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1.0 1:2 114 1j6 1:8 210 |k|

Figure 3: Distance in the complex w-plane between the hydrodynamic pole w; and
the branch point w;p as k varies along the ray kg = |k|e!?, for 6 = 57— 107! (blue),
53— 1073 (red) and §—1o—6 (purple). As 7—6 — 0, the distance reaches a minimum
at |k| = %

where the parameter a is constrained to obey the transcendental equation

a—1
a+1

(az—l)(Znn—ilog )—2ia=0. (20)
The important point to keep in mind is that (k = :l:%i, w= %) are still valid solutions in any
non-principal sheet, since the replacement L — L, leaves the conditions (15) invariant. In this
sense, at (k = :l:%i, w= %) the complex curve equation P; = 0 goes from having an infinite
number of solutions to having just one. It is natural to guess that, for each n # 0, there is going

to be at least one w(lNH’") passing precisely through this point. Our numerical computations

support this hypothesis. In figure 4, we plot the trajectories followed by a subset of the co(LNH’”)
poles as k varies from 0 to %i along the imaginary axis. We clearly see that, at k = %i, the
poles degenerate. The relevant w(LNH’") have Re(a) > 0 and Im(a) <0 (> 0) forn <0 (> 0).
An analogous situation takes place if we consider that k ranges from 0 to —%i instead; in this
latter case, the co(LNH’n) poles that become degenerate have the opposite value of Re(a).

To conclude this section, we discuss the behavior of both w, and the correlator (5) in the
vicinity of k = %i. Let us start with the former object, and define

k=——i5, cozé—iﬁ—ie, (21

in such a way that |e| measures the distance between w and the branch point w;:p. A numer-
ical analysis shows that, in the 6 — 0 limit, € behaves as

o

™ Clog6)’ 2

implying that k = %i corresponds to a logarithmic branch point of w ;. We illustrate the
behavior represented by equation (22) in figure 5 — where we consider that 6 € R, 6 > 0,
in such a way that we approach k = %i from below along the imaginary axis — and figure 6,
where we provide the results for another two, different directions.

Regarding the correlator (5), it is natural to wonder the effect that the branch point-
hydrodynamic pole collision we have found has on its residue at the pole. In particular, for

8
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Figure 4: As k goes from O to %i, the gapped poles in the non-principal sheets start at
w = —i (on their respective sheet) and degenerate at the branch point. We plot the
trajectories followed by the poles with |[n| = 1 (blue), [n| = 10 (red) and |n| = 100
(purple) with solid (dashed) curves corresponding to positive (negative) n.

€log ()

£
6

0.005f

0.004f

0.003f

0.002}

0.001}

1) . 1

-0.98

-0.99

-1.00

0.001

0.002 0.003 0.004 0O

“ -log (9)

1
-log (6) -1.01

0.001 0.002 0.003 0.004 0.005

Figure 5: Left: numerically determined ratio % as a function of #g(é) (red dots) to-

gether with the function #g(E) (dashed blue line). Right: numerically determined

elog(6)
5

. . 1 . . .
ratio as a function of “Tog(®) (red dots), and corresponding interpolating func-

tion (solid blue). The values below %g(a) = 4.34294 x 10~* in the dashed blue
curve have been obtained by an extrapolation. For 6 = 0, this extrapolated curve
hits —0.99985, in very good agreement with equation (22).

Re (€) Im (€)
Re (6/log (6)) Im (6/log (6))
-0.97 -1/log| 6| -0.980 -1/log| 4|
0.0005  0.0010  0.0015  0.0020 0.0005 0.0010  0.0015  0.0020
o -0.985
-0.98 e S
" -0.990F ==
—“‘ ''''
-099} -7 / -0.995 L=l
Prae - ',—-ﬁ‘—
PP ettio -1.000f"
-1.00p%
-1.005
-1.01 -1.010

Figure 6: Check that the expression (22) holds when approaching k = %i along
the rays k = %i + Eei(g_ﬁ) (purple) and k = %i + & (orange), with & € R*. The
dashed blue curves correspond to interpolating functions, whose extrapolation to
6 = 0 results in values compatible with —1. Left: check of the real part of (22).
Right: check of the imaginary part.
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1.01¢ 1.01¢

100ksee TO00kszo
0.99} \\\N\\:‘N 0.99¢ \\\N\\:‘N
I I
0.0000 0.0‘005 0.0‘010 0.0‘015 0.0620 ~logldl 0.0000 0.0605 0.0610 0.0615 0.0620 ~1ogidl
Re(RT’Ol) Im(RT’Ol)

Figure 7: Ratios Re(31/41/T0g8) (orange dots) and TmGi/41/og5) (purple dots) when

approaching k = %i along the ray k = %i + £e'? with & € RT. The dashed blue
lines correspond to interpolating functions that, when extrapolated to 6 = 0, are

compatible with one. Left: 6 = Z — -%=. Right: 0 =—Z + .

the picture presented so far to be internally consistent, this residue would need to vanish right
at the critical momentum where the collision takes place. As we illustrate in figure 7, this is
precisely what happens. We considered the quantity

Gg}fl(w,k))

—E+P) .

01,01 _
Ry™ =ReSy=u (k) (
and explored its behavior as a function of k when approaching k = %i from different directions.
Our observations are compatible with the functional form

0,00 31 1
o1, ot , 24
1 4 log(6) 24)

as |6| — 0. The behavior of w, and RT’Ol around k = —%i also follows (22) and (24) respec-

tively, provided one replaces k — —k in the definitions of § and e.

3 The sound channel

In the sound channel (6), the hydrodynamic mode frequencies wﬁ(k) are given by

Py(w, k) = 2k(k? + 3iw) + i(k* + 3w(i + w))L =0, (25)

where L is defined as in equation (7). As before, P has two branch points located at w:l'fp(k).
The hydrodynamic mode frequencies wﬁ(k) behave as

k 2
£01y . 2
W, (k)= :l:—‘/§ 115k +.... (26)

£ around k = 0 has the form

The complete series expansion of W,

oo

k

+ +

wi(k)=+—+ E ckd, 27)
I /3 = q

with ¢ 41 = —c; 41 and c;, .= c; ’ due to the the fact that the hydrodynamic sound modes are

symmetric with respect to the imaginary w-axis for real k, wﬁ(k) = —corlr(k)*. In the following,
we will focus on the en hydrodynamic mode.

10
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al Im(K)
0.80
1.30F
0.78
1.25}F 0.76
- 0.74} T~
1.20F
1 1 1 1 1 L L L L Re k
200 400 600 800 1000q -0.010 -0.005 0.005 0.010 ( )

Figure 8: Left: root test applied to the o coefficients of the series expansion of en
around k = 0. The resulting sequence seems to saturate to a finite value as ¢ — ©o
in a non-monotonic fashion. Left: location in the complex k-plane of the poles of
the symmetric Padé approximant (order 500) to the series expansion of coﬁ around
k = 0 (truncated at order 1000). Three lines of pole condensation are clearly visible.

Plugging (27) into (25), series expanding around k = 0 and demanding that the resulting
expression vanishes order-by-order allows us to determine the ¢y coefficients. We have carried
out this procedure up to a maximum order q = q,,, = 10°. The result of applying the root
test to the coefficient sequence can be found in figure 8 (left). We observe that |Cq_|% saturates
to a finite value in a non-monotonic fashion. In order to find the location of the singularities
of wﬁ(k) in the complex k-plane, we first continue analytically the sum (27) - truncated to

order q,,,,, — by means of a symmetric Padé approximant of order q"ﬁ“" , and then determine the
locations of the poles of the resulting rational function. The three lines of pole condensation
which are closest to k = 0 are depicted in figure 8 (right). One extends along the positive
imaginary axis and emanates from the point

ko =0.7513375i. (28)
The other two are symmetric with respect to the imaginary axis, and start from the points
ki =+0.0102799 + 0.7409764i. (29)

Since |ky| = 0.7410477 < l|kg|, the symmetric points k. seem to be the ones setting the

|day (g% )/dg] arg ®(5.6.)

10, St
8t 2t
6 "

al 065 0.70 ]o.'ﬂ 080
-1F

2_
) —
0.6 0.7 0.8 0.9 1.0 f -3F L ——

Figure 9: For the hydrodynamic mode frequency W computed along the ray

k = Eel% norm of the first derivative with respect to & (left plot) and argument
of L along the corresponding path in the complex k-plane (right plot). The point
& = |k, | has been signalled by the dashed orange vertical line in both plots.
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convergence radius of the series expansion of wﬁ(k) around k = 0.

In order to understand what these symmetric poles correspond to, we transform the orig-
inal complex curve equation Pj(w(k), k) = 0 into an ODE for w(k), just as we described in
the previous section for the shear channel. This ODE reads

C(wy(k), K (k) — D(wy(k), k) =0, (30)
C(w, k) =ik? + 6k w + 3ikw? — 6kw?, (31)
D(w, k) =k*+5ik?*w + 8k*w? — 9iw> — 9w?. (32)

Solving this ODE along the ray k = £e'% where 6, = arg k, and £ € R*, we find the results
displayed in figure 9. In the left plot, we observe that at, & = |k_|,

d .. o
peaks. Hence, k., is close to a point in which a)ﬁ(k) has a divergent first derivative. In the
right plot, we show the phase of the argument of L, & = c‘f;ﬁ: , evaluated along our path. We

see that the point k = k, is reached after wﬁ(k) has crossed the branch cut and entered into
the n = 1 sheet.”

In order to find the critical momentum at which wﬁ’ (k) diverges, we take advantage of the
fact that wh(k) obeys

9Py () (k), k)w|/|(k) + 0k P(w)(k), k) =0, (33)
and, as a consequence, points for which
P”(a), k) = 3wP||(w, k) =0, 0< |8kP||(w, k)| <00, (34)

have a divergent a)ﬁ” (k). A crucial observation is that, since the point we are after lies on
the n = 1 sheet, we need to first analytically continue L — L,_; as described in the previous
section. In the end, a numerical computation reveals that the momentum k. ,—; at which
conditions (34) hold is given by

ke n=1 =0.0102873 + 0.7409673i . (35)

The distance between k. ,—; and k, is 1.17 x 10~>. This confirms that the right point of pole
accumulation observed in the Padé approximant is actually associated with a point in which
a)ﬁ’ (k) diverges. Analogous arguments can be employed to demonstrate that k_ is associated
to a divergent a)ﬁ’ (k) in the n = —1 sheet.

It is natural to wonder whether points in which wﬁ' (k) diverges are restricted to the n = £1
sheets. The answer is negative: for every nonzero n € Z, there exists a point k., of this
kind, which can be found by solving (34) on the n-th sheet. Since, numerically, we find that
ke—pn| = _kj,lnl’ we only discuss the n > 0 case in the following. The behavior of k., is
illustrated in figure 10. We find that Re(k, ,) decreases monotonically with n, approaching
zero as n — 00. On the other hand, both Im(k, ,) and |k ,| increase monotonically, tending
to % in the n — oo limit. Hence, the singularities of wﬁ(k) which are closest to the origin
correspond to k. 1;: these are the singularities that set the convergence radius of the series
expansion of wﬁ around k = 0.

>This observation follows from the fact that arg & flips from +7 to —7.
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Figure 10: Numerically determined values of the points k., (for n > 0) where the
relations (34) are obeyed in the upper-half of the complex k-plane close to the imag-
—/

inary axis. At these points, w | (k) diverges. We plot their real part (left plot), their
imaginary part (middle plot) and their norm (right plot).

An immediate consequence of the results presented above is that the point k = %i acts
as an accumulation point of two infinite sequences of branch points, one coming in from the
right, associated with positive n, and another coming in from the left, associated with negative
n.% Furthermore, the point k = %i seems to correspond to the first purely imaginary pole of
our original Padé approximant (cf. equation (28)). As we argue in appendix A, despite being
associated to the starting point of a line of pole condensation of a Padé approximant, k = %i
does not correspond to a branch point of W, but rather to an essential singularity.”

To conclude this section, we will show that the critical momenta k, , can be understood as
arising from a pole collision. As for the shear channel case, the solutions of the complex curve
equation P = 0 on the non-principal sheets play a prominent role in our analysis. In the case
at hand, the solutions of interest are the non-principal gapless poles,® whose series expansion
around k = 0 is given by
LY SRS S Y P

kK + ... (36)
9 91tn 27 27nm

i
a)(H’n)(k) L
I 3

Our main claim is that the critical momenta k., correspond to branch point singularities at

mode collides with a)l(lH’") on the n-th sheet of Py.

|(|H’1) and coﬁ in the

complex w-plane as we vary k along the ray k = |k|e?. In figure 11 we plot the trajectories of
w/ (solid) and wl(lH’l) (dashed) for 6 —argk,; =—10"2 (brown), —1072 (red), —10~* (blue)
and —107° (purple). As O —arg k.1 — 0, both an and col(lH’l)

oy (ke,1) = 0.0142827 —0.2563247i, (37)

I
In order to illustrate this statement, let us consider the behavior of w

which the hydrodynamic w

approach the point

more closely. This point, which has been determined independently by solving the conditions
(34) for n = 1, corresponds to the green star in the figure. The behavior we observe is precisely

the one to expect if there is indeed a mode collision at w = wﬁ(kc,l).
+
I
far shows that the complex singularities closest to the origin correspond to two branch points
located at k =k ,;, which can again be interpreted as collisions between coﬁr(k) and wl(lH’il)

on non-principal sheets.

Regarding the w; (k) hydrodynamic mode, an analysis analogous to the one presented so

SA direct numerical analysis shows that arg(%i — kc’n) — 1 as n — 09, i.e., the curves along which the branch
points condense are parallel to the real k-axis in the n — oo limit

’Some authors require an essential singularity to be isolated, but we do not.

8There are also non-principal gapped poles, with series expansion w‘(IN ) — i ak+ %i(oc2 —1)k?+..., where
a obeys a transcendental equation. For n = 0, this equation has no solutions; for n # 0, we find purely imaginary

solutions — with positive imaginary part for n > 0 — that the change n — —n conjugates.
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Figure 11: Trajectories followed by wﬁ (solid curves) and "=V (dashed curves)
in the complex w-plane, as k varies along the ray k = |k|e!? for 6 —arg kei= —1072
(brown), —1072 (red), —10~* (blue) and —107> (purple). As 6 —arg k., decreases,
the corresponding trajectories become closer to each other, until colliding at the point

w = 0.0142827—0.2563247i (green star). This point has been determined indepen-
dently by solving equations (34) for n = 1.

Taking stock, the main conclusion of the analysis presented in this section is that the con-
vergence radius of the series expansion of w=(k) around k = 0 is given b
g p I g y

ki = [k 1| = 0.7410387, (38)

and set by mode collisions between o)ﬁ(k) and wl(lH’il) on non-principal sheets.

4 A prescription for finding the radius of convergence

In the preceding sections our analysis of RTA kinetic theory has revealed novel obstructions to
the convergence of the hydrodynamic series. In light of this, it is worth revisiting the basics
surrounding convergence of the function w(k) expanded as a series in small k. The radius of
convergence of w(k) expanded around any value of k (which we will mostly take to be k =0,
relevant to the hydrodynamic expansion) is determined by the closest singularity of w(k) to
that point in the complex k-plane.’ Often, w(k) is implicitly defined by a complex curve given
by

P(w,k)=0, (39)
which may correspond to the determinant of a fluctuation mode matrix or, with care, the
inverse of an appropriate Green’s function or simply its denominator. These elementary obser-
vations have previously been used to determine the radius of convergence of the hydrodynamic
gradient expansion for holographic theories [8-10, 13, 14,16] as well as MIS theory [12]. In

°If w(k) is defined on a multi-sheeted Riemann surface, one must also ensure the singularity is on the correct
sheet of w.
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the preceding sections of this paper we have employed this procedure to compute this radius
of convergence for RTA kinetic theory.

A natural question is given P(w, k), is there a shortcut to determining the singularities of
w(k)? In this section we examine this question in the light of the Implicit Function Theorem.
In doing so, we arrive at a prescription for a set of points that includes all singularities of w(k).
For previous related work on a similar question we direct the reader to [9, 10], although we
note our prescription differs in some key mathematical aspects.

Let us first recall the Implicit Function Theorem (taken from [36])

Implicit Function Theorem. Let P(w,k) be analytic in w,k near w = k = 0.
Assuming P(0,0) = 0 and J,,P(0,0) # O then there exists a unique function
w(k) analytic in some neighbourhood |k| < k, of k = 0 such that w(0) = 0 and
P(w(k),k)=0.

Conversely, the following set of points w, k € C,
{(w,k)|P=03,P =0} U {(w, k)| P =0A(P is not analytic)}, (40)

includes the locations of all singularities of w(k), since these are the only possible points of
P = 0 where the function w(k) may itself fail to be analytic by the Implicit Function Theorem.'°
Crucially however, note that the set (40) can include points where there are no singularities
of w(k). Thus, given the set (40), to determine the radius of convergence each point should
be further examined in order to find out which, if any, is the closest singularity to the point
around which one is expanding (which is w = k = 0 for the hydrodynamic expansion).

In the remainder of this section we illustrate these observations with a set of examples,
beginning with the relatively simple case where P is a polynomial in section 4.1, before dis-
cussing our main results on RTA kinetic theory and how they fit into this picture, for which P
is not a polynomial, in section 4.2.

4.1 Polynomial P

Here we collect some known results from [36]. Suppose P can be written as a polynomial in

w and k as follows N

P(w, k)= (ko' (41)
i=0
In this case w(k) is said to be an algebraic function. The candidate singularities (40) thus either
correspond to those points where P = J, P = 0, in which case multiple branches degenerate,
or where P is non-analytic. Since P is polynomial, if k is finite, this latter case only happens
when w = 0. This occurs only when the coefficient of the highest order term in w vanishes,
cy(k) = 0. In this case, the number of roots of the resulting polynomial in w is reduced.

We can also illustrate a case where a point in the set (40) does not correspond to a singu-
larity of w(k). This occurs whenever two branches of w(k) happen to take on the same value
at some k € C, with each branch remaining analytic around this point. The canonical example
is the Lemniscate of Bernoulli [37] where, at the origin of the ‘figure-of-eight’-shaped curve
obeying P = 3,,P = 0, two branches cross but remain analytic there.'!

The type of singularities that algebraic functions can have is constrained by the Newton-
Puiseux theorem. If P has r degenerate roots at a point, the theorem says that this singularity
is a branch point of order r. Furthermore, around this point, w(k) can be expanded as a

191n [9,10] P was labelled a ‘spectral curve’ and focus placed on points for which P = 8,,P = 0, labelled ‘critical
points’.

1A similar phenomenon occurs in holography, where branches of the scalar quasinormal mode spectrum for the
BTZ black hole [38,39], w,(k), cross at finite k € C, but with no corresponding singularity of w, (k).
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convergent series in powers of k!/7.12 In the next section we show that this is no longer the
case for non-polynomial P.

4.2 Non-polynomial P and case studies

We now turn to the instances where P(w, k) is not a polynomial. This may be the case when
it arises as an all-orders gradient expansion, or includes functions like the logarithm as in RTA
kinetic theory above. Then P can fail to be analytic in more ways than a polynomial is allowed
to. For example, there can be points where P does not converge (as it happens in the case of
the gradient expansion), or where some of its pieces are non-analytic. Again, we stress that
these conditions do not imply that there is necessarily a singularity there, only that they are
permitted.

4.2.1 Single mode

To examine this case in the simplest way possible, consider a theory with a single mode,
P(w,k) = w—w;(k). (42)

We give a physical example below. Regarding the set (40), there are no points for (42) where
d,P = 0. However, the set of potential singularities (40) need not be empty, since w; (k) itself
can contain singularities. These are then inherited by w(k).

This scenario occurs in the following physical example: relativistic hydrodynamics, de-
fined perturbatively in gradients. Without loss of generality, the gradient-expanded consti-
tutive relations can be put in the Landau frame, and when evaluated on the hydrodynamic
fluctuations can be reorganized using the equations of motion such that they contain no time
derivatives [12,40]. The equations of motion for a shear channel fluctuation therefore contain
one and only one time derivative, which acts on the ideal part of the current. The resulting
P(w, k) is necessarily of the form (42) with w;(k) expressed as an infinite series in k. As an
illustrative concrete example, the hydrodynamic limit of MIS theory in the shear channel has
a P of the form (42) where [12],

wi(k)=—i »_C, D" 1" k22, (43)
n=0

where C, are the Catalan numbers, and D, T are respectively the diffusion constant and relax-
ation time. Note that the series (43) has a finite radius of convergence, and correspondingly
summing (43) gives the exact expression for w;(k) which contains a branch point singularity.

4.2.2 RTA kinetic theory: shear channel

The case studied in this paper, RTA kinetic theory, offers several new interesting elements.
These arise from the multi-sheeted structure of the logarithmic function which enters into P.
We find that the singularities of w(k) can be much richer and moreover can no longer be
described by Puiseux series.

The singularity of w | (k) which is closest to the origin and that sets the radius of conver-
gence occurs when the hydrodynamic pole collides with the logarithmic branch point. In fact,
an infinite number of gapped poles located on the other non-principal sheets also collide with
the branch point. Referring to the set of points (40), this point does not satisfy the condition
9,P = 0, rather, it is a point where P is non-analytic. This occurs at finite «w and k, which is
impossible in the polynomial case.

12If the singularity is located at «w = 00, this holds for ™! instead.
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One may think of this singularity as an infinite-dimensional generalization of what happens
when the highest order term vanishes for a polynomial. Indeed, at this point, the coefficient
of the logarithm in P vanishes, reducing the number of branches from an infinite number to a
finite number. On the other hand, around this point there are an infinite number of branches
in w | (k); if one expresses w | (k) as a series around this point, it does not take the form of a
Puiseux series, since a Puiseux series can only describe a finite number of branches. Instead
of fractional powers, the numerical evidence at our disposal indicates that the series includes
logarithms (see equation (22)).

4.2.3 RTA kinetic theory: sound channel

In the sound channel, the multivaluedness of the logarithm also plays an interesting role.
Surprisingly, each sheet of the analytically continued Green’s function contains an additional
gapless pole.

It is unclear whether these additional poles have any significant role to play in terms of
physical excitations of the system; nevertheless, their mathematical role in our current analysis
is clear. They give rise to singularities in w (k) at the values of k where they collide with the
physical hydrodynamic pole. This happens for each of the non-principal poles at a sequence
of k accumulating at an essential singularity of w(k). The radius of convergence of w (k)

|(|H’n:i1). At this point,
the analytic continuation of P has a degeneracy as diagnosed by the P = J,,P = 0 condition
in (40).

The essential singularity at the accumulation point in w (k) is a new feature not possible
for algebraic curves. Around this point, a Puiseux series does not capture the behaviour of
w) (k). In appendix A, we show that the expansion includes exponentially small contributions,

taking the form of a transseries.

around k = 0 is given by singularities coming from the collision with «w

S5 Summary

The physics of nonequilibrium systems has benefited enormously from studies of model sys-
tems in which the approach to equilibrium and the emergence of hydrodynamic behaviour
could be investigated. Until the advent of holography, the most prominent approach was to
use kinetic theory, whose applicability rests upon the notion of well-defined particles (or quasi-
particles) and the weak-coupling regime. In contrast, the AdS/CFT correspondence is used at
infinitely strong coupling.

Microscopic models formulated in the language of holography or kinetic theory both lead
to hydrodynamic behaviour close to equilibrium in a sense which can be made precise at the
linearized level: the system has modes whose frequencies vanish at long wavelength. There is
however a significant qualitative difference in the remaining features of the analytic structure
of retarded correlators. While the singularities of strongly coupled theories as well as MIS-
type models take the form of isolated poles, the retarded Green’s function of kinetic theory
in the relaxation time approximation has both poles and branch points. This implies that the
natural object to deal with is the analytically continued Green’s function, which can be viewed
as defined on a multi-sheeted Riemann surface.

The analytically continued Green’s function in RTA kinetic theory has an infinite number
of poles. In the shear channel, there is a single hydrodynamic pole on the physical sheet,
and an infinite number of nonhydrodynamic poles on the non-principal ones. The radius of
convergence of the hydrodynamic series is set by a collision of the hydrodynamic pole and a
branch point. In the sound channel, the radius of convergence of the hydrodynamic series is
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set by the collision of the hydrodynamic pole with a gapless pole on a non-principal sheet.
Note that in order to understand the emergence of the finite radius of convergence in terms of
singularity collisions, it is essential to continue beyond the principal branch of the logarithm
appearing in the original Green’s function.

It is worth pointing out that the structure of gapped poles in kinetic theory found here is
consistent with studies of boost-invariant flow in RTA kinetic theory. Calculations of the late
proper time expansion in A/ = 4 SYM reveal that its large-order behaviour contains detailed
information about the rich nonhydrodynamic spectrum of this theory, which is completely con-
sistent with what is known from linear response [41,42]. Analogous calculations in MIS-type
models [43,44] show a similar consistency. Calculations of the late proper time expansion in
RTA kinetic theory [45] point to the conclusion that the nonhydrodynamic sector consists of
an infinite number of nonhydrodynamic modes whose frequencies coincide at vanishing mo-
mentum [46]. The analysis of analytically continued retarded correlation functions described
here reveals such a set of gapped poles. Whether these objects can be mapped to each other
remains an open problem.

More generally, our analysis has not addressed the question of whether the poles of the
analytically continued Green’s function in the non-principal sheets are endowed with any phys-
ical significance. While we don’t have an answer to this question, we would like to point out
that similar situations are not unprecedented. For instance, in the context of hadronic scat-
tering, resonances appear as poles of the scattering amplitude in non-principal sheets [47].
Perhaps closer to the present context, poles in non-principal sheets are also relevant for the
phenomenon of Landau damping in scalar quantum electrodynamics [48].

Whenever the dispersion relations are defined by a complex curve P(w, k) = 0, the Implicit
Function Theorem implies that singularities are allowed (but not necessary) only at points
where either P is non-analytic or ,P = 0. Both conditions must be taken into account.
When P is polynomial, the latter condition plays an important role since it can indicate a
branch point singularity (but not always), and the former condition can indicate poles. In RTA
kinetic theory, we have found that the former condition plays a significant role. In theories
where P is a polynomial, the behavior can be described by a Puiseux series with a non-zero
radius of convergence. In theories where P is not a polynomial, such as RTA kinetic theory,
the singularity can be of other types and it is not known if the series expansion around these
singularities is convergent or not. In holography, while the singularities of «w(k) which set the
radius of convergence are known to be square-root type branch points in the examples studied
to date,'® the analytic structure of P(w, k) in general remains an open question.
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Bpotentially quartic roots are seen in special cases [14].
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A The points k = :I:%i in the sound channel

In this appendix we address the behavior of wﬁ(k) along the imaginary k-axis. The analysis
presented here reveals the existence of essential singularities in the sound channel dispersion
relations, although we would like to emphasize that these essential singularities occur outside
the radius of convergence of the small-k expansion of wﬁt(k).

We study wﬂ(k) first, and start by solving the equation of motion (30) around k = %i ina

series expansion, i.e., we define k = i(% ) ), 0 € R, 6 > 0 and consider the ansatz

oo
wi (k) = iwg +i lewqm. (44)
q:

At zeroth order, this results is four roots —with one degenerate root-, wy = —%,% and %, of

which the first one is singled out by a direct comparison with the numerical solution. The
remaining expansion coefficients can be determined recursively, with the result that w; = —1
and the rest vanish: the behavior of wﬁ(k) as k — %i from below along the imaginary axis
cannot be reproduced by a power series ansatz. To see this, let us linearize around the power
series solution we just found. We consider

1 oo
() =—7i—i5+ le 25’ (45)
p

where 7 is a fictitious parameter, and solve (30) recursively in a  — 0 expansion. In the end,
we find that

11(8) = ae 53 (3 —45), (46)
— 1085 — 656562 + 19253

— 2 _% S(a__ 9
12(6)=1ia%e 165¢°(3—40) 6452 ,

47)

etc., with the overall conclusion that y,(6) = O(e_%q). Hence, there is an essential sin-
gularity at & = 0. Said otherwise, the distance between wﬁ(k) and the branch point at
co“pr(k) =k—i= —i}‘ — 16 is nonperturbatively small in 6 as 6 — 0. In the light of these
results, we can set n = 1 in (45) and view the result as a transseries expansion in o.

The only point that this analysis cannot address is the value of the coefficient a. To fix it,
we need to plug the transseries expansion (45) back into Pj(w, k), expand around 6 = 0, and
demand that we have a solution. The end result of this procedure is that

i

9
N 48
5¢ (48)

a=

As a final consistency check, we compare our transseries expansion truncated to order ¢ = g4

with the w, we have determined numerically. It is convenient to plot the ratio

wﬁ(k) — wgp(k)

nax e o (6=3+ik)’

(49)

Examples for g, = 1, 4 and 8 can be found in figure 12 (right). We see that re. —1las

k — %i ; furthermore, as q,,,, increases, the agreement away from k = %i improves signifi-

cantly. This confirms that our analysis is correct. The distance between coﬁ and the branch
point co;p can be found in the left plot of figure 12.
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Figure 12: Left: distance between the hydrodynamic mode frequency W) and the
branch point co;;p, as k goes from 0 to %i along the imaginary axis. This distance

decreases monotonically and vanishes as k — %i. Right: comparison between the
distance Iwﬁ — con’pl and the analytic prediction (45) for k — %i along the imaginary
k-axis from below, as quantified by the ratio e defined in equation (49). We have
considered g = 1 (blue), g = 4 (purple) and q = 8 (orange). As g increases, the
agreement gets progressively better, as seen by the progressively closer approach of
the different curves to the value rq_ =1 (dashed black line).
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Figure 13: Same as figure 12, but now for the hydrodynamic mode frequency wﬁ’
and the branch point Wy The relevant modifications that need to be performed to
obtain this figure are described in the text.

+
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we find that this mode collides with the Wy branch point at k = —%i. Defining 6 by the

relation k = —%i + o1, wﬁr can also be represented as a transseries in 6 as 6 — 0,

An analysis analogous to the one presented above can be carried out for w; . In this case,

. o0
3 .
wr{:—‘—‘—16+21:;(q(5), (50)
q:

with y,(6) given by the same expressions as above. We check the relation (50) —truncated at
orders q,,,x = 1, 4 and 8- in figure 13 (right), where we plot the ratio

ot (k)= )y (K)

r = .
B HEPACES Sl)

(51

To summarize, in this appendix we have demonstrated that:
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. o)ﬁ(k) present essential singularities at k = :F%i.

* These essential singularities appear when the wIT pole collides with the obep logarithmic
branch point.

As discussed in the main body of the text, this phenomenon has no counterpart for algebraic
functions.

References

[1] W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: The big picture and
the big questions, Annu. Rev. Nucl. Part. Sci. 68, 339 (2018), doi:10.1146/annurev-nucl-
101917-020852.

[2] C. Shen and L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions,
Nucl. Sci. Tech. 31, 122 (2020), do0i:10.1007/s41365-020-00829-z.

[3] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann,
Gauge /string duality, hot QCD and heavy ion collisions, (2011), arXiv:1101.0618.

[4] W. Florkowski, M. P Heller and M. Spaliniski, New theories of relativistic hydrodynamics in
the LHC era, Rep. Prog. Phys. 81, 046001 (2018), doi:10.1088/1361-6633/aaa091.

[5] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions: The central rapidity region,
Phys. Rev. D 27, 140 (1983), do0i:10.1103/PhysRevD.27.140.

[6] P K. Kovtun and A. O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72,
086009 (2005), doi:10.1103/PhysRevD.72.086009.

[7] E.Berti, V. Cardoso and A. O. Starinets, Quasinormal modes of black holes and black branes,
Class. Quantum Grav. 26, 163001 (2009), doi:10.1088/0264-9381/26/16/163001.

[8] B. Withers, Short-lived modes from hydrodynamic dispersion relations, J. High Energ. Phys.
06, 059 (2018), doi:10.1007/JHEP06(2018)059.

[9] S. Grozdanov, P K. Kovtun, A. O. Starinets and P Tadi¢, Convergence of
the gradient expansion in hydrodynamics, Phys. Rev. Lett. 122, 251601 (2019),
doi:10.1103/PhysRevLett.122.251601.

[10] S. Grozdanov, P K. Kovtun, A. O. Starinets and P Tadi¢, The complex life of hydrodynamic
modes, J. High Energ. Phys. 11, 097 (2019), doi:10.1007/JHEP11(2019)097.

[11] A. Amoretti, D. Aredn, B. Goutéraux and D. Musso, Gapless and gapped holographic
phonons, J. High Energ. Phys. 01, 058 (2020), doi:10.1007/JHEP01(2020)058.

[12] M. P Heller, A. Serantes, M. Spaliniski, V. Svensson and B. Withers, The hydrodynamic
gradient expansion in linear response theory, (2020), arXiv:2007.05524.

[13] N. Abbasi and S. Tahery, Complexified quasinormal modes and the pole-skipping in a
holographic system at finite chemical potential, J. High Energ. Phys. 10, 076 (2020),
doi:10.1007/JHEP10(2020)076.

[14] A.Jansen and C. Pantelidou, Quasinormal modes in charged fluids at complex momentum,
J. High Energ. Phys. 10, 121 (2020), doi:10.1007/JHEP10(2020)121.

21


https://scipost.org
https://scipost.org/SciPostPhys.10.6.123
https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1007/s41365-020-00829-z
https://arxiv.org/abs/1101.0618
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1007/JHEP06(2018)059
https://doi.org/10.1103/PhysRevLett.122.251601
https://doi.org/10.1007/JHEP11(2019)097
https://doi.org/10.1007/JHEP01(2020)058
https://arxiv.org/abs/2007.05524
https://doi.org/10.1007/JHEP10(2020)076
https://doi.org/10.1007/JHEP10(2020)121

Scil SciPost Phys. 10, 123 (2021)

[15] M. Baggioli, How small hydrodynamics can go, Phys. Rev. D 103, 086001 (2021),
doi:10.1103/PhysRevD.103.086001.

[16] D. Arean, R. A. Davison, B. Goutéraux and K. Suzuki, Hydrodynamic diffusion and its
breakdown near AdS, fixed points, (2020), arXiv:2011.12301.

[17] P Arnold and L. G. Yaffe, Effective theories for real-time correlations in hot plasmas, Phys.
Rev. D 57, 1178 (1998), do0i:10.1103/PhysRevD.57.1178.

[18] J. Berges, M. P Heller, A. Mazeliauskas and R. Venugopalan, Thermalization in QCD:
theoretical approaches, phenomenological applications, and interdisciplinary connections,
(2020), arXiv:2005.12299.

[19] P Arnold, G. David Moore and L. G. Yaffe, Transport coefficients in high temperature gauge
theories. 1. Leading log results, J. High Energ. Phys. 11, 001 (2000), doi:10.1088/1126-
6708/2000/11/001.

[20] P B. Arnold, G. D. Moore and L. G. Yaffe, Effective kinetic theory for high temperature gauge
theories, J. High Energ. Phys. 01, 030 (2003), do0i:10.1088/1126-6708/2003/01/030.

[21] P Arnold, G. D. Moore and L. G. Yaffe, Transport coefficients in high temperature gauge
theories, 2. Beyond leading log, J. High Energ. Phys. 05, 051 (2003), doi:10.1088/1126-
6708/2003/05/051.

[22] A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion
collisions, Phys. Rev. Lett. 115, 182301 (2015), doi:10.1103/PhysRevLett.115.182301.

[23] L. Keegan, A. Kurkela, A. Mazeliauskas and D. Teaney, Initial conditions for hydrodynam-
ics from weakly coupled pre-equilibrium evolution, J. High Energ. Phys. 08, 171 (2016),
doi:10.1007/JHEP08(2016)171.

[24] A. Mazeliauskas and J. Berges, Prescaling and far-from-equilibrium hydro-
dynamics in the quark-gluon plasma, Phys. Rev. Lett. 122, 122301 (2019),
doi:10.1103/PhysRevLett.122.122301.

[25] A. Kurkela, A. Mazeliauskas, J.-E Paquet, S. Schlichting and D. Teaney, Effective kinetic
description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions,
Phys. Rev. C 99, 034910 (2019), doi:10.1103/PhysRevC.99.034910.

[26] A. Kurkela, A. Mazeliauskas, J.-E Paquet, S. Schlichting and D. Teaney, Matching the
nonequilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic the-
ory, Phys. Rev. Lett. 122, 122302 (2019), doi:10.1103/PhysRevLett.122.122302.

[27] A.Kurkela and A. Mazeliauskas, Chemical equilibration in weakly coupled QCD, Phys. Rev.
D 99, 054018 (2019), doi:10.1103/PhysRevD.99.054018.

[28] A. Kurkela and A. Mazeliauskas, Chemical equilibration in hadronic collisions, Phys. Rev.
Lett. 122, 142301 (2019), doi:10.1103/PhysRevLett.122.142301.

[29] D. Almaalol, A. Kurkela and M. Strickland, Nonequilibrium attractor in
high-temperature QCD plasmas, Phys. Rev. Lett. 125, 122302 (2020),
doi:10.1103/PhysRevLett.125.122302.

[30] X. Du and S. Schlichting, Equilibration of the Quark-Gluon Plasma at finite net-baryon
density in QCD kinetic theory, (2020), arXiv:2012.09068.

22


https://scipost.org
https://scipost.org/SciPostPhys.10.6.123
https://doi.org/10.1103/PhysRevD.103.086001
https://arxiv.org/abs/2011.12301
https://doi.org/10.1103/PhysRevD.57.1178
https://arxiv.org/abs/2005.12299
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2003/01/030
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1103/PhysRevLett.122.122301
https://doi.org/10.1103/PhysRevC.99.034910
https://doi.org/10.1103/PhysRevLett.122.122302
https://doi.org/10.1103/PhysRevD.99.054018
https://doi.org/10.1103/PhysRevLett.122.142301
https://doi.org/10.1103/PhysRevLett.125.122302
https://arxiv.org/abs/2012.09068

Scil SciPost Phys. 10, 123 (2021)

[31] X. Du and S. Schlichting, Equilibration of weakly coupled QCD plasmas, (2020),
arXiv:2012.09079.

[32] G.D. Moore, Stress-stress correlator in ¢* theory: poles or a cut?, J. High Energ. Phys. 05,
084 (2018), doi:10.1007/JHEP05(2018)084.

[33] J. L. Anderson and H. R. Witting, A relativistic relaxation-time model for the Boltzmann
equation, Physica 74, 466 (1974), doi:10.1016/0031-8914(74)90355-3.

[34] P Romatschke, Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic
onset transitions, Eur. Phys. J. C 76, 352 (2016), doi:10.1140/epjc/s10052-016-4169-7.

[35] A. Kurkela and U. Achim Wiedemann, Analytic structure of nonhydrodynamic modes in
kinetic theory, Eur. Phys. J. C 79, 776 (2019), doi:10.1140/epjc/s10052-019-7271-9.

[36] P Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cam-
bridge, ISBN 9780511801655 (2009), doi:10.1017/CB09780511801655.

[37] J. Bernoulli, Solutio construcio curva accessus & recessu aquabilis, ope rectificationionis
curvee cujusdam algebraicae: Addenda nupera solutioni mensis junii, Acta Eruditorum, 336
(1694).

[38] D. Birmingham, I. Sachs and S. N. Solodukhin, Conformal field theory inter-
pretation of black hole quasinormal modes, Phys. Rev. Lett. 88, 151301 (2002),
doi:10.1103/PhysRevLett.88.151301.

[39] D. T. Son and A. O. Starinets, Minkowski-space correlators in AdS/CFT correspondence:
recipe and applications, J. High Energ. Phys. 09, 042 (2002), doi:10.1088/1126-
6708/2002/09/042.

[40] S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order,
Phys. Rev. D 93, 066012 (2016), d0i:10.1103/PhysRevD.93.066012.

[41] M. P Heller, R. A. Janik and P Witaszczyk, Hydrodynamic gradient ex-
pansion in gauge theory plasmas, Phys. Rev. Lett. 110, 211602 (2013),
doi:10.1103/PhysRevLett.110.211602.

[42] L. Aniceto, J. Jankowski, B. Meiring and M. Spaliniski, The large proper-time expansion
of Yang-Mills plasma as a resurgent transseries, J. High Energ. Phys. 02, 073 (2019),
doi:10.1007/JHEP02(2019)073.

[43] M. P Heller and M. Spalinski, Hydrodynamics beyond the gradient expan-
sion:  Resurgence and resummation, Phys. Rev. Lett. 115, 072501 (2015),
doi:10.1103/PhysRevLett.115.072501.

[44] 1. Aniceto and M. Spalinski, Resurgence in extended hydrodynamics, Phys. Rev. D 93,
085008 (2016), doi:10.1103/PhysRevD.93.085008.

[45] M. P Heller, A. Kurkela, M. Spaliniski and V. Svensson, Hydrodynamization in kinetic
theory: Transient modes and the gradient expansion, Phys. Rev. D 97, 091503 (2018),
doi:10.1103/PhysRevD.97.091503.

[46] M. P Heller and V. Svensson, How does relativistic kinetic theory remember about initial
conditions?, Phys. Rev. D 98, 054016 (2018), doi:10.1103/PhysRevD.98.054016.

23


https://scipost.org
https://scipost.org/SciPostPhys.10.6.123
https://arxiv.org/abs/2012.09079
https://doi.org/10.1007/JHEP05(2018)084
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1140/epjc/s10052-016-4169-7
https://doi.org/10.1140/epjc/s10052-019-7271-9
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1103/PhysRevLett.88.151301
https://doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1103/PhysRevD.93.066012
https://doi.org/10.1103/PhysRevLett.110.211602
https://doi.org/10.1007/JHEP02(2019)073
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevD.93.085008
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1103/PhysRevD.98.054016

Scil SciPost Phys. 10, 123 (2021)

[47] J. R. Peldez, From controversy to precision on the sigma meson: a review on

the status of the non-ordinary f,(500) resonance, Phys. Rep. 658, 1 (2016),
doi:10.1016/j.physrep.2016.09.001.

[48] A. Rajantie and M. Hindmarsh, Simulating hot Abelian gauge dynamics, Phys. Rev. D 60,
096001 (1999), doi:10.1103/PhysRevD.60.096001.

[49] Holographists, Holotube, https://projects.ift.uam-csic.es/holotube

24


https://scipost.org
https://scipost.org/SciPostPhys.10.6.123
https://doi.org/10.1016/j.physrep.2016.09.001
https://doi.org/10.1103/PhysRevD.60.096001
https://projects.ift.uam-csic.es/holotube

	Introduction
	The shear channel
	The sound channel
	A prescription for finding the radius of convergence
	Polynomial P
	Non-polynomial P and case studies
	Single mode
	RTA kinetic theory: shear channel
	RTA kinetic theory: sound channel


	Summary
	The points k = 34i in the sound channel
	References

